]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - net/ipv4/tcp_input.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#include <linux/mm.h>
65#include <linux/slab.h>
66#include <linux/module.h>
67#include <linux/sysctl.h>
68#include <linux/kernel.h>
69#include <net/dst.h>
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
74#include <net/netdma.h>
75
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81EXPORT_SYMBOL(sysctl_tcp_reordering);
82int sysctl_tcp_ecn __read_mostly = 2;
83EXPORT_SYMBOL(sysctl_tcp_ecn);
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 2;
87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92int sysctl_tcp_frto __read_mostly = 2;
93int sysctl_tcp_frto_response __read_mostly;
94int sysctl_tcp_nometrics_save __read_mostly;
95
96int sysctl_tcp_thin_dupack __read_mostly;
97
98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99int sysctl_tcp_abc __read_mostly;
100
101#define FLAG_DATA 0x01 /* Incoming frame contained data. */
102#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106#define FLAG_DATA_SACKED 0x20 /* New SACK. */
107#define FLAG_ECE 0x40 /* ECE in this ACK */
108#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
110#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
113#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114
115#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120
121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124/* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128{
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171}
172
173static void tcp_incr_quickack(struct sock *sk)
174{
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182}
183
184static void tcp_enter_quickack_mode(struct sock *sk)
185{
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190}
191
192/* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196static inline int tcp_in_quickack_mode(const struct sock *sk)
197{
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200}
201
202static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203{
204 if (tp->ecn_flags & TCP_ECN_OK)
205 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206}
207
208static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209{
210 if (tcp_hdr(skb)->cwr)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212}
213
214static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215{
216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217}
218
219static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220{
221 if (!(tp->ecn_flags & TCP_ECN_OK))
222 return;
223
224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 case INET_ECN_NOT_ECT:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
229 */
230 if (tp->ecn_flags & TCP_ECN_SEEN)
231 tcp_enter_quickack_mode((struct sock *)tp);
232 break;
233 case INET_ECN_CE:
234 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235 /* fallinto */
236 default:
237 tp->ecn_flags |= TCP_ECN_SEEN;
238 }
239}
240
241static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242{
243 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244 tp->ecn_flags &= ~TCP_ECN_OK;
245}
246
247static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248{
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
251}
252
253static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254{
255 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256 return 1;
257 return 0;
258}
259
260/* Buffer size and advertised window tuning.
261 *
262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263 */
264
265static void tcp_fixup_sndbuf(struct sock *sk)
266{
267 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268
269 sndmem *= TCP_INIT_CWND;
270 if (sk->sk_sndbuf < sndmem)
271 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272}
273
274/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275 *
276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
277 * forward and advertised in receiver window (tp->rcv_wnd) and
278 * "application buffer", required to isolate scheduling/application
279 * latencies from network.
280 * window_clamp is maximal advertised window. It can be less than
281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
282 * is reserved for "application" buffer. The less window_clamp is
283 * the smoother our behaviour from viewpoint of network, but the lower
284 * throughput and the higher sensitivity of the connection to losses. 8)
285 *
286 * rcv_ssthresh is more strict window_clamp used at "slow start"
287 * phase to predict further behaviour of this connection.
288 * It is used for two goals:
289 * - to enforce header prediction at sender, even when application
290 * requires some significant "application buffer". It is check #1.
291 * - to prevent pruning of receive queue because of misprediction
292 * of receiver window. Check #2.
293 *
294 * The scheme does not work when sender sends good segments opening
295 * window and then starts to feed us spaghetti. But it should work
296 * in common situations. Otherwise, we have to rely on queue collapsing.
297 */
298
299/* Slow part of check#2. */
300static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301{
302 struct tcp_sock *tp = tcp_sk(sk);
303 /* Optimize this! */
304 int truesize = tcp_win_from_space(skb->truesize) >> 1;
305 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306
307 while (tp->rcv_ssthresh <= window) {
308 if (truesize <= skb->len)
309 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310
311 truesize >>= 1;
312 window >>= 1;
313 }
314 return 0;
315}
316
317static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318{
319 struct tcp_sock *tp = tcp_sk(sk);
320
321 /* Check #1 */
322 if (tp->rcv_ssthresh < tp->window_clamp &&
323 (int)tp->rcv_ssthresh < tcp_space(sk) &&
324 !sk_under_memory_pressure(sk)) {
325 int incr;
326
327 /* Check #2. Increase window, if skb with such overhead
328 * will fit to rcvbuf in future.
329 */
330 if (tcp_win_from_space(skb->truesize) <= skb->len)
331 incr = 2 * tp->advmss;
332 else
333 incr = __tcp_grow_window(sk, skb);
334
335 if (incr) {
336 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337 tp->window_clamp);
338 inet_csk(sk)->icsk_ack.quick |= 1;
339 }
340 }
341}
342
343/* 3. Tuning rcvbuf, when connection enters established state. */
344
345static void tcp_fixup_rcvbuf(struct sock *sk)
346{
347 u32 mss = tcp_sk(sk)->advmss;
348 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349 int rcvmem;
350
351 /* Limit to 10 segments if mss <= 1460,
352 * or 14600/mss segments, with a minimum of two segments.
353 */
354 if (mss > 1460)
355 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356
357 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358 while (tcp_win_from_space(rcvmem) < mss)
359 rcvmem += 128;
360
361 rcvmem *= icwnd;
362
363 if (sk->sk_rcvbuf < rcvmem)
364 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365}
366
367/* 4. Try to fixup all. It is made immediately after connection enters
368 * established state.
369 */
370static void tcp_init_buffer_space(struct sock *sk)
371{
372 struct tcp_sock *tp = tcp_sk(sk);
373 int maxwin;
374
375 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376 tcp_fixup_rcvbuf(sk);
377 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378 tcp_fixup_sndbuf(sk);
379
380 tp->rcvq_space.space = tp->rcv_wnd;
381
382 maxwin = tcp_full_space(sk);
383
384 if (tp->window_clamp >= maxwin) {
385 tp->window_clamp = maxwin;
386
387 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388 tp->window_clamp = max(maxwin -
389 (maxwin >> sysctl_tcp_app_win),
390 4 * tp->advmss);
391 }
392
393 /* Force reservation of one segment. */
394 if (sysctl_tcp_app_win &&
395 tp->window_clamp > 2 * tp->advmss &&
396 tp->window_clamp + tp->advmss > maxwin)
397 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398
399 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400 tp->snd_cwnd_stamp = tcp_time_stamp;
401}
402
403/* 5. Recalculate window clamp after socket hit its memory bounds. */
404static void tcp_clamp_window(struct sock *sk)
405{
406 struct tcp_sock *tp = tcp_sk(sk);
407 struct inet_connection_sock *icsk = inet_csk(sk);
408
409 icsk->icsk_ack.quick = 0;
410
411 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413 !sk_under_memory_pressure(sk) &&
414 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416 sysctl_tcp_rmem[2]);
417 }
418 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420}
421
422/* Initialize RCV_MSS value.
423 * RCV_MSS is an our guess about MSS used by the peer.
424 * We haven't any direct information about the MSS.
425 * It's better to underestimate the RCV_MSS rather than overestimate.
426 * Overestimations make us ACKing less frequently than needed.
427 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428 */
429void tcp_initialize_rcv_mss(struct sock *sk)
430{
431 const struct tcp_sock *tp = tcp_sk(sk);
432 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433
434 hint = min(hint, tp->rcv_wnd / 2);
435 hint = min(hint, TCP_MSS_DEFAULT);
436 hint = max(hint, TCP_MIN_MSS);
437
438 inet_csk(sk)->icsk_ack.rcv_mss = hint;
439}
440EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441
442/* Receiver "autotuning" code.
443 *
444 * The algorithm for RTT estimation w/o timestamps is based on
445 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446 * <http://public.lanl.gov/radiant/pubs.html#DRS>
447 *
448 * More detail on this code can be found at
449 * <http://staff.psc.edu/jheffner/>,
450 * though this reference is out of date. A new paper
451 * is pending.
452 */
453static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454{
455 u32 new_sample = tp->rcv_rtt_est.rtt;
456 long m = sample;
457
458 if (m == 0)
459 m = 1;
460
461 if (new_sample != 0) {
462 /* If we sample in larger samples in the non-timestamp
463 * case, we could grossly overestimate the RTT especially
464 * with chatty applications or bulk transfer apps which
465 * are stalled on filesystem I/O.
466 *
467 * Also, since we are only going for a minimum in the
468 * non-timestamp case, we do not smooth things out
469 * else with timestamps disabled convergence takes too
470 * long.
471 */
472 if (!win_dep) {
473 m -= (new_sample >> 3);
474 new_sample += m;
475 } else if (m < new_sample)
476 new_sample = m << 3;
477 } else {
478 /* No previous measure. */
479 new_sample = m << 3;
480 }
481
482 if (tp->rcv_rtt_est.rtt != new_sample)
483 tp->rcv_rtt_est.rtt = new_sample;
484}
485
486static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487{
488 if (tp->rcv_rtt_est.time == 0)
489 goto new_measure;
490 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491 return;
492 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493
494new_measure:
495 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496 tp->rcv_rtt_est.time = tcp_time_stamp;
497}
498
499static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500 const struct sk_buff *skb)
501{
502 struct tcp_sock *tp = tcp_sk(sk);
503 if (tp->rx_opt.rcv_tsecr &&
504 (TCP_SKB_CB(skb)->end_seq -
505 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507}
508
509/*
510 * This function should be called every time data is copied to user space.
511 * It calculates the appropriate TCP receive buffer space.
512 */
513void tcp_rcv_space_adjust(struct sock *sk)
514{
515 struct tcp_sock *tp = tcp_sk(sk);
516 int time;
517 int space;
518
519 if (tp->rcvq_space.time == 0)
520 goto new_measure;
521
522 time = tcp_time_stamp - tp->rcvq_space.time;
523 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524 return;
525
526 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527
528 space = max(tp->rcvq_space.space, space);
529
530 if (tp->rcvq_space.space != space) {
531 int rcvmem;
532
533 tp->rcvq_space.space = space;
534
535 if (sysctl_tcp_moderate_rcvbuf &&
536 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537 int new_clamp = space;
538
539 /* Receive space grows, normalize in order to
540 * take into account packet headers and sk_buff
541 * structure overhead.
542 */
543 space /= tp->advmss;
544 if (!space)
545 space = 1;
546 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547 while (tcp_win_from_space(rcvmem) < tp->advmss)
548 rcvmem += 128;
549 space *= rcvmem;
550 space = min(space, sysctl_tcp_rmem[2]);
551 if (space > sk->sk_rcvbuf) {
552 sk->sk_rcvbuf = space;
553
554 /* Make the window clamp follow along. */
555 tp->window_clamp = new_clamp;
556 }
557 }
558 }
559
560new_measure:
561 tp->rcvq_space.seq = tp->copied_seq;
562 tp->rcvq_space.time = tcp_time_stamp;
563}
564
565/* There is something which you must keep in mind when you analyze the
566 * behavior of the tp->ato delayed ack timeout interval. When a
567 * connection starts up, we want to ack as quickly as possible. The
568 * problem is that "good" TCP's do slow start at the beginning of data
569 * transmission. The means that until we send the first few ACK's the
570 * sender will sit on his end and only queue most of his data, because
571 * he can only send snd_cwnd unacked packets at any given time. For
572 * each ACK we send, he increments snd_cwnd and transmits more of his
573 * queue. -DaveM
574 */
575static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576{
577 struct tcp_sock *tp = tcp_sk(sk);
578 struct inet_connection_sock *icsk = inet_csk(sk);
579 u32 now;
580
581 inet_csk_schedule_ack(sk);
582
583 tcp_measure_rcv_mss(sk, skb);
584
585 tcp_rcv_rtt_measure(tp);
586
587 now = tcp_time_stamp;
588
589 if (!icsk->icsk_ack.ato) {
590 /* The _first_ data packet received, initialize
591 * delayed ACK engine.
592 */
593 tcp_incr_quickack(sk);
594 icsk->icsk_ack.ato = TCP_ATO_MIN;
595 } else {
596 int m = now - icsk->icsk_ack.lrcvtime;
597
598 if (m <= TCP_ATO_MIN / 2) {
599 /* The fastest case is the first. */
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601 } else if (m < icsk->icsk_ack.ato) {
602 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603 if (icsk->icsk_ack.ato > icsk->icsk_rto)
604 icsk->icsk_ack.ato = icsk->icsk_rto;
605 } else if (m > icsk->icsk_rto) {
606 /* Too long gap. Apparently sender failed to
607 * restart window, so that we send ACKs quickly.
608 */
609 tcp_incr_quickack(sk);
610 sk_mem_reclaim(sk);
611 }
612 }
613 icsk->icsk_ack.lrcvtime = now;
614
615 TCP_ECN_check_ce(tp, skb);
616
617 if (skb->len >= 128)
618 tcp_grow_window(sk, skb);
619}
620
621/* Called to compute a smoothed rtt estimate. The data fed to this
622 * routine either comes from timestamps, or from segments that were
623 * known _not_ to have been retransmitted [see Karn/Partridge
624 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625 * piece by Van Jacobson.
626 * NOTE: the next three routines used to be one big routine.
627 * To save cycles in the RFC 1323 implementation it was better to break
628 * it up into three procedures. -- erics
629 */
630static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631{
632 struct tcp_sock *tp = tcp_sk(sk);
633 long m = mrtt; /* RTT */
634
635 /* The following amusing code comes from Jacobson's
636 * article in SIGCOMM '88. Note that rtt and mdev
637 * are scaled versions of rtt and mean deviation.
638 * This is designed to be as fast as possible
639 * m stands for "measurement".
640 *
641 * On a 1990 paper the rto value is changed to:
642 * RTO = rtt + 4 * mdev
643 *
644 * Funny. This algorithm seems to be very broken.
645 * These formulae increase RTO, when it should be decreased, increase
646 * too slowly, when it should be increased quickly, decrease too quickly
647 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648 * does not matter how to _calculate_ it. Seems, it was trap
649 * that VJ failed to avoid. 8)
650 */
651 if (m == 0)
652 m = 1;
653 if (tp->srtt != 0) {
654 m -= (tp->srtt >> 3); /* m is now error in rtt est */
655 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
656 if (m < 0) {
657 m = -m; /* m is now abs(error) */
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 /* This is similar to one of Eifel findings.
660 * Eifel blocks mdev updates when rtt decreases.
661 * This solution is a bit different: we use finer gain
662 * for mdev in this case (alpha*beta).
663 * Like Eifel it also prevents growth of rto,
664 * but also it limits too fast rto decreases,
665 * happening in pure Eifel.
666 */
667 if (m > 0)
668 m >>= 3;
669 } else {
670 m -= (tp->mdev >> 2); /* similar update on mdev */
671 }
672 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
673 if (tp->mdev > tp->mdev_max) {
674 tp->mdev_max = tp->mdev;
675 if (tp->mdev_max > tp->rttvar)
676 tp->rttvar = tp->mdev_max;
677 }
678 if (after(tp->snd_una, tp->rtt_seq)) {
679 if (tp->mdev_max < tp->rttvar)
680 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681 tp->rtt_seq = tp->snd_nxt;
682 tp->mdev_max = tcp_rto_min(sk);
683 }
684 } else {
685 /* no previous measure. */
686 tp->srtt = m << 3; /* take the measured time to be rtt */
687 tp->mdev = m << 1; /* make sure rto = 3*rtt */
688 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689 tp->rtt_seq = tp->snd_nxt;
690 }
691}
692
693/* Calculate rto without backoff. This is the second half of Van Jacobson's
694 * routine referred to above.
695 */
696static inline void tcp_set_rto(struct sock *sk)
697{
698 const struct tcp_sock *tp = tcp_sk(sk);
699 /* Old crap is replaced with new one. 8)
700 *
701 * More seriously:
702 * 1. If rtt variance happened to be less 50msec, it is hallucination.
703 * It cannot be less due to utterly erratic ACK generation made
704 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705 * to do with delayed acks, because at cwnd>2 true delack timeout
706 * is invisible. Actually, Linux-2.4 also generates erratic
707 * ACKs in some circumstances.
708 */
709 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710
711 /* 2. Fixups made earlier cannot be right.
712 * If we do not estimate RTO correctly without them,
713 * all the algo is pure shit and should be replaced
714 * with correct one. It is exactly, which we pretend to do.
715 */
716
717 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718 * guarantees that rto is higher.
719 */
720 tcp_bound_rto(sk);
721}
722
723/* Save metrics learned by this TCP session.
724 This function is called only, when TCP finishes successfully
725 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726 */
727void tcp_update_metrics(struct sock *sk)
728{
729 struct tcp_sock *tp = tcp_sk(sk);
730 struct dst_entry *dst = __sk_dst_get(sk);
731
732 if (sysctl_tcp_nometrics_save)
733 return;
734
735 dst_confirm(dst);
736
737 if (dst && (dst->flags & DST_HOST)) {
738 const struct inet_connection_sock *icsk = inet_csk(sk);
739 int m;
740 unsigned long rtt;
741
742 if (icsk->icsk_backoff || !tp->srtt) {
743 /* This session failed to estimate rtt. Why?
744 * Probably, no packets returned in time.
745 * Reset our results.
746 */
747 if (!(dst_metric_locked(dst, RTAX_RTT)))
748 dst_metric_set(dst, RTAX_RTT, 0);
749 return;
750 }
751
752 rtt = dst_metric_rtt(dst, RTAX_RTT);
753 m = rtt - tp->srtt;
754
755 /* If newly calculated rtt larger than stored one,
756 * store new one. Otherwise, use EWMA. Remember,
757 * rtt overestimation is always better than underestimation.
758 */
759 if (!(dst_metric_locked(dst, RTAX_RTT))) {
760 if (m <= 0)
761 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762 else
763 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764 }
765
766 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767 unsigned long var;
768 if (m < 0)
769 m = -m;
770
771 /* Scale deviation to rttvar fixed point */
772 m >>= 1;
773 if (m < tp->mdev)
774 m = tp->mdev;
775
776 var = dst_metric_rtt(dst, RTAX_RTTVAR);
777 if (m >= var)
778 var = m;
779 else
780 var -= (var - m) >> 2;
781
782 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783 }
784
785 if (tcp_in_initial_slowstart(tp)) {
786 /* Slow start still did not finish. */
787 if (dst_metric(dst, RTAX_SSTHRESH) &&
788 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791 if (!dst_metric_locked(dst, RTAX_CWND) &&
792 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
795 icsk->icsk_ca_state == TCP_CA_Open) {
796 /* Cong. avoidance phase, cwnd is reliable. */
797 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798 dst_metric_set(dst, RTAX_SSTHRESH,
799 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800 if (!dst_metric_locked(dst, RTAX_CWND))
801 dst_metric_set(dst, RTAX_CWND,
802 (dst_metric(dst, RTAX_CWND) +
803 tp->snd_cwnd) >> 1);
804 } else {
805 /* Else slow start did not finish, cwnd is non-sense,
806 ssthresh may be also invalid.
807 */
808 if (!dst_metric_locked(dst, RTAX_CWND))
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_ssthresh) >> 1);
812 if (dst_metric(dst, RTAX_SSTHRESH) &&
813 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816 }
817
818 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820 tp->reordering != sysctl_tcp_reordering)
821 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822 }
823 }
824}
825
826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827{
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833}
834
835/* Set slow start threshold and cwnd not falling to slow start */
836void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837{
838 struct tcp_sock *tp = tcp_sk(sk);
839 const struct inet_connection_sock *icsk = inet_csk(sk);
840
841 tp->prior_ssthresh = 0;
842 tp->bytes_acked = 0;
843 if (icsk->icsk_ca_state < TCP_CA_CWR) {
844 tp->undo_marker = 0;
845 if (set_ssthresh)
846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847 tp->snd_cwnd = min(tp->snd_cwnd,
848 tcp_packets_in_flight(tp) + 1U);
849 tp->snd_cwnd_cnt = 0;
850 tp->high_seq = tp->snd_nxt;
851 tp->snd_cwnd_stamp = tcp_time_stamp;
852 TCP_ECN_queue_cwr(tp);
853
854 tcp_set_ca_state(sk, TCP_CA_CWR);
855 }
856}
857
858/*
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
861 */
862static void tcp_disable_fack(struct tcp_sock *tp)
863{
864 /* RFC3517 uses different metric in lost marker => reset on change */
865 if (tcp_is_fack(tp))
866 tp->lost_skb_hint = NULL;
867 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868}
869
870/* Take a notice that peer is sending D-SACKs */
871static void tcp_dsack_seen(struct tcp_sock *tp)
872{
873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874}
875
876/* Initialize metrics on socket. */
877
878static void tcp_init_metrics(struct sock *sk)
879{
880 struct tcp_sock *tp = tcp_sk(sk);
881 struct dst_entry *dst = __sk_dst_get(sk);
882
883 if (dst == NULL)
884 goto reset;
885
886 dst_confirm(dst);
887
888 if (dst_metric_locked(dst, RTAX_CWND))
889 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890 if (dst_metric(dst, RTAX_SSTHRESH)) {
891 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 } else {
895 /* ssthresh may have been reduced unnecessarily during.
896 * 3WHS. Restore it back to its initial default.
897 */
898 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899 }
900 if (dst_metric(dst, RTAX_REORDERING) &&
901 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902 tcp_disable_fack(tp);
903 tp->reordering = dst_metric(dst, RTAX_REORDERING);
904 }
905
906 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932reset:
933 if (tp->srtt == 0) {
934 /* RFC2988bis: We've failed to get a valid RTT sample from
935 * 3WHS. This is most likely due to retransmission,
936 * including spurious one. Reset the RTO back to 3secs
937 * from the more aggressive 1sec to avoid more spurious
938 * retransmission.
939 */
940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942 }
943 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944 * retransmitted. In light of RFC2988bis' more aggressive 1sec
945 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946 * retransmission has occurred.
947 */
948 if (tp->total_retrans > 1)
949 tp->snd_cwnd = 1;
950 else
951 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952 tp->snd_cwnd_stamp = tcp_time_stamp;
953}
954
955static void tcp_update_reordering(struct sock *sk, const int metric,
956 const int ts)
957{
958 struct tcp_sock *tp = tcp_sk(sk);
959 if (metric > tp->reordering) {
960 int mib_idx;
961
962 tp->reordering = min(TCP_MAX_REORDERING, metric);
963
964 /* This exciting event is worth to be remembered. 8) */
965 if (ts)
966 mib_idx = LINUX_MIB_TCPTSREORDER;
967 else if (tcp_is_reno(tp))
968 mib_idx = LINUX_MIB_TCPRENOREORDER;
969 else if (tcp_is_fack(tp))
970 mib_idx = LINUX_MIB_TCPFACKREORDER;
971 else
972 mib_idx = LINUX_MIB_TCPSACKREORDER;
973
974 NET_INC_STATS_BH(sock_net(sk), mib_idx);
975#if FASTRETRANS_DEBUG > 1
976 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978 tp->reordering,
979 tp->fackets_out,
980 tp->sacked_out,
981 tp->undo_marker ? tp->undo_retrans : 0);
982#endif
983 tcp_disable_fack(tp);
984 }
985}
986
987/* This must be called before lost_out is incremented */
988static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989{
990 if ((tp->retransmit_skb_hint == NULL) ||
991 before(TCP_SKB_CB(skb)->seq,
992 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993 tp->retransmit_skb_hint = skb;
994
995 if (!tp->lost_out ||
996 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998}
999
1000static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001{
1002 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 tcp_verify_retransmit_hint(tp, skb);
1004
1005 tp->lost_out += tcp_skb_pcount(skb);
1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 }
1008}
1009
1010static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011 struct sk_buff *skb)
1012{
1013 tcp_verify_retransmit_hint(tp, skb);
1014
1015 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016 tp->lost_out += tcp_skb_pcount(skb);
1017 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018 }
1019}
1020
1021/* This procedure tags the retransmission queue when SACKs arrive.
1022 *
1023 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024 * Packets in queue with these bits set are counted in variables
1025 * sacked_out, retrans_out and lost_out, correspondingly.
1026 *
1027 * Valid combinations are:
1028 * Tag InFlight Description
1029 * 0 1 - orig segment is in flight.
1030 * S 0 - nothing flies, orig reached receiver.
1031 * L 0 - nothing flies, orig lost by net.
1032 * R 2 - both orig and retransmit are in flight.
1033 * L|R 1 - orig is lost, retransmit is in flight.
1034 * S|R 1 - orig reached receiver, retrans is still in flight.
1035 * (L|S|R is logically valid, it could occur when L|R is sacked,
1036 * but it is equivalent to plain S and code short-curcuits it to S.
1037 * L|S is logically invalid, it would mean -1 packet in flight 8))
1038 *
1039 * These 6 states form finite state machine, controlled by the following events:
1040 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042 * 3. Loss detection event of two flavors:
1043 * A. Scoreboard estimator decided the packet is lost.
1044 * A'. Reno "three dupacks" marks head of queue lost.
1045 * A''. Its FACK modification, head until snd.fack is lost.
1046 * B. SACK arrives sacking SND.NXT at the moment, when the
1047 * segment was retransmitted.
1048 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049 *
1050 * It is pleasant to note, that state diagram turns out to be commutative,
1051 * so that we are allowed not to be bothered by order of our actions,
1052 * when multiple events arrive simultaneously. (see the function below).
1053 *
1054 * Reordering detection.
1055 * --------------------
1056 * Reordering metric is maximal distance, which a packet can be displaced
1057 * in packet stream. With SACKs we can estimate it:
1058 *
1059 * 1. SACK fills old hole and the corresponding segment was not
1060 * ever retransmitted -> reordering. Alas, we cannot use it
1061 * when segment was retransmitted.
1062 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063 * for retransmitted and already SACKed segment -> reordering..
1064 * Both of these heuristics are not used in Loss state, when we cannot
1065 * account for retransmits accurately.
1066 *
1067 * SACK block validation.
1068 * ----------------------
1069 *
1070 * SACK block range validation checks that the received SACK block fits to
1071 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072 * Note that SND.UNA is not included to the range though being valid because
1073 * it means that the receiver is rather inconsistent with itself reporting
1074 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075 * perfectly valid, however, in light of RFC2018 which explicitly states
1076 * that "SACK block MUST reflect the newest segment. Even if the newest
1077 * segment is going to be discarded ...", not that it looks very clever
1078 * in case of head skb. Due to potentional receiver driven attacks, we
1079 * choose to avoid immediate execution of a walk in write queue due to
1080 * reneging and defer head skb's loss recovery to standard loss recovery
1081 * procedure that will eventually trigger (nothing forbids us doing this).
1082 *
1083 * Implements also blockage to start_seq wrap-around. Problem lies in the
1084 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085 * there's no guarantee that it will be before snd_nxt (n). The problem
1086 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087 * wrap (s_w):
1088 *
1089 * <- outs wnd -> <- wrapzone ->
1090 * u e n u_w e_w s n_w
1091 * | | | | | | |
1092 * |<------------+------+----- TCP seqno space --------------+---------->|
1093 * ...-- <2^31 ->| |<--------...
1094 * ...---- >2^31 ------>| |<--------...
1095 *
1096 * Current code wouldn't be vulnerable but it's better still to discard such
1097 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100 * equal to the ideal case (infinite seqno space without wrap caused issues).
1101 *
1102 * With D-SACK the lower bound is extended to cover sequence space below
1103 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104 * again, D-SACK block must not to go across snd_una (for the same reason as
1105 * for the normal SACK blocks, explained above). But there all simplicity
1106 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107 * fully below undo_marker they do not affect behavior in anyway and can
1108 * therefore be safely ignored. In rare cases (which are more or less
1109 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110 * fragmentation and packet reordering past skb's retransmission. To consider
1111 * them correctly, the acceptable range must be extended even more though
1112 * the exact amount is rather hard to quantify. However, tp->max_window can
1113 * be used as an exaggerated estimate.
1114 */
1115static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116 u32 start_seq, u32 end_seq)
1117{
1118 /* Too far in future, or reversed (interpretation is ambiguous) */
1119 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120 return 0;
1121
1122 /* Nasty start_seq wrap-around check (see comments above) */
1123 if (!before(start_seq, tp->snd_nxt))
1124 return 0;
1125
1126 /* In outstanding window? ...This is valid exit for D-SACKs too.
1127 * start_seq == snd_una is non-sensical (see comments above)
1128 */
1129 if (after(start_seq, tp->snd_una))
1130 return 1;
1131
1132 if (!is_dsack || !tp->undo_marker)
1133 return 0;
1134
1135 /* ...Then it's D-SACK, and must reside below snd_una completely */
1136 if (after(end_seq, tp->snd_una))
1137 return 0;
1138
1139 if (!before(start_seq, tp->undo_marker))
1140 return 1;
1141
1142 /* Too old */
1143 if (!after(end_seq, tp->undo_marker))
1144 return 0;
1145
1146 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147 * start_seq < undo_marker and end_seq >= undo_marker.
1148 */
1149 return !before(start_seq, end_seq - tp->max_window);
1150}
1151
1152/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153 * Event "B". Later note: FACK people cheated me again 8), we have to account
1154 * for reordering! Ugly, but should help.
1155 *
1156 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157 * less than what is now known to be received by the other end (derived from
1158 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159 * retransmitted skbs to avoid some costly processing per ACKs.
1160 */
1161static void tcp_mark_lost_retrans(struct sock *sk)
1162{
1163 const struct inet_connection_sock *icsk = inet_csk(sk);
1164 struct tcp_sock *tp = tcp_sk(sk);
1165 struct sk_buff *skb;
1166 int cnt = 0;
1167 u32 new_low_seq = tp->snd_nxt;
1168 u32 received_upto = tcp_highest_sack_seq(tp);
1169
1170 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171 !after(received_upto, tp->lost_retrans_low) ||
1172 icsk->icsk_ca_state != TCP_CA_Recovery)
1173 return;
1174
1175 tcp_for_write_queue(skb, sk) {
1176 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177
1178 if (skb == tcp_send_head(sk))
1179 break;
1180 if (cnt == tp->retrans_out)
1181 break;
1182 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183 continue;
1184
1185 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186 continue;
1187
1188 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189 * constraint here (see above) but figuring out that at
1190 * least tp->reordering SACK blocks reside between ack_seq
1191 * and received_upto is not easy task to do cheaply with
1192 * the available datastructures.
1193 *
1194 * Whether FACK should check here for tp->reordering segs
1195 * in-between one could argue for either way (it would be
1196 * rather simple to implement as we could count fack_count
1197 * during the walk and do tp->fackets_out - fack_count).
1198 */
1199 if (after(received_upto, ack_seq)) {
1200 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201 tp->retrans_out -= tcp_skb_pcount(skb);
1202
1203 tcp_skb_mark_lost_uncond_verify(tp, skb);
1204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205 } else {
1206 if (before(ack_seq, new_low_seq))
1207 new_low_seq = ack_seq;
1208 cnt += tcp_skb_pcount(skb);
1209 }
1210 }
1211
1212 if (tp->retrans_out)
1213 tp->lost_retrans_low = new_low_seq;
1214}
1215
1216static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217 struct tcp_sack_block_wire *sp, int num_sacks,
1218 u32 prior_snd_una)
1219{
1220 struct tcp_sock *tp = tcp_sk(sk);
1221 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223 int dup_sack = 0;
1224
1225 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226 dup_sack = 1;
1227 tcp_dsack_seen(tp);
1228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229 } else if (num_sacks > 1) {
1230 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232
1233 if (!after(end_seq_0, end_seq_1) &&
1234 !before(start_seq_0, start_seq_1)) {
1235 dup_sack = 1;
1236 tcp_dsack_seen(tp);
1237 NET_INC_STATS_BH(sock_net(sk),
1238 LINUX_MIB_TCPDSACKOFORECV);
1239 }
1240 }
1241
1242 /* D-SACK for already forgotten data... Do dumb counting. */
1243 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244 !after(end_seq_0, prior_snd_una) &&
1245 after(end_seq_0, tp->undo_marker))
1246 tp->undo_retrans--;
1247
1248 return dup_sack;
1249}
1250
1251struct tcp_sacktag_state {
1252 int reord;
1253 int fack_count;
1254 int flag;
1255};
1256
1257/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258 * the incoming SACK may not exactly match but we can find smaller MSS
1259 * aligned portion of it that matches. Therefore we might need to fragment
1260 * which may fail and creates some hassle (caller must handle error case
1261 * returns).
1262 *
1263 * FIXME: this could be merged to shift decision code
1264 */
1265static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266 u32 start_seq, u32 end_seq)
1267{
1268 int in_sack, err;
1269 unsigned int pkt_len;
1270 unsigned int mss;
1271
1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274
1275 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277 mss = tcp_skb_mss(skb);
1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279
1280 if (!in_sack) {
1281 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282 if (pkt_len < mss)
1283 pkt_len = mss;
1284 } else {
1285 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286 if (pkt_len < mss)
1287 return -EINVAL;
1288 }
1289
1290 /* Round if necessary so that SACKs cover only full MSSes
1291 * and/or the remaining small portion (if present)
1292 */
1293 if (pkt_len > mss) {
1294 unsigned int new_len = (pkt_len / mss) * mss;
1295 if (!in_sack && new_len < pkt_len) {
1296 new_len += mss;
1297 if (new_len > skb->len)
1298 return 0;
1299 }
1300 pkt_len = new_len;
1301 }
1302 err = tcp_fragment(sk, skb, pkt_len, mss);
1303 if (err < 0)
1304 return err;
1305 }
1306
1307 return in_sack;
1308}
1309
1310static u8 tcp_sacktag_one(const struct sk_buff *skb, struct sock *sk,
1311 struct tcp_sacktag_state *state,
1312 int dup_sack, int pcount)
1313{
1314 struct tcp_sock *tp = tcp_sk(sk);
1315 u8 sacked = TCP_SKB_CB(skb)->sacked;
1316 int fack_count = state->fack_count;
1317
1318 /* Account D-SACK for retransmitted packet. */
1319 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1320 if (tp->undo_marker && tp->undo_retrans &&
1321 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1322 tp->undo_retrans--;
1323 if (sacked & TCPCB_SACKED_ACKED)
1324 state->reord = min(fack_count, state->reord);
1325 }
1326
1327 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1328 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1329 return sacked;
1330
1331 if (!(sacked & TCPCB_SACKED_ACKED)) {
1332 if (sacked & TCPCB_SACKED_RETRANS) {
1333 /* If the segment is not tagged as lost,
1334 * we do not clear RETRANS, believing
1335 * that retransmission is still in flight.
1336 */
1337 if (sacked & TCPCB_LOST) {
1338 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1339 tp->lost_out -= pcount;
1340 tp->retrans_out -= pcount;
1341 }
1342 } else {
1343 if (!(sacked & TCPCB_RETRANS)) {
1344 /* New sack for not retransmitted frame,
1345 * which was in hole. It is reordering.
1346 */
1347 if (before(TCP_SKB_CB(skb)->seq,
1348 tcp_highest_sack_seq(tp)))
1349 state->reord = min(fack_count,
1350 state->reord);
1351
1352 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1353 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1354 state->flag |= FLAG_ONLY_ORIG_SACKED;
1355 }
1356
1357 if (sacked & TCPCB_LOST) {
1358 sacked &= ~TCPCB_LOST;
1359 tp->lost_out -= pcount;
1360 }
1361 }
1362
1363 sacked |= TCPCB_SACKED_ACKED;
1364 state->flag |= FLAG_DATA_SACKED;
1365 tp->sacked_out += pcount;
1366
1367 fack_count += pcount;
1368
1369 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1371 before(TCP_SKB_CB(skb)->seq,
1372 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373 tp->lost_cnt_hint += pcount;
1374
1375 if (fack_count > tp->fackets_out)
1376 tp->fackets_out = fack_count;
1377 }
1378
1379 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380 * frames and clear it. undo_retrans is decreased above, L|R frames
1381 * are accounted above as well.
1382 */
1383 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384 sacked &= ~TCPCB_SACKED_RETRANS;
1385 tp->retrans_out -= pcount;
1386 }
1387
1388 return sacked;
1389}
1390
1391static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1392 struct tcp_sacktag_state *state,
1393 unsigned int pcount, int shifted, int mss,
1394 int dup_sack)
1395{
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1398
1399 BUG_ON(!pcount);
1400
1401 if (skb == tp->lost_skb_hint)
1402 tp->lost_cnt_hint += pcount;
1403
1404 TCP_SKB_CB(prev)->end_seq += shifted;
1405 TCP_SKB_CB(skb)->seq += shifted;
1406
1407 skb_shinfo(prev)->gso_segs += pcount;
1408 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1409 skb_shinfo(skb)->gso_segs -= pcount;
1410
1411 /* When we're adding to gso_segs == 1, gso_size will be zero,
1412 * in theory this shouldn't be necessary but as long as DSACK
1413 * code can come after this skb later on it's better to keep
1414 * setting gso_size to something.
1415 */
1416 if (!skb_shinfo(prev)->gso_size) {
1417 skb_shinfo(prev)->gso_size = mss;
1418 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1419 }
1420
1421 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1422 if (skb_shinfo(skb)->gso_segs <= 1) {
1423 skb_shinfo(skb)->gso_size = 0;
1424 skb_shinfo(skb)->gso_type = 0;
1425 }
1426
1427 /* We discard results */
1428 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1429
1430 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1431 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1432
1433 if (skb->len > 0) {
1434 BUG_ON(!tcp_skb_pcount(skb));
1435 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1436 return 0;
1437 }
1438
1439 /* Whole SKB was eaten :-) */
1440
1441 if (skb == tp->retransmit_skb_hint)
1442 tp->retransmit_skb_hint = prev;
1443 if (skb == tp->scoreboard_skb_hint)
1444 tp->scoreboard_skb_hint = prev;
1445 if (skb == tp->lost_skb_hint) {
1446 tp->lost_skb_hint = prev;
1447 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1448 }
1449
1450 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1451 if (skb == tcp_highest_sack(sk))
1452 tcp_advance_highest_sack(sk, skb);
1453
1454 tcp_unlink_write_queue(skb, sk);
1455 sk_wmem_free_skb(sk, skb);
1456
1457 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1458
1459 return 1;
1460}
1461
1462/* I wish gso_size would have a bit more sane initialization than
1463 * something-or-zero which complicates things
1464 */
1465static int tcp_skb_seglen(const struct sk_buff *skb)
1466{
1467 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1468}
1469
1470/* Shifting pages past head area doesn't work */
1471static int skb_can_shift(const struct sk_buff *skb)
1472{
1473 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1474}
1475
1476/* Try collapsing SACK blocks spanning across multiple skbs to a single
1477 * skb.
1478 */
1479static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1480 struct tcp_sacktag_state *state,
1481 u32 start_seq, u32 end_seq,
1482 int dup_sack)
1483{
1484 struct tcp_sock *tp = tcp_sk(sk);
1485 struct sk_buff *prev;
1486 int mss;
1487 int pcount = 0;
1488 int len;
1489 int in_sack;
1490
1491 if (!sk_can_gso(sk))
1492 goto fallback;
1493
1494 /* Normally R but no L won't result in plain S */
1495 if (!dup_sack &&
1496 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1497 goto fallback;
1498 if (!skb_can_shift(skb))
1499 goto fallback;
1500 /* This frame is about to be dropped (was ACKed). */
1501 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1502 goto fallback;
1503
1504 /* Can only happen with delayed DSACK + discard craziness */
1505 if (unlikely(skb == tcp_write_queue_head(sk)))
1506 goto fallback;
1507 prev = tcp_write_queue_prev(sk, skb);
1508
1509 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1510 goto fallback;
1511
1512 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1513 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1514
1515 if (in_sack) {
1516 len = skb->len;
1517 pcount = tcp_skb_pcount(skb);
1518 mss = tcp_skb_seglen(skb);
1519
1520 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1521 * drop this restriction as unnecessary
1522 */
1523 if (mss != tcp_skb_seglen(prev))
1524 goto fallback;
1525 } else {
1526 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1527 goto noop;
1528 /* CHECKME: This is non-MSS split case only?, this will
1529 * cause skipped skbs due to advancing loop btw, original
1530 * has that feature too
1531 */
1532 if (tcp_skb_pcount(skb) <= 1)
1533 goto noop;
1534
1535 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1536 if (!in_sack) {
1537 /* TODO: head merge to next could be attempted here
1538 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1539 * though it might not be worth of the additional hassle
1540 *
1541 * ...we can probably just fallback to what was done
1542 * previously. We could try merging non-SACKed ones
1543 * as well but it probably isn't going to buy off
1544 * because later SACKs might again split them, and
1545 * it would make skb timestamp tracking considerably
1546 * harder problem.
1547 */
1548 goto fallback;
1549 }
1550
1551 len = end_seq - TCP_SKB_CB(skb)->seq;
1552 BUG_ON(len < 0);
1553 BUG_ON(len > skb->len);
1554
1555 /* MSS boundaries should be honoured or else pcount will
1556 * severely break even though it makes things bit trickier.
1557 * Optimize common case to avoid most of the divides
1558 */
1559 mss = tcp_skb_mss(skb);
1560
1561 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1562 * drop this restriction as unnecessary
1563 */
1564 if (mss != tcp_skb_seglen(prev))
1565 goto fallback;
1566
1567 if (len == mss) {
1568 pcount = 1;
1569 } else if (len < mss) {
1570 goto noop;
1571 } else {
1572 pcount = len / mss;
1573 len = pcount * mss;
1574 }
1575 }
1576
1577 if (!skb_shift(prev, skb, len))
1578 goto fallback;
1579 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1580 goto out;
1581
1582 /* Hole filled allows collapsing with the next as well, this is very
1583 * useful when hole on every nth skb pattern happens
1584 */
1585 if (prev == tcp_write_queue_tail(sk))
1586 goto out;
1587 skb = tcp_write_queue_next(sk, prev);
1588
1589 if (!skb_can_shift(skb) ||
1590 (skb == tcp_send_head(sk)) ||
1591 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1592 (mss != tcp_skb_seglen(skb)))
1593 goto out;
1594
1595 len = skb->len;
1596 if (skb_shift(prev, skb, len)) {
1597 pcount += tcp_skb_pcount(skb);
1598 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1599 }
1600
1601out:
1602 state->fack_count += pcount;
1603 return prev;
1604
1605noop:
1606 return skb;
1607
1608fallback:
1609 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1610 return NULL;
1611}
1612
1613static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1614 struct tcp_sack_block *next_dup,
1615 struct tcp_sacktag_state *state,
1616 u32 start_seq, u32 end_seq,
1617 int dup_sack_in)
1618{
1619 struct tcp_sock *tp = tcp_sk(sk);
1620 struct sk_buff *tmp;
1621
1622 tcp_for_write_queue_from(skb, sk) {
1623 int in_sack = 0;
1624 int dup_sack = dup_sack_in;
1625
1626 if (skb == tcp_send_head(sk))
1627 break;
1628
1629 /* queue is in-order => we can short-circuit the walk early */
1630 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1631 break;
1632
1633 if ((next_dup != NULL) &&
1634 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1635 in_sack = tcp_match_skb_to_sack(sk, skb,
1636 next_dup->start_seq,
1637 next_dup->end_seq);
1638 if (in_sack > 0)
1639 dup_sack = 1;
1640 }
1641
1642 /* skb reference here is a bit tricky to get right, since
1643 * shifting can eat and free both this skb and the next,
1644 * so not even _safe variant of the loop is enough.
1645 */
1646 if (in_sack <= 0) {
1647 tmp = tcp_shift_skb_data(sk, skb, state,
1648 start_seq, end_seq, dup_sack);
1649 if (tmp != NULL) {
1650 if (tmp != skb) {
1651 skb = tmp;
1652 continue;
1653 }
1654
1655 in_sack = 0;
1656 } else {
1657 in_sack = tcp_match_skb_to_sack(sk, skb,
1658 start_seq,
1659 end_seq);
1660 }
1661 }
1662
1663 if (unlikely(in_sack < 0))
1664 break;
1665
1666 if (in_sack) {
1667 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1668 state,
1669 dup_sack,
1670 tcp_skb_pcount(skb));
1671
1672 if (!before(TCP_SKB_CB(skb)->seq,
1673 tcp_highest_sack_seq(tp)))
1674 tcp_advance_highest_sack(sk, skb);
1675 }
1676
1677 state->fack_count += tcp_skb_pcount(skb);
1678 }
1679 return skb;
1680}
1681
1682/* Avoid all extra work that is being done by sacktag while walking in
1683 * a normal way
1684 */
1685static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1686 struct tcp_sacktag_state *state,
1687 u32 skip_to_seq)
1688{
1689 tcp_for_write_queue_from(skb, sk) {
1690 if (skb == tcp_send_head(sk))
1691 break;
1692
1693 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1694 break;
1695
1696 state->fack_count += tcp_skb_pcount(skb);
1697 }
1698 return skb;
1699}
1700
1701static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1702 struct sock *sk,
1703 struct tcp_sack_block *next_dup,
1704 struct tcp_sacktag_state *state,
1705 u32 skip_to_seq)
1706{
1707 if (next_dup == NULL)
1708 return skb;
1709
1710 if (before(next_dup->start_seq, skip_to_seq)) {
1711 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1712 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1713 next_dup->start_seq, next_dup->end_seq,
1714 1);
1715 }
1716
1717 return skb;
1718}
1719
1720static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1721{
1722 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1723}
1724
1725static int
1726tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1727 u32 prior_snd_una)
1728{
1729 const struct inet_connection_sock *icsk = inet_csk(sk);
1730 struct tcp_sock *tp = tcp_sk(sk);
1731 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1732 TCP_SKB_CB(ack_skb)->sacked);
1733 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1734 struct tcp_sack_block sp[TCP_NUM_SACKS];
1735 struct tcp_sack_block *cache;
1736 struct tcp_sacktag_state state;
1737 struct sk_buff *skb;
1738 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1739 int used_sacks;
1740 int found_dup_sack = 0;
1741 int i, j;
1742 int first_sack_index;
1743
1744 state.flag = 0;
1745 state.reord = tp->packets_out;
1746
1747 if (!tp->sacked_out) {
1748 if (WARN_ON(tp->fackets_out))
1749 tp->fackets_out = 0;
1750 tcp_highest_sack_reset(sk);
1751 }
1752
1753 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1754 num_sacks, prior_snd_una);
1755 if (found_dup_sack)
1756 state.flag |= FLAG_DSACKING_ACK;
1757
1758 /* Eliminate too old ACKs, but take into
1759 * account more or less fresh ones, they can
1760 * contain valid SACK info.
1761 */
1762 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1763 return 0;
1764
1765 if (!tp->packets_out)
1766 goto out;
1767
1768 used_sacks = 0;
1769 first_sack_index = 0;
1770 for (i = 0; i < num_sacks; i++) {
1771 int dup_sack = !i && found_dup_sack;
1772
1773 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1774 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1775
1776 if (!tcp_is_sackblock_valid(tp, dup_sack,
1777 sp[used_sacks].start_seq,
1778 sp[used_sacks].end_seq)) {
1779 int mib_idx;
1780
1781 if (dup_sack) {
1782 if (!tp->undo_marker)
1783 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1784 else
1785 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1786 } else {
1787 /* Don't count olds caused by ACK reordering */
1788 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1789 !after(sp[used_sacks].end_seq, tp->snd_una))
1790 continue;
1791 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1792 }
1793
1794 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1795 if (i == 0)
1796 first_sack_index = -1;
1797 continue;
1798 }
1799
1800 /* Ignore very old stuff early */
1801 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1802 continue;
1803
1804 used_sacks++;
1805 }
1806
1807 /* order SACK blocks to allow in order walk of the retrans queue */
1808 for (i = used_sacks - 1; i > 0; i--) {
1809 for (j = 0; j < i; j++) {
1810 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1811 swap(sp[j], sp[j + 1]);
1812
1813 /* Track where the first SACK block goes to */
1814 if (j == first_sack_index)
1815 first_sack_index = j + 1;
1816 }
1817 }
1818 }
1819
1820 skb = tcp_write_queue_head(sk);
1821 state.fack_count = 0;
1822 i = 0;
1823
1824 if (!tp->sacked_out) {
1825 /* It's already past, so skip checking against it */
1826 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1827 } else {
1828 cache = tp->recv_sack_cache;
1829 /* Skip empty blocks in at head of the cache */
1830 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1831 !cache->end_seq)
1832 cache++;
1833 }
1834
1835 while (i < used_sacks) {
1836 u32 start_seq = sp[i].start_seq;
1837 u32 end_seq = sp[i].end_seq;
1838 int dup_sack = (found_dup_sack && (i == first_sack_index));
1839 struct tcp_sack_block *next_dup = NULL;
1840
1841 if (found_dup_sack && ((i + 1) == first_sack_index))
1842 next_dup = &sp[i + 1];
1843
1844 /* Skip too early cached blocks */
1845 while (tcp_sack_cache_ok(tp, cache) &&
1846 !before(start_seq, cache->end_seq))
1847 cache++;
1848
1849 /* Can skip some work by looking recv_sack_cache? */
1850 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1851 after(end_seq, cache->start_seq)) {
1852
1853 /* Head todo? */
1854 if (before(start_seq, cache->start_seq)) {
1855 skb = tcp_sacktag_skip(skb, sk, &state,
1856 start_seq);
1857 skb = tcp_sacktag_walk(skb, sk, next_dup,
1858 &state,
1859 start_seq,
1860 cache->start_seq,
1861 dup_sack);
1862 }
1863
1864 /* Rest of the block already fully processed? */
1865 if (!after(end_seq, cache->end_seq))
1866 goto advance_sp;
1867
1868 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1869 &state,
1870 cache->end_seq);
1871
1872 /* ...tail remains todo... */
1873 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1874 /* ...but better entrypoint exists! */
1875 skb = tcp_highest_sack(sk);
1876 if (skb == NULL)
1877 break;
1878 state.fack_count = tp->fackets_out;
1879 cache++;
1880 goto walk;
1881 }
1882
1883 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1884 /* Check overlap against next cached too (past this one already) */
1885 cache++;
1886 continue;
1887 }
1888
1889 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1890 skb = tcp_highest_sack(sk);
1891 if (skb == NULL)
1892 break;
1893 state.fack_count = tp->fackets_out;
1894 }
1895 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1896
1897walk:
1898 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1899 start_seq, end_seq, dup_sack);
1900
1901advance_sp:
1902 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1903 * due to in-order walk
1904 */
1905 if (after(end_seq, tp->frto_highmark))
1906 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1907
1908 i++;
1909 }
1910
1911 /* Clear the head of the cache sack blocks so we can skip it next time */
1912 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1913 tp->recv_sack_cache[i].start_seq = 0;
1914 tp->recv_sack_cache[i].end_seq = 0;
1915 }
1916 for (j = 0; j < used_sacks; j++)
1917 tp->recv_sack_cache[i++] = sp[j];
1918
1919 tcp_mark_lost_retrans(sk);
1920
1921 tcp_verify_left_out(tp);
1922
1923 if ((state.reord < tp->fackets_out) &&
1924 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1925 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1926 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1927
1928out:
1929
1930#if FASTRETRANS_DEBUG > 0
1931 WARN_ON((int)tp->sacked_out < 0);
1932 WARN_ON((int)tp->lost_out < 0);
1933 WARN_ON((int)tp->retrans_out < 0);
1934 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1935#endif
1936 return state.flag;
1937}
1938
1939/* Limits sacked_out so that sum with lost_out isn't ever larger than
1940 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1941 */
1942static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1943{
1944 u32 holes;
1945
1946 holes = max(tp->lost_out, 1U);
1947 holes = min(holes, tp->packets_out);
1948
1949 if ((tp->sacked_out + holes) > tp->packets_out) {
1950 tp->sacked_out = tp->packets_out - holes;
1951 return 1;
1952 }
1953 return 0;
1954}
1955
1956/* If we receive more dupacks than we expected counting segments
1957 * in assumption of absent reordering, interpret this as reordering.
1958 * The only another reason could be bug in receiver TCP.
1959 */
1960static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1961{
1962 struct tcp_sock *tp = tcp_sk(sk);
1963 if (tcp_limit_reno_sacked(tp))
1964 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1965}
1966
1967/* Emulate SACKs for SACKless connection: account for a new dupack. */
1968
1969static void tcp_add_reno_sack(struct sock *sk)
1970{
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 tp->sacked_out++;
1973 tcp_check_reno_reordering(sk, 0);
1974 tcp_verify_left_out(tp);
1975}
1976
1977/* Account for ACK, ACKing some data in Reno Recovery phase. */
1978
1979static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1980{
1981 struct tcp_sock *tp = tcp_sk(sk);
1982
1983 if (acked > 0) {
1984 /* One ACK acked hole. The rest eat duplicate ACKs. */
1985 if (acked - 1 >= tp->sacked_out)
1986 tp->sacked_out = 0;
1987 else
1988 tp->sacked_out -= acked - 1;
1989 }
1990 tcp_check_reno_reordering(sk, acked);
1991 tcp_verify_left_out(tp);
1992}
1993
1994static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1995{
1996 tp->sacked_out = 0;
1997}
1998
1999static int tcp_is_sackfrto(const struct tcp_sock *tp)
2000{
2001 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2002}
2003
2004/* F-RTO can only be used if TCP has never retransmitted anything other than
2005 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2006 */
2007int tcp_use_frto(struct sock *sk)
2008{
2009 const struct tcp_sock *tp = tcp_sk(sk);
2010 const struct inet_connection_sock *icsk = inet_csk(sk);
2011 struct sk_buff *skb;
2012
2013 if (!sysctl_tcp_frto)
2014 return 0;
2015
2016 /* MTU probe and F-RTO won't really play nicely along currently */
2017 if (icsk->icsk_mtup.probe_size)
2018 return 0;
2019
2020 if (tcp_is_sackfrto(tp))
2021 return 1;
2022
2023 /* Avoid expensive walking of rexmit queue if possible */
2024 if (tp->retrans_out > 1)
2025 return 0;
2026
2027 skb = tcp_write_queue_head(sk);
2028 if (tcp_skb_is_last(sk, skb))
2029 return 1;
2030 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2031 tcp_for_write_queue_from(skb, sk) {
2032 if (skb == tcp_send_head(sk))
2033 break;
2034 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2035 return 0;
2036 /* Short-circuit when first non-SACKed skb has been checked */
2037 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2038 break;
2039 }
2040 return 1;
2041}
2042
2043/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2044 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2045 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2046 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2047 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2048 * bits are handled if the Loss state is really to be entered (in
2049 * tcp_enter_frto_loss).
2050 *
2051 * Do like tcp_enter_loss() would; when RTO expires the second time it
2052 * does:
2053 * "Reduce ssthresh if it has not yet been made inside this window."
2054 */
2055void tcp_enter_frto(struct sock *sk)
2056{
2057 const struct inet_connection_sock *icsk = inet_csk(sk);
2058 struct tcp_sock *tp = tcp_sk(sk);
2059 struct sk_buff *skb;
2060
2061 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2062 tp->snd_una == tp->high_seq ||
2063 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2064 !icsk->icsk_retransmits)) {
2065 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2066 /* Our state is too optimistic in ssthresh() call because cwnd
2067 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2068 * recovery has not yet completed. Pattern would be this: RTO,
2069 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2070 * up here twice).
2071 * RFC4138 should be more specific on what to do, even though
2072 * RTO is quite unlikely to occur after the first Cumulative ACK
2073 * due to back-off and complexity of triggering events ...
2074 */
2075 if (tp->frto_counter) {
2076 u32 stored_cwnd;
2077 stored_cwnd = tp->snd_cwnd;
2078 tp->snd_cwnd = 2;
2079 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2080 tp->snd_cwnd = stored_cwnd;
2081 } else {
2082 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2083 }
2084 /* ... in theory, cong.control module could do "any tricks" in
2085 * ssthresh(), which means that ca_state, lost bits and lost_out
2086 * counter would have to be faked before the call occurs. We
2087 * consider that too expensive, unlikely and hacky, so modules
2088 * using these in ssthresh() must deal these incompatibility
2089 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2090 */
2091 tcp_ca_event(sk, CA_EVENT_FRTO);
2092 }
2093
2094 tp->undo_marker = tp->snd_una;
2095 tp->undo_retrans = 0;
2096
2097 skb = tcp_write_queue_head(sk);
2098 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2099 tp->undo_marker = 0;
2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2101 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2102 tp->retrans_out -= tcp_skb_pcount(skb);
2103 }
2104 tcp_verify_left_out(tp);
2105
2106 /* Too bad if TCP was application limited */
2107 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2108
2109 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2110 * The last condition is necessary at least in tp->frto_counter case.
2111 */
2112 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2113 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2114 after(tp->high_seq, tp->snd_una)) {
2115 tp->frto_highmark = tp->high_seq;
2116 } else {
2117 tp->frto_highmark = tp->snd_nxt;
2118 }
2119 tcp_set_ca_state(sk, TCP_CA_Disorder);
2120 tp->high_seq = tp->snd_nxt;
2121 tp->frto_counter = 1;
2122}
2123
2124/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2125 * which indicates that we should follow the traditional RTO recovery,
2126 * i.e. mark everything lost and do go-back-N retransmission.
2127 */
2128static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2129{
2130 struct tcp_sock *tp = tcp_sk(sk);
2131 struct sk_buff *skb;
2132
2133 tp->lost_out = 0;
2134 tp->retrans_out = 0;
2135 if (tcp_is_reno(tp))
2136 tcp_reset_reno_sack(tp);
2137
2138 tcp_for_write_queue(skb, sk) {
2139 if (skb == tcp_send_head(sk))
2140 break;
2141
2142 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2143 /*
2144 * Count the retransmission made on RTO correctly (only when
2145 * waiting for the first ACK and did not get it)...
2146 */
2147 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2148 /* For some reason this R-bit might get cleared? */
2149 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2150 tp->retrans_out += tcp_skb_pcount(skb);
2151 /* ...enter this if branch just for the first segment */
2152 flag |= FLAG_DATA_ACKED;
2153 } else {
2154 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2155 tp->undo_marker = 0;
2156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2157 }
2158
2159 /* Marking forward transmissions that were made after RTO lost
2160 * can cause unnecessary retransmissions in some scenarios,
2161 * SACK blocks will mitigate that in some but not in all cases.
2162 * We used to not mark them but it was causing break-ups with
2163 * receivers that do only in-order receival.
2164 *
2165 * TODO: we could detect presence of such receiver and select
2166 * different behavior per flow.
2167 */
2168 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2169 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2170 tp->lost_out += tcp_skb_pcount(skb);
2171 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2172 }
2173 }
2174 tcp_verify_left_out(tp);
2175
2176 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2177 tp->snd_cwnd_cnt = 0;
2178 tp->snd_cwnd_stamp = tcp_time_stamp;
2179 tp->frto_counter = 0;
2180 tp->bytes_acked = 0;
2181
2182 tp->reordering = min_t(unsigned int, tp->reordering,
2183 sysctl_tcp_reordering);
2184 tcp_set_ca_state(sk, TCP_CA_Loss);
2185 tp->high_seq = tp->snd_nxt;
2186 TCP_ECN_queue_cwr(tp);
2187
2188 tcp_clear_all_retrans_hints(tp);
2189}
2190
2191static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2192{
2193 tp->retrans_out = 0;
2194 tp->lost_out = 0;
2195
2196 tp->undo_marker = 0;
2197 tp->undo_retrans = 0;
2198}
2199
2200void tcp_clear_retrans(struct tcp_sock *tp)
2201{
2202 tcp_clear_retrans_partial(tp);
2203
2204 tp->fackets_out = 0;
2205 tp->sacked_out = 0;
2206}
2207
2208/* Enter Loss state. If "how" is not zero, forget all SACK information
2209 * and reset tags completely, otherwise preserve SACKs. If receiver
2210 * dropped its ofo queue, we will know this due to reneging detection.
2211 */
2212void tcp_enter_loss(struct sock *sk, int how)
2213{
2214 const struct inet_connection_sock *icsk = inet_csk(sk);
2215 struct tcp_sock *tp = tcp_sk(sk);
2216 struct sk_buff *skb;
2217
2218 /* Reduce ssthresh if it has not yet been made inside this window. */
2219 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2220 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2221 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2222 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2223 tcp_ca_event(sk, CA_EVENT_LOSS);
2224 }
2225 tp->snd_cwnd = 1;
2226 tp->snd_cwnd_cnt = 0;
2227 tp->snd_cwnd_stamp = tcp_time_stamp;
2228
2229 tp->bytes_acked = 0;
2230 tcp_clear_retrans_partial(tp);
2231
2232 if (tcp_is_reno(tp))
2233 tcp_reset_reno_sack(tp);
2234
2235 if (!how) {
2236 /* Push undo marker, if it was plain RTO and nothing
2237 * was retransmitted. */
2238 tp->undo_marker = tp->snd_una;
2239 } else {
2240 tp->sacked_out = 0;
2241 tp->fackets_out = 0;
2242 }
2243 tcp_clear_all_retrans_hints(tp);
2244
2245 tcp_for_write_queue(skb, sk) {
2246 if (skb == tcp_send_head(sk))
2247 break;
2248
2249 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2250 tp->undo_marker = 0;
2251 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2252 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2253 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2254 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255 tp->lost_out += tcp_skb_pcount(skb);
2256 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2257 }
2258 }
2259 tcp_verify_left_out(tp);
2260
2261 tp->reordering = min_t(unsigned int, tp->reordering,
2262 sysctl_tcp_reordering);
2263 tcp_set_ca_state(sk, TCP_CA_Loss);
2264 tp->high_seq = tp->snd_nxt;
2265 TCP_ECN_queue_cwr(tp);
2266 /* Abort F-RTO algorithm if one is in progress */
2267 tp->frto_counter = 0;
2268}
2269
2270/* If ACK arrived pointing to a remembered SACK, it means that our
2271 * remembered SACKs do not reflect real state of receiver i.e.
2272 * receiver _host_ is heavily congested (or buggy).
2273 *
2274 * Do processing similar to RTO timeout.
2275 */
2276static int tcp_check_sack_reneging(struct sock *sk, int flag)
2277{
2278 if (flag & FLAG_SACK_RENEGING) {
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2281
2282 tcp_enter_loss(sk, 1);
2283 icsk->icsk_retransmits++;
2284 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2285 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2286 icsk->icsk_rto, TCP_RTO_MAX);
2287 return 1;
2288 }
2289 return 0;
2290}
2291
2292static inline int tcp_fackets_out(const struct tcp_sock *tp)
2293{
2294 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2295}
2296
2297/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2298 * counter when SACK is enabled (without SACK, sacked_out is used for
2299 * that purpose).
2300 *
2301 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2302 * segments up to the highest received SACK block so far and holes in
2303 * between them.
2304 *
2305 * With reordering, holes may still be in flight, so RFC3517 recovery
2306 * uses pure sacked_out (total number of SACKed segments) even though
2307 * it violates the RFC that uses duplicate ACKs, often these are equal
2308 * but when e.g. out-of-window ACKs or packet duplication occurs,
2309 * they differ. Since neither occurs due to loss, TCP should really
2310 * ignore them.
2311 */
2312static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2313{
2314 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2315}
2316
2317static inline int tcp_skb_timedout(const struct sock *sk,
2318 const struct sk_buff *skb)
2319{
2320 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2321}
2322
2323static inline int tcp_head_timedout(const struct sock *sk)
2324{
2325 const struct tcp_sock *tp = tcp_sk(sk);
2326
2327 return tp->packets_out &&
2328 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2329}
2330
2331/* Linux NewReno/SACK/FACK/ECN state machine.
2332 * --------------------------------------
2333 *
2334 * "Open" Normal state, no dubious events, fast path.
2335 * "Disorder" In all the respects it is "Open",
2336 * but requires a bit more attention. It is entered when
2337 * we see some SACKs or dupacks. It is split of "Open"
2338 * mainly to move some processing from fast path to slow one.
2339 * "CWR" CWND was reduced due to some Congestion Notification event.
2340 * It can be ECN, ICMP source quench, local device congestion.
2341 * "Recovery" CWND was reduced, we are fast-retransmitting.
2342 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2343 *
2344 * tcp_fastretrans_alert() is entered:
2345 * - each incoming ACK, if state is not "Open"
2346 * - when arrived ACK is unusual, namely:
2347 * * SACK
2348 * * Duplicate ACK.
2349 * * ECN ECE.
2350 *
2351 * Counting packets in flight is pretty simple.
2352 *
2353 * in_flight = packets_out - left_out + retrans_out
2354 *
2355 * packets_out is SND.NXT-SND.UNA counted in packets.
2356 *
2357 * retrans_out is number of retransmitted segments.
2358 *
2359 * left_out is number of segments left network, but not ACKed yet.
2360 *
2361 * left_out = sacked_out + lost_out
2362 *
2363 * sacked_out: Packets, which arrived to receiver out of order
2364 * and hence not ACKed. With SACKs this number is simply
2365 * amount of SACKed data. Even without SACKs
2366 * it is easy to give pretty reliable estimate of this number,
2367 * counting duplicate ACKs.
2368 *
2369 * lost_out: Packets lost by network. TCP has no explicit
2370 * "loss notification" feedback from network (for now).
2371 * It means that this number can be only _guessed_.
2372 * Actually, it is the heuristics to predict lossage that
2373 * distinguishes different algorithms.
2374 *
2375 * F.e. after RTO, when all the queue is considered as lost,
2376 * lost_out = packets_out and in_flight = retrans_out.
2377 *
2378 * Essentially, we have now two algorithms counting
2379 * lost packets.
2380 *
2381 * FACK: It is the simplest heuristics. As soon as we decided
2382 * that something is lost, we decide that _all_ not SACKed
2383 * packets until the most forward SACK are lost. I.e.
2384 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2385 * It is absolutely correct estimate, if network does not reorder
2386 * packets. And it loses any connection to reality when reordering
2387 * takes place. We use FACK by default until reordering
2388 * is suspected on the path to this destination.
2389 *
2390 * NewReno: when Recovery is entered, we assume that one segment
2391 * is lost (classic Reno). While we are in Recovery and
2392 * a partial ACK arrives, we assume that one more packet
2393 * is lost (NewReno). This heuristics are the same in NewReno
2394 * and SACK.
2395 *
2396 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2397 * deflation etc. CWND is real congestion window, never inflated, changes
2398 * only according to classic VJ rules.
2399 *
2400 * Really tricky (and requiring careful tuning) part of algorithm
2401 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2402 * The first determines the moment _when_ we should reduce CWND and,
2403 * hence, slow down forward transmission. In fact, it determines the moment
2404 * when we decide that hole is caused by loss, rather than by a reorder.
2405 *
2406 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2407 * holes, caused by lost packets.
2408 *
2409 * And the most logically complicated part of algorithm is undo
2410 * heuristics. We detect false retransmits due to both too early
2411 * fast retransmit (reordering) and underestimated RTO, analyzing
2412 * timestamps and D-SACKs. When we detect that some segments were
2413 * retransmitted by mistake and CWND reduction was wrong, we undo
2414 * window reduction and abort recovery phase. This logic is hidden
2415 * inside several functions named tcp_try_undo_<something>.
2416 */
2417
2418/* This function decides, when we should leave Disordered state
2419 * and enter Recovery phase, reducing congestion window.
2420 *
2421 * Main question: may we further continue forward transmission
2422 * with the same cwnd?
2423 */
2424static int tcp_time_to_recover(struct sock *sk)
2425{
2426 struct tcp_sock *tp = tcp_sk(sk);
2427 __u32 packets_out;
2428
2429 /* Do not perform any recovery during F-RTO algorithm */
2430 if (tp->frto_counter)
2431 return 0;
2432
2433 /* Trick#1: The loss is proven. */
2434 if (tp->lost_out)
2435 return 1;
2436
2437 /* Not-A-Trick#2 : Classic rule... */
2438 if (tcp_dupack_heuristics(tp) > tp->reordering)
2439 return 1;
2440
2441 /* Trick#3 : when we use RFC2988 timer restart, fast
2442 * retransmit can be triggered by timeout of queue head.
2443 */
2444 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2445 return 1;
2446
2447 /* Trick#4: It is still not OK... But will it be useful to delay
2448 * recovery more?
2449 */
2450 packets_out = tp->packets_out;
2451 if (packets_out <= tp->reordering &&
2452 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2453 !tcp_may_send_now(sk)) {
2454 /* We have nothing to send. This connection is limited
2455 * either by receiver window or by application.
2456 */
2457 return 1;
2458 }
2459
2460 /* If a thin stream is detected, retransmit after first
2461 * received dupack. Employ only if SACK is supported in order
2462 * to avoid possible corner-case series of spurious retransmissions
2463 * Use only if there are no unsent data.
2464 */
2465 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2466 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2467 tcp_is_sack(tp) && !tcp_send_head(sk))
2468 return 1;
2469
2470 return 0;
2471}
2472
2473/* New heuristics: it is possible only after we switched to restart timer
2474 * each time when something is ACKed. Hence, we can detect timed out packets
2475 * during fast retransmit without falling to slow start.
2476 *
2477 * Usefulness of this as is very questionable, since we should know which of
2478 * the segments is the next to timeout which is relatively expensive to find
2479 * in general case unless we add some data structure just for that. The
2480 * current approach certainly won't find the right one too often and when it
2481 * finally does find _something_ it usually marks large part of the window
2482 * right away (because a retransmission with a larger timestamp blocks the
2483 * loop from advancing). -ij
2484 */
2485static void tcp_timeout_skbs(struct sock *sk)
2486{
2487 struct tcp_sock *tp = tcp_sk(sk);
2488 struct sk_buff *skb;
2489
2490 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2491 return;
2492
2493 skb = tp->scoreboard_skb_hint;
2494 if (tp->scoreboard_skb_hint == NULL)
2495 skb = tcp_write_queue_head(sk);
2496
2497 tcp_for_write_queue_from(skb, sk) {
2498 if (skb == tcp_send_head(sk))
2499 break;
2500 if (!tcp_skb_timedout(sk, skb))
2501 break;
2502
2503 tcp_skb_mark_lost(tp, skb);
2504 }
2505
2506 tp->scoreboard_skb_hint = skb;
2507
2508 tcp_verify_left_out(tp);
2509}
2510
2511/* Detect loss in event "A" above by marking head of queue up as lost.
2512 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2513 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2514 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2515 * the maximum SACKed segments to pass before reaching this limit.
2516 */
2517static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2518{
2519 struct tcp_sock *tp = tcp_sk(sk);
2520 struct sk_buff *skb;
2521 int cnt, oldcnt;
2522 int err;
2523 unsigned int mss;
2524 /* Use SACK to deduce losses of new sequences sent during recovery */
2525 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2526
2527 WARN_ON(packets > tp->packets_out);
2528 if (tp->lost_skb_hint) {
2529 skb = tp->lost_skb_hint;
2530 cnt = tp->lost_cnt_hint;
2531 /* Head already handled? */
2532 if (mark_head && skb != tcp_write_queue_head(sk))
2533 return;
2534 } else {
2535 skb = tcp_write_queue_head(sk);
2536 cnt = 0;
2537 }
2538
2539 tcp_for_write_queue_from(skb, sk) {
2540 if (skb == tcp_send_head(sk))
2541 break;
2542 /* TODO: do this better */
2543 /* this is not the most efficient way to do this... */
2544 tp->lost_skb_hint = skb;
2545 tp->lost_cnt_hint = cnt;
2546
2547 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2548 break;
2549
2550 oldcnt = cnt;
2551 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2552 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2553 cnt += tcp_skb_pcount(skb);
2554
2555 if (cnt > packets) {
2556 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2557 (oldcnt >= packets))
2558 break;
2559
2560 mss = skb_shinfo(skb)->gso_size;
2561 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2562 if (err < 0)
2563 break;
2564 cnt = packets;
2565 }
2566
2567 tcp_skb_mark_lost(tp, skb);
2568
2569 if (mark_head)
2570 break;
2571 }
2572 tcp_verify_left_out(tp);
2573}
2574
2575/* Account newly detected lost packet(s) */
2576
2577static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2578{
2579 struct tcp_sock *tp = tcp_sk(sk);
2580
2581 if (tcp_is_reno(tp)) {
2582 tcp_mark_head_lost(sk, 1, 1);
2583 } else if (tcp_is_fack(tp)) {
2584 int lost = tp->fackets_out - tp->reordering;
2585 if (lost <= 0)
2586 lost = 1;
2587 tcp_mark_head_lost(sk, lost, 0);
2588 } else {
2589 int sacked_upto = tp->sacked_out - tp->reordering;
2590 if (sacked_upto >= 0)
2591 tcp_mark_head_lost(sk, sacked_upto, 0);
2592 else if (fast_rexmit)
2593 tcp_mark_head_lost(sk, 1, 1);
2594 }
2595
2596 tcp_timeout_skbs(sk);
2597}
2598
2599/* CWND moderation, preventing bursts due to too big ACKs
2600 * in dubious situations.
2601 */
2602static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2603{
2604 tp->snd_cwnd = min(tp->snd_cwnd,
2605 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2606 tp->snd_cwnd_stamp = tcp_time_stamp;
2607}
2608
2609/* Lower bound on congestion window is slow start threshold
2610 * unless congestion avoidance choice decides to overide it.
2611 */
2612static inline u32 tcp_cwnd_min(const struct sock *sk)
2613{
2614 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2615
2616 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2617}
2618
2619/* Decrease cwnd each second ack. */
2620static void tcp_cwnd_down(struct sock *sk, int flag)
2621{
2622 struct tcp_sock *tp = tcp_sk(sk);
2623 int decr = tp->snd_cwnd_cnt + 1;
2624
2625 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2626 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2627 tp->snd_cwnd_cnt = decr & 1;
2628 decr >>= 1;
2629
2630 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2631 tp->snd_cwnd -= decr;
2632
2633 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2634 tp->snd_cwnd_stamp = tcp_time_stamp;
2635 }
2636}
2637
2638/* Nothing was retransmitted or returned timestamp is less
2639 * than timestamp of the first retransmission.
2640 */
2641static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2642{
2643 return !tp->retrans_stamp ||
2644 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2645 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2646}
2647
2648/* Undo procedures. */
2649
2650#if FASTRETRANS_DEBUG > 1
2651static void DBGUNDO(struct sock *sk, const char *msg)
2652{
2653 struct tcp_sock *tp = tcp_sk(sk);
2654 struct inet_sock *inet = inet_sk(sk);
2655
2656 if (sk->sk_family == AF_INET) {
2657 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2658 msg,
2659 &inet->inet_daddr, ntohs(inet->inet_dport),
2660 tp->snd_cwnd, tcp_left_out(tp),
2661 tp->snd_ssthresh, tp->prior_ssthresh,
2662 tp->packets_out);
2663 }
2664#if IS_ENABLED(CONFIG_IPV6)
2665 else if (sk->sk_family == AF_INET6) {
2666 struct ipv6_pinfo *np = inet6_sk(sk);
2667 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2668 msg,
2669 &np->daddr, ntohs(inet->inet_dport),
2670 tp->snd_cwnd, tcp_left_out(tp),
2671 tp->snd_ssthresh, tp->prior_ssthresh,
2672 tp->packets_out);
2673 }
2674#endif
2675}
2676#else
2677#define DBGUNDO(x...) do { } while (0)
2678#endif
2679
2680static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2681{
2682 struct tcp_sock *tp = tcp_sk(sk);
2683
2684 if (tp->prior_ssthresh) {
2685 const struct inet_connection_sock *icsk = inet_csk(sk);
2686
2687 if (icsk->icsk_ca_ops->undo_cwnd)
2688 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2689 else
2690 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2691
2692 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2693 tp->snd_ssthresh = tp->prior_ssthresh;
2694 TCP_ECN_withdraw_cwr(tp);
2695 }
2696 } else {
2697 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2698 }
2699 tp->snd_cwnd_stamp = tcp_time_stamp;
2700}
2701
2702static inline int tcp_may_undo(const struct tcp_sock *tp)
2703{
2704 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2705}
2706
2707/* People celebrate: "We love our President!" */
2708static int tcp_try_undo_recovery(struct sock *sk)
2709{
2710 struct tcp_sock *tp = tcp_sk(sk);
2711
2712 if (tcp_may_undo(tp)) {
2713 int mib_idx;
2714
2715 /* Happy end! We did not retransmit anything
2716 * or our original transmission succeeded.
2717 */
2718 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2719 tcp_undo_cwr(sk, true);
2720 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2721 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2722 else
2723 mib_idx = LINUX_MIB_TCPFULLUNDO;
2724
2725 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2726 tp->undo_marker = 0;
2727 }
2728 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2729 /* Hold old state until something *above* high_seq
2730 * is ACKed. For Reno it is MUST to prevent false
2731 * fast retransmits (RFC2582). SACK TCP is safe. */
2732 tcp_moderate_cwnd(tp);
2733 return 1;
2734 }
2735 tcp_set_ca_state(sk, TCP_CA_Open);
2736 return 0;
2737}
2738
2739/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2740static void tcp_try_undo_dsack(struct sock *sk)
2741{
2742 struct tcp_sock *tp = tcp_sk(sk);
2743
2744 if (tp->undo_marker && !tp->undo_retrans) {
2745 DBGUNDO(sk, "D-SACK");
2746 tcp_undo_cwr(sk, true);
2747 tp->undo_marker = 0;
2748 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2749 }
2750}
2751
2752/* We can clear retrans_stamp when there are no retransmissions in the
2753 * window. It would seem that it is trivially available for us in
2754 * tp->retrans_out, however, that kind of assumptions doesn't consider
2755 * what will happen if errors occur when sending retransmission for the
2756 * second time. ...It could the that such segment has only
2757 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2758 * the head skb is enough except for some reneging corner cases that
2759 * are not worth the effort.
2760 *
2761 * Main reason for all this complexity is the fact that connection dying
2762 * time now depends on the validity of the retrans_stamp, in particular,
2763 * that successive retransmissions of a segment must not advance
2764 * retrans_stamp under any conditions.
2765 */
2766static int tcp_any_retrans_done(const struct sock *sk)
2767{
2768 const struct tcp_sock *tp = tcp_sk(sk);
2769 struct sk_buff *skb;
2770
2771 if (tp->retrans_out)
2772 return 1;
2773
2774 skb = tcp_write_queue_head(sk);
2775 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2776 return 1;
2777
2778 return 0;
2779}
2780
2781/* Undo during fast recovery after partial ACK. */
2782
2783static int tcp_try_undo_partial(struct sock *sk, int acked)
2784{
2785 struct tcp_sock *tp = tcp_sk(sk);
2786 /* Partial ACK arrived. Force Hoe's retransmit. */
2787 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2788
2789 if (tcp_may_undo(tp)) {
2790 /* Plain luck! Hole if filled with delayed
2791 * packet, rather than with a retransmit.
2792 */
2793 if (!tcp_any_retrans_done(sk))
2794 tp->retrans_stamp = 0;
2795
2796 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2797
2798 DBGUNDO(sk, "Hoe");
2799 tcp_undo_cwr(sk, false);
2800 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2801
2802 /* So... Do not make Hoe's retransmit yet.
2803 * If the first packet was delayed, the rest
2804 * ones are most probably delayed as well.
2805 */
2806 failed = 0;
2807 }
2808 return failed;
2809}
2810
2811/* Undo during loss recovery after partial ACK. */
2812static int tcp_try_undo_loss(struct sock *sk)
2813{
2814 struct tcp_sock *tp = tcp_sk(sk);
2815
2816 if (tcp_may_undo(tp)) {
2817 struct sk_buff *skb;
2818 tcp_for_write_queue(skb, sk) {
2819 if (skb == tcp_send_head(sk))
2820 break;
2821 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2822 }
2823
2824 tcp_clear_all_retrans_hints(tp);
2825
2826 DBGUNDO(sk, "partial loss");
2827 tp->lost_out = 0;
2828 tcp_undo_cwr(sk, true);
2829 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2830 inet_csk(sk)->icsk_retransmits = 0;
2831 tp->undo_marker = 0;
2832 if (tcp_is_sack(tp))
2833 tcp_set_ca_state(sk, TCP_CA_Open);
2834 return 1;
2835 }
2836 return 0;
2837}
2838
2839static inline void tcp_complete_cwr(struct sock *sk)
2840{
2841 struct tcp_sock *tp = tcp_sk(sk);
2842
2843 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2844 if (tp->undo_marker) {
2845 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2846 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2847 else /* PRR */
2848 tp->snd_cwnd = tp->snd_ssthresh;
2849 tp->snd_cwnd_stamp = tcp_time_stamp;
2850 }
2851 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2852}
2853
2854static void tcp_try_keep_open(struct sock *sk)
2855{
2856 struct tcp_sock *tp = tcp_sk(sk);
2857 int state = TCP_CA_Open;
2858
2859 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2860 state = TCP_CA_Disorder;
2861
2862 if (inet_csk(sk)->icsk_ca_state != state) {
2863 tcp_set_ca_state(sk, state);
2864 tp->high_seq = tp->snd_nxt;
2865 }
2866}
2867
2868static void tcp_try_to_open(struct sock *sk, int flag)
2869{
2870 struct tcp_sock *tp = tcp_sk(sk);
2871
2872 tcp_verify_left_out(tp);
2873
2874 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2875 tp->retrans_stamp = 0;
2876
2877 if (flag & FLAG_ECE)
2878 tcp_enter_cwr(sk, 1);
2879
2880 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2881 tcp_try_keep_open(sk);
2882 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2883 tcp_moderate_cwnd(tp);
2884 } else {
2885 tcp_cwnd_down(sk, flag);
2886 }
2887}
2888
2889static void tcp_mtup_probe_failed(struct sock *sk)
2890{
2891 struct inet_connection_sock *icsk = inet_csk(sk);
2892
2893 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2894 icsk->icsk_mtup.probe_size = 0;
2895}
2896
2897static void tcp_mtup_probe_success(struct sock *sk)
2898{
2899 struct tcp_sock *tp = tcp_sk(sk);
2900 struct inet_connection_sock *icsk = inet_csk(sk);
2901
2902 /* FIXME: breaks with very large cwnd */
2903 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2904 tp->snd_cwnd = tp->snd_cwnd *
2905 tcp_mss_to_mtu(sk, tp->mss_cache) /
2906 icsk->icsk_mtup.probe_size;
2907 tp->snd_cwnd_cnt = 0;
2908 tp->snd_cwnd_stamp = tcp_time_stamp;
2909 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2910
2911 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2912 icsk->icsk_mtup.probe_size = 0;
2913 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2914}
2915
2916/* Do a simple retransmit without using the backoff mechanisms in
2917 * tcp_timer. This is used for path mtu discovery.
2918 * The socket is already locked here.
2919 */
2920void tcp_simple_retransmit(struct sock *sk)
2921{
2922 const struct inet_connection_sock *icsk = inet_csk(sk);
2923 struct tcp_sock *tp = tcp_sk(sk);
2924 struct sk_buff *skb;
2925 unsigned int mss = tcp_current_mss(sk);
2926 u32 prior_lost = tp->lost_out;
2927
2928 tcp_for_write_queue(skb, sk) {
2929 if (skb == tcp_send_head(sk))
2930 break;
2931 if (tcp_skb_seglen(skb) > mss &&
2932 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2933 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2934 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2935 tp->retrans_out -= tcp_skb_pcount(skb);
2936 }
2937 tcp_skb_mark_lost_uncond_verify(tp, skb);
2938 }
2939 }
2940
2941 tcp_clear_retrans_hints_partial(tp);
2942
2943 if (prior_lost == tp->lost_out)
2944 return;
2945
2946 if (tcp_is_reno(tp))
2947 tcp_limit_reno_sacked(tp);
2948
2949 tcp_verify_left_out(tp);
2950
2951 /* Don't muck with the congestion window here.
2952 * Reason is that we do not increase amount of _data_
2953 * in network, but units changed and effective
2954 * cwnd/ssthresh really reduced now.
2955 */
2956 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2957 tp->high_seq = tp->snd_nxt;
2958 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2959 tp->prior_ssthresh = 0;
2960 tp->undo_marker = 0;
2961 tcp_set_ca_state(sk, TCP_CA_Loss);
2962 }
2963 tcp_xmit_retransmit_queue(sk);
2964}
2965EXPORT_SYMBOL(tcp_simple_retransmit);
2966
2967/* This function implements the PRR algorithm, specifcally the PRR-SSRB
2968 * (proportional rate reduction with slow start reduction bound) as described in
2969 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2970 * It computes the number of packets to send (sndcnt) based on packets newly
2971 * delivered:
2972 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2973 * cwnd reductions across a full RTT.
2974 * 2) If packets in flight is lower than ssthresh (such as due to excess
2975 * losses and/or application stalls), do not perform any further cwnd
2976 * reductions, but instead slow start up to ssthresh.
2977 */
2978static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2979 int fast_rexmit, int flag)
2980{
2981 struct tcp_sock *tp = tcp_sk(sk);
2982 int sndcnt = 0;
2983 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2984
2985 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2986 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2987 tp->prior_cwnd - 1;
2988 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2989 } else {
2990 sndcnt = min_t(int, delta,
2991 max_t(int, tp->prr_delivered - tp->prr_out,
2992 newly_acked_sacked) + 1);
2993 }
2994
2995 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2996 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2997}
2998
2999/* Process an event, which can update packets-in-flight not trivially.
3000 * Main goal of this function is to calculate new estimate for left_out,
3001 * taking into account both packets sitting in receiver's buffer and
3002 * packets lost by network.
3003 *
3004 * Besides that it does CWND reduction, when packet loss is detected
3005 * and changes state of machine.
3006 *
3007 * It does _not_ decide what to send, it is made in function
3008 * tcp_xmit_retransmit_queue().
3009 */
3010static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3011 int newly_acked_sacked, bool is_dupack,
3012 int flag)
3013{
3014 struct inet_connection_sock *icsk = inet_csk(sk);
3015 struct tcp_sock *tp = tcp_sk(sk);
3016 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3017 (tcp_fackets_out(tp) > tp->reordering));
3018 int fast_rexmit = 0, mib_idx;
3019
3020 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3021 tp->sacked_out = 0;
3022 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3023 tp->fackets_out = 0;
3024
3025 /* Now state machine starts.
3026 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3027 if (flag & FLAG_ECE)
3028 tp->prior_ssthresh = 0;
3029
3030 /* B. In all the states check for reneging SACKs. */
3031 if (tcp_check_sack_reneging(sk, flag))
3032 return;
3033
3034 /* C. Check consistency of the current state. */
3035 tcp_verify_left_out(tp);
3036
3037 /* D. Check state exit conditions. State can be terminated
3038 * when high_seq is ACKed. */
3039 if (icsk->icsk_ca_state == TCP_CA_Open) {
3040 WARN_ON(tp->retrans_out != 0);
3041 tp->retrans_stamp = 0;
3042 } else if (!before(tp->snd_una, tp->high_seq)) {
3043 switch (icsk->icsk_ca_state) {
3044 case TCP_CA_Loss:
3045 icsk->icsk_retransmits = 0;
3046 if (tcp_try_undo_recovery(sk))
3047 return;
3048 break;
3049
3050 case TCP_CA_CWR:
3051 /* CWR is to be held something *above* high_seq
3052 * is ACKed for CWR bit to reach receiver. */
3053 if (tp->snd_una != tp->high_seq) {
3054 tcp_complete_cwr(sk);
3055 tcp_set_ca_state(sk, TCP_CA_Open);
3056 }
3057 break;
3058
3059 case TCP_CA_Recovery:
3060 if (tcp_is_reno(tp))
3061 tcp_reset_reno_sack(tp);
3062 if (tcp_try_undo_recovery(sk))
3063 return;
3064 tcp_complete_cwr(sk);
3065 break;
3066 }
3067 }
3068
3069 /* E. Process state. */
3070 switch (icsk->icsk_ca_state) {
3071 case TCP_CA_Recovery:
3072 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3073 if (tcp_is_reno(tp) && is_dupack)
3074 tcp_add_reno_sack(sk);
3075 } else
3076 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3077 break;
3078 case TCP_CA_Loss:
3079 if (flag & FLAG_DATA_ACKED)
3080 icsk->icsk_retransmits = 0;
3081 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3082 tcp_reset_reno_sack(tp);
3083 if (!tcp_try_undo_loss(sk)) {
3084 tcp_moderate_cwnd(tp);
3085 tcp_xmit_retransmit_queue(sk);
3086 return;
3087 }
3088 if (icsk->icsk_ca_state != TCP_CA_Open)
3089 return;
3090 /* Loss is undone; fall through to processing in Open state. */
3091 default:
3092 if (tcp_is_reno(tp)) {
3093 if (flag & FLAG_SND_UNA_ADVANCED)
3094 tcp_reset_reno_sack(tp);
3095 if (is_dupack)
3096 tcp_add_reno_sack(sk);
3097 }
3098
3099 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3100 tcp_try_undo_dsack(sk);
3101
3102 if (!tcp_time_to_recover(sk)) {
3103 tcp_try_to_open(sk, flag);
3104 return;
3105 }
3106
3107 /* MTU probe failure: don't reduce cwnd */
3108 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3109 icsk->icsk_mtup.probe_size &&
3110 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3111 tcp_mtup_probe_failed(sk);
3112 /* Restores the reduction we did in tcp_mtup_probe() */
3113 tp->snd_cwnd++;
3114 tcp_simple_retransmit(sk);
3115 return;
3116 }
3117
3118 /* Otherwise enter Recovery state */
3119
3120 if (tcp_is_reno(tp))
3121 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3122 else
3123 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3124
3125 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3126
3127 tp->high_seq = tp->snd_nxt;
3128 tp->prior_ssthresh = 0;
3129 tp->undo_marker = tp->snd_una;
3130 tp->undo_retrans = tp->retrans_out;
3131
3132 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3133 if (!(flag & FLAG_ECE))
3134 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3135 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3136 TCP_ECN_queue_cwr(tp);
3137 }
3138
3139 tp->bytes_acked = 0;
3140 tp->snd_cwnd_cnt = 0;
3141 tp->prior_cwnd = tp->snd_cwnd;
3142 tp->prr_delivered = 0;
3143 tp->prr_out = 0;
3144 tcp_set_ca_state(sk, TCP_CA_Recovery);
3145 fast_rexmit = 1;
3146 }
3147
3148 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3149 tcp_update_scoreboard(sk, fast_rexmit);
3150 tp->prr_delivered += newly_acked_sacked;
3151 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3152 tcp_xmit_retransmit_queue(sk);
3153}
3154
3155void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3156{
3157 tcp_rtt_estimator(sk, seq_rtt);
3158 tcp_set_rto(sk);
3159 inet_csk(sk)->icsk_backoff = 0;
3160}
3161EXPORT_SYMBOL(tcp_valid_rtt_meas);
3162
3163/* Read draft-ietf-tcplw-high-performance before mucking
3164 * with this code. (Supersedes RFC1323)
3165 */
3166static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3167{
3168 /* RTTM Rule: A TSecr value received in a segment is used to
3169 * update the averaged RTT measurement only if the segment
3170 * acknowledges some new data, i.e., only if it advances the
3171 * left edge of the send window.
3172 *
3173 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3174 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3175 *
3176 * Changed: reset backoff as soon as we see the first valid sample.
3177 * If we do not, we get strongly overestimated rto. With timestamps
3178 * samples are accepted even from very old segments: f.e., when rtt=1
3179 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3180 * answer arrives rto becomes 120 seconds! If at least one of segments
3181 * in window is lost... Voila. --ANK (010210)
3182 */
3183 struct tcp_sock *tp = tcp_sk(sk);
3184
3185 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3186}
3187
3188static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3189{
3190 /* We don't have a timestamp. Can only use
3191 * packets that are not retransmitted to determine
3192 * rtt estimates. Also, we must not reset the
3193 * backoff for rto until we get a non-retransmitted
3194 * packet. This allows us to deal with a situation
3195 * where the network delay has increased suddenly.
3196 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3197 */
3198
3199 if (flag & FLAG_RETRANS_DATA_ACKED)
3200 return;
3201
3202 tcp_valid_rtt_meas(sk, seq_rtt);
3203}
3204
3205static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3206 const s32 seq_rtt)
3207{
3208 const struct tcp_sock *tp = tcp_sk(sk);
3209 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3210 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3211 tcp_ack_saw_tstamp(sk, flag);
3212 else if (seq_rtt >= 0)
3213 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3214}
3215
3216static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3217{
3218 const struct inet_connection_sock *icsk = inet_csk(sk);
3219 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3220 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3221}
3222
3223/* Restart timer after forward progress on connection.
3224 * RFC2988 recommends to restart timer to now+rto.
3225 */
3226static void tcp_rearm_rto(struct sock *sk)
3227{
3228 const struct tcp_sock *tp = tcp_sk(sk);
3229
3230 if (!tp->packets_out) {
3231 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3232 } else {
3233 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3234 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3235 }
3236}
3237
3238/* If we get here, the whole TSO packet has not been acked. */
3239static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3240{
3241 struct tcp_sock *tp = tcp_sk(sk);
3242 u32 packets_acked;
3243
3244 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3245
3246 packets_acked = tcp_skb_pcount(skb);
3247 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3248 return 0;
3249 packets_acked -= tcp_skb_pcount(skb);
3250
3251 if (packets_acked) {
3252 BUG_ON(tcp_skb_pcount(skb) == 0);
3253 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3254 }
3255
3256 return packets_acked;
3257}
3258
3259/* Remove acknowledged frames from the retransmission queue. If our packet
3260 * is before the ack sequence we can discard it as it's confirmed to have
3261 * arrived at the other end.
3262 */
3263static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3264 u32 prior_snd_una)
3265{
3266 struct tcp_sock *tp = tcp_sk(sk);
3267 const struct inet_connection_sock *icsk = inet_csk(sk);
3268 struct sk_buff *skb;
3269 u32 now = tcp_time_stamp;
3270 int fully_acked = 1;
3271 int flag = 0;
3272 u32 pkts_acked = 0;
3273 u32 reord = tp->packets_out;
3274 u32 prior_sacked = tp->sacked_out;
3275 s32 seq_rtt = -1;
3276 s32 ca_seq_rtt = -1;
3277 ktime_t last_ackt = net_invalid_timestamp();
3278
3279 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3280 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3281 u32 acked_pcount;
3282 u8 sacked = scb->sacked;
3283
3284 /* Determine how many packets and what bytes were acked, tso and else */
3285 if (after(scb->end_seq, tp->snd_una)) {
3286 if (tcp_skb_pcount(skb) == 1 ||
3287 !after(tp->snd_una, scb->seq))
3288 break;
3289
3290 acked_pcount = tcp_tso_acked(sk, skb);
3291 if (!acked_pcount)
3292 break;
3293
3294 fully_acked = 0;
3295 } else {
3296 acked_pcount = tcp_skb_pcount(skb);
3297 }
3298
3299 if (sacked & TCPCB_RETRANS) {
3300 if (sacked & TCPCB_SACKED_RETRANS)
3301 tp->retrans_out -= acked_pcount;
3302 flag |= FLAG_RETRANS_DATA_ACKED;
3303 ca_seq_rtt = -1;
3304 seq_rtt = -1;
3305 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3306 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3307 } else {
3308 ca_seq_rtt = now - scb->when;
3309 last_ackt = skb->tstamp;
3310 if (seq_rtt < 0) {
3311 seq_rtt = ca_seq_rtt;
3312 }
3313 if (!(sacked & TCPCB_SACKED_ACKED))
3314 reord = min(pkts_acked, reord);
3315 }
3316
3317 if (sacked & TCPCB_SACKED_ACKED)
3318 tp->sacked_out -= acked_pcount;
3319 if (sacked & TCPCB_LOST)
3320 tp->lost_out -= acked_pcount;
3321
3322 tp->packets_out -= acked_pcount;
3323 pkts_acked += acked_pcount;
3324
3325 /* Initial outgoing SYN's get put onto the write_queue
3326 * just like anything else we transmit. It is not
3327 * true data, and if we misinform our callers that
3328 * this ACK acks real data, we will erroneously exit
3329 * connection startup slow start one packet too
3330 * quickly. This is severely frowned upon behavior.
3331 */
3332 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3333 flag |= FLAG_DATA_ACKED;
3334 } else {
3335 flag |= FLAG_SYN_ACKED;
3336 tp->retrans_stamp = 0;
3337 }
3338
3339 if (!fully_acked)
3340 break;
3341
3342 tcp_unlink_write_queue(skb, sk);
3343 sk_wmem_free_skb(sk, skb);
3344 tp->scoreboard_skb_hint = NULL;
3345 if (skb == tp->retransmit_skb_hint)
3346 tp->retransmit_skb_hint = NULL;
3347 if (skb == tp->lost_skb_hint)
3348 tp->lost_skb_hint = NULL;
3349 }
3350
3351 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3352 tp->snd_up = tp->snd_una;
3353
3354 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3355 flag |= FLAG_SACK_RENEGING;
3356
3357 if (flag & FLAG_ACKED) {
3358 const struct tcp_congestion_ops *ca_ops
3359 = inet_csk(sk)->icsk_ca_ops;
3360
3361 if (unlikely(icsk->icsk_mtup.probe_size &&
3362 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3363 tcp_mtup_probe_success(sk);
3364 }
3365
3366 tcp_ack_update_rtt(sk, flag, seq_rtt);
3367 tcp_rearm_rto(sk);
3368
3369 if (tcp_is_reno(tp)) {
3370 tcp_remove_reno_sacks(sk, pkts_acked);
3371 } else {
3372 int delta;
3373
3374 /* Non-retransmitted hole got filled? That's reordering */
3375 if (reord < prior_fackets)
3376 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3377
3378 delta = tcp_is_fack(tp) ? pkts_acked :
3379 prior_sacked - tp->sacked_out;
3380 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3381 }
3382
3383 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3384
3385 if (ca_ops->pkts_acked) {
3386 s32 rtt_us = -1;
3387
3388 /* Is the ACK triggering packet unambiguous? */
3389 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3390 /* High resolution needed and available? */
3391 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3392 !ktime_equal(last_ackt,
3393 net_invalid_timestamp()))
3394 rtt_us = ktime_us_delta(ktime_get_real(),
3395 last_ackt);
3396 else if (ca_seq_rtt >= 0)
3397 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3398 }
3399
3400 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3401 }
3402 }
3403
3404#if FASTRETRANS_DEBUG > 0
3405 WARN_ON((int)tp->sacked_out < 0);
3406 WARN_ON((int)tp->lost_out < 0);
3407 WARN_ON((int)tp->retrans_out < 0);
3408 if (!tp->packets_out && tcp_is_sack(tp)) {
3409 icsk = inet_csk(sk);
3410 if (tp->lost_out) {
3411 printk(KERN_DEBUG "Leak l=%u %d\n",
3412 tp->lost_out, icsk->icsk_ca_state);
3413 tp->lost_out = 0;
3414 }
3415 if (tp->sacked_out) {
3416 printk(KERN_DEBUG "Leak s=%u %d\n",
3417 tp->sacked_out, icsk->icsk_ca_state);
3418 tp->sacked_out = 0;
3419 }
3420 if (tp->retrans_out) {
3421 printk(KERN_DEBUG "Leak r=%u %d\n",
3422 tp->retrans_out, icsk->icsk_ca_state);
3423 tp->retrans_out = 0;
3424 }
3425 }
3426#endif
3427 return flag;
3428}
3429
3430static void tcp_ack_probe(struct sock *sk)
3431{
3432 const struct tcp_sock *tp = tcp_sk(sk);
3433 struct inet_connection_sock *icsk = inet_csk(sk);
3434
3435 /* Was it a usable window open? */
3436
3437 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3438 icsk->icsk_backoff = 0;
3439 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3440 /* Socket must be waked up by subsequent tcp_data_snd_check().
3441 * This function is not for random using!
3442 */
3443 } else {
3444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3445 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3446 TCP_RTO_MAX);
3447 }
3448}
3449
3450static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3451{
3452 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3453 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3454}
3455
3456static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3457{
3458 const struct tcp_sock *tp = tcp_sk(sk);
3459 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3460 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3461}
3462
3463/* Check that window update is acceptable.
3464 * The function assumes that snd_una<=ack<=snd_next.
3465 */
3466static inline int tcp_may_update_window(const struct tcp_sock *tp,
3467 const u32 ack, const u32 ack_seq,
3468 const u32 nwin)
3469{
3470 return after(ack, tp->snd_una) ||
3471 after(ack_seq, tp->snd_wl1) ||
3472 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3473}
3474
3475/* Update our send window.
3476 *
3477 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3478 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3479 */
3480static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3481 u32 ack_seq)
3482{
3483 struct tcp_sock *tp = tcp_sk(sk);
3484 int flag = 0;
3485 u32 nwin = ntohs(tcp_hdr(skb)->window);
3486
3487 if (likely(!tcp_hdr(skb)->syn))
3488 nwin <<= tp->rx_opt.snd_wscale;
3489
3490 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3491 flag |= FLAG_WIN_UPDATE;
3492 tcp_update_wl(tp, ack_seq);
3493
3494 if (tp->snd_wnd != nwin) {
3495 tp->snd_wnd = nwin;
3496
3497 /* Note, it is the only place, where
3498 * fast path is recovered for sending TCP.
3499 */
3500 tp->pred_flags = 0;
3501 tcp_fast_path_check(sk);
3502
3503 if (nwin > tp->max_window) {
3504 tp->max_window = nwin;
3505 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3506 }
3507 }
3508 }
3509
3510 tp->snd_una = ack;
3511
3512 return flag;
3513}
3514
3515/* A very conservative spurious RTO response algorithm: reduce cwnd and
3516 * continue in congestion avoidance.
3517 */
3518static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3519{
3520 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3521 tp->snd_cwnd_cnt = 0;
3522 tp->bytes_acked = 0;
3523 TCP_ECN_queue_cwr(tp);
3524 tcp_moderate_cwnd(tp);
3525}
3526
3527/* A conservative spurious RTO response algorithm: reduce cwnd using
3528 * rate halving and continue in congestion avoidance.
3529 */
3530static void tcp_ratehalving_spur_to_response(struct sock *sk)
3531{
3532 tcp_enter_cwr(sk, 0);
3533}
3534
3535static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3536{
3537 if (flag & FLAG_ECE)
3538 tcp_ratehalving_spur_to_response(sk);
3539 else
3540 tcp_undo_cwr(sk, true);
3541}
3542
3543/* F-RTO spurious RTO detection algorithm (RFC4138)
3544 *
3545 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3546 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3547 * window (but not to or beyond highest sequence sent before RTO):
3548 * On First ACK, send two new segments out.
3549 * On Second ACK, RTO was likely spurious. Do spurious response (response
3550 * algorithm is not part of the F-RTO detection algorithm
3551 * given in RFC4138 but can be selected separately).
3552 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3553 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3554 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3555 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3556 *
3557 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3558 * original window even after we transmit two new data segments.
3559 *
3560 * SACK version:
3561 * on first step, wait until first cumulative ACK arrives, then move to
3562 * the second step. In second step, the next ACK decides.
3563 *
3564 * F-RTO is implemented (mainly) in four functions:
3565 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3566 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3567 * called when tcp_use_frto() showed green light
3568 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3569 * - tcp_enter_frto_loss() is called if there is not enough evidence
3570 * to prove that the RTO is indeed spurious. It transfers the control
3571 * from F-RTO to the conventional RTO recovery
3572 */
3573static int tcp_process_frto(struct sock *sk, int flag)
3574{
3575 struct tcp_sock *tp = tcp_sk(sk);
3576
3577 tcp_verify_left_out(tp);
3578
3579 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3580 if (flag & FLAG_DATA_ACKED)
3581 inet_csk(sk)->icsk_retransmits = 0;
3582
3583 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3584 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3585 tp->undo_marker = 0;
3586
3587 if (!before(tp->snd_una, tp->frto_highmark)) {
3588 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3589 return 1;
3590 }
3591
3592 if (!tcp_is_sackfrto(tp)) {
3593 /* RFC4138 shortcoming in step 2; should also have case c):
3594 * ACK isn't duplicate nor advances window, e.g., opposite dir
3595 * data, winupdate
3596 */
3597 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3598 return 1;
3599
3600 if (!(flag & FLAG_DATA_ACKED)) {
3601 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3602 flag);
3603 return 1;
3604 }
3605 } else {
3606 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3607 /* Prevent sending of new data. */
3608 tp->snd_cwnd = min(tp->snd_cwnd,
3609 tcp_packets_in_flight(tp));
3610 return 1;
3611 }
3612
3613 if ((tp->frto_counter >= 2) &&
3614 (!(flag & FLAG_FORWARD_PROGRESS) ||
3615 ((flag & FLAG_DATA_SACKED) &&
3616 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3617 /* RFC4138 shortcoming (see comment above) */
3618 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3619 (flag & FLAG_NOT_DUP))
3620 return 1;
3621
3622 tcp_enter_frto_loss(sk, 3, flag);
3623 return 1;
3624 }
3625 }
3626
3627 if (tp->frto_counter == 1) {
3628 /* tcp_may_send_now needs to see updated state */
3629 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3630 tp->frto_counter = 2;
3631
3632 if (!tcp_may_send_now(sk))
3633 tcp_enter_frto_loss(sk, 2, flag);
3634
3635 return 1;
3636 } else {
3637 switch (sysctl_tcp_frto_response) {
3638 case 2:
3639 tcp_undo_spur_to_response(sk, flag);
3640 break;
3641 case 1:
3642 tcp_conservative_spur_to_response(tp);
3643 break;
3644 default:
3645 tcp_ratehalving_spur_to_response(sk);
3646 break;
3647 }
3648 tp->frto_counter = 0;
3649 tp->undo_marker = 0;
3650 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3651 }
3652 return 0;
3653}
3654
3655/* This routine deals with incoming acks, but not outgoing ones. */
3656static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3657{
3658 struct inet_connection_sock *icsk = inet_csk(sk);
3659 struct tcp_sock *tp = tcp_sk(sk);
3660 u32 prior_snd_una = tp->snd_una;
3661 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3662 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3663 bool is_dupack = false;
3664 u32 prior_in_flight;
3665 u32 prior_fackets;
3666 int prior_packets;
3667 int prior_sacked = tp->sacked_out;
3668 int pkts_acked = 0;
3669 int newly_acked_sacked = 0;
3670 int frto_cwnd = 0;
3671
3672 /* If the ack is older than previous acks
3673 * then we can probably ignore it.
3674 */
3675 if (before(ack, prior_snd_una))
3676 goto old_ack;
3677
3678 /* If the ack includes data we haven't sent yet, discard
3679 * this segment (RFC793 Section 3.9).
3680 */
3681 if (after(ack, tp->snd_nxt))
3682 goto invalid_ack;
3683
3684 if (after(ack, prior_snd_una))
3685 flag |= FLAG_SND_UNA_ADVANCED;
3686
3687 if (sysctl_tcp_abc) {
3688 if (icsk->icsk_ca_state < TCP_CA_CWR)
3689 tp->bytes_acked += ack - prior_snd_una;
3690 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3691 /* we assume just one segment left network */
3692 tp->bytes_acked += min(ack - prior_snd_una,
3693 tp->mss_cache);
3694 }
3695
3696 prior_fackets = tp->fackets_out;
3697 prior_in_flight = tcp_packets_in_flight(tp);
3698
3699 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3700 /* Window is constant, pure forward advance.
3701 * No more checks are required.
3702 * Note, we use the fact that SND.UNA>=SND.WL2.
3703 */
3704 tcp_update_wl(tp, ack_seq);
3705 tp->snd_una = ack;
3706 flag |= FLAG_WIN_UPDATE;
3707
3708 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3709
3710 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3711 } else {
3712 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3713 flag |= FLAG_DATA;
3714 else
3715 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3716
3717 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3718
3719 if (TCP_SKB_CB(skb)->sacked)
3720 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3721
3722 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3723 flag |= FLAG_ECE;
3724
3725 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3726 }
3727
3728 /* We passed data and got it acked, remove any soft error
3729 * log. Something worked...
3730 */
3731 sk->sk_err_soft = 0;
3732 icsk->icsk_probes_out = 0;
3733 tp->rcv_tstamp = tcp_time_stamp;
3734 prior_packets = tp->packets_out;
3735 if (!prior_packets)
3736 goto no_queue;
3737
3738 /* See if we can take anything off of the retransmit queue. */
3739 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3740
3741 pkts_acked = prior_packets - tp->packets_out;
3742 newly_acked_sacked = (prior_packets - prior_sacked) -
3743 (tp->packets_out - tp->sacked_out);
3744
3745 if (tp->frto_counter)
3746 frto_cwnd = tcp_process_frto(sk, flag);
3747 /* Guarantee sacktag reordering detection against wrap-arounds */
3748 if (before(tp->frto_highmark, tp->snd_una))
3749 tp->frto_highmark = 0;
3750
3751 if (tcp_ack_is_dubious(sk, flag)) {
3752 /* Advance CWND, if state allows this. */
3753 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3754 tcp_may_raise_cwnd(sk, flag))
3755 tcp_cong_avoid(sk, ack, prior_in_flight);
3756 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3757 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3758 is_dupack, flag);
3759 } else {
3760 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3761 tcp_cong_avoid(sk, ack, prior_in_flight);
3762 }
3763
3764 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3765 dst_confirm(__sk_dst_get(sk));
3766
3767 return 1;
3768
3769no_queue:
3770 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3771 if (flag & FLAG_DSACKING_ACK)
3772 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3773 is_dupack, flag);
3774 /* If this ack opens up a zero window, clear backoff. It was
3775 * being used to time the probes, and is probably far higher than
3776 * it needs to be for normal retransmission.
3777 */
3778 if (tcp_send_head(sk))
3779 tcp_ack_probe(sk);
3780 return 1;
3781
3782invalid_ack:
3783 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3784 return -1;
3785
3786old_ack:
3787 /* If data was SACKed, tag it and see if we should send more data.
3788 * If data was DSACKed, see if we can undo a cwnd reduction.
3789 */
3790 if (TCP_SKB_CB(skb)->sacked) {
3791 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3792 newly_acked_sacked = tp->sacked_out - prior_sacked;
3793 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3794 is_dupack, flag);
3795 }
3796
3797 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3798 return 0;
3799}
3800
3801/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3802 * But, this can also be called on packets in the established flow when
3803 * the fast version below fails.
3804 */
3805void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3806 const u8 **hvpp, int estab)
3807{
3808 const unsigned char *ptr;
3809 const struct tcphdr *th = tcp_hdr(skb);
3810 int length = (th->doff * 4) - sizeof(struct tcphdr);
3811
3812 ptr = (const unsigned char *)(th + 1);
3813 opt_rx->saw_tstamp = 0;
3814
3815 while (length > 0) {
3816 int opcode = *ptr++;
3817 int opsize;
3818
3819 switch (opcode) {
3820 case TCPOPT_EOL:
3821 return;
3822 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3823 length--;
3824 continue;
3825 default:
3826 opsize = *ptr++;
3827 if (opsize < 2) /* "silly options" */
3828 return;
3829 if (opsize > length)
3830 return; /* don't parse partial options */
3831 switch (opcode) {
3832 case TCPOPT_MSS:
3833 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3834 u16 in_mss = get_unaligned_be16(ptr);
3835 if (in_mss) {
3836 if (opt_rx->user_mss &&
3837 opt_rx->user_mss < in_mss)
3838 in_mss = opt_rx->user_mss;
3839 opt_rx->mss_clamp = in_mss;
3840 }
3841 }
3842 break;
3843 case TCPOPT_WINDOW:
3844 if (opsize == TCPOLEN_WINDOW && th->syn &&
3845 !estab && sysctl_tcp_window_scaling) {
3846 __u8 snd_wscale = *(__u8 *)ptr;
3847 opt_rx->wscale_ok = 1;
3848 if (snd_wscale > 14) {
3849 if (net_ratelimit())
3850 printk(KERN_INFO "tcp_parse_options: Illegal window "
3851 "scaling value %d >14 received.\n",
3852 snd_wscale);
3853 snd_wscale = 14;
3854 }
3855 opt_rx->snd_wscale = snd_wscale;
3856 }
3857 break;
3858 case TCPOPT_TIMESTAMP:
3859 if ((opsize == TCPOLEN_TIMESTAMP) &&
3860 ((estab && opt_rx->tstamp_ok) ||
3861 (!estab && sysctl_tcp_timestamps))) {
3862 opt_rx->saw_tstamp = 1;
3863 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3864 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3865 }
3866 break;
3867 case TCPOPT_SACK_PERM:
3868 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3869 !estab && sysctl_tcp_sack) {
3870 opt_rx->sack_ok = TCP_SACK_SEEN;
3871 tcp_sack_reset(opt_rx);
3872 }
3873 break;
3874
3875 case TCPOPT_SACK:
3876 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3877 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3878 opt_rx->sack_ok) {
3879 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3880 }
3881 break;
3882#ifdef CONFIG_TCP_MD5SIG
3883 case TCPOPT_MD5SIG:
3884 /*
3885 * The MD5 Hash has already been
3886 * checked (see tcp_v{4,6}_do_rcv()).
3887 */
3888 break;
3889#endif
3890 case TCPOPT_COOKIE:
3891 /* This option is variable length.
3892 */
3893 switch (opsize) {
3894 case TCPOLEN_COOKIE_BASE:
3895 /* not yet implemented */
3896 break;
3897 case TCPOLEN_COOKIE_PAIR:
3898 /* not yet implemented */
3899 break;
3900 case TCPOLEN_COOKIE_MIN+0:
3901 case TCPOLEN_COOKIE_MIN+2:
3902 case TCPOLEN_COOKIE_MIN+4:
3903 case TCPOLEN_COOKIE_MIN+6:
3904 case TCPOLEN_COOKIE_MAX:
3905 /* 16-bit multiple */
3906 opt_rx->cookie_plus = opsize;
3907 *hvpp = ptr;
3908 break;
3909 default:
3910 /* ignore option */
3911 break;
3912 }
3913 break;
3914 }
3915
3916 ptr += opsize-2;
3917 length -= opsize;
3918 }
3919 }
3920}
3921EXPORT_SYMBOL(tcp_parse_options);
3922
3923static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3924{
3925 const __be32 *ptr = (const __be32 *)(th + 1);
3926
3927 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3928 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3929 tp->rx_opt.saw_tstamp = 1;
3930 ++ptr;
3931 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3932 ++ptr;
3933 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3934 return 1;
3935 }
3936 return 0;
3937}
3938
3939/* Fast parse options. This hopes to only see timestamps.
3940 * If it is wrong it falls back on tcp_parse_options().
3941 */
3942static int tcp_fast_parse_options(const struct sk_buff *skb,
3943 const struct tcphdr *th,
3944 struct tcp_sock *tp, const u8 **hvpp)
3945{
3946 /* In the spirit of fast parsing, compare doff directly to constant
3947 * values. Because equality is used, short doff can be ignored here.
3948 */
3949 if (th->doff == (sizeof(*th) / 4)) {
3950 tp->rx_opt.saw_tstamp = 0;
3951 return 0;
3952 } else if (tp->rx_opt.tstamp_ok &&
3953 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3954 if (tcp_parse_aligned_timestamp(tp, th))
3955 return 1;
3956 }
3957 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3958 return 1;
3959}
3960
3961#ifdef CONFIG_TCP_MD5SIG
3962/*
3963 * Parse MD5 Signature option
3964 */
3965const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3966{
3967 int length = (th->doff << 2) - sizeof(*th);
3968 const u8 *ptr = (const u8 *)(th + 1);
3969
3970 /* If the TCP option is too short, we can short cut */
3971 if (length < TCPOLEN_MD5SIG)
3972 return NULL;
3973
3974 while (length > 0) {
3975 int opcode = *ptr++;
3976 int opsize;
3977
3978 switch(opcode) {
3979 case TCPOPT_EOL:
3980 return NULL;
3981 case TCPOPT_NOP:
3982 length--;
3983 continue;
3984 default:
3985 opsize = *ptr++;
3986 if (opsize < 2 || opsize > length)
3987 return NULL;
3988 if (opcode == TCPOPT_MD5SIG)
3989 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3990 }
3991 ptr += opsize - 2;
3992 length -= opsize;
3993 }
3994 return NULL;
3995}
3996EXPORT_SYMBOL(tcp_parse_md5sig_option);
3997#endif
3998
3999static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4000{
4001 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4002 tp->rx_opt.ts_recent_stamp = get_seconds();
4003}
4004
4005static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4006{
4007 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4008 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4009 * extra check below makes sure this can only happen
4010 * for pure ACK frames. -DaveM
4011 *
4012 * Not only, also it occurs for expired timestamps.
4013 */
4014
4015 if (tcp_paws_check(&tp->rx_opt, 0))
4016 tcp_store_ts_recent(tp);
4017 }
4018}
4019
4020/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4021 *
4022 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4023 * it can pass through stack. So, the following predicate verifies that
4024 * this segment is not used for anything but congestion avoidance or
4025 * fast retransmit. Moreover, we even are able to eliminate most of such
4026 * second order effects, if we apply some small "replay" window (~RTO)
4027 * to timestamp space.
4028 *
4029 * All these measures still do not guarantee that we reject wrapped ACKs
4030 * on networks with high bandwidth, when sequence space is recycled fastly,
4031 * but it guarantees that such events will be very rare and do not affect
4032 * connection seriously. This doesn't look nice, but alas, PAWS is really
4033 * buggy extension.
4034 *
4035 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4036 * states that events when retransmit arrives after original data are rare.
4037 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4038 * the biggest problem on large power networks even with minor reordering.
4039 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4040 * up to bandwidth of 18Gigabit/sec. 8) ]
4041 */
4042
4043static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4044{
4045 const struct tcp_sock *tp = tcp_sk(sk);
4046 const struct tcphdr *th = tcp_hdr(skb);
4047 u32 seq = TCP_SKB_CB(skb)->seq;
4048 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4049
4050 return (/* 1. Pure ACK with correct sequence number. */
4051 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4052
4053 /* 2. ... and duplicate ACK. */
4054 ack == tp->snd_una &&
4055
4056 /* 3. ... and does not update window. */
4057 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4058
4059 /* 4. ... and sits in replay window. */
4060 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4061}
4062
4063static inline int tcp_paws_discard(const struct sock *sk,
4064 const struct sk_buff *skb)
4065{
4066 const struct tcp_sock *tp = tcp_sk(sk);
4067
4068 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4069 !tcp_disordered_ack(sk, skb);
4070}
4071
4072/* Check segment sequence number for validity.
4073 *
4074 * Segment controls are considered valid, if the segment
4075 * fits to the window after truncation to the window. Acceptability
4076 * of data (and SYN, FIN, of course) is checked separately.
4077 * See tcp_data_queue(), for example.
4078 *
4079 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4080 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4081 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4082 * (borrowed from freebsd)
4083 */
4084
4085static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4086{
4087 return !before(end_seq, tp->rcv_wup) &&
4088 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4089}
4090
4091/* When we get a reset we do this. */
4092static void tcp_reset(struct sock *sk)
4093{
4094 /* We want the right error as BSD sees it (and indeed as we do). */
4095 switch (sk->sk_state) {
4096 case TCP_SYN_SENT:
4097 sk->sk_err = ECONNREFUSED;
4098 break;
4099 case TCP_CLOSE_WAIT:
4100 sk->sk_err = EPIPE;
4101 break;
4102 case TCP_CLOSE:
4103 return;
4104 default:
4105 sk->sk_err = ECONNRESET;
4106 }
4107 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4108 smp_wmb();
4109
4110 if (!sock_flag(sk, SOCK_DEAD))
4111 sk->sk_error_report(sk);
4112
4113 tcp_done(sk);
4114}
4115
4116/*
4117 * Process the FIN bit. This now behaves as it is supposed to work
4118 * and the FIN takes effect when it is validly part of sequence
4119 * space. Not before when we get holes.
4120 *
4121 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4122 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4123 * TIME-WAIT)
4124 *
4125 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4126 * close and we go into CLOSING (and later onto TIME-WAIT)
4127 *
4128 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4129 */
4130static void tcp_fin(struct sock *sk)
4131{
4132 struct tcp_sock *tp = tcp_sk(sk);
4133
4134 inet_csk_schedule_ack(sk);
4135
4136 sk->sk_shutdown |= RCV_SHUTDOWN;
4137 sock_set_flag(sk, SOCK_DONE);
4138
4139 switch (sk->sk_state) {
4140 case TCP_SYN_RECV:
4141 case TCP_ESTABLISHED:
4142 /* Move to CLOSE_WAIT */
4143 tcp_set_state(sk, TCP_CLOSE_WAIT);
4144 inet_csk(sk)->icsk_ack.pingpong = 1;
4145 break;
4146
4147 case TCP_CLOSE_WAIT:
4148 case TCP_CLOSING:
4149 /* Received a retransmission of the FIN, do
4150 * nothing.
4151 */
4152 break;
4153 case TCP_LAST_ACK:
4154 /* RFC793: Remain in the LAST-ACK state. */
4155 break;
4156
4157 case TCP_FIN_WAIT1:
4158 /* This case occurs when a simultaneous close
4159 * happens, we must ack the received FIN and
4160 * enter the CLOSING state.
4161 */
4162 tcp_send_ack(sk);
4163 tcp_set_state(sk, TCP_CLOSING);
4164 break;
4165 case TCP_FIN_WAIT2:
4166 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4167 tcp_send_ack(sk);
4168 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4169 break;
4170 default:
4171 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4172 * cases we should never reach this piece of code.
4173 */
4174 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4175 __func__, sk->sk_state);
4176 break;
4177 }
4178
4179 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4180 * Probably, we should reset in this case. For now drop them.
4181 */
4182 __skb_queue_purge(&tp->out_of_order_queue);
4183 if (tcp_is_sack(tp))
4184 tcp_sack_reset(&tp->rx_opt);
4185 sk_mem_reclaim(sk);
4186
4187 if (!sock_flag(sk, SOCK_DEAD)) {
4188 sk->sk_state_change(sk);
4189
4190 /* Do not send POLL_HUP for half duplex close. */
4191 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4192 sk->sk_state == TCP_CLOSE)
4193 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4194 else
4195 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4196 }
4197}
4198
4199static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4200 u32 end_seq)
4201{
4202 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4203 if (before(seq, sp->start_seq))
4204 sp->start_seq = seq;
4205 if (after(end_seq, sp->end_seq))
4206 sp->end_seq = end_seq;
4207 return 1;
4208 }
4209 return 0;
4210}
4211
4212static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4213{
4214 struct tcp_sock *tp = tcp_sk(sk);
4215
4216 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4217 int mib_idx;
4218
4219 if (before(seq, tp->rcv_nxt))
4220 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4221 else
4222 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4223
4224 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4225
4226 tp->rx_opt.dsack = 1;
4227 tp->duplicate_sack[0].start_seq = seq;
4228 tp->duplicate_sack[0].end_seq = end_seq;
4229 }
4230}
4231
4232static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4233{
4234 struct tcp_sock *tp = tcp_sk(sk);
4235
4236 if (!tp->rx_opt.dsack)
4237 tcp_dsack_set(sk, seq, end_seq);
4238 else
4239 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4240}
4241
4242static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4243{
4244 struct tcp_sock *tp = tcp_sk(sk);
4245
4246 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4247 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4248 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4249 tcp_enter_quickack_mode(sk);
4250
4251 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4252 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4253
4254 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4255 end_seq = tp->rcv_nxt;
4256 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4257 }
4258 }
4259
4260 tcp_send_ack(sk);
4261}
4262
4263/* These routines update the SACK block as out-of-order packets arrive or
4264 * in-order packets close up the sequence space.
4265 */
4266static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4267{
4268 int this_sack;
4269 struct tcp_sack_block *sp = &tp->selective_acks[0];
4270 struct tcp_sack_block *swalk = sp + 1;
4271
4272 /* See if the recent change to the first SACK eats into
4273 * or hits the sequence space of other SACK blocks, if so coalesce.
4274 */
4275 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4276 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4277 int i;
4278
4279 /* Zap SWALK, by moving every further SACK up by one slot.
4280 * Decrease num_sacks.
4281 */
4282 tp->rx_opt.num_sacks--;
4283 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4284 sp[i] = sp[i + 1];
4285 continue;
4286 }
4287 this_sack++, swalk++;
4288 }
4289}
4290
4291static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4292{
4293 struct tcp_sock *tp = tcp_sk(sk);
4294 struct tcp_sack_block *sp = &tp->selective_acks[0];
4295 int cur_sacks = tp->rx_opt.num_sacks;
4296 int this_sack;
4297
4298 if (!cur_sacks)
4299 goto new_sack;
4300
4301 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4302 if (tcp_sack_extend(sp, seq, end_seq)) {
4303 /* Rotate this_sack to the first one. */
4304 for (; this_sack > 0; this_sack--, sp--)
4305 swap(*sp, *(sp - 1));
4306 if (cur_sacks > 1)
4307 tcp_sack_maybe_coalesce(tp);
4308 return;
4309 }
4310 }
4311
4312 /* Could not find an adjacent existing SACK, build a new one,
4313 * put it at the front, and shift everyone else down. We
4314 * always know there is at least one SACK present already here.
4315 *
4316 * If the sack array is full, forget about the last one.
4317 */
4318 if (this_sack >= TCP_NUM_SACKS) {
4319 this_sack--;
4320 tp->rx_opt.num_sacks--;
4321 sp--;
4322 }
4323 for (; this_sack > 0; this_sack--, sp--)
4324 *sp = *(sp - 1);
4325
4326new_sack:
4327 /* Build the new head SACK, and we're done. */
4328 sp->start_seq = seq;
4329 sp->end_seq = end_seq;
4330 tp->rx_opt.num_sacks++;
4331}
4332
4333/* RCV.NXT advances, some SACKs should be eaten. */
4334
4335static void tcp_sack_remove(struct tcp_sock *tp)
4336{
4337 struct tcp_sack_block *sp = &tp->selective_acks[0];
4338 int num_sacks = tp->rx_opt.num_sacks;
4339 int this_sack;
4340
4341 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4342 if (skb_queue_empty(&tp->out_of_order_queue)) {
4343 tp->rx_opt.num_sacks = 0;
4344 return;
4345 }
4346
4347 for (this_sack = 0; this_sack < num_sacks;) {
4348 /* Check if the start of the sack is covered by RCV.NXT. */
4349 if (!before(tp->rcv_nxt, sp->start_seq)) {
4350 int i;
4351
4352 /* RCV.NXT must cover all the block! */
4353 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4354
4355 /* Zap this SACK, by moving forward any other SACKS. */
4356 for (i=this_sack+1; i < num_sacks; i++)
4357 tp->selective_acks[i-1] = tp->selective_acks[i];
4358 num_sacks--;
4359 continue;
4360 }
4361 this_sack++;
4362 sp++;
4363 }
4364 tp->rx_opt.num_sacks = num_sacks;
4365}
4366
4367/* This one checks to see if we can put data from the
4368 * out_of_order queue into the receive_queue.
4369 */
4370static void tcp_ofo_queue(struct sock *sk)
4371{
4372 struct tcp_sock *tp = tcp_sk(sk);
4373 __u32 dsack_high = tp->rcv_nxt;
4374 struct sk_buff *skb;
4375
4376 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4377 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4378 break;
4379
4380 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4381 __u32 dsack = dsack_high;
4382 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4383 dsack_high = TCP_SKB_CB(skb)->end_seq;
4384 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4385 }
4386
4387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4388 SOCK_DEBUG(sk, "ofo packet was already received\n");
4389 __skb_unlink(skb, &tp->out_of_order_queue);
4390 __kfree_skb(skb);
4391 continue;
4392 }
4393 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4394 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4395 TCP_SKB_CB(skb)->end_seq);
4396
4397 __skb_unlink(skb, &tp->out_of_order_queue);
4398 __skb_queue_tail(&sk->sk_receive_queue, skb);
4399 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4400 if (tcp_hdr(skb)->fin)
4401 tcp_fin(sk);
4402 }
4403}
4404
4405static int tcp_prune_ofo_queue(struct sock *sk);
4406static int tcp_prune_queue(struct sock *sk);
4407
4408static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4409{
4410 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4411 !sk_rmem_schedule(sk, size)) {
4412
4413 if (tcp_prune_queue(sk) < 0)
4414 return -1;
4415
4416 if (!sk_rmem_schedule(sk, size)) {
4417 if (!tcp_prune_ofo_queue(sk))
4418 return -1;
4419
4420 if (!sk_rmem_schedule(sk, size))
4421 return -1;
4422 }
4423 }
4424 return 0;
4425}
4426
4427static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4428{
4429 const struct tcphdr *th = tcp_hdr(skb);
4430 struct tcp_sock *tp = tcp_sk(sk);
4431 int eaten = -1;
4432
4433 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4434 goto drop;
4435
4436 skb_dst_drop(skb);
4437 __skb_pull(skb, th->doff * 4);
4438
4439 TCP_ECN_accept_cwr(tp, skb);
4440
4441 tp->rx_opt.dsack = 0;
4442
4443 /* Queue data for delivery to the user.
4444 * Packets in sequence go to the receive queue.
4445 * Out of sequence packets to the out_of_order_queue.
4446 */
4447 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4448 if (tcp_receive_window(tp) == 0)
4449 goto out_of_window;
4450
4451 /* Ok. In sequence. In window. */
4452 if (tp->ucopy.task == current &&
4453 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4454 sock_owned_by_user(sk) && !tp->urg_data) {
4455 int chunk = min_t(unsigned int, skb->len,
4456 tp->ucopy.len);
4457
4458 __set_current_state(TASK_RUNNING);
4459
4460 local_bh_enable();
4461 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4462 tp->ucopy.len -= chunk;
4463 tp->copied_seq += chunk;
4464 eaten = (chunk == skb->len);
4465 tcp_rcv_space_adjust(sk);
4466 }
4467 local_bh_disable();
4468 }
4469
4470 if (eaten <= 0) {
4471queue_and_out:
4472 if (eaten < 0 &&
4473 tcp_try_rmem_schedule(sk, skb->truesize))
4474 goto drop;
4475
4476 skb_set_owner_r(skb, sk);
4477 __skb_queue_tail(&sk->sk_receive_queue, skb);
4478 }
4479 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4480 if (skb->len)
4481 tcp_event_data_recv(sk, skb);
4482 if (th->fin)
4483 tcp_fin(sk);
4484
4485 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4486 tcp_ofo_queue(sk);
4487
4488 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4489 * gap in queue is filled.
4490 */
4491 if (skb_queue_empty(&tp->out_of_order_queue))
4492 inet_csk(sk)->icsk_ack.pingpong = 0;
4493 }
4494
4495 if (tp->rx_opt.num_sacks)
4496 tcp_sack_remove(tp);
4497
4498 tcp_fast_path_check(sk);
4499
4500 if (eaten > 0)
4501 __kfree_skb(skb);
4502 else if (!sock_flag(sk, SOCK_DEAD))
4503 sk->sk_data_ready(sk, 0);
4504 return;
4505 }
4506
4507 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4508 /* A retransmit, 2nd most common case. Force an immediate ack. */
4509 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4510 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4511
4512out_of_window:
4513 tcp_enter_quickack_mode(sk);
4514 inet_csk_schedule_ack(sk);
4515drop:
4516 __kfree_skb(skb);
4517 return;
4518 }
4519
4520 /* Out of window. F.e. zero window probe. */
4521 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4522 goto out_of_window;
4523
4524 tcp_enter_quickack_mode(sk);
4525
4526 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4527 /* Partial packet, seq < rcv_next < end_seq */
4528 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4529 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4530 TCP_SKB_CB(skb)->end_seq);
4531
4532 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4533
4534 /* If window is closed, drop tail of packet. But after
4535 * remembering D-SACK for its head made in previous line.
4536 */
4537 if (!tcp_receive_window(tp))
4538 goto out_of_window;
4539 goto queue_and_out;
4540 }
4541
4542 TCP_ECN_check_ce(tp, skb);
4543
4544 if (tcp_try_rmem_schedule(sk, skb->truesize))
4545 goto drop;
4546
4547 /* Disable header prediction. */
4548 tp->pred_flags = 0;
4549 inet_csk_schedule_ack(sk);
4550
4551 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4552 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4553
4554 skb_set_owner_r(skb, sk);
4555
4556 if (!skb_peek(&tp->out_of_order_queue)) {
4557 /* Initial out of order segment, build 1 SACK. */
4558 if (tcp_is_sack(tp)) {
4559 tp->rx_opt.num_sacks = 1;
4560 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4561 tp->selective_acks[0].end_seq =
4562 TCP_SKB_CB(skb)->end_seq;
4563 }
4564 __skb_queue_head(&tp->out_of_order_queue, skb);
4565 } else {
4566 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4567 u32 seq = TCP_SKB_CB(skb)->seq;
4568 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4569
4570 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4571 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4572
4573 if (!tp->rx_opt.num_sacks ||
4574 tp->selective_acks[0].end_seq != seq)
4575 goto add_sack;
4576
4577 /* Common case: data arrive in order after hole. */
4578 tp->selective_acks[0].end_seq = end_seq;
4579 return;
4580 }
4581
4582 /* Find place to insert this segment. */
4583 while (1) {
4584 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4585 break;
4586 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4587 skb1 = NULL;
4588 break;
4589 }
4590 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4591 }
4592
4593 /* Do skb overlap to previous one? */
4594 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4595 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4596 /* All the bits are present. Drop. */
4597 __kfree_skb(skb);
4598 tcp_dsack_set(sk, seq, end_seq);
4599 goto add_sack;
4600 }
4601 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4602 /* Partial overlap. */
4603 tcp_dsack_set(sk, seq,
4604 TCP_SKB_CB(skb1)->end_seq);
4605 } else {
4606 if (skb_queue_is_first(&tp->out_of_order_queue,
4607 skb1))
4608 skb1 = NULL;
4609 else
4610 skb1 = skb_queue_prev(
4611 &tp->out_of_order_queue,
4612 skb1);
4613 }
4614 }
4615 if (!skb1)
4616 __skb_queue_head(&tp->out_of_order_queue, skb);
4617 else
4618 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4619
4620 /* And clean segments covered by new one as whole. */
4621 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4622 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4623
4624 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4625 break;
4626 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4627 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4628 end_seq);
4629 break;
4630 }
4631 __skb_unlink(skb1, &tp->out_of_order_queue);
4632 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4633 TCP_SKB_CB(skb1)->end_seq);
4634 __kfree_skb(skb1);
4635 }
4636
4637add_sack:
4638 if (tcp_is_sack(tp))
4639 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4640 }
4641}
4642
4643static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4644 struct sk_buff_head *list)
4645{
4646 struct sk_buff *next = NULL;
4647
4648 if (!skb_queue_is_last(list, skb))
4649 next = skb_queue_next(list, skb);
4650
4651 __skb_unlink(skb, list);
4652 __kfree_skb(skb);
4653 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4654
4655 return next;
4656}
4657
4658/* Collapse contiguous sequence of skbs head..tail with
4659 * sequence numbers start..end.
4660 *
4661 * If tail is NULL, this means until the end of the list.
4662 *
4663 * Segments with FIN/SYN are not collapsed (only because this
4664 * simplifies code)
4665 */
4666static void
4667tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4668 struct sk_buff *head, struct sk_buff *tail,
4669 u32 start, u32 end)
4670{
4671 struct sk_buff *skb, *n;
4672 bool end_of_skbs;
4673
4674 /* First, check that queue is collapsible and find
4675 * the point where collapsing can be useful. */
4676 skb = head;
4677restart:
4678 end_of_skbs = true;
4679 skb_queue_walk_from_safe(list, skb, n) {
4680 if (skb == tail)
4681 break;
4682 /* No new bits? It is possible on ofo queue. */
4683 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4684 skb = tcp_collapse_one(sk, skb, list);
4685 if (!skb)
4686 break;
4687 goto restart;
4688 }
4689
4690 /* The first skb to collapse is:
4691 * - not SYN/FIN and
4692 * - bloated or contains data before "start" or
4693 * overlaps to the next one.
4694 */
4695 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4696 (tcp_win_from_space(skb->truesize) > skb->len ||
4697 before(TCP_SKB_CB(skb)->seq, start))) {
4698 end_of_skbs = false;
4699 break;
4700 }
4701
4702 if (!skb_queue_is_last(list, skb)) {
4703 struct sk_buff *next = skb_queue_next(list, skb);
4704 if (next != tail &&
4705 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4706 end_of_skbs = false;
4707 break;
4708 }
4709 }
4710
4711 /* Decided to skip this, advance start seq. */
4712 start = TCP_SKB_CB(skb)->end_seq;
4713 }
4714 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4715 return;
4716
4717 while (before(start, end)) {
4718 struct sk_buff *nskb;
4719 unsigned int header = skb_headroom(skb);
4720 int copy = SKB_MAX_ORDER(header, 0);
4721
4722 /* Too big header? This can happen with IPv6. */
4723 if (copy < 0)
4724 return;
4725 if (end - start < copy)
4726 copy = end - start;
4727 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4728 if (!nskb)
4729 return;
4730
4731 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4732 skb_set_network_header(nskb, (skb_network_header(skb) -
4733 skb->head));
4734 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4735 skb->head));
4736 skb_reserve(nskb, header);
4737 memcpy(nskb->head, skb->head, header);
4738 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4739 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4740 __skb_queue_before(list, skb, nskb);
4741 skb_set_owner_r(nskb, sk);
4742
4743 /* Copy data, releasing collapsed skbs. */
4744 while (copy > 0) {
4745 int offset = start - TCP_SKB_CB(skb)->seq;
4746 int size = TCP_SKB_CB(skb)->end_seq - start;
4747
4748 BUG_ON(offset < 0);
4749 if (size > 0) {
4750 size = min(copy, size);
4751 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4752 BUG();
4753 TCP_SKB_CB(nskb)->end_seq += size;
4754 copy -= size;
4755 start += size;
4756 }
4757 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4758 skb = tcp_collapse_one(sk, skb, list);
4759 if (!skb ||
4760 skb == tail ||
4761 tcp_hdr(skb)->syn ||
4762 tcp_hdr(skb)->fin)
4763 return;
4764 }
4765 }
4766 }
4767}
4768
4769/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4770 * and tcp_collapse() them until all the queue is collapsed.
4771 */
4772static void tcp_collapse_ofo_queue(struct sock *sk)
4773{
4774 struct tcp_sock *tp = tcp_sk(sk);
4775 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4776 struct sk_buff *head;
4777 u32 start, end;
4778
4779 if (skb == NULL)
4780 return;
4781
4782 start = TCP_SKB_CB(skb)->seq;
4783 end = TCP_SKB_CB(skb)->end_seq;
4784 head = skb;
4785
4786 for (;;) {
4787 struct sk_buff *next = NULL;
4788
4789 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4790 next = skb_queue_next(&tp->out_of_order_queue, skb);
4791 skb = next;
4792
4793 /* Segment is terminated when we see gap or when
4794 * we are at the end of all the queue. */
4795 if (!skb ||
4796 after(TCP_SKB_CB(skb)->seq, end) ||
4797 before(TCP_SKB_CB(skb)->end_seq, start)) {
4798 tcp_collapse(sk, &tp->out_of_order_queue,
4799 head, skb, start, end);
4800 head = skb;
4801 if (!skb)
4802 break;
4803 /* Start new segment */
4804 start = TCP_SKB_CB(skb)->seq;
4805 end = TCP_SKB_CB(skb)->end_seq;
4806 } else {
4807 if (before(TCP_SKB_CB(skb)->seq, start))
4808 start = TCP_SKB_CB(skb)->seq;
4809 if (after(TCP_SKB_CB(skb)->end_seq, end))
4810 end = TCP_SKB_CB(skb)->end_seq;
4811 }
4812 }
4813}
4814
4815/*
4816 * Purge the out-of-order queue.
4817 * Return true if queue was pruned.
4818 */
4819static int tcp_prune_ofo_queue(struct sock *sk)
4820{
4821 struct tcp_sock *tp = tcp_sk(sk);
4822 int res = 0;
4823
4824 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4826 __skb_queue_purge(&tp->out_of_order_queue);
4827
4828 /* Reset SACK state. A conforming SACK implementation will
4829 * do the same at a timeout based retransmit. When a connection
4830 * is in a sad state like this, we care only about integrity
4831 * of the connection not performance.
4832 */
4833 if (tp->rx_opt.sack_ok)
4834 tcp_sack_reset(&tp->rx_opt);
4835 sk_mem_reclaim(sk);
4836 res = 1;
4837 }
4838 return res;
4839}
4840
4841/* Reduce allocated memory if we can, trying to get
4842 * the socket within its memory limits again.
4843 *
4844 * Return less than zero if we should start dropping frames
4845 * until the socket owning process reads some of the data
4846 * to stabilize the situation.
4847 */
4848static int tcp_prune_queue(struct sock *sk)
4849{
4850 struct tcp_sock *tp = tcp_sk(sk);
4851
4852 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4853
4854 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4855
4856 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4857 tcp_clamp_window(sk);
4858 else if (sk_under_memory_pressure(sk))
4859 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4860
4861 tcp_collapse_ofo_queue(sk);
4862 if (!skb_queue_empty(&sk->sk_receive_queue))
4863 tcp_collapse(sk, &sk->sk_receive_queue,
4864 skb_peek(&sk->sk_receive_queue),
4865 NULL,
4866 tp->copied_seq, tp->rcv_nxt);
4867 sk_mem_reclaim(sk);
4868
4869 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4870 return 0;
4871
4872 /* Collapsing did not help, destructive actions follow.
4873 * This must not ever occur. */
4874
4875 tcp_prune_ofo_queue(sk);
4876
4877 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4878 return 0;
4879
4880 /* If we are really being abused, tell the caller to silently
4881 * drop receive data on the floor. It will get retransmitted
4882 * and hopefully then we'll have sufficient space.
4883 */
4884 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4885
4886 /* Massive buffer overcommit. */
4887 tp->pred_flags = 0;
4888 return -1;
4889}
4890
4891/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4892 * As additional protections, we do not touch cwnd in retransmission phases,
4893 * and if application hit its sndbuf limit recently.
4894 */
4895void tcp_cwnd_application_limited(struct sock *sk)
4896{
4897 struct tcp_sock *tp = tcp_sk(sk);
4898
4899 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4900 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4901 /* Limited by application or receiver window. */
4902 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4903 u32 win_used = max(tp->snd_cwnd_used, init_win);
4904 if (win_used < tp->snd_cwnd) {
4905 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4906 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4907 }
4908 tp->snd_cwnd_used = 0;
4909 }
4910 tp->snd_cwnd_stamp = tcp_time_stamp;
4911}
4912
4913static int tcp_should_expand_sndbuf(const struct sock *sk)
4914{
4915 const struct tcp_sock *tp = tcp_sk(sk);
4916
4917 /* If the user specified a specific send buffer setting, do
4918 * not modify it.
4919 */
4920 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4921 return 0;
4922
4923 /* If we are under global TCP memory pressure, do not expand. */
4924 if (sk_under_memory_pressure(sk))
4925 return 0;
4926
4927 /* If we are under soft global TCP memory pressure, do not expand. */
4928 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4929 return 0;
4930
4931 /* If we filled the congestion window, do not expand. */
4932 if (tp->packets_out >= tp->snd_cwnd)
4933 return 0;
4934
4935 return 1;
4936}
4937
4938/* When incoming ACK allowed to free some skb from write_queue,
4939 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4940 * on the exit from tcp input handler.
4941 *
4942 * PROBLEM: sndbuf expansion does not work well with largesend.
4943 */
4944static void tcp_new_space(struct sock *sk)
4945{
4946 struct tcp_sock *tp = tcp_sk(sk);
4947
4948 if (tcp_should_expand_sndbuf(sk)) {
4949 int sndmem = SKB_TRUESIZE(max_t(u32,
4950 tp->rx_opt.mss_clamp,
4951 tp->mss_cache) +
4952 MAX_TCP_HEADER);
4953 int demanded = max_t(unsigned int, tp->snd_cwnd,
4954 tp->reordering + 1);
4955 sndmem *= 2 * demanded;
4956 if (sndmem > sk->sk_sndbuf)
4957 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4958 tp->snd_cwnd_stamp = tcp_time_stamp;
4959 }
4960
4961 sk->sk_write_space(sk);
4962}
4963
4964static void tcp_check_space(struct sock *sk)
4965{
4966 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4967 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4968 if (sk->sk_socket &&
4969 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4970 tcp_new_space(sk);
4971 }
4972}
4973
4974static inline void tcp_data_snd_check(struct sock *sk)
4975{
4976 tcp_push_pending_frames(sk);
4977 tcp_check_space(sk);
4978}
4979
4980/*
4981 * Check if sending an ack is needed.
4982 */
4983static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4984{
4985 struct tcp_sock *tp = tcp_sk(sk);
4986
4987 /* More than one full frame received... */
4988 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4989 /* ... and right edge of window advances far enough.
4990 * (tcp_recvmsg() will send ACK otherwise). Or...
4991 */
4992 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4993 /* We ACK each frame or... */
4994 tcp_in_quickack_mode(sk) ||
4995 /* We have out of order data. */
4996 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4997 /* Then ack it now */
4998 tcp_send_ack(sk);
4999 } else {
5000 /* Else, send delayed ack. */
5001 tcp_send_delayed_ack(sk);
5002 }
5003}
5004
5005static inline void tcp_ack_snd_check(struct sock *sk)
5006{
5007 if (!inet_csk_ack_scheduled(sk)) {
5008 /* We sent a data segment already. */
5009 return;
5010 }
5011 __tcp_ack_snd_check(sk, 1);
5012}
5013
5014/*
5015 * This routine is only called when we have urgent data
5016 * signaled. Its the 'slow' part of tcp_urg. It could be
5017 * moved inline now as tcp_urg is only called from one
5018 * place. We handle URGent data wrong. We have to - as
5019 * BSD still doesn't use the correction from RFC961.
5020 * For 1003.1g we should support a new option TCP_STDURG to permit
5021 * either form (or just set the sysctl tcp_stdurg).
5022 */
5023
5024static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5025{
5026 struct tcp_sock *tp = tcp_sk(sk);
5027 u32 ptr = ntohs(th->urg_ptr);
5028
5029 if (ptr && !sysctl_tcp_stdurg)
5030 ptr--;
5031 ptr += ntohl(th->seq);
5032
5033 /* Ignore urgent data that we've already seen and read. */
5034 if (after(tp->copied_seq, ptr))
5035 return;
5036
5037 /* Do not replay urg ptr.
5038 *
5039 * NOTE: interesting situation not covered by specs.
5040 * Misbehaving sender may send urg ptr, pointing to segment,
5041 * which we already have in ofo queue. We are not able to fetch
5042 * such data and will stay in TCP_URG_NOTYET until will be eaten
5043 * by recvmsg(). Seems, we are not obliged to handle such wicked
5044 * situations. But it is worth to think about possibility of some
5045 * DoSes using some hypothetical application level deadlock.
5046 */
5047 if (before(ptr, tp->rcv_nxt))
5048 return;
5049
5050 /* Do we already have a newer (or duplicate) urgent pointer? */
5051 if (tp->urg_data && !after(ptr, tp->urg_seq))
5052 return;
5053
5054 /* Tell the world about our new urgent pointer. */
5055 sk_send_sigurg(sk);
5056
5057 /* We may be adding urgent data when the last byte read was
5058 * urgent. To do this requires some care. We cannot just ignore
5059 * tp->copied_seq since we would read the last urgent byte again
5060 * as data, nor can we alter copied_seq until this data arrives
5061 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5062 *
5063 * NOTE. Double Dutch. Rendering to plain English: author of comment
5064 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5065 * and expect that both A and B disappear from stream. This is _wrong_.
5066 * Though this happens in BSD with high probability, this is occasional.
5067 * Any application relying on this is buggy. Note also, that fix "works"
5068 * only in this artificial test. Insert some normal data between A and B and we will
5069 * decline of BSD again. Verdict: it is better to remove to trap
5070 * buggy users.
5071 */
5072 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5073 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5074 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5075 tp->copied_seq++;
5076 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5077 __skb_unlink(skb, &sk->sk_receive_queue);
5078 __kfree_skb(skb);
5079 }
5080 }
5081
5082 tp->urg_data = TCP_URG_NOTYET;
5083 tp->urg_seq = ptr;
5084
5085 /* Disable header prediction. */
5086 tp->pred_flags = 0;
5087}
5088
5089/* This is the 'fast' part of urgent handling. */
5090static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5091{
5092 struct tcp_sock *tp = tcp_sk(sk);
5093
5094 /* Check if we get a new urgent pointer - normally not. */
5095 if (th->urg)
5096 tcp_check_urg(sk, th);
5097
5098 /* Do we wait for any urgent data? - normally not... */
5099 if (tp->urg_data == TCP_URG_NOTYET) {
5100 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5101 th->syn;
5102
5103 /* Is the urgent pointer pointing into this packet? */
5104 if (ptr < skb->len) {
5105 u8 tmp;
5106 if (skb_copy_bits(skb, ptr, &tmp, 1))
5107 BUG();
5108 tp->urg_data = TCP_URG_VALID | tmp;
5109 if (!sock_flag(sk, SOCK_DEAD))
5110 sk->sk_data_ready(sk, 0);
5111 }
5112 }
5113}
5114
5115static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5116{
5117 struct tcp_sock *tp = tcp_sk(sk);
5118 int chunk = skb->len - hlen;
5119 int err;
5120
5121 local_bh_enable();
5122 if (skb_csum_unnecessary(skb))
5123 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5124 else
5125 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5126 tp->ucopy.iov);
5127
5128 if (!err) {
5129 tp->ucopy.len -= chunk;
5130 tp->copied_seq += chunk;
5131 tcp_rcv_space_adjust(sk);
5132 }
5133
5134 local_bh_disable();
5135 return err;
5136}
5137
5138static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5139 struct sk_buff *skb)
5140{
5141 __sum16 result;
5142
5143 if (sock_owned_by_user(sk)) {
5144 local_bh_enable();
5145 result = __tcp_checksum_complete(skb);
5146 local_bh_disable();
5147 } else {
5148 result = __tcp_checksum_complete(skb);
5149 }
5150 return result;
5151}
5152
5153static inline int tcp_checksum_complete_user(struct sock *sk,
5154 struct sk_buff *skb)
5155{
5156 return !skb_csum_unnecessary(skb) &&
5157 __tcp_checksum_complete_user(sk, skb);
5158}
5159
5160#ifdef CONFIG_NET_DMA
5161static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5162 int hlen)
5163{
5164 struct tcp_sock *tp = tcp_sk(sk);
5165 int chunk = skb->len - hlen;
5166 int dma_cookie;
5167 int copied_early = 0;
5168
5169 if (tp->ucopy.wakeup)
5170 return 0;
5171
5172 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5173 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5174
5175 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5176
5177 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5178 skb, hlen,
5179 tp->ucopy.iov, chunk,
5180 tp->ucopy.pinned_list);
5181
5182 if (dma_cookie < 0)
5183 goto out;
5184
5185 tp->ucopy.dma_cookie = dma_cookie;
5186 copied_early = 1;
5187
5188 tp->ucopy.len -= chunk;
5189 tp->copied_seq += chunk;
5190 tcp_rcv_space_adjust(sk);
5191
5192 if ((tp->ucopy.len == 0) ||
5193 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5194 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5195 tp->ucopy.wakeup = 1;
5196 sk->sk_data_ready(sk, 0);
5197 }
5198 } else if (chunk > 0) {
5199 tp->ucopy.wakeup = 1;
5200 sk->sk_data_ready(sk, 0);
5201 }
5202out:
5203 return copied_early;
5204}
5205#endif /* CONFIG_NET_DMA */
5206
5207/* Does PAWS and seqno based validation of an incoming segment, flags will
5208 * play significant role here.
5209 */
5210static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5211 const struct tcphdr *th, int syn_inerr)
5212{
5213 const u8 *hash_location;
5214 struct tcp_sock *tp = tcp_sk(sk);
5215
5216 /* RFC1323: H1. Apply PAWS check first. */
5217 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5218 tp->rx_opt.saw_tstamp &&
5219 tcp_paws_discard(sk, skb)) {
5220 if (!th->rst) {
5221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5222 tcp_send_dupack(sk, skb);
5223 goto discard;
5224 }
5225 /* Reset is accepted even if it did not pass PAWS. */
5226 }
5227
5228 /* Step 1: check sequence number */
5229 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5230 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5231 * (RST) segments are validated by checking their SEQ-fields."
5232 * And page 69: "If an incoming segment is not acceptable,
5233 * an acknowledgment should be sent in reply (unless the RST
5234 * bit is set, if so drop the segment and return)".
5235 */
5236 if (!th->rst)
5237 tcp_send_dupack(sk, skb);
5238 goto discard;
5239 }
5240
5241 /* Step 2: check RST bit */
5242 if (th->rst) {
5243 tcp_reset(sk);
5244 goto discard;
5245 }
5246
5247 /* ts_recent update must be made after we are sure that the packet
5248 * is in window.
5249 */
5250 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5251
5252 /* step 3: check security and precedence [ignored] */
5253
5254 /* step 4: Check for a SYN in window. */
5255 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5256 if (syn_inerr)
5257 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5258 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5259 tcp_reset(sk);
5260 return -1;
5261 }
5262
5263 return 1;
5264
5265discard:
5266 __kfree_skb(skb);
5267 return 0;
5268}
5269
5270/*
5271 * TCP receive function for the ESTABLISHED state.
5272 *
5273 * It is split into a fast path and a slow path. The fast path is
5274 * disabled when:
5275 * - A zero window was announced from us - zero window probing
5276 * is only handled properly in the slow path.
5277 * - Out of order segments arrived.
5278 * - Urgent data is expected.
5279 * - There is no buffer space left
5280 * - Unexpected TCP flags/window values/header lengths are received
5281 * (detected by checking the TCP header against pred_flags)
5282 * - Data is sent in both directions. Fast path only supports pure senders
5283 * or pure receivers (this means either the sequence number or the ack
5284 * value must stay constant)
5285 * - Unexpected TCP option.
5286 *
5287 * When these conditions are not satisfied it drops into a standard
5288 * receive procedure patterned after RFC793 to handle all cases.
5289 * The first three cases are guaranteed by proper pred_flags setting,
5290 * the rest is checked inline. Fast processing is turned on in
5291 * tcp_data_queue when everything is OK.
5292 */
5293int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5294 const struct tcphdr *th, unsigned int len)
5295{
5296 struct tcp_sock *tp = tcp_sk(sk);
5297 int res;
5298
5299 /*
5300 * Header prediction.
5301 * The code loosely follows the one in the famous
5302 * "30 instruction TCP receive" Van Jacobson mail.
5303 *
5304 * Van's trick is to deposit buffers into socket queue
5305 * on a device interrupt, to call tcp_recv function
5306 * on the receive process context and checksum and copy
5307 * the buffer to user space. smart...
5308 *
5309 * Our current scheme is not silly either but we take the
5310 * extra cost of the net_bh soft interrupt processing...
5311 * We do checksum and copy also but from device to kernel.
5312 */
5313
5314 tp->rx_opt.saw_tstamp = 0;
5315
5316 /* pred_flags is 0xS?10 << 16 + snd_wnd
5317 * if header_prediction is to be made
5318 * 'S' will always be tp->tcp_header_len >> 2
5319 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5320 * turn it off (when there are holes in the receive
5321 * space for instance)
5322 * PSH flag is ignored.
5323 */
5324
5325 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5326 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5327 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5328 int tcp_header_len = tp->tcp_header_len;
5329
5330 /* Timestamp header prediction: tcp_header_len
5331 * is automatically equal to th->doff*4 due to pred_flags
5332 * match.
5333 */
5334
5335 /* Check timestamp */
5336 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5337 /* No? Slow path! */
5338 if (!tcp_parse_aligned_timestamp(tp, th))
5339 goto slow_path;
5340
5341 /* If PAWS failed, check it more carefully in slow path */
5342 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5343 goto slow_path;
5344
5345 /* DO NOT update ts_recent here, if checksum fails
5346 * and timestamp was corrupted part, it will result
5347 * in a hung connection since we will drop all
5348 * future packets due to the PAWS test.
5349 */
5350 }
5351
5352 if (len <= tcp_header_len) {
5353 /* Bulk data transfer: sender */
5354 if (len == tcp_header_len) {
5355 /* Predicted packet is in window by definition.
5356 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5357 * Hence, check seq<=rcv_wup reduces to:
5358 */
5359 if (tcp_header_len ==
5360 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5361 tp->rcv_nxt == tp->rcv_wup)
5362 tcp_store_ts_recent(tp);
5363
5364 /* We know that such packets are checksummed
5365 * on entry.
5366 */
5367 tcp_ack(sk, skb, 0);
5368 __kfree_skb(skb);
5369 tcp_data_snd_check(sk);
5370 return 0;
5371 } else { /* Header too small */
5372 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5373 goto discard;
5374 }
5375 } else {
5376 int eaten = 0;
5377 int copied_early = 0;
5378
5379 if (tp->copied_seq == tp->rcv_nxt &&
5380 len - tcp_header_len <= tp->ucopy.len) {
5381#ifdef CONFIG_NET_DMA
5382 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5383 copied_early = 1;
5384 eaten = 1;
5385 }
5386#endif
5387 if (tp->ucopy.task == current &&
5388 sock_owned_by_user(sk) && !copied_early) {
5389 __set_current_state(TASK_RUNNING);
5390
5391 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5392 eaten = 1;
5393 }
5394 if (eaten) {
5395 /* Predicted packet is in window by definition.
5396 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397 * Hence, check seq<=rcv_wup reduces to:
5398 */
5399 if (tcp_header_len ==
5400 (sizeof(struct tcphdr) +
5401 TCPOLEN_TSTAMP_ALIGNED) &&
5402 tp->rcv_nxt == tp->rcv_wup)
5403 tcp_store_ts_recent(tp);
5404
5405 tcp_rcv_rtt_measure_ts(sk, skb);
5406
5407 __skb_pull(skb, tcp_header_len);
5408 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5409 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5410 }
5411 if (copied_early)
5412 tcp_cleanup_rbuf(sk, skb->len);
5413 }
5414 if (!eaten) {
5415 if (tcp_checksum_complete_user(sk, skb))
5416 goto csum_error;
5417
5418 /* Predicted packet is in window by definition.
5419 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5420 * Hence, check seq<=rcv_wup reduces to:
5421 */
5422 if (tcp_header_len ==
5423 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5424 tp->rcv_nxt == tp->rcv_wup)
5425 tcp_store_ts_recent(tp);
5426
5427 tcp_rcv_rtt_measure_ts(sk, skb);
5428
5429 if ((int)skb->truesize > sk->sk_forward_alloc)
5430 goto step5;
5431
5432 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5433
5434 /* Bulk data transfer: receiver */
5435 __skb_pull(skb, tcp_header_len);
5436 __skb_queue_tail(&sk->sk_receive_queue, skb);
5437 skb_set_owner_r(skb, sk);
5438 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5439 }
5440
5441 tcp_event_data_recv(sk, skb);
5442
5443 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5444 /* Well, only one small jumplet in fast path... */
5445 tcp_ack(sk, skb, FLAG_DATA);
5446 tcp_data_snd_check(sk);
5447 if (!inet_csk_ack_scheduled(sk))
5448 goto no_ack;
5449 }
5450
5451 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5452 __tcp_ack_snd_check(sk, 0);
5453no_ack:
5454#ifdef CONFIG_NET_DMA
5455 if (copied_early)
5456 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5457 else
5458#endif
5459 if (eaten)
5460 __kfree_skb(skb);
5461 else
5462 sk->sk_data_ready(sk, 0);
5463 return 0;
5464 }
5465 }
5466
5467slow_path:
5468 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5469 goto csum_error;
5470
5471 /*
5472 * Standard slow path.
5473 */
5474
5475 res = tcp_validate_incoming(sk, skb, th, 1);
5476 if (res <= 0)
5477 return -res;
5478
5479step5:
5480 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5481 goto discard;
5482
5483 tcp_rcv_rtt_measure_ts(sk, skb);
5484
5485 /* Process urgent data. */
5486 tcp_urg(sk, skb, th);
5487
5488 /* step 7: process the segment text */
5489 tcp_data_queue(sk, skb);
5490
5491 tcp_data_snd_check(sk);
5492 tcp_ack_snd_check(sk);
5493 return 0;
5494
5495csum_error:
5496 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5497
5498discard:
5499 __kfree_skb(skb);
5500 return 0;
5501}
5502EXPORT_SYMBOL(tcp_rcv_established);
5503
5504static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5505 const struct tcphdr *th, unsigned int len)
5506{
5507 const u8 *hash_location;
5508 struct inet_connection_sock *icsk = inet_csk(sk);
5509 struct tcp_sock *tp = tcp_sk(sk);
5510 struct tcp_cookie_values *cvp = tp->cookie_values;
5511 int saved_clamp = tp->rx_opt.mss_clamp;
5512
5513 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5514
5515 if (th->ack) {
5516 /* rfc793:
5517 * "If the state is SYN-SENT then
5518 * first check the ACK bit
5519 * If the ACK bit is set
5520 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5521 * a reset (unless the RST bit is set, if so drop
5522 * the segment and return)"
5523 *
5524 * We do not send data with SYN, so that RFC-correct
5525 * test reduces to:
5526 */
5527 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5528 goto reset_and_undo;
5529
5530 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5531 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5532 tcp_time_stamp)) {
5533 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5534 goto reset_and_undo;
5535 }
5536
5537 /* Now ACK is acceptable.
5538 *
5539 * "If the RST bit is set
5540 * If the ACK was acceptable then signal the user "error:
5541 * connection reset", drop the segment, enter CLOSED state,
5542 * delete TCB, and return."
5543 */
5544
5545 if (th->rst) {
5546 tcp_reset(sk);
5547 goto discard;
5548 }
5549
5550 /* rfc793:
5551 * "fifth, if neither of the SYN or RST bits is set then
5552 * drop the segment and return."
5553 *
5554 * See note below!
5555 * --ANK(990513)
5556 */
5557 if (!th->syn)
5558 goto discard_and_undo;
5559
5560 /* rfc793:
5561 * "If the SYN bit is on ...
5562 * are acceptable then ...
5563 * (our SYN has been ACKed), change the connection
5564 * state to ESTABLISHED..."
5565 */
5566
5567 TCP_ECN_rcv_synack(tp, th);
5568
5569 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5570 tcp_ack(sk, skb, FLAG_SLOWPATH);
5571
5572 /* Ok.. it's good. Set up sequence numbers and
5573 * move to established.
5574 */
5575 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5576 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5577
5578 /* RFC1323: The window in SYN & SYN/ACK segments is
5579 * never scaled.
5580 */
5581 tp->snd_wnd = ntohs(th->window);
5582 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5583
5584 if (!tp->rx_opt.wscale_ok) {
5585 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5586 tp->window_clamp = min(tp->window_clamp, 65535U);
5587 }
5588
5589 if (tp->rx_opt.saw_tstamp) {
5590 tp->rx_opt.tstamp_ok = 1;
5591 tp->tcp_header_len =
5592 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5593 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5594 tcp_store_ts_recent(tp);
5595 } else {
5596 tp->tcp_header_len = sizeof(struct tcphdr);
5597 }
5598
5599 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5600 tcp_enable_fack(tp);
5601
5602 tcp_mtup_init(sk);
5603 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5604 tcp_initialize_rcv_mss(sk);
5605
5606 /* Remember, tcp_poll() does not lock socket!
5607 * Change state from SYN-SENT only after copied_seq
5608 * is initialized. */
5609 tp->copied_seq = tp->rcv_nxt;
5610
5611 if (cvp != NULL &&
5612 cvp->cookie_pair_size > 0 &&
5613 tp->rx_opt.cookie_plus > 0) {
5614 int cookie_size = tp->rx_opt.cookie_plus
5615 - TCPOLEN_COOKIE_BASE;
5616 int cookie_pair_size = cookie_size
5617 + cvp->cookie_desired;
5618
5619 /* A cookie extension option was sent and returned.
5620 * Note that each incoming SYNACK replaces the
5621 * Responder cookie. The initial exchange is most
5622 * fragile, as protection against spoofing relies
5623 * entirely upon the sequence and timestamp (above).
5624 * This replacement strategy allows the correct pair to
5625 * pass through, while any others will be filtered via
5626 * Responder verification later.
5627 */
5628 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5629 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5630 hash_location, cookie_size);
5631 cvp->cookie_pair_size = cookie_pair_size;
5632 }
5633 }
5634
5635 smp_mb();
5636 tcp_set_state(sk, TCP_ESTABLISHED);
5637
5638 security_inet_conn_established(sk, skb);
5639
5640 /* Make sure socket is routed, for correct metrics. */
5641 icsk->icsk_af_ops->rebuild_header(sk);
5642
5643 tcp_init_metrics(sk);
5644
5645 tcp_init_congestion_control(sk);
5646
5647 /* Prevent spurious tcp_cwnd_restart() on first data
5648 * packet.
5649 */
5650 tp->lsndtime = tcp_time_stamp;
5651
5652 tcp_init_buffer_space(sk);
5653
5654 if (sock_flag(sk, SOCK_KEEPOPEN))
5655 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5656
5657 if (!tp->rx_opt.snd_wscale)
5658 __tcp_fast_path_on(tp, tp->snd_wnd);
5659 else
5660 tp->pred_flags = 0;
5661
5662 if (!sock_flag(sk, SOCK_DEAD)) {
5663 sk->sk_state_change(sk);
5664 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5665 }
5666
5667 if (sk->sk_write_pending ||
5668 icsk->icsk_accept_queue.rskq_defer_accept ||
5669 icsk->icsk_ack.pingpong) {
5670 /* Save one ACK. Data will be ready after
5671 * several ticks, if write_pending is set.
5672 *
5673 * It may be deleted, but with this feature tcpdumps
5674 * look so _wonderfully_ clever, that I was not able
5675 * to stand against the temptation 8) --ANK
5676 */
5677 inet_csk_schedule_ack(sk);
5678 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5679 icsk->icsk_ack.ato = TCP_ATO_MIN;
5680 tcp_incr_quickack(sk);
5681 tcp_enter_quickack_mode(sk);
5682 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5683 TCP_DELACK_MAX, TCP_RTO_MAX);
5684
5685discard:
5686 __kfree_skb(skb);
5687 return 0;
5688 } else {
5689 tcp_send_ack(sk);
5690 }
5691 return -1;
5692 }
5693
5694 /* No ACK in the segment */
5695
5696 if (th->rst) {
5697 /* rfc793:
5698 * "If the RST bit is set
5699 *
5700 * Otherwise (no ACK) drop the segment and return."
5701 */
5702
5703 goto discard_and_undo;
5704 }
5705
5706 /* PAWS check. */
5707 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5708 tcp_paws_reject(&tp->rx_opt, 0))
5709 goto discard_and_undo;
5710
5711 if (th->syn) {
5712 /* We see SYN without ACK. It is attempt of
5713 * simultaneous connect with crossed SYNs.
5714 * Particularly, it can be connect to self.
5715 */
5716 tcp_set_state(sk, TCP_SYN_RECV);
5717
5718 if (tp->rx_opt.saw_tstamp) {
5719 tp->rx_opt.tstamp_ok = 1;
5720 tcp_store_ts_recent(tp);
5721 tp->tcp_header_len =
5722 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5723 } else {
5724 tp->tcp_header_len = sizeof(struct tcphdr);
5725 }
5726
5727 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5728 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5729
5730 /* RFC1323: The window in SYN & SYN/ACK segments is
5731 * never scaled.
5732 */
5733 tp->snd_wnd = ntohs(th->window);
5734 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5735 tp->max_window = tp->snd_wnd;
5736
5737 TCP_ECN_rcv_syn(tp, th);
5738
5739 tcp_mtup_init(sk);
5740 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5741 tcp_initialize_rcv_mss(sk);
5742
5743 tcp_send_synack(sk);
5744#if 0
5745 /* Note, we could accept data and URG from this segment.
5746 * There are no obstacles to make this.
5747 *
5748 * However, if we ignore data in ACKless segments sometimes,
5749 * we have no reasons to accept it sometimes.
5750 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5751 * is not flawless. So, discard packet for sanity.
5752 * Uncomment this return to process the data.
5753 */
5754 return -1;
5755#else
5756 goto discard;
5757#endif
5758 }
5759 /* "fifth, if neither of the SYN or RST bits is set then
5760 * drop the segment and return."
5761 */
5762
5763discard_and_undo:
5764 tcp_clear_options(&tp->rx_opt);
5765 tp->rx_opt.mss_clamp = saved_clamp;
5766 goto discard;
5767
5768reset_and_undo:
5769 tcp_clear_options(&tp->rx_opt);
5770 tp->rx_opt.mss_clamp = saved_clamp;
5771 return 1;
5772}
5773
5774/*
5775 * This function implements the receiving procedure of RFC 793 for
5776 * all states except ESTABLISHED and TIME_WAIT.
5777 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5778 * address independent.
5779 */
5780
5781int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5782 const struct tcphdr *th, unsigned int len)
5783{
5784 struct tcp_sock *tp = tcp_sk(sk);
5785 struct inet_connection_sock *icsk = inet_csk(sk);
5786 int queued = 0;
5787 int res;
5788
5789 tp->rx_opt.saw_tstamp = 0;
5790
5791 switch (sk->sk_state) {
5792 case TCP_CLOSE:
5793 goto discard;
5794
5795 case TCP_LISTEN:
5796 if (th->ack)
5797 return 1;
5798
5799 if (th->rst)
5800 goto discard;
5801
5802 if (th->syn) {
5803 if (th->fin)
5804 goto discard;
5805 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5806 return 1;
5807
5808 /* Now we have several options: In theory there is
5809 * nothing else in the frame. KA9Q has an option to
5810 * send data with the syn, BSD accepts data with the
5811 * syn up to the [to be] advertised window and
5812 * Solaris 2.1 gives you a protocol error. For now
5813 * we just ignore it, that fits the spec precisely
5814 * and avoids incompatibilities. It would be nice in
5815 * future to drop through and process the data.
5816 *
5817 * Now that TTCP is starting to be used we ought to
5818 * queue this data.
5819 * But, this leaves one open to an easy denial of
5820 * service attack, and SYN cookies can't defend
5821 * against this problem. So, we drop the data
5822 * in the interest of security over speed unless
5823 * it's still in use.
5824 */
5825 kfree_skb(skb);
5826 return 0;
5827 }
5828 goto discard;
5829
5830 case TCP_SYN_SENT:
5831 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5832 if (queued >= 0)
5833 return queued;
5834
5835 /* Do step6 onward by hand. */
5836 tcp_urg(sk, skb, th);
5837 __kfree_skb(skb);
5838 tcp_data_snd_check(sk);
5839 return 0;
5840 }
5841
5842 res = tcp_validate_incoming(sk, skb, th, 0);
5843 if (res <= 0)
5844 return -res;
5845
5846 /* step 5: check the ACK field */
5847 if (th->ack) {
5848 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5849
5850 switch (sk->sk_state) {
5851 case TCP_SYN_RECV:
5852 if (acceptable) {
5853 tp->copied_seq = tp->rcv_nxt;
5854 smp_mb();
5855 tcp_set_state(sk, TCP_ESTABLISHED);
5856 sk->sk_state_change(sk);
5857
5858 /* Note, that this wakeup is only for marginal
5859 * crossed SYN case. Passively open sockets
5860 * are not waked up, because sk->sk_sleep ==
5861 * NULL and sk->sk_socket == NULL.
5862 */
5863 if (sk->sk_socket)
5864 sk_wake_async(sk,
5865 SOCK_WAKE_IO, POLL_OUT);
5866
5867 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5868 tp->snd_wnd = ntohs(th->window) <<
5869 tp->rx_opt.snd_wscale;
5870 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5871
5872 if (tp->rx_opt.tstamp_ok)
5873 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5874
5875 /* Make sure socket is routed, for
5876 * correct metrics.
5877 */
5878 icsk->icsk_af_ops->rebuild_header(sk);
5879
5880 tcp_init_metrics(sk);
5881
5882 tcp_init_congestion_control(sk);
5883
5884 /* Prevent spurious tcp_cwnd_restart() on
5885 * first data packet.
5886 */
5887 tp->lsndtime = tcp_time_stamp;
5888
5889 tcp_mtup_init(sk);
5890 tcp_initialize_rcv_mss(sk);
5891 tcp_init_buffer_space(sk);
5892 tcp_fast_path_on(tp);
5893 } else {
5894 return 1;
5895 }
5896 break;
5897
5898 case TCP_FIN_WAIT1:
5899 if (tp->snd_una == tp->write_seq) {
5900 tcp_set_state(sk, TCP_FIN_WAIT2);
5901 sk->sk_shutdown |= SEND_SHUTDOWN;
5902 dst_confirm(__sk_dst_get(sk));
5903
5904 if (!sock_flag(sk, SOCK_DEAD))
5905 /* Wake up lingering close() */
5906 sk->sk_state_change(sk);
5907 else {
5908 int tmo;
5909
5910 if (tp->linger2 < 0 ||
5911 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5912 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5913 tcp_done(sk);
5914 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915 return 1;
5916 }
5917
5918 tmo = tcp_fin_time(sk);
5919 if (tmo > TCP_TIMEWAIT_LEN) {
5920 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5921 } else if (th->fin || sock_owned_by_user(sk)) {
5922 /* Bad case. We could lose such FIN otherwise.
5923 * It is not a big problem, but it looks confusing
5924 * and not so rare event. We still can lose it now,
5925 * if it spins in bh_lock_sock(), but it is really
5926 * marginal case.
5927 */
5928 inet_csk_reset_keepalive_timer(sk, tmo);
5929 } else {
5930 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5931 goto discard;
5932 }
5933 }
5934 }
5935 break;
5936
5937 case TCP_CLOSING:
5938 if (tp->snd_una == tp->write_seq) {
5939 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5940 goto discard;
5941 }
5942 break;
5943
5944 case TCP_LAST_ACK:
5945 if (tp->snd_una == tp->write_seq) {
5946 tcp_update_metrics(sk);
5947 tcp_done(sk);
5948 goto discard;
5949 }
5950 break;
5951 }
5952 } else
5953 goto discard;
5954
5955 /* step 6: check the URG bit */
5956 tcp_urg(sk, skb, th);
5957
5958 /* step 7: process the segment text */
5959 switch (sk->sk_state) {
5960 case TCP_CLOSE_WAIT:
5961 case TCP_CLOSING:
5962 case TCP_LAST_ACK:
5963 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5964 break;
5965 case TCP_FIN_WAIT1:
5966 case TCP_FIN_WAIT2:
5967 /* RFC 793 says to queue data in these states,
5968 * RFC 1122 says we MUST send a reset.
5969 * BSD 4.4 also does reset.
5970 */
5971 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5972 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5973 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5974 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5975 tcp_reset(sk);
5976 return 1;
5977 }
5978 }
5979 /* Fall through */
5980 case TCP_ESTABLISHED:
5981 tcp_data_queue(sk, skb);
5982 queued = 1;
5983 break;
5984 }
5985
5986 /* tcp_data could move socket to TIME-WAIT */
5987 if (sk->sk_state != TCP_CLOSE) {
5988 tcp_data_snd_check(sk);
5989 tcp_ack_snd_check(sk);
5990 }
5991
5992 if (!queued) {
5993discard:
5994 __kfree_skb(skb);
5995 }
5996 return 0;
5997}
5998EXPORT_SYMBOL(tcp_rcv_state_process);