]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - net/ipv4/ip_output.c
ipv4: Pass flow keys down into datagram packet building engine.
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / ip_output.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45#include <asm/uaccess.h>
46#include <asm/system.h>
47#include <linux/module.h>
48#include <linux/types.h>
49#include <linux/kernel.h>
50#include <linux/mm.h>
51#include <linux/string.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
54#include <linux/slab.h>
55
56#include <linux/socket.h>
57#include <linux/sockios.h>
58#include <linux/in.h>
59#include <linux/inet.h>
60#include <linux/netdevice.h>
61#include <linux/etherdevice.h>
62#include <linux/proc_fs.h>
63#include <linux/stat.h>
64#include <linux/init.h>
65
66#include <net/snmp.h>
67#include <net/ip.h>
68#include <net/protocol.h>
69#include <net/route.h>
70#include <net/xfrm.h>
71#include <linux/skbuff.h>
72#include <net/sock.h>
73#include <net/arp.h>
74#include <net/icmp.h>
75#include <net/checksum.h>
76#include <net/inetpeer.h>
77#include <linux/igmp.h>
78#include <linux/netfilter_ipv4.h>
79#include <linux/netfilter_bridge.h>
80#include <linux/mroute.h>
81#include <linux/netlink.h>
82#include <linux/tcp.h>
83
84int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85EXPORT_SYMBOL(sysctl_ip_default_ttl);
86
87/* Generate a checksum for an outgoing IP datagram. */
88__inline__ void ip_send_check(struct iphdr *iph)
89{
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92}
93EXPORT_SYMBOL(ip_send_check);
94
95int __ip_local_out(struct sk_buff *skb)
96{
97 struct iphdr *iph = ip_hdr(skb);
98
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
103}
104
105int ip_local_out(struct sk_buff *skb)
106{
107 int err;
108
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
112
113 return err;
114}
115EXPORT_SYMBOL_GPL(ip_local_out);
116
117/* dev_loopback_xmit for use with netfilter. */
118static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119{
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 netif_rx_ni(newskb);
126 return 0;
127}
128
129static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130{
131 int ttl = inet->uc_ttl;
132
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
136}
137
138/*
139 * Add an ip header to a skbuff and send it out.
140 *
141 */
142int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
144{
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
148
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 iph->saddr = saddr;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
165
166 if (opt && opt->opt.optlen) {
167 iph->ihl += opt->opt.optlen>>2;
168 ip_options_build(skb, &opt->opt, daddr, rt, 0);
169 }
170
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
173
174 /* Send it out. */
175 return ip_local_out(skb);
176}
177EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178
179static inline int ip_finish_output2(struct sk_buff *skb)
180{
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185
186 if (rt->rt_type == RTN_MULTICAST) {
187 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
188 } else if (rt->rt_type == RTN_BROADCAST)
189 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
190
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
194
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 if (skb2 == NULL) {
197 kfree_skb(skb);
198 return -ENOMEM;
199 }
200 if (skb->sk)
201 skb_set_owner_w(skb2, skb->sk);
202 kfree_skb(skb);
203 skb = skb2;
204 }
205
206 if (dst->hh)
207 return neigh_hh_output(dst->hh, skb);
208 else if (dst->neighbour)
209 return dst->neighbour->output(skb);
210
211 if (net_ratelimit())
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 kfree_skb(skb);
214 return -EINVAL;
215}
216
217static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218{
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
223}
224
225static int ip_finish_output(struct sk_buff *skb)
226{
227#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb)->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
232 }
233#endif
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
236 else
237 return ip_finish_output2(skb);
238}
239
240int ip_mc_output(struct sk_buff *skb)
241{
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb_rtable(skb);
244 struct net_device *dev = rt->dst.dev;
245
246 /*
247 * If the indicated interface is up and running, send the packet.
248 */
249 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
250
251 skb->dev = dev;
252 skb->protocol = htons(ETH_P_IP);
253
254 /*
255 * Multicasts are looped back for other local users
256 */
257
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if (sk_mc_loop(sk)
260#ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
265 to local recipients.
266
267 This check is duplicated in ip_mr_input at the moment.
268 */
269 &&
270 ((rt->rt_flags & RTCF_LOCAL) ||
271 !(IPCB(skb)->flags & IPSKB_FORWARDED))
272#endif
273 ) {
274 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 if (newskb)
276 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 newskb, NULL, newskb->dev,
278 ip_dev_loopback_xmit);
279 }
280
281 /* Multicasts with ttl 0 must not go beyond the host */
282
283 if (ip_hdr(skb)->ttl == 0) {
284 kfree_skb(skb);
285 return 0;
286 }
287 }
288
289 if (rt->rt_flags&RTCF_BROADCAST) {
290 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 if (newskb)
292 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 NULL, newskb->dev, ip_dev_loopback_xmit);
294 }
295
296 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 skb->dev, ip_finish_output,
298 !(IPCB(skb)->flags & IPSKB_REROUTED));
299}
300
301int ip_output(struct sk_buff *skb)
302{
303 struct net_device *dev = skb_dst(skb)->dev;
304
305 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
306
307 skb->dev = dev;
308 skb->protocol = htons(ETH_P_IP);
309
310 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 ip_finish_output,
312 !(IPCB(skb)->flags & IPSKB_REROUTED));
313}
314
315int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
316{
317 struct sock *sk = skb->sk;
318 struct inet_sock *inet = inet_sk(sk);
319 struct ip_options_rcu *inet_opt;
320 struct flowi4 *fl4;
321 struct rtable *rt;
322 struct iphdr *iph;
323 int res;
324
325 /* Skip all of this if the packet is already routed,
326 * f.e. by something like SCTP.
327 */
328 rcu_read_lock();
329 inet_opt = rcu_dereference(inet->inet_opt);
330 fl4 = &fl->u.ip4;
331 rt = skb_rtable(skb);
332 if (rt != NULL)
333 goto packet_routed;
334
335 /* Make sure we can route this packet. */
336 rt = (struct rtable *)__sk_dst_check(sk, 0);
337 if (rt == NULL) {
338 __be32 daddr;
339
340 /* Use correct destination address if we have options. */
341 daddr = inet->inet_daddr;
342 if (inet_opt && inet_opt->opt.srr)
343 daddr = inet_opt->opt.faddr;
344
345 /* If this fails, retransmit mechanism of transport layer will
346 * keep trying until route appears or the connection times
347 * itself out.
348 */
349 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
350 daddr, inet->inet_saddr,
351 inet->inet_dport,
352 inet->inet_sport,
353 sk->sk_protocol,
354 RT_CONN_FLAGS(sk),
355 sk->sk_bound_dev_if);
356 if (IS_ERR(rt))
357 goto no_route;
358 sk_setup_caps(sk, &rt->dst);
359 }
360 skb_dst_set_noref(skb, &rt->dst);
361
362packet_routed:
363 if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
364 goto no_route;
365
366 /* OK, we know where to send it, allocate and build IP header. */
367 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
368 skb_reset_network_header(skb);
369 iph = ip_hdr(skb);
370 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
371 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
372 iph->frag_off = htons(IP_DF);
373 else
374 iph->frag_off = 0;
375 iph->ttl = ip_select_ttl(inet, &rt->dst);
376 iph->protocol = sk->sk_protocol;
377 iph->saddr = fl4->saddr;
378 iph->daddr = fl4->daddr;
379 /* Transport layer set skb->h.foo itself. */
380
381 if (inet_opt && inet_opt->opt.optlen) {
382 iph->ihl += inet_opt->opt.optlen >> 2;
383 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
384 }
385
386 ip_select_ident_more(iph, &rt->dst, sk,
387 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
388
389 skb->priority = sk->sk_priority;
390 skb->mark = sk->sk_mark;
391
392 res = ip_local_out(skb);
393 rcu_read_unlock();
394 return res;
395
396no_route:
397 rcu_read_unlock();
398 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
399 kfree_skb(skb);
400 return -EHOSTUNREACH;
401}
402EXPORT_SYMBOL(ip_queue_xmit);
403
404
405static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
406{
407 to->pkt_type = from->pkt_type;
408 to->priority = from->priority;
409 to->protocol = from->protocol;
410 skb_dst_drop(to);
411 skb_dst_copy(to, from);
412 to->dev = from->dev;
413 to->mark = from->mark;
414
415 /* Copy the flags to each fragment. */
416 IPCB(to)->flags = IPCB(from)->flags;
417
418#ifdef CONFIG_NET_SCHED
419 to->tc_index = from->tc_index;
420#endif
421 nf_copy(to, from);
422#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
423 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
424 to->nf_trace = from->nf_trace;
425#endif
426#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
427 to->ipvs_property = from->ipvs_property;
428#endif
429 skb_copy_secmark(to, from);
430}
431
432/*
433 * This IP datagram is too large to be sent in one piece. Break it up into
434 * smaller pieces (each of size equal to IP header plus
435 * a block of the data of the original IP data part) that will yet fit in a
436 * single device frame, and queue such a frame for sending.
437 */
438
439int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
440{
441 struct iphdr *iph;
442 int ptr;
443 struct net_device *dev;
444 struct sk_buff *skb2;
445 unsigned int mtu, hlen, left, len, ll_rs;
446 int offset;
447 __be16 not_last_frag;
448 struct rtable *rt = skb_rtable(skb);
449 int err = 0;
450
451 dev = rt->dst.dev;
452
453 /*
454 * Point into the IP datagram header.
455 */
456
457 iph = ip_hdr(skb);
458
459 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
460 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
461 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
462 htonl(ip_skb_dst_mtu(skb)));
463 kfree_skb(skb);
464 return -EMSGSIZE;
465 }
466
467 /*
468 * Setup starting values.
469 */
470
471 hlen = iph->ihl * 4;
472 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
473#ifdef CONFIG_BRIDGE_NETFILTER
474 if (skb->nf_bridge)
475 mtu -= nf_bridge_mtu_reduction(skb);
476#endif
477 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
478
479 /* When frag_list is given, use it. First, check its validity:
480 * some transformers could create wrong frag_list or break existing
481 * one, it is not prohibited. In this case fall back to copying.
482 *
483 * LATER: this step can be merged to real generation of fragments,
484 * we can switch to copy when see the first bad fragment.
485 */
486 if (skb_has_frag_list(skb)) {
487 struct sk_buff *frag, *frag2;
488 int first_len = skb_pagelen(skb);
489
490 if (first_len - hlen > mtu ||
491 ((first_len - hlen) & 7) ||
492 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
493 skb_cloned(skb))
494 goto slow_path;
495
496 skb_walk_frags(skb, frag) {
497 /* Correct geometry. */
498 if (frag->len > mtu ||
499 ((frag->len & 7) && frag->next) ||
500 skb_headroom(frag) < hlen)
501 goto slow_path_clean;
502
503 /* Partially cloned skb? */
504 if (skb_shared(frag))
505 goto slow_path_clean;
506
507 BUG_ON(frag->sk);
508 if (skb->sk) {
509 frag->sk = skb->sk;
510 frag->destructor = sock_wfree;
511 }
512 skb->truesize -= frag->truesize;
513 }
514
515 /* Everything is OK. Generate! */
516
517 err = 0;
518 offset = 0;
519 frag = skb_shinfo(skb)->frag_list;
520 skb_frag_list_init(skb);
521 skb->data_len = first_len - skb_headlen(skb);
522 skb->len = first_len;
523 iph->tot_len = htons(first_len);
524 iph->frag_off = htons(IP_MF);
525 ip_send_check(iph);
526
527 for (;;) {
528 /* Prepare header of the next frame,
529 * before previous one went down. */
530 if (frag) {
531 frag->ip_summed = CHECKSUM_NONE;
532 skb_reset_transport_header(frag);
533 __skb_push(frag, hlen);
534 skb_reset_network_header(frag);
535 memcpy(skb_network_header(frag), iph, hlen);
536 iph = ip_hdr(frag);
537 iph->tot_len = htons(frag->len);
538 ip_copy_metadata(frag, skb);
539 if (offset == 0)
540 ip_options_fragment(frag);
541 offset += skb->len - hlen;
542 iph->frag_off = htons(offset>>3);
543 if (frag->next != NULL)
544 iph->frag_off |= htons(IP_MF);
545 /* Ready, complete checksum */
546 ip_send_check(iph);
547 }
548
549 err = output(skb);
550
551 if (!err)
552 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
553 if (err || !frag)
554 break;
555
556 skb = frag;
557 frag = skb->next;
558 skb->next = NULL;
559 }
560
561 if (err == 0) {
562 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
563 return 0;
564 }
565
566 while (frag) {
567 skb = frag->next;
568 kfree_skb(frag);
569 frag = skb;
570 }
571 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
572 return err;
573
574slow_path_clean:
575 skb_walk_frags(skb, frag2) {
576 if (frag2 == frag)
577 break;
578 frag2->sk = NULL;
579 frag2->destructor = NULL;
580 skb->truesize += frag2->truesize;
581 }
582 }
583
584slow_path:
585 left = skb->len - hlen; /* Space per frame */
586 ptr = hlen; /* Where to start from */
587
588 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
589 * we need to make room for the encapsulating header
590 */
591 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
592
593 /*
594 * Fragment the datagram.
595 */
596
597 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
598 not_last_frag = iph->frag_off & htons(IP_MF);
599
600 /*
601 * Keep copying data until we run out.
602 */
603
604 while (left > 0) {
605 len = left;
606 /* IF: it doesn't fit, use 'mtu' - the data space left */
607 if (len > mtu)
608 len = mtu;
609 /* IF: we are not sending up to and including the packet end
610 then align the next start on an eight byte boundary */
611 if (len < left) {
612 len &= ~7;
613 }
614 /*
615 * Allocate buffer.
616 */
617
618 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
619 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
620 err = -ENOMEM;
621 goto fail;
622 }
623
624 /*
625 * Set up data on packet
626 */
627
628 ip_copy_metadata(skb2, skb);
629 skb_reserve(skb2, ll_rs);
630 skb_put(skb2, len + hlen);
631 skb_reset_network_header(skb2);
632 skb2->transport_header = skb2->network_header + hlen;
633
634 /*
635 * Charge the memory for the fragment to any owner
636 * it might possess
637 */
638
639 if (skb->sk)
640 skb_set_owner_w(skb2, skb->sk);
641
642 /*
643 * Copy the packet header into the new buffer.
644 */
645
646 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
647
648 /*
649 * Copy a block of the IP datagram.
650 */
651 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
652 BUG();
653 left -= len;
654
655 /*
656 * Fill in the new header fields.
657 */
658 iph = ip_hdr(skb2);
659 iph->frag_off = htons((offset >> 3));
660
661 /* ANK: dirty, but effective trick. Upgrade options only if
662 * the segment to be fragmented was THE FIRST (otherwise,
663 * options are already fixed) and make it ONCE
664 * on the initial skb, so that all the following fragments
665 * will inherit fixed options.
666 */
667 if (offset == 0)
668 ip_options_fragment(skb);
669
670 /*
671 * Added AC : If we are fragmenting a fragment that's not the
672 * last fragment then keep MF on each bit
673 */
674 if (left > 0 || not_last_frag)
675 iph->frag_off |= htons(IP_MF);
676 ptr += len;
677 offset += len;
678
679 /*
680 * Put this fragment into the sending queue.
681 */
682 iph->tot_len = htons(len + hlen);
683
684 ip_send_check(iph);
685
686 err = output(skb2);
687 if (err)
688 goto fail;
689
690 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
691 }
692 kfree_skb(skb);
693 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
694 return err;
695
696fail:
697 kfree_skb(skb);
698 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
699 return err;
700}
701EXPORT_SYMBOL(ip_fragment);
702
703int
704ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
705{
706 struct iovec *iov = from;
707
708 if (skb->ip_summed == CHECKSUM_PARTIAL) {
709 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
710 return -EFAULT;
711 } else {
712 __wsum csum = 0;
713 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
714 return -EFAULT;
715 skb->csum = csum_block_add(skb->csum, csum, odd);
716 }
717 return 0;
718}
719EXPORT_SYMBOL(ip_generic_getfrag);
720
721static inline __wsum
722csum_page(struct page *page, int offset, int copy)
723{
724 char *kaddr;
725 __wsum csum;
726 kaddr = kmap(page);
727 csum = csum_partial(kaddr + offset, copy, 0);
728 kunmap(page);
729 return csum;
730}
731
732static inline int ip_ufo_append_data(struct sock *sk,
733 struct sk_buff_head *queue,
734 int getfrag(void *from, char *to, int offset, int len,
735 int odd, struct sk_buff *skb),
736 void *from, int length, int hh_len, int fragheaderlen,
737 int transhdrlen, int mtu, unsigned int flags)
738{
739 struct sk_buff *skb;
740 int err;
741
742 /* There is support for UDP fragmentation offload by network
743 * device, so create one single skb packet containing complete
744 * udp datagram
745 */
746 if ((skb = skb_peek_tail(queue)) == NULL) {
747 skb = sock_alloc_send_skb(sk,
748 hh_len + fragheaderlen + transhdrlen + 20,
749 (flags & MSG_DONTWAIT), &err);
750
751 if (skb == NULL)
752 return err;
753
754 /* reserve space for Hardware header */
755 skb_reserve(skb, hh_len);
756
757 /* create space for UDP/IP header */
758 skb_put(skb, fragheaderlen + transhdrlen);
759
760 /* initialize network header pointer */
761 skb_reset_network_header(skb);
762
763 /* initialize protocol header pointer */
764 skb->transport_header = skb->network_header + fragheaderlen;
765
766 skb->ip_summed = CHECKSUM_PARTIAL;
767 skb->csum = 0;
768
769 /* specify the length of each IP datagram fragment */
770 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
771 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
772 __skb_queue_tail(queue, skb);
773 }
774
775 return skb_append_datato_frags(sk, skb, getfrag, from,
776 (length - transhdrlen));
777}
778
779static int __ip_append_data(struct sock *sk, struct sk_buff_head *queue,
780 struct inet_cork *cork,
781 int getfrag(void *from, char *to, int offset,
782 int len, int odd, struct sk_buff *skb),
783 void *from, int length, int transhdrlen,
784 unsigned int flags)
785{
786 struct inet_sock *inet = inet_sk(sk);
787 struct sk_buff *skb;
788
789 struct ip_options *opt = cork->opt;
790 int hh_len;
791 int exthdrlen;
792 int mtu;
793 int copy;
794 int err;
795 int offset = 0;
796 unsigned int maxfraglen, fragheaderlen;
797 int csummode = CHECKSUM_NONE;
798 struct rtable *rt = (struct rtable *)cork->dst;
799
800 exthdrlen = transhdrlen ? rt->dst.header_len : 0;
801 length += exthdrlen;
802 transhdrlen += exthdrlen;
803 mtu = cork->fragsize;
804
805 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
806
807 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
808 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
809
810 if (cork->length + length > 0xFFFF - fragheaderlen) {
811 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
812 mtu-exthdrlen);
813 return -EMSGSIZE;
814 }
815
816 /*
817 * transhdrlen > 0 means that this is the first fragment and we wish
818 * it won't be fragmented in the future.
819 */
820 if (transhdrlen &&
821 length + fragheaderlen <= mtu &&
822 rt->dst.dev->features & NETIF_F_V4_CSUM &&
823 !exthdrlen)
824 csummode = CHECKSUM_PARTIAL;
825
826 skb = skb_peek_tail(queue);
827
828 cork->length += length;
829 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
830 (sk->sk_protocol == IPPROTO_UDP) &&
831 (rt->dst.dev->features & NETIF_F_UFO)) {
832 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
833 hh_len, fragheaderlen, transhdrlen,
834 mtu, flags);
835 if (err)
836 goto error;
837 return 0;
838 }
839
840 /* So, what's going on in the loop below?
841 *
842 * We use calculated fragment length to generate chained skb,
843 * each of segments is IP fragment ready for sending to network after
844 * adding appropriate IP header.
845 */
846
847 if (!skb)
848 goto alloc_new_skb;
849
850 while (length > 0) {
851 /* Check if the remaining data fits into current packet. */
852 copy = mtu - skb->len;
853 if (copy < length)
854 copy = maxfraglen - skb->len;
855 if (copy <= 0) {
856 char *data;
857 unsigned int datalen;
858 unsigned int fraglen;
859 unsigned int fraggap;
860 unsigned int alloclen;
861 struct sk_buff *skb_prev;
862alloc_new_skb:
863 skb_prev = skb;
864 if (skb_prev)
865 fraggap = skb_prev->len - maxfraglen;
866 else
867 fraggap = 0;
868
869 /*
870 * If remaining data exceeds the mtu,
871 * we know we need more fragment(s).
872 */
873 datalen = length + fraggap;
874 if (datalen > mtu - fragheaderlen)
875 datalen = maxfraglen - fragheaderlen;
876 fraglen = datalen + fragheaderlen;
877
878 if ((flags & MSG_MORE) &&
879 !(rt->dst.dev->features&NETIF_F_SG))
880 alloclen = mtu;
881 else
882 alloclen = fraglen;
883
884 /* The last fragment gets additional space at tail.
885 * Note, with MSG_MORE we overallocate on fragments,
886 * because we have no idea what fragment will be
887 * the last.
888 */
889 if (datalen == length + fraggap) {
890 alloclen += rt->dst.trailer_len;
891 /* make sure mtu is not reached */
892 if (datalen > mtu - fragheaderlen - rt->dst.trailer_len)
893 datalen -= ALIGN(rt->dst.trailer_len, 8);
894 }
895 if (transhdrlen) {
896 skb = sock_alloc_send_skb(sk,
897 alloclen + hh_len + 15,
898 (flags & MSG_DONTWAIT), &err);
899 } else {
900 skb = NULL;
901 if (atomic_read(&sk->sk_wmem_alloc) <=
902 2 * sk->sk_sndbuf)
903 skb = sock_wmalloc(sk,
904 alloclen + hh_len + 15, 1,
905 sk->sk_allocation);
906 if (unlikely(skb == NULL))
907 err = -ENOBUFS;
908 else
909 /* only the initial fragment is
910 time stamped */
911 cork->tx_flags = 0;
912 }
913 if (skb == NULL)
914 goto error;
915
916 /*
917 * Fill in the control structures
918 */
919 skb->ip_summed = csummode;
920 skb->csum = 0;
921 skb_reserve(skb, hh_len);
922 skb_shinfo(skb)->tx_flags = cork->tx_flags;
923
924 /*
925 * Find where to start putting bytes.
926 */
927 data = skb_put(skb, fraglen);
928 skb_set_network_header(skb, exthdrlen);
929 skb->transport_header = (skb->network_header +
930 fragheaderlen);
931 data += fragheaderlen;
932
933 if (fraggap) {
934 skb->csum = skb_copy_and_csum_bits(
935 skb_prev, maxfraglen,
936 data + transhdrlen, fraggap, 0);
937 skb_prev->csum = csum_sub(skb_prev->csum,
938 skb->csum);
939 data += fraggap;
940 pskb_trim_unique(skb_prev, maxfraglen);
941 }
942
943 copy = datalen - transhdrlen - fraggap;
944 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
945 err = -EFAULT;
946 kfree_skb(skb);
947 goto error;
948 }
949
950 offset += copy;
951 length -= datalen - fraggap;
952 transhdrlen = 0;
953 exthdrlen = 0;
954 csummode = CHECKSUM_NONE;
955
956 /*
957 * Put the packet on the pending queue.
958 */
959 __skb_queue_tail(queue, skb);
960 continue;
961 }
962
963 if (copy > length)
964 copy = length;
965
966 if (!(rt->dst.dev->features&NETIF_F_SG)) {
967 unsigned int off;
968
969 off = skb->len;
970 if (getfrag(from, skb_put(skb, copy),
971 offset, copy, off, skb) < 0) {
972 __skb_trim(skb, off);
973 err = -EFAULT;
974 goto error;
975 }
976 } else {
977 int i = skb_shinfo(skb)->nr_frags;
978 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
979 struct page *page = cork->page;
980 int off = cork->off;
981 unsigned int left;
982
983 if (page && (left = PAGE_SIZE - off) > 0) {
984 if (copy >= left)
985 copy = left;
986 if (page != frag->page) {
987 if (i == MAX_SKB_FRAGS) {
988 err = -EMSGSIZE;
989 goto error;
990 }
991 get_page(page);
992 skb_fill_page_desc(skb, i, page, off, 0);
993 frag = &skb_shinfo(skb)->frags[i];
994 }
995 } else if (i < MAX_SKB_FRAGS) {
996 if (copy > PAGE_SIZE)
997 copy = PAGE_SIZE;
998 page = alloc_pages(sk->sk_allocation, 0);
999 if (page == NULL) {
1000 err = -ENOMEM;
1001 goto error;
1002 }
1003 cork->page = page;
1004 cork->off = 0;
1005
1006 skb_fill_page_desc(skb, i, page, 0, 0);
1007 frag = &skb_shinfo(skb)->frags[i];
1008 } else {
1009 err = -EMSGSIZE;
1010 goto error;
1011 }
1012 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1013 err = -EFAULT;
1014 goto error;
1015 }
1016 cork->off += copy;
1017 frag->size += copy;
1018 skb->len += copy;
1019 skb->data_len += copy;
1020 skb->truesize += copy;
1021 atomic_add(copy, &sk->sk_wmem_alloc);
1022 }
1023 offset += copy;
1024 length -= copy;
1025 }
1026
1027 return 0;
1028
1029error:
1030 cork->length -= length;
1031 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1032 return err;
1033}
1034
1035static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1036 struct ipcm_cookie *ipc, struct rtable **rtp)
1037{
1038 struct inet_sock *inet = inet_sk(sk);
1039 struct ip_options_rcu *opt;
1040 struct rtable *rt;
1041
1042 /*
1043 * setup for corking.
1044 */
1045 opt = ipc->opt;
1046 if (opt) {
1047 if (cork->opt == NULL) {
1048 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1049 sk->sk_allocation);
1050 if (unlikely(cork->opt == NULL))
1051 return -ENOBUFS;
1052 }
1053 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1054 cork->flags |= IPCORK_OPT;
1055 cork->addr = ipc->addr;
1056 }
1057 rt = *rtp;
1058 if (unlikely(!rt))
1059 return -EFAULT;
1060 /*
1061 * We steal reference to this route, caller should not release it
1062 */
1063 *rtp = NULL;
1064 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1065 rt->dst.dev->mtu : dst_mtu(rt->dst.path);
1066 cork->dst = &rt->dst;
1067 cork->length = 0;
1068 cork->tx_flags = ipc->tx_flags;
1069 cork->page = NULL;
1070 cork->off = 0;
1071
1072 return 0;
1073}
1074
1075/*
1076 * ip_append_data() and ip_append_page() can make one large IP datagram
1077 * from many pieces of data. Each pieces will be holded on the socket
1078 * until ip_push_pending_frames() is called. Each piece can be a page
1079 * or non-page data.
1080 *
1081 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1082 * this interface potentially.
1083 *
1084 * LATER: length must be adjusted by pad at tail, when it is required.
1085 */
1086int ip_append_data(struct sock *sk,
1087 int getfrag(void *from, char *to, int offset, int len,
1088 int odd, struct sk_buff *skb),
1089 void *from, int length, int transhdrlen,
1090 struct ipcm_cookie *ipc, struct rtable **rtp,
1091 unsigned int flags)
1092{
1093 struct inet_sock *inet = inet_sk(sk);
1094 int err;
1095
1096 if (flags&MSG_PROBE)
1097 return 0;
1098
1099 if (skb_queue_empty(&sk->sk_write_queue)) {
1100 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1101 if (err)
1102 return err;
1103 } else {
1104 transhdrlen = 0;
1105 }
1106
1107 return __ip_append_data(sk, &sk->sk_write_queue, &inet->cork.base, getfrag,
1108 from, length, transhdrlen, flags);
1109}
1110
1111ssize_t ip_append_page(struct sock *sk, struct page *page,
1112 int offset, size_t size, int flags)
1113{
1114 struct inet_sock *inet = inet_sk(sk);
1115 struct sk_buff *skb;
1116 struct rtable *rt;
1117 struct ip_options *opt = NULL;
1118 struct inet_cork *cork;
1119 int hh_len;
1120 int mtu;
1121 int len;
1122 int err;
1123 unsigned int maxfraglen, fragheaderlen, fraggap;
1124
1125 if (inet->hdrincl)
1126 return -EPERM;
1127
1128 if (flags&MSG_PROBE)
1129 return 0;
1130
1131 if (skb_queue_empty(&sk->sk_write_queue))
1132 return -EINVAL;
1133
1134 cork = &inet->cork.base;
1135 rt = (struct rtable *)cork->dst;
1136 if (cork->flags & IPCORK_OPT)
1137 opt = cork->opt;
1138
1139 if (!(rt->dst.dev->features&NETIF_F_SG))
1140 return -EOPNOTSUPP;
1141
1142 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1143 mtu = cork->fragsize;
1144
1145 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1146 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1147
1148 if (cork->length + size > 0xFFFF - fragheaderlen) {
1149 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1150 return -EMSGSIZE;
1151 }
1152
1153 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1154 return -EINVAL;
1155
1156 cork->length += size;
1157 if ((size + skb->len > mtu) &&
1158 (sk->sk_protocol == IPPROTO_UDP) &&
1159 (rt->dst.dev->features & NETIF_F_UFO)) {
1160 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1161 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1162 }
1163
1164
1165 while (size > 0) {
1166 int i;
1167
1168 if (skb_is_gso(skb))
1169 len = size;
1170 else {
1171
1172 /* Check if the remaining data fits into current packet. */
1173 len = mtu - skb->len;
1174 if (len < size)
1175 len = maxfraglen - skb->len;
1176 }
1177 if (len <= 0) {
1178 struct sk_buff *skb_prev;
1179 int alloclen;
1180
1181 skb_prev = skb;
1182 fraggap = skb_prev->len - maxfraglen;
1183
1184 alloclen = fragheaderlen + hh_len + fraggap + 15;
1185 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1186 if (unlikely(!skb)) {
1187 err = -ENOBUFS;
1188 goto error;
1189 }
1190
1191 /*
1192 * Fill in the control structures
1193 */
1194 skb->ip_summed = CHECKSUM_NONE;
1195 skb->csum = 0;
1196 skb_reserve(skb, hh_len);
1197
1198 /*
1199 * Find where to start putting bytes.
1200 */
1201 skb_put(skb, fragheaderlen + fraggap);
1202 skb_reset_network_header(skb);
1203 skb->transport_header = (skb->network_header +
1204 fragheaderlen);
1205 if (fraggap) {
1206 skb->csum = skb_copy_and_csum_bits(skb_prev,
1207 maxfraglen,
1208 skb_transport_header(skb),
1209 fraggap, 0);
1210 skb_prev->csum = csum_sub(skb_prev->csum,
1211 skb->csum);
1212 pskb_trim_unique(skb_prev, maxfraglen);
1213 }
1214
1215 /*
1216 * Put the packet on the pending queue.
1217 */
1218 __skb_queue_tail(&sk->sk_write_queue, skb);
1219 continue;
1220 }
1221
1222 i = skb_shinfo(skb)->nr_frags;
1223 if (len > size)
1224 len = size;
1225 if (skb_can_coalesce(skb, i, page, offset)) {
1226 skb_shinfo(skb)->frags[i-1].size += len;
1227 } else if (i < MAX_SKB_FRAGS) {
1228 get_page(page);
1229 skb_fill_page_desc(skb, i, page, offset, len);
1230 } else {
1231 err = -EMSGSIZE;
1232 goto error;
1233 }
1234
1235 if (skb->ip_summed == CHECKSUM_NONE) {
1236 __wsum csum;
1237 csum = csum_page(page, offset, len);
1238 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1239 }
1240
1241 skb->len += len;
1242 skb->data_len += len;
1243 skb->truesize += len;
1244 atomic_add(len, &sk->sk_wmem_alloc);
1245 offset += len;
1246 size -= len;
1247 }
1248 return 0;
1249
1250error:
1251 cork->length -= size;
1252 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1253 return err;
1254}
1255
1256static void ip_cork_release(struct inet_cork *cork)
1257{
1258 cork->flags &= ~IPCORK_OPT;
1259 kfree(cork->opt);
1260 cork->opt = NULL;
1261 dst_release(cork->dst);
1262 cork->dst = NULL;
1263}
1264
1265/*
1266 * Combined all pending IP fragments on the socket as one IP datagram
1267 * and push them out.
1268 */
1269struct sk_buff *__ip_make_skb(struct sock *sk,
1270 struct flowi4 *fl4,
1271 struct sk_buff_head *queue,
1272 struct inet_cork *cork)
1273{
1274 struct sk_buff *skb, *tmp_skb;
1275 struct sk_buff **tail_skb;
1276 struct inet_sock *inet = inet_sk(sk);
1277 struct net *net = sock_net(sk);
1278 struct ip_options *opt = NULL;
1279 struct rtable *rt = (struct rtable *)cork->dst;
1280 struct iphdr *iph;
1281 __be16 df = 0;
1282 __u8 ttl;
1283
1284 if ((skb = __skb_dequeue(queue)) == NULL)
1285 goto out;
1286 tail_skb = &(skb_shinfo(skb)->frag_list);
1287
1288 /* move skb->data to ip header from ext header */
1289 if (skb->data < skb_network_header(skb))
1290 __skb_pull(skb, skb_network_offset(skb));
1291 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1292 __skb_pull(tmp_skb, skb_network_header_len(skb));
1293 *tail_skb = tmp_skb;
1294 tail_skb = &(tmp_skb->next);
1295 skb->len += tmp_skb->len;
1296 skb->data_len += tmp_skb->len;
1297 skb->truesize += tmp_skb->truesize;
1298 tmp_skb->destructor = NULL;
1299 tmp_skb->sk = NULL;
1300 }
1301
1302 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1303 * to fragment the frame generated here. No matter, what transforms
1304 * how transforms change size of the packet, it will come out.
1305 */
1306 if (inet->pmtudisc < IP_PMTUDISC_DO)
1307 skb->local_df = 1;
1308
1309 /* DF bit is set when we want to see DF on outgoing frames.
1310 * If local_df is set too, we still allow to fragment this frame
1311 * locally. */
1312 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1313 (skb->len <= dst_mtu(&rt->dst) &&
1314 ip_dont_fragment(sk, &rt->dst)))
1315 df = htons(IP_DF);
1316
1317 if (cork->flags & IPCORK_OPT)
1318 opt = cork->opt;
1319
1320 if (rt->rt_type == RTN_MULTICAST)
1321 ttl = inet->mc_ttl;
1322 else
1323 ttl = ip_select_ttl(inet, &rt->dst);
1324
1325 iph = (struct iphdr *)skb->data;
1326 iph->version = 4;
1327 iph->ihl = 5;
1328 if (opt) {
1329 iph->ihl += opt->optlen>>2;
1330 ip_options_build(skb, opt, cork->addr, rt, 0);
1331 }
1332 iph->tos = inet->tos;
1333 iph->frag_off = df;
1334 ip_select_ident(iph, &rt->dst, sk);
1335 iph->ttl = ttl;
1336 iph->protocol = sk->sk_protocol;
1337 iph->saddr = fl4->saddr;
1338 iph->daddr = fl4->daddr;
1339
1340 skb->priority = sk->sk_priority;
1341 skb->mark = sk->sk_mark;
1342 /*
1343 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1344 * on dst refcount
1345 */
1346 cork->dst = NULL;
1347 skb_dst_set(skb, &rt->dst);
1348
1349 if (iph->protocol == IPPROTO_ICMP)
1350 icmp_out_count(net, ((struct icmphdr *)
1351 skb_transport_header(skb))->type);
1352
1353 ip_cork_release(cork);
1354out:
1355 return skb;
1356}
1357
1358int ip_send_skb(struct sk_buff *skb)
1359{
1360 struct net *net = sock_net(skb->sk);
1361 int err;
1362
1363 err = ip_local_out(skb);
1364 if (err) {
1365 if (err > 0)
1366 err = net_xmit_errno(err);
1367 if (err)
1368 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1369 }
1370
1371 return err;
1372}
1373
1374int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1375{
1376 struct sk_buff *skb;
1377
1378 skb = ip_finish_skb(sk, fl4);
1379 if (!skb)
1380 return 0;
1381
1382 /* Netfilter gets whole the not fragmented skb. */
1383 return ip_send_skb(skb);
1384}
1385
1386/*
1387 * Throw away all pending data on the socket.
1388 */
1389static void __ip_flush_pending_frames(struct sock *sk,
1390 struct sk_buff_head *queue,
1391 struct inet_cork *cork)
1392{
1393 struct sk_buff *skb;
1394
1395 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1396 kfree_skb(skb);
1397
1398 ip_cork_release(cork);
1399}
1400
1401void ip_flush_pending_frames(struct sock *sk)
1402{
1403 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1404}
1405
1406struct sk_buff *ip_make_skb(struct sock *sk,
1407 struct flowi4 *fl4,
1408 int getfrag(void *from, char *to, int offset,
1409 int len, int odd, struct sk_buff *skb),
1410 void *from, int length, int transhdrlen,
1411 struct ipcm_cookie *ipc, struct rtable **rtp,
1412 unsigned int flags)
1413{
1414 struct inet_cork cork;
1415 struct sk_buff_head queue;
1416 int err;
1417
1418 if (flags & MSG_PROBE)
1419 return NULL;
1420
1421 __skb_queue_head_init(&queue);
1422
1423 cork.flags = 0;
1424 cork.addr = 0;
1425 cork.opt = NULL;
1426 err = ip_setup_cork(sk, &cork, ipc, rtp);
1427 if (err)
1428 return ERR_PTR(err);
1429
1430 err = __ip_append_data(sk, &queue, &cork, getfrag,
1431 from, length, transhdrlen, flags);
1432 if (err) {
1433 __ip_flush_pending_frames(sk, &queue, &cork);
1434 return ERR_PTR(err);
1435 }
1436
1437 return __ip_make_skb(sk, fl4, &queue, &cork);
1438}
1439
1440/*
1441 * Fetch data from kernel space and fill in checksum if needed.
1442 */
1443static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1444 int len, int odd, struct sk_buff *skb)
1445{
1446 __wsum csum;
1447
1448 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1449 skb->csum = csum_block_add(skb->csum, csum, odd);
1450 return 0;
1451}
1452
1453/*
1454 * Generic function to send a packet as reply to another packet.
1455 * Used to send TCP resets so far. ICMP should use this function too.
1456 *
1457 * Should run single threaded per socket because it uses the sock
1458 * structure to pass arguments.
1459 */
1460void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1461 unsigned int len)
1462{
1463 struct inet_sock *inet = inet_sk(sk);
1464 struct ip_options_data replyopts;
1465 struct ipcm_cookie ipc;
1466 struct flowi4 fl4;
1467 __be32 daddr;
1468 struct rtable *rt = skb_rtable(skb);
1469
1470 if (ip_options_echo(&replyopts.opt.opt, skb))
1471 return;
1472
1473 daddr = ipc.addr = rt->rt_src;
1474 ipc.opt = NULL;
1475 ipc.tx_flags = 0;
1476
1477 if (replyopts.opt.opt.optlen) {
1478 ipc.opt = &replyopts.opt;
1479
1480 if (replyopts.opt.opt.srr)
1481 daddr = replyopts.opt.opt.faddr;
1482 }
1483
1484 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1485 RT_TOS(ip_hdr(skb)->tos),
1486 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1487 ip_reply_arg_flowi_flags(arg),
1488 daddr, rt->rt_spec_dst,
1489 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1490 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1491 rt = ip_route_output_key(sock_net(sk), &fl4);
1492 if (IS_ERR(rt))
1493 return;
1494
1495 /* And let IP do all the hard work.
1496
1497 This chunk is not reenterable, hence spinlock.
1498 Note that it uses the fact, that this function is called
1499 with locally disabled BH and that sk cannot be already spinlocked.
1500 */
1501 bh_lock_sock(sk);
1502 inet->tos = ip_hdr(skb)->tos;
1503 sk->sk_priority = skb->priority;
1504 sk->sk_protocol = ip_hdr(skb)->protocol;
1505 sk->sk_bound_dev_if = arg->bound_dev_if;
1506 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1507 &ipc, &rt, MSG_DONTWAIT);
1508 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1509 if (arg->csumoffset >= 0)
1510 *((__sum16 *)skb_transport_header(skb) +
1511 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1512 arg->csum));
1513 skb->ip_summed = CHECKSUM_NONE;
1514 ip_push_pending_frames(sk, &fl4);
1515 }
1516
1517 bh_unlock_sock(sk);
1518
1519 ip_rt_put(rt);
1520}
1521
1522void __init ip_init(void)
1523{
1524 ip_rt_init();
1525 inet_initpeers();
1526
1527#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1528 igmp_mc_proc_init();
1529#endif
1530}