]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - net/ipv4/tcp_input.c
tcp: Make SACK code to split only at mss boundaries
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/sysctl.h>
67#include <net/dst.h>
68#include <net/tcp.h>
69#include <net/inet_common.h>
70#include <linux/ipsec.h>
71#include <asm/unaligned.h>
72#include <net/netdma.h>
73
74int sysctl_tcp_timestamps __read_mostly = 1;
75int sysctl_tcp_window_scaling __read_mostly = 1;
76int sysctl_tcp_sack __read_mostly = 1;
77int sysctl_tcp_fack __read_mostly = 1;
78int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79int sysctl_tcp_ecn __read_mostly;
80int sysctl_tcp_dsack __read_mostly = 1;
81int sysctl_tcp_app_win __read_mostly = 31;
82int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84int sysctl_tcp_stdurg __read_mostly;
85int sysctl_tcp_rfc1337 __read_mostly;
86int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87int sysctl_tcp_frto __read_mostly = 2;
88int sysctl_tcp_frto_response __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
90
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
93
94#define FLAG_DATA 0x01 /* Incoming frame contained data. */
95#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99#define FLAG_DATA_SACKED 0x20 /* New SACK. */
100#define FLAG_ECE 0x40 /* ECE in this ACK */
101#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118/* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
120 */
121static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122{
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
126
127 icsk->icsk_ack.last_seg_size = 0;
128
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
131 */
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
138 *
139 * "len" is invariant segment length, including TCP header.
140 */
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
147 */
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
153 */
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
159 }
160 }
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 }
165}
166
167static void tcp_incr_quickack(struct sock *sk)
168{
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176}
177
178void tcp_enter_quickack_mode(struct sock *sk)
179{
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
184}
185
186/* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
188 */
189
190static inline int tcp_in_quickack_mode(const struct sock *sk)
191{
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194}
195
196static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197{
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200}
201
202static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203{
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206}
207
208static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209{
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211}
212
213static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214{
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
223 }
224}
225
226static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227{
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
230}
231
232static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233{
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
236}
237
238static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239{
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
243}
244
245/* Buffer size and advertised window tuning.
246 *
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248 */
249
250static void tcp_fixup_sndbuf(struct sock *sk)
251{
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
254
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257}
258
259/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260 *
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
270 *
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
278 *
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
282 */
283
284/* Slow part of check#2. */
285static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286{
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296 truesize >>= 1;
297 window >>= 1;
298 }
299 return 0;
300}
301
302static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303{
304 struct tcp_sock *tp = tcp_sk(sk);
305
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
311
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
314 */
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
319
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
324 }
325 }
326}
327
328/* 3. Tuning rcvbuf, when connection enters established state. */
329
330static void tcp_fixup_rcvbuf(struct sock *sk)
331{
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 */
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343}
344
345/* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
347 */
348static void tcp_init_buffer_space(struct sock *sk)
349{
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
352
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
357
358 tp->rcvq_space.space = tp->rcv_wnd;
359
360 maxwin = tcp_full_space(sk);
361
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
364
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
369 }
370
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
379}
380
381/* 5. Recalculate window clamp after socket hit its memory bounds. */
382static void tcp_clamp_window(struct sock *sk)
383{
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
386
387 icsk->icsk_ack.quick = 0;
388
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
395 }
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398}
399
400/* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406 */
407void tcp_initialize_rcv_mss(struct sock *sk)
408{
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
415
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
417}
418
419/* Receiver "autotuning" code.
420 *
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424 *
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
429 */
430static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431{
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
434
435 if (m == 0)
436 m = 1;
437
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
443 *
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
448 */
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
457 }
458
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
461}
462
463static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464{
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
474}
475
476static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
478{
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484}
485
486/*
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
489 */
490void tcp_rcv_space_adjust(struct sock *sk)
491{
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
495
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
498
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
502
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505 space = max(tp->rcvq_space.space, space);
506
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
509
510 tp->rcvq_space.space = space;
511
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
515
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
519 */
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
531
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
534 }
535 }
536 }
537
538new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
541}
542
543/* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
552 */
553static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554{
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
558
559 inet_csk_schedule_ack(sk);
560
561 tcp_measure_rcv_mss(sk, skb);
562
563 tcp_rcv_rtt_measure(tp);
564
565 now = tcp_time_stamp;
566
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
570 */
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
575
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
586 */
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
589 }
590 }
591 icsk->icsk_ack.lrcvtime = now;
592
593 TCP_ECN_check_ce(tp, skb);
594
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
597}
598
599static u32 tcp_rto_min(struct sock *sk)
600{
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
603
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
607}
608
609/* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
617 */
618static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619{
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
622
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
628 *
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
631 *
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
638 */
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
654 */
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 }
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
665 }
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
671 }
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
678 }
679}
680
681/* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
683 */
684static inline void tcp_set_rto(struct sock *sk)
685{
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
688 *
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
696 */
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
703 */
704}
705
706/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
709static inline void tcp_bound_rto(struct sock *sk)
710{
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713}
714
715/* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718 */
719void tcp_update_metrics(struct sock *sk)
720{
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
723
724 if (sysctl_tcp_nometrics_save)
725 return;
726
727 dst_confirm(dst);
728
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
731 int m;
732 unsigned long rtt;
733
734 if (icsk->icsk_backoff || !tp->srtt) {
735 /* This session failed to estimate rtt. Why?
736 * Probably, no packets returned in time.
737 * Reset our results.
738 */
739 if (!(dst_metric_locked(dst, RTAX_RTT)))
740 dst->metrics[RTAX_RTT - 1] = 0;
741 return;
742 }
743
744 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 m = rtt - tp->srtt;
746
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
750 */
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 else
755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756 }
757
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 unsigned long var;
760 if (m < 0)
761 m = -m;
762
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
767
768 var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 if (m >= var)
770 var = m;
771 else
772 var -= (var - m) >> 2;
773
774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775 }
776
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
797 */
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804 }
805
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810 }
811 }
812}
813
814/* Numbers are taken from RFC3390.
815 *
816 * John Heffner states:
817 *
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
822 */
823__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824{
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832 }
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834}
835
836/* Set slow start threshold and cwnd not falling to slow start */
837void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838{
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
841
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
854
855 tcp_set_ca_state(sk, TCP_CA_CWR);
856 }
857}
858
859/*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
863static void tcp_disable_fack(struct tcp_sock *tp)
864{
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~2;
869}
870
871/* Take a notice that peer is sending D-SACKs */
872static void tcp_dsack_seen(struct tcp_sock *tp)
873{
874 tp->rx_opt.sack_ok |= 4;
875}
876
877/* Initialize metrics on socket. */
878
879static void tcp_init_metrics(struct sock *sk)
880{
881 struct tcp_sock *tp = tcp_sk(sk);
882 struct dst_entry *dst = __sk_dst_get(sk);
883
884 if (dst == NULL)
885 goto reset;
886
887 dst_confirm(dst);
888
889 if (dst_metric_locked(dst, RTAX_CWND))
890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 if (dst_metric(dst, RTAX_SSTHRESH)) {
892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 tp->snd_ssthresh = tp->snd_cwnd_clamp;
895 }
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900 }
901
902 if (dst_metric(dst, RTAX_RTT) == 0)
903 goto reset;
904
905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 goto reset;
907
908 /* Initial rtt is determined from SYN,SYN-ACK.
909 * The segment is small and rtt may appear much
910 * less than real one. Use per-dst memory
911 * to make it more realistic.
912 *
913 * A bit of theory. RTT is time passed after "normal" sized packet
914 * is sent until it is ACKed. In normal circumstances sending small
915 * packets force peer to delay ACKs and calculation is correct too.
916 * The algorithm is adaptive and, provided we follow specs, it
917 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 * tricks sort of "quick acks" for time long enough to decrease RTT
919 * to low value, and then abruptly stops to do it and starts to delay
920 * ACKs, wait for troubles.
921 */
922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 tp->rtt_seq = tp->snd_nxt;
925 }
926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929 }
930 tcp_set_rto(sk);
931 tcp_bound_rto(sk);
932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 goto reset;
934 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 tp->snd_cwnd_stamp = tcp_time_stamp;
936 return;
937
938reset:
939 /* Play conservative. If timestamps are not
940 * supported, TCP will fail to recalculate correct
941 * rtt, if initial rto is too small. FORGET ALL AND RESET!
942 */
943 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 tp->srtt = 0;
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947 }
948}
949
950static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
952{
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
956
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970#if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977#endif
978 tcp_disable_fack(tp);
979 }
980}
981
982/* This must be called before lost_out is incremented */
983static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984{
985 if ((tp->retransmit_skb_hint == NULL) ||
986 before(TCP_SKB_CB(skb)->seq,
987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 tp->retransmit_skb_hint = skb;
989
990 if (!tp->lost_out ||
991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993}
994
995static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996{
997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 tcp_verify_retransmit_hint(tp, skb);
999
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 }
1003}
1004
1005static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006 struct sk_buff *skb)
1007{
1008 tcp_verify_retransmit_hint(tp, skb);
1009
1010 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011 tp->lost_out += tcp_skb_pcount(skb);
1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 }
1014}
1015
1016/* This procedure tags the retransmission queue when SACKs arrive.
1017 *
1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019 * Packets in queue with these bits set are counted in variables
1020 * sacked_out, retrans_out and lost_out, correspondingly.
1021 *
1022 * Valid combinations are:
1023 * Tag InFlight Description
1024 * 0 1 - orig segment is in flight.
1025 * S 0 - nothing flies, orig reached receiver.
1026 * L 0 - nothing flies, orig lost by net.
1027 * R 2 - both orig and retransmit are in flight.
1028 * L|R 1 - orig is lost, retransmit is in flight.
1029 * S|R 1 - orig reached receiver, retrans is still in flight.
1030 * (L|S|R is logically valid, it could occur when L|R is sacked,
1031 * but it is equivalent to plain S and code short-curcuits it to S.
1032 * L|S is logically invalid, it would mean -1 packet in flight 8))
1033 *
1034 * These 6 states form finite state machine, controlled by the following events:
1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037 * 3. Loss detection event of one of three flavors:
1038 * A. Scoreboard estimator decided the packet is lost.
1039 * A'. Reno "three dupacks" marks head of queue lost.
1040 * A''. Its FACK modfication, head until snd.fack is lost.
1041 * B. SACK arrives sacking data transmitted after never retransmitted
1042 * hole was sent out.
1043 * C. SACK arrives sacking SND.NXT at the moment, when the
1044 * segment was retransmitted.
1045 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046 *
1047 * It is pleasant to note, that state diagram turns out to be commutative,
1048 * so that we are allowed not to be bothered by order of our actions,
1049 * when multiple events arrive simultaneously. (see the function below).
1050 *
1051 * Reordering detection.
1052 * --------------------
1053 * Reordering metric is maximal distance, which a packet can be displaced
1054 * in packet stream. With SACKs we can estimate it:
1055 *
1056 * 1. SACK fills old hole and the corresponding segment was not
1057 * ever retransmitted -> reordering. Alas, we cannot use it
1058 * when segment was retransmitted.
1059 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060 * for retransmitted and already SACKed segment -> reordering..
1061 * Both of these heuristics are not used in Loss state, when we cannot
1062 * account for retransmits accurately.
1063 *
1064 * SACK block validation.
1065 * ----------------------
1066 *
1067 * SACK block range validation checks that the received SACK block fits to
1068 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069 * Note that SND.UNA is not included to the range though being valid because
1070 * it means that the receiver is rather inconsistent with itself reporting
1071 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072 * perfectly valid, however, in light of RFC2018 which explicitly states
1073 * that "SACK block MUST reflect the newest segment. Even if the newest
1074 * segment is going to be discarded ...", not that it looks very clever
1075 * in case of head skb. Due to potentional receiver driven attacks, we
1076 * choose to avoid immediate execution of a walk in write queue due to
1077 * reneging and defer head skb's loss recovery to standard loss recovery
1078 * procedure that will eventually trigger (nothing forbids us doing this).
1079 *
1080 * Implements also blockage to start_seq wrap-around. Problem lies in the
1081 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082 * there's no guarantee that it will be before snd_nxt (n). The problem
1083 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084 * wrap (s_w):
1085 *
1086 * <- outs wnd -> <- wrapzone ->
1087 * u e n u_w e_w s n_w
1088 * | | | | | | |
1089 * |<------------+------+----- TCP seqno space --------------+---------->|
1090 * ...-- <2^31 ->| |<--------...
1091 * ...---- >2^31 ------>| |<--------...
1092 *
1093 * Current code wouldn't be vulnerable but it's better still to discard such
1094 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097 * equal to the ideal case (infinite seqno space without wrap caused issues).
1098 *
1099 * With D-SACK the lower bound is extended to cover sequence space below
1100 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101 * again, D-SACK block must not to go across snd_una (for the same reason as
1102 * for the normal SACK blocks, explained above). But there all simplicity
1103 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104 * fully below undo_marker they do not affect behavior in anyway and can
1105 * therefore be safely ignored. In rare cases (which are more or less
1106 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107 * fragmentation and packet reordering past skb's retransmission. To consider
1108 * them correctly, the acceptable range must be extended even more though
1109 * the exact amount is rather hard to quantify. However, tp->max_window can
1110 * be used as an exaggerated estimate.
1111 */
1112static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113 u32 start_seq, u32 end_seq)
1114{
1115 /* Too far in future, or reversed (interpretation is ambiguous) */
1116 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117 return 0;
1118
1119 /* Nasty start_seq wrap-around check (see comments above) */
1120 if (!before(start_seq, tp->snd_nxt))
1121 return 0;
1122
1123 /* In outstanding window? ...This is valid exit for D-SACKs too.
1124 * start_seq == snd_una is non-sensical (see comments above)
1125 */
1126 if (after(start_seq, tp->snd_una))
1127 return 1;
1128
1129 if (!is_dsack || !tp->undo_marker)
1130 return 0;
1131
1132 /* ...Then it's D-SACK, and must reside below snd_una completely */
1133 if (!after(end_seq, tp->snd_una))
1134 return 0;
1135
1136 if (!before(start_seq, tp->undo_marker))
1137 return 1;
1138
1139 /* Too old */
1140 if (!after(end_seq, tp->undo_marker))
1141 return 0;
1142
1143 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144 * start_seq < undo_marker and end_seq >= undo_marker.
1145 */
1146 return !before(start_seq, end_seq - tp->max_window);
1147}
1148
1149/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150 * Event "C". Later note: FACK people cheated me again 8), we have to account
1151 * for reordering! Ugly, but should help.
1152 *
1153 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154 * less than what is now known to be received by the other end (derived from
1155 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156 * retransmitted skbs to avoid some costly processing per ACKs.
1157 */
1158static void tcp_mark_lost_retrans(struct sock *sk)
1159{
1160 const struct inet_connection_sock *icsk = inet_csk(sk);
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 struct sk_buff *skb;
1163 int cnt = 0;
1164 u32 new_low_seq = tp->snd_nxt;
1165 u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168 !after(received_upto, tp->lost_retrans_low) ||
1169 icsk->icsk_ca_state != TCP_CA_Recovery)
1170 return;
1171
1172 tcp_for_write_queue(skb, sk) {
1173 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175 if (skb == tcp_send_head(sk))
1176 break;
1177 if (cnt == tp->retrans_out)
1178 break;
1179 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180 continue;
1181
1182 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183 continue;
1184
1185 if (after(received_upto, ack_seq) &&
1186 (tcp_is_fack(tp) ||
1187 !before(received_upto,
1188 ack_seq + tp->reordering * tp->mss_cache))) {
1189 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190 tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192 tcp_skb_mark_lost_uncond_verify(tp, skb);
1193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194 } else {
1195 if (before(ack_seq, new_low_seq))
1196 new_low_seq = ack_seq;
1197 cnt += tcp_skb_pcount(skb);
1198 }
1199 }
1200
1201 if (tp->retrans_out)
1202 tp->lost_retrans_low = new_low_seq;
1203}
1204
1205static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206 struct tcp_sack_block_wire *sp, int num_sacks,
1207 u32 prior_snd_una)
1208{
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212 int dup_sack = 0;
1213
1214 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215 dup_sack = 1;
1216 tcp_dsack_seen(tp);
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218 } else if (num_sacks > 1) {
1219 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222 if (!after(end_seq_0, end_seq_1) &&
1223 !before(start_seq_0, start_seq_1)) {
1224 dup_sack = 1;
1225 tcp_dsack_seen(tp);
1226 NET_INC_STATS_BH(sock_net(sk),
1227 LINUX_MIB_TCPDSACKOFORECV);
1228 }
1229 }
1230
1231 /* D-SACK for already forgotten data... Do dumb counting. */
1232 if (dup_sack &&
1233 !after(end_seq_0, prior_snd_una) &&
1234 after(end_seq_0, tp->undo_marker))
1235 tp->undo_retrans--;
1236
1237 return dup_sack;
1238}
1239
1240/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241 * the incoming SACK may not exactly match but we can find smaller MSS
1242 * aligned portion of it that matches. Therefore we might need to fragment
1243 * which may fail and creates some hassle (caller must handle error case
1244 * returns).
1245 */
1246static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1247 u32 start_seq, u32 end_seq)
1248{
1249 int in_sack, err;
1250 unsigned int pkt_len;
1251 unsigned int mss;
1252
1253 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1254 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1255
1256 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1257 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1258 mss = tcp_skb_mss(skb);
1259 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1260
1261 if (!in_sack) {
1262 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1263 if (pkt_len < mss)
1264 pkt_len = mss;
1265 } else {
1266 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1267 if (pkt_len < mss)
1268 return -EINVAL;
1269 }
1270
1271 /* Round if necessary so that SACKs cover only full MSSes
1272 * and/or the remaining small portion (if present)
1273 */
1274 if (pkt_len > mss) {
1275 unsigned int new_len = (pkt_len / mss) * mss;
1276 if (!in_sack && new_len < pkt_len) {
1277 new_len += mss;
1278 if (new_len > skb->len)
1279 return 0;
1280 }
1281 pkt_len = new_len;
1282 }
1283 err = tcp_fragment(sk, skb, pkt_len, mss);
1284 if (err < 0)
1285 return err;
1286 }
1287
1288 return in_sack;
1289}
1290
1291static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1292 int *reord, int dup_sack, int fack_count)
1293{
1294 struct tcp_sock *tp = tcp_sk(sk);
1295 u8 sacked = TCP_SKB_CB(skb)->sacked;
1296 int flag = 0;
1297
1298 /* Account D-SACK for retransmitted packet. */
1299 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1300 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1301 tp->undo_retrans--;
1302 if (sacked & TCPCB_SACKED_ACKED)
1303 *reord = min(fack_count, *reord);
1304 }
1305
1306 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1307 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1308 return flag;
1309
1310 if (!(sacked & TCPCB_SACKED_ACKED)) {
1311 if (sacked & TCPCB_SACKED_RETRANS) {
1312 /* If the segment is not tagged as lost,
1313 * we do not clear RETRANS, believing
1314 * that retransmission is still in flight.
1315 */
1316 if (sacked & TCPCB_LOST) {
1317 TCP_SKB_CB(skb)->sacked &=
1318 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1319 tp->lost_out -= tcp_skb_pcount(skb);
1320 tp->retrans_out -= tcp_skb_pcount(skb);
1321 }
1322 } else {
1323 if (!(sacked & TCPCB_RETRANS)) {
1324 /* New sack for not retransmitted frame,
1325 * which was in hole. It is reordering.
1326 */
1327 if (before(TCP_SKB_CB(skb)->seq,
1328 tcp_highest_sack_seq(tp)))
1329 *reord = min(fack_count, *reord);
1330
1331 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1332 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1333 flag |= FLAG_ONLY_ORIG_SACKED;
1334 }
1335
1336 if (sacked & TCPCB_LOST) {
1337 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1338 tp->lost_out -= tcp_skb_pcount(skb);
1339 }
1340 }
1341
1342 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1343 flag |= FLAG_DATA_SACKED;
1344 tp->sacked_out += tcp_skb_pcount(skb);
1345
1346 fack_count += tcp_skb_pcount(skb);
1347
1348 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1349 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1350 before(TCP_SKB_CB(skb)->seq,
1351 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1352 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1353
1354 if (fack_count > tp->fackets_out)
1355 tp->fackets_out = fack_count;
1356
1357 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1358 tcp_advance_highest_sack(sk, skb);
1359 }
1360
1361 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1362 * frames and clear it. undo_retrans is decreased above, L|R frames
1363 * are accounted above as well.
1364 */
1365 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1366 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1367 tp->retrans_out -= tcp_skb_pcount(skb);
1368 }
1369
1370 return flag;
1371}
1372
1373static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1374 struct tcp_sack_block *next_dup,
1375 u32 start_seq, u32 end_seq,
1376 int dup_sack_in, int *fack_count,
1377 int *reord, int *flag)
1378{
1379 tcp_for_write_queue_from(skb, sk) {
1380 int in_sack = 0;
1381 int dup_sack = dup_sack_in;
1382
1383 if (skb == tcp_send_head(sk))
1384 break;
1385
1386 /* queue is in-order => we can short-circuit the walk early */
1387 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1388 break;
1389
1390 if ((next_dup != NULL) &&
1391 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1392 in_sack = tcp_match_skb_to_sack(sk, skb,
1393 next_dup->start_seq,
1394 next_dup->end_seq);
1395 if (in_sack > 0)
1396 dup_sack = 1;
1397 }
1398
1399 if (in_sack <= 0)
1400 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1401 end_seq);
1402 if (unlikely(in_sack < 0))
1403 break;
1404
1405 if (in_sack)
1406 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1407 *fack_count);
1408
1409 *fack_count += tcp_skb_pcount(skb);
1410 }
1411 return skb;
1412}
1413
1414/* Avoid all extra work that is being done by sacktag while walking in
1415 * a normal way
1416 */
1417static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1418 u32 skip_to_seq, int *fack_count)
1419{
1420 tcp_for_write_queue_from(skb, sk) {
1421 if (skb == tcp_send_head(sk))
1422 break;
1423
1424 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1425 break;
1426
1427 *fack_count += tcp_skb_pcount(skb);
1428 }
1429 return skb;
1430}
1431
1432static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1433 struct sock *sk,
1434 struct tcp_sack_block *next_dup,
1435 u32 skip_to_seq,
1436 int *fack_count, int *reord,
1437 int *flag)
1438{
1439 if (next_dup == NULL)
1440 return skb;
1441
1442 if (before(next_dup->start_seq, skip_to_seq)) {
1443 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1444 skb = tcp_sacktag_walk(skb, sk, NULL,
1445 next_dup->start_seq, next_dup->end_seq,
1446 1, fack_count, reord, flag);
1447 }
1448
1449 return skb;
1450}
1451
1452static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1453{
1454 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1455}
1456
1457static int
1458tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1459 u32 prior_snd_una)
1460{
1461 const struct inet_connection_sock *icsk = inet_csk(sk);
1462 struct tcp_sock *tp = tcp_sk(sk);
1463 unsigned char *ptr = (skb_transport_header(ack_skb) +
1464 TCP_SKB_CB(ack_skb)->sacked);
1465 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1466 struct tcp_sack_block sp[TCP_NUM_SACKS];
1467 struct tcp_sack_block *cache;
1468 struct sk_buff *skb;
1469 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1470 int used_sacks;
1471 int reord = tp->packets_out;
1472 int flag = 0;
1473 int found_dup_sack = 0;
1474 int fack_count;
1475 int i, j;
1476 int first_sack_index;
1477
1478 if (!tp->sacked_out) {
1479 if (WARN_ON(tp->fackets_out))
1480 tp->fackets_out = 0;
1481 tcp_highest_sack_reset(sk);
1482 }
1483
1484 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1485 num_sacks, prior_snd_una);
1486 if (found_dup_sack)
1487 flag |= FLAG_DSACKING_ACK;
1488
1489 /* Eliminate too old ACKs, but take into
1490 * account more or less fresh ones, they can
1491 * contain valid SACK info.
1492 */
1493 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1494 return 0;
1495
1496 if (!tp->packets_out)
1497 goto out;
1498
1499 used_sacks = 0;
1500 first_sack_index = 0;
1501 for (i = 0; i < num_sacks; i++) {
1502 int dup_sack = !i && found_dup_sack;
1503
1504 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1505 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1506
1507 if (!tcp_is_sackblock_valid(tp, dup_sack,
1508 sp[used_sacks].start_seq,
1509 sp[used_sacks].end_seq)) {
1510 int mib_idx;
1511
1512 if (dup_sack) {
1513 if (!tp->undo_marker)
1514 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1515 else
1516 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1517 } else {
1518 /* Don't count olds caused by ACK reordering */
1519 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1520 !after(sp[used_sacks].end_seq, tp->snd_una))
1521 continue;
1522 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1523 }
1524
1525 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1526 if (i == 0)
1527 first_sack_index = -1;
1528 continue;
1529 }
1530
1531 /* Ignore very old stuff early */
1532 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1533 continue;
1534
1535 used_sacks++;
1536 }
1537
1538 /* order SACK blocks to allow in order walk of the retrans queue */
1539 for (i = used_sacks - 1; i > 0; i--) {
1540 for (j = 0; j < i; j++) {
1541 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1542 struct tcp_sack_block tmp;
1543
1544 tmp = sp[j];
1545 sp[j] = sp[j + 1];
1546 sp[j + 1] = tmp;
1547
1548 /* Track where the first SACK block goes to */
1549 if (j == first_sack_index)
1550 first_sack_index = j + 1;
1551 }
1552 }
1553 }
1554
1555 skb = tcp_write_queue_head(sk);
1556 fack_count = 0;
1557 i = 0;
1558
1559 if (!tp->sacked_out) {
1560 /* It's already past, so skip checking against it */
1561 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1562 } else {
1563 cache = tp->recv_sack_cache;
1564 /* Skip empty blocks in at head of the cache */
1565 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1566 !cache->end_seq)
1567 cache++;
1568 }
1569
1570 while (i < used_sacks) {
1571 u32 start_seq = sp[i].start_seq;
1572 u32 end_seq = sp[i].end_seq;
1573 int dup_sack = (found_dup_sack && (i == first_sack_index));
1574 struct tcp_sack_block *next_dup = NULL;
1575
1576 if (found_dup_sack && ((i + 1) == first_sack_index))
1577 next_dup = &sp[i + 1];
1578
1579 /* Event "B" in the comment above. */
1580 if (after(end_seq, tp->high_seq))
1581 flag |= FLAG_DATA_LOST;
1582
1583 /* Skip too early cached blocks */
1584 while (tcp_sack_cache_ok(tp, cache) &&
1585 !before(start_seq, cache->end_seq))
1586 cache++;
1587
1588 /* Can skip some work by looking recv_sack_cache? */
1589 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1590 after(end_seq, cache->start_seq)) {
1591
1592 /* Head todo? */
1593 if (before(start_seq, cache->start_seq)) {
1594 skb = tcp_sacktag_skip(skb, sk, start_seq,
1595 &fack_count);
1596 skb = tcp_sacktag_walk(skb, sk, next_dup,
1597 start_seq,
1598 cache->start_seq,
1599 dup_sack, &fack_count,
1600 &reord, &flag);
1601 }
1602
1603 /* Rest of the block already fully processed? */
1604 if (!after(end_seq, cache->end_seq))
1605 goto advance_sp;
1606
1607 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1608 cache->end_seq,
1609 &fack_count, &reord,
1610 &flag);
1611
1612 /* ...tail remains todo... */
1613 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1614 /* ...but better entrypoint exists! */
1615 skb = tcp_highest_sack(sk);
1616 if (skb == NULL)
1617 break;
1618 fack_count = tp->fackets_out;
1619 cache++;
1620 goto walk;
1621 }
1622
1623 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1624 &fack_count);
1625 /* Check overlap against next cached too (past this one already) */
1626 cache++;
1627 continue;
1628 }
1629
1630 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1631 skb = tcp_highest_sack(sk);
1632 if (skb == NULL)
1633 break;
1634 fack_count = tp->fackets_out;
1635 }
1636 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1637
1638walk:
1639 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1640 dup_sack, &fack_count, &reord, &flag);
1641
1642advance_sp:
1643 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1644 * due to in-order walk
1645 */
1646 if (after(end_seq, tp->frto_highmark))
1647 flag &= ~FLAG_ONLY_ORIG_SACKED;
1648
1649 i++;
1650 }
1651
1652 /* Clear the head of the cache sack blocks so we can skip it next time */
1653 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1654 tp->recv_sack_cache[i].start_seq = 0;
1655 tp->recv_sack_cache[i].end_seq = 0;
1656 }
1657 for (j = 0; j < used_sacks; j++)
1658 tp->recv_sack_cache[i++] = sp[j];
1659
1660 tcp_mark_lost_retrans(sk);
1661
1662 tcp_verify_left_out(tp);
1663
1664 if ((reord < tp->fackets_out) &&
1665 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1666 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1667 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1668
1669out:
1670
1671#if FASTRETRANS_DEBUG > 0
1672 WARN_ON((int)tp->sacked_out < 0);
1673 WARN_ON((int)tp->lost_out < 0);
1674 WARN_ON((int)tp->retrans_out < 0);
1675 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1676#endif
1677 return flag;
1678}
1679
1680/* Limits sacked_out so that sum with lost_out isn't ever larger than
1681 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1682 */
1683int tcp_limit_reno_sacked(struct tcp_sock *tp)
1684{
1685 u32 holes;
1686
1687 holes = max(tp->lost_out, 1U);
1688 holes = min(holes, tp->packets_out);
1689
1690 if ((tp->sacked_out + holes) > tp->packets_out) {
1691 tp->sacked_out = tp->packets_out - holes;
1692 return 1;
1693 }
1694 return 0;
1695}
1696
1697/* If we receive more dupacks than we expected counting segments
1698 * in assumption of absent reordering, interpret this as reordering.
1699 * The only another reason could be bug in receiver TCP.
1700 */
1701static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1702{
1703 struct tcp_sock *tp = tcp_sk(sk);
1704 if (tcp_limit_reno_sacked(tp))
1705 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1706}
1707
1708/* Emulate SACKs for SACKless connection: account for a new dupack. */
1709
1710static void tcp_add_reno_sack(struct sock *sk)
1711{
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 tp->sacked_out++;
1714 tcp_check_reno_reordering(sk, 0);
1715 tcp_verify_left_out(tp);
1716}
1717
1718/* Account for ACK, ACKing some data in Reno Recovery phase. */
1719
1720static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1721{
1722 struct tcp_sock *tp = tcp_sk(sk);
1723
1724 if (acked > 0) {
1725 /* One ACK acked hole. The rest eat duplicate ACKs. */
1726 if (acked - 1 >= tp->sacked_out)
1727 tp->sacked_out = 0;
1728 else
1729 tp->sacked_out -= acked - 1;
1730 }
1731 tcp_check_reno_reordering(sk, acked);
1732 tcp_verify_left_out(tp);
1733}
1734
1735static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1736{
1737 tp->sacked_out = 0;
1738}
1739
1740static int tcp_is_sackfrto(const struct tcp_sock *tp)
1741{
1742 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1743}
1744
1745/* F-RTO can only be used if TCP has never retransmitted anything other than
1746 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1747 */
1748int tcp_use_frto(struct sock *sk)
1749{
1750 const struct tcp_sock *tp = tcp_sk(sk);
1751 const struct inet_connection_sock *icsk = inet_csk(sk);
1752 struct sk_buff *skb;
1753
1754 if (!sysctl_tcp_frto)
1755 return 0;
1756
1757 /* MTU probe and F-RTO won't really play nicely along currently */
1758 if (icsk->icsk_mtup.probe_size)
1759 return 0;
1760
1761 if (tcp_is_sackfrto(tp))
1762 return 1;
1763
1764 /* Avoid expensive walking of rexmit queue if possible */
1765 if (tp->retrans_out > 1)
1766 return 0;
1767
1768 skb = tcp_write_queue_head(sk);
1769 if (tcp_skb_is_last(sk, skb))
1770 return 1;
1771 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1772 tcp_for_write_queue_from(skb, sk) {
1773 if (skb == tcp_send_head(sk))
1774 break;
1775 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1776 return 0;
1777 /* Short-circuit when first non-SACKed skb has been checked */
1778 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1779 break;
1780 }
1781 return 1;
1782}
1783
1784/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1785 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1786 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1787 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1788 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1789 * bits are handled if the Loss state is really to be entered (in
1790 * tcp_enter_frto_loss).
1791 *
1792 * Do like tcp_enter_loss() would; when RTO expires the second time it
1793 * does:
1794 * "Reduce ssthresh if it has not yet been made inside this window."
1795 */
1796void tcp_enter_frto(struct sock *sk)
1797{
1798 const struct inet_connection_sock *icsk = inet_csk(sk);
1799 struct tcp_sock *tp = tcp_sk(sk);
1800 struct sk_buff *skb;
1801
1802 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1803 tp->snd_una == tp->high_seq ||
1804 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1805 !icsk->icsk_retransmits)) {
1806 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1807 /* Our state is too optimistic in ssthresh() call because cwnd
1808 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1809 * recovery has not yet completed. Pattern would be this: RTO,
1810 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1811 * up here twice).
1812 * RFC4138 should be more specific on what to do, even though
1813 * RTO is quite unlikely to occur after the first Cumulative ACK
1814 * due to back-off and complexity of triggering events ...
1815 */
1816 if (tp->frto_counter) {
1817 u32 stored_cwnd;
1818 stored_cwnd = tp->snd_cwnd;
1819 tp->snd_cwnd = 2;
1820 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1821 tp->snd_cwnd = stored_cwnd;
1822 } else {
1823 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1824 }
1825 /* ... in theory, cong.control module could do "any tricks" in
1826 * ssthresh(), which means that ca_state, lost bits and lost_out
1827 * counter would have to be faked before the call occurs. We
1828 * consider that too expensive, unlikely and hacky, so modules
1829 * using these in ssthresh() must deal these incompatibility
1830 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1831 */
1832 tcp_ca_event(sk, CA_EVENT_FRTO);
1833 }
1834
1835 tp->undo_marker = tp->snd_una;
1836 tp->undo_retrans = 0;
1837
1838 skb = tcp_write_queue_head(sk);
1839 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1840 tp->undo_marker = 0;
1841 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1842 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1843 tp->retrans_out -= tcp_skb_pcount(skb);
1844 }
1845 tcp_verify_left_out(tp);
1846
1847 /* Too bad if TCP was application limited */
1848 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1849
1850 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1851 * The last condition is necessary at least in tp->frto_counter case.
1852 */
1853 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1854 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1855 after(tp->high_seq, tp->snd_una)) {
1856 tp->frto_highmark = tp->high_seq;
1857 } else {
1858 tp->frto_highmark = tp->snd_nxt;
1859 }
1860 tcp_set_ca_state(sk, TCP_CA_Disorder);
1861 tp->high_seq = tp->snd_nxt;
1862 tp->frto_counter = 1;
1863}
1864
1865/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1866 * which indicates that we should follow the traditional RTO recovery,
1867 * i.e. mark everything lost and do go-back-N retransmission.
1868 */
1869static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1870{
1871 struct tcp_sock *tp = tcp_sk(sk);
1872 struct sk_buff *skb;
1873
1874 tp->lost_out = 0;
1875 tp->retrans_out = 0;
1876 if (tcp_is_reno(tp))
1877 tcp_reset_reno_sack(tp);
1878
1879 tcp_for_write_queue(skb, sk) {
1880 if (skb == tcp_send_head(sk))
1881 break;
1882
1883 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1884 /*
1885 * Count the retransmission made on RTO correctly (only when
1886 * waiting for the first ACK and did not get it)...
1887 */
1888 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1889 /* For some reason this R-bit might get cleared? */
1890 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1891 tp->retrans_out += tcp_skb_pcount(skb);
1892 /* ...enter this if branch just for the first segment */
1893 flag |= FLAG_DATA_ACKED;
1894 } else {
1895 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1896 tp->undo_marker = 0;
1897 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1898 }
1899
1900 /* Marking forward transmissions that were made after RTO lost
1901 * can cause unnecessary retransmissions in some scenarios,
1902 * SACK blocks will mitigate that in some but not in all cases.
1903 * We used to not mark them but it was causing break-ups with
1904 * receivers that do only in-order receival.
1905 *
1906 * TODO: we could detect presence of such receiver and select
1907 * different behavior per flow.
1908 */
1909 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1910 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1911 tp->lost_out += tcp_skb_pcount(skb);
1912 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1913 }
1914 }
1915 tcp_verify_left_out(tp);
1916
1917 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1918 tp->snd_cwnd_cnt = 0;
1919 tp->snd_cwnd_stamp = tcp_time_stamp;
1920 tp->frto_counter = 0;
1921 tp->bytes_acked = 0;
1922
1923 tp->reordering = min_t(unsigned int, tp->reordering,
1924 sysctl_tcp_reordering);
1925 tcp_set_ca_state(sk, TCP_CA_Loss);
1926 tp->high_seq = tp->snd_nxt;
1927 TCP_ECN_queue_cwr(tp);
1928
1929 tcp_clear_all_retrans_hints(tp);
1930}
1931
1932static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1933{
1934 tp->retrans_out = 0;
1935 tp->lost_out = 0;
1936
1937 tp->undo_marker = 0;
1938 tp->undo_retrans = 0;
1939}
1940
1941void tcp_clear_retrans(struct tcp_sock *tp)
1942{
1943 tcp_clear_retrans_partial(tp);
1944
1945 tp->fackets_out = 0;
1946 tp->sacked_out = 0;
1947}
1948
1949/* Enter Loss state. If "how" is not zero, forget all SACK information
1950 * and reset tags completely, otherwise preserve SACKs. If receiver
1951 * dropped its ofo queue, we will know this due to reneging detection.
1952 */
1953void tcp_enter_loss(struct sock *sk, int how)
1954{
1955 const struct inet_connection_sock *icsk = inet_csk(sk);
1956 struct tcp_sock *tp = tcp_sk(sk);
1957 struct sk_buff *skb;
1958
1959 /* Reduce ssthresh if it has not yet been made inside this window. */
1960 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1961 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1962 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1963 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1964 tcp_ca_event(sk, CA_EVENT_LOSS);
1965 }
1966 tp->snd_cwnd = 1;
1967 tp->snd_cwnd_cnt = 0;
1968 tp->snd_cwnd_stamp = tcp_time_stamp;
1969
1970 tp->bytes_acked = 0;
1971 tcp_clear_retrans_partial(tp);
1972
1973 if (tcp_is_reno(tp))
1974 tcp_reset_reno_sack(tp);
1975
1976 if (!how) {
1977 /* Push undo marker, if it was plain RTO and nothing
1978 * was retransmitted. */
1979 tp->undo_marker = tp->snd_una;
1980 } else {
1981 tp->sacked_out = 0;
1982 tp->fackets_out = 0;
1983 }
1984 tcp_clear_all_retrans_hints(tp);
1985
1986 tcp_for_write_queue(skb, sk) {
1987 if (skb == tcp_send_head(sk))
1988 break;
1989
1990 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1991 tp->undo_marker = 0;
1992 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1993 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1994 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1995 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1996 tp->lost_out += tcp_skb_pcount(skb);
1997 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1998 }
1999 }
2000 tcp_verify_left_out(tp);
2001
2002 tp->reordering = min_t(unsigned int, tp->reordering,
2003 sysctl_tcp_reordering);
2004 tcp_set_ca_state(sk, TCP_CA_Loss);
2005 tp->high_seq = tp->snd_nxt;
2006 TCP_ECN_queue_cwr(tp);
2007 /* Abort F-RTO algorithm if one is in progress */
2008 tp->frto_counter = 0;
2009}
2010
2011/* If ACK arrived pointing to a remembered SACK, it means that our
2012 * remembered SACKs do not reflect real state of receiver i.e.
2013 * receiver _host_ is heavily congested (or buggy).
2014 *
2015 * Do processing similar to RTO timeout.
2016 */
2017static int tcp_check_sack_reneging(struct sock *sk, int flag)
2018{
2019 if (flag & FLAG_SACK_RENEGING) {
2020 struct inet_connection_sock *icsk = inet_csk(sk);
2021 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2022
2023 tcp_enter_loss(sk, 1);
2024 icsk->icsk_retransmits++;
2025 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2026 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2027 icsk->icsk_rto, TCP_RTO_MAX);
2028 return 1;
2029 }
2030 return 0;
2031}
2032
2033static inline int tcp_fackets_out(struct tcp_sock *tp)
2034{
2035 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2036}
2037
2038/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2039 * counter when SACK is enabled (without SACK, sacked_out is used for
2040 * that purpose).
2041 *
2042 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2043 * segments up to the highest received SACK block so far and holes in
2044 * between them.
2045 *
2046 * With reordering, holes may still be in flight, so RFC3517 recovery
2047 * uses pure sacked_out (total number of SACKed segments) even though
2048 * it violates the RFC that uses duplicate ACKs, often these are equal
2049 * but when e.g. out-of-window ACKs or packet duplication occurs,
2050 * they differ. Since neither occurs due to loss, TCP should really
2051 * ignore them.
2052 */
2053static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2054{
2055 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2056}
2057
2058static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2059{
2060 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2061}
2062
2063static inline int tcp_head_timedout(struct sock *sk)
2064{
2065 struct tcp_sock *tp = tcp_sk(sk);
2066
2067 return tp->packets_out &&
2068 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2069}
2070
2071/* Linux NewReno/SACK/FACK/ECN state machine.
2072 * --------------------------------------
2073 *
2074 * "Open" Normal state, no dubious events, fast path.
2075 * "Disorder" In all the respects it is "Open",
2076 * but requires a bit more attention. It is entered when
2077 * we see some SACKs or dupacks. It is split of "Open"
2078 * mainly to move some processing from fast path to slow one.
2079 * "CWR" CWND was reduced due to some Congestion Notification event.
2080 * It can be ECN, ICMP source quench, local device congestion.
2081 * "Recovery" CWND was reduced, we are fast-retransmitting.
2082 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2083 *
2084 * tcp_fastretrans_alert() is entered:
2085 * - each incoming ACK, if state is not "Open"
2086 * - when arrived ACK is unusual, namely:
2087 * * SACK
2088 * * Duplicate ACK.
2089 * * ECN ECE.
2090 *
2091 * Counting packets in flight is pretty simple.
2092 *
2093 * in_flight = packets_out - left_out + retrans_out
2094 *
2095 * packets_out is SND.NXT-SND.UNA counted in packets.
2096 *
2097 * retrans_out is number of retransmitted segments.
2098 *
2099 * left_out is number of segments left network, but not ACKed yet.
2100 *
2101 * left_out = sacked_out + lost_out
2102 *
2103 * sacked_out: Packets, which arrived to receiver out of order
2104 * and hence not ACKed. With SACKs this number is simply
2105 * amount of SACKed data. Even without SACKs
2106 * it is easy to give pretty reliable estimate of this number,
2107 * counting duplicate ACKs.
2108 *
2109 * lost_out: Packets lost by network. TCP has no explicit
2110 * "loss notification" feedback from network (for now).
2111 * It means that this number can be only _guessed_.
2112 * Actually, it is the heuristics to predict lossage that
2113 * distinguishes different algorithms.
2114 *
2115 * F.e. after RTO, when all the queue is considered as lost,
2116 * lost_out = packets_out and in_flight = retrans_out.
2117 *
2118 * Essentially, we have now two algorithms counting
2119 * lost packets.
2120 *
2121 * FACK: It is the simplest heuristics. As soon as we decided
2122 * that something is lost, we decide that _all_ not SACKed
2123 * packets until the most forward SACK are lost. I.e.
2124 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2125 * It is absolutely correct estimate, if network does not reorder
2126 * packets. And it loses any connection to reality when reordering
2127 * takes place. We use FACK by default until reordering
2128 * is suspected on the path to this destination.
2129 *
2130 * NewReno: when Recovery is entered, we assume that one segment
2131 * is lost (classic Reno). While we are in Recovery and
2132 * a partial ACK arrives, we assume that one more packet
2133 * is lost (NewReno). This heuristics are the same in NewReno
2134 * and SACK.
2135 *
2136 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2137 * deflation etc. CWND is real congestion window, never inflated, changes
2138 * only according to classic VJ rules.
2139 *
2140 * Really tricky (and requiring careful tuning) part of algorithm
2141 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2142 * The first determines the moment _when_ we should reduce CWND and,
2143 * hence, slow down forward transmission. In fact, it determines the moment
2144 * when we decide that hole is caused by loss, rather than by a reorder.
2145 *
2146 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2147 * holes, caused by lost packets.
2148 *
2149 * And the most logically complicated part of algorithm is undo
2150 * heuristics. We detect false retransmits due to both too early
2151 * fast retransmit (reordering) and underestimated RTO, analyzing
2152 * timestamps and D-SACKs. When we detect that some segments were
2153 * retransmitted by mistake and CWND reduction was wrong, we undo
2154 * window reduction and abort recovery phase. This logic is hidden
2155 * inside several functions named tcp_try_undo_<something>.
2156 */
2157
2158/* This function decides, when we should leave Disordered state
2159 * and enter Recovery phase, reducing congestion window.
2160 *
2161 * Main question: may we further continue forward transmission
2162 * with the same cwnd?
2163 */
2164static int tcp_time_to_recover(struct sock *sk)
2165{
2166 struct tcp_sock *tp = tcp_sk(sk);
2167 __u32 packets_out;
2168
2169 /* Do not perform any recovery during F-RTO algorithm */
2170 if (tp->frto_counter)
2171 return 0;
2172
2173 /* Trick#1: The loss is proven. */
2174 if (tp->lost_out)
2175 return 1;
2176
2177 /* Not-A-Trick#2 : Classic rule... */
2178 if (tcp_dupack_heurestics(tp) > tp->reordering)
2179 return 1;
2180
2181 /* Trick#3 : when we use RFC2988 timer restart, fast
2182 * retransmit can be triggered by timeout of queue head.
2183 */
2184 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2185 return 1;
2186
2187 /* Trick#4: It is still not OK... But will it be useful to delay
2188 * recovery more?
2189 */
2190 packets_out = tp->packets_out;
2191 if (packets_out <= tp->reordering &&
2192 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2193 !tcp_may_send_now(sk)) {
2194 /* We have nothing to send. This connection is limited
2195 * either by receiver window or by application.
2196 */
2197 return 1;
2198 }
2199
2200 return 0;
2201}
2202
2203/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2204 * is against sacked "cnt", otherwise it's against facked "cnt"
2205 */
2206static void tcp_mark_head_lost(struct sock *sk, int packets)
2207{
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 struct sk_buff *skb;
2210 int cnt, oldcnt;
2211 int err;
2212 unsigned int mss;
2213
2214 WARN_ON(packets > tp->packets_out);
2215 if (tp->lost_skb_hint) {
2216 skb = tp->lost_skb_hint;
2217 cnt = tp->lost_cnt_hint;
2218 } else {
2219 skb = tcp_write_queue_head(sk);
2220 cnt = 0;
2221 }
2222
2223 tcp_for_write_queue_from(skb, sk) {
2224 if (skb == tcp_send_head(sk))
2225 break;
2226 /* TODO: do this better */
2227 /* this is not the most efficient way to do this... */
2228 tp->lost_skb_hint = skb;
2229 tp->lost_cnt_hint = cnt;
2230
2231 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2232 break;
2233
2234 oldcnt = cnt;
2235 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2236 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2237 cnt += tcp_skb_pcount(skb);
2238
2239 if (cnt > packets) {
2240 if (tcp_is_sack(tp) || (oldcnt >= packets))
2241 break;
2242
2243 mss = skb_shinfo(skb)->gso_size;
2244 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2245 if (err < 0)
2246 break;
2247 cnt = packets;
2248 }
2249
2250 tcp_skb_mark_lost(tp, skb);
2251 }
2252 tcp_verify_left_out(tp);
2253}
2254
2255/* Account newly detected lost packet(s) */
2256
2257static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2258{
2259 struct tcp_sock *tp = tcp_sk(sk);
2260
2261 if (tcp_is_reno(tp)) {
2262 tcp_mark_head_lost(sk, 1);
2263 } else if (tcp_is_fack(tp)) {
2264 int lost = tp->fackets_out - tp->reordering;
2265 if (lost <= 0)
2266 lost = 1;
2267 tcp_mark_head_lost(sk, lost);
2268 } else {
2269 int sacked_upto = tp->sacked_out - tp->reordering;
2270 if (sacked_upto < fast_rexmit)
2271 sacked_upto = fast_rexmit;
2272 tcp_mark_head_lost(sk, sacked_upto);
2273 }
2274
2275 /* New heuristics: it is possible only after we switched
2276 * to restart timer each time when something is ACKed.
2277 * Hence, we can detect timed out packets during fast
2278 * retransmit without falling to slow start.
2279 */
2280 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2281 struct sk_buff *skb;
2282
2283 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2284 : tcp_write_queue_head(sk);
2285
2286 tcp_for_write_queue_from(skb, sk) {
2287 if (skb == tcp_send_head(sk))
2288 break;
2289 if (!tcp_skb_timedout(sk, skb))
2290 break;
2291
2292 tcp_skb_mark_lost(tp, skb);
2293 }
2294
2295 tp->scoreboard_skb_hint = skb;
2296
2297 tcp_verify_left_out(tp);
2298 }
2299}
2300
2301/* CWND moderation, preventing bursts due to too big ACKs
2302 * in dubious situations.
2303 */
2304static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2305{
2306 tp->snd_cwnd = min(tp->snd_cwnd,
2307 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2308 tp->snd_cwnd_stamp = tcp_time_stamp;
2309}
2310
2311/* Lower bound on congestion window is slow start threshold
2312 * unless congestion avoidance choice decides to overide it.
2313 */
2314static inline u32 tcp_cwnd_min(const struct sock *sk)
2315{
2316 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2317
2318 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2319}
2320
2321/* Decrease cwnd each second ack. */
2322static void tcp_cwnd_down(struct sock *sk, int flag)
2323{
2324 struct tcp_sock *tp = tcp_sk(sk);
2325 int decr = tp->snd_cwnd_cnt + 1;
2326
2327 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2328 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2329 tp->snd_cwnd_cnt = decr & 1;
2330 decr >>= 1;
2331
2332 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2333 tp->snd_cwnd -= decr;
2334
2335 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2336 tp->snd_cwnd_stamp = tcp_time_stamp;
2337 }
2338}
2339
2340/* Nothing was retransmitted or returned timestamp is less
2341 * than timestamp of the first retransmission.
2342 */
2343static inline int tcp_packet_delayed(struct tcp_sock *tp)
2344{
2345 return !tp->retrans_stamp ||
2346 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2347 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2348}
2349
2350/* Undo procedures. */
2351
2352#if FASTRETRANS_DEBUG > 1
2353static void DBGUNDO(struct sock *sk, const char *msg)
2354{
2355 struct tcp_sock *tp = tcp_sk(sk);
2356 struct inet_sock *inet = inet_sk(sk);
2357
2358 if (sk->sk_family == AF_INET) {
2359 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2360 msg,
2361 &inet->daddr, ntohs(inet->dport),
2362 tp->snd_cwnd, tcp_left_out(tp),
2363 tp->snd_ssthresh, tp->prior_ssthresh,
2364 tp->packets_out);
2365 }
2366#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2367 else if (sk->sk_family == AF_INET6) {
2368 struct ipv6_pinfo *np = inet6_sk(sk);
2369 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2370 msg,
2371 &np->daddr, ntohs(inet->dport),
2372 tp->snd_cwnd, tcp_left_out(tp),
2373 tp->snd_ssthresh, tp->prior_ssthresh,
2374 tp->packets_out);
2375 }
2376#endif
2377}
2378#else
2379#define DBGUNDO(x...) do { } while (0)
2380#endif
2381
2382static void tcp_undo_cwr(struct sock *sk, const int undo)
2383{
2384 struct tcp_sock *tp = tcp_sk(sk);
2385
2386 if (tp->prior_ssthresh) {
2387 const struct inet_connection_sock *icsk = inet_csk(sk);
2388
2389 if (icsk->icsk_ca_ops->undo_cwnd)
2390 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2391 else
2392 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2393
2394 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2395 tp->snd_ssthresh = tp->prior_ssthresh;
2396 TCP_ECN_withdraw_cwr(tp);
2397 }
2398 } else {
2399 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2400 }
2401 tcp_moderate_cwnd(tp);
2402 tp->snd_cwnd_stamp = tcp_time_stamp;
2403}
2404
2405static inline int tcp_may_undo(struct tcp_sock *tp)
2406{
2407 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2408}
2409
2410/* People celebrate: "We love our President!" */
2411static int tcp_try_undo_recovery(struct sock *sk)
2412{
2413 struct tcp_sock *tp = tcp_sk(sk);
2414
2415 if (tcp_may_undo(tp)) {
2416 int mib_idx;
2417
2418 /* Happy end! We did not retransmit anything
2419 * or our original transmission succeeded.
2420 */
2421 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2422 tcp_undo_cwr(sk, 1);
2423 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2424 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2425 else
2426 mib_idx = LINUX_MIB_TCPFULLUNDO;
2427
2428 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2429 tp->undo_marker = 0;
2430 }
2431 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2432 /* Hold old state until something *above* high_seq
2433 * is ACKed. For Reno it is MUST to prevent false
2434 * fast retransmits (RFC2582). SACK TCP is safe. */
2435 tcp_moderate_cwnd(tp);
2436 return 1;
2437 }
2438 tcp_set_ca_state(sk, TCP_CA_Open);
2439 return 0;
2440}
2441
2442/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2443static void tcp_try_undo_dsack(struct sock *sk)
2444{
2445 struct tcp_sock *tp = tcp_sk(sk);
2446
2447 if (tp->undo_marker && !tp->undo_retrans) {
2448 DBGUNDO(sk, "D-SACK");
2449 tcp_undo_cwr(sk, 1);
2450 tp->undo_marker = 0;
2451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2452 }
2453}
2454
2455/* Undo during fast recovery after partial ACK. */
2456
2457static int tcp_try_undo_partial(struct sock *sk, int acked)
2458{
2459 struct tcp_sock *tp = tcp_sk(sk);
2460 /* Partial ACK arrived. Force Hoe's retransmit. */
2461 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2462
2463 if (tcp_may_undo(tp)) {
2464 /* Plain luck! Hole if filled with delayed
2465 * packet, rather than with a retransmit.
2466 */
2467 if (tp->retrans_out == 0)
2468 tp->retrans_stamp = 0;
2469
2470 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2471
2472 DBGUNDO(sk, "Hoe");
2473 tcp_undo_cwr(sk, 0);
2474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2475
2476 /* So... Do not make Hoe's retransmit yet.
2477 * If the first packet was delayed, the rest
2478 * ones are most probably delayed as well.
2479 */
2480 failed = 0;
2481 }
2482 return failed;
2483}
2484
2485/* Undo during loss recovery after partial ACK. */
2486static int tcp_try_undo_loss(struct sock *sk)
2487{
2488 struct tcp_sock *tp = tcp_sk(sk);
2489
2490 if (tcp_may_undo(tp)) {
2491 struct sk_buff *skb;
2492 tcp_for_write_queue(skb, sk) {
2493 if (skb == tcp_send_head(sk))
2494 break;
2495 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2496 }
2497
2498 tcp_clear_all_retrans_hints(tp);
2499
2500 DBGUNDO(sk, "partial loss");
2501 tp->lost_out = 0;
2502 tcp_undo_cwr(sk, 1);
2503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2504 inet_csk(sk)->icsk_retransmits = 0;
2505 tp->undo_marker = 0;
2506 if (tcp_is_sack(tp))
2507 tcp_set_ca_state(sk, TCP_CA_Open);
2508 return 1;
2509 }
2510 return 0;
2511}
2512
2513static inline void tcp_complete_cwr(struct sock *sk)
2514{
2515 struct tcp_sock *tp = tcp_sk(sk);
2516 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2517 tp->snd_cwnd_stamp = tcp_time_stamp;
2518 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2519}
2520
2521static void tcp_try_keep_open(struct sock *sk)
2522{
2523 struct tcp_sock *tp = tcp_sk(sk);
2524 int state = TCP_CA_Open;
2525
2526 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2527 state = TCP_CA_Disorder;
2528
2529 if (inet_csk(sk)->icsk_ca_state != state) {
2530 tcp_set_ca_state(sk, state);
2531 tp->high_seq = tp->snd_nxt;
2532 }
2533}
2534
2535static void tcp_try_to_open(struct sock *sk, int flag)
2536{
2537 struct tcp_sock *tp = tcp_sk(sk);
2538
2539 tcp_verify_left_out(tp);
2540
2541 if (!tp->frto_counter && tp->retrans_out == 0)
2542 tp->retrans_stamp = 0;
2543
2544 if (flag & FLAG_ECE)
2545 tcp_enter_cwr(sk, 1);
2546
2547 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2548 tcp_try_keep_open(sk);
2549 tcp_moderate_cwnd(tp);
2550 } else {
2551 tcp_cwnd_down(sk, flag);
2552 }
2553}
2554
2555static void tcp_mtup_probe_failed(struct sock *sk)
2556{
2557 struct inet_connection_sock *icsk = inet_csk(sk);
2558
2559 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2560 icsk->icsk_mtup.probe_size = 0;
2561}
2562
2563static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2564{
2565 struct tcp_sock *tp = tcp_sk(sk);
2566 struct inet_connection_sock *icsk = inet_csk(sk);
2567
2568 /* FIXME: breaks with very large cwnd */
2569 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2570 tp->snd_cwnd = tp->snd_cwnd *
2571 tcp_mss_to_mtu(sk, tp->mss_cache) /
2572 icsk->icsk_mtup.probe_size;
2573 tp->snd_cwnd_cnt = 0;
2574 tp->snd_cwnd_stamp = tcp_time_stamp;
2575 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2576
2577 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2578 icsk->icsk_mtup.probe_size = 0;
2579 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2580}
2581
2582/* Do a simple retransmit without using the backoff mechanisms in
2583 * tcp_timer. This is used for path mtu discovery.
2584 * The socket is already locked here.
2585 */
2586void tcp_simple_retransmit(struct sock *sk)
2587{
2588 const struct inet_connection_sock *icsk = inet_csk(sk);
2589 struct tcp_sock *tp = tcp_sk(sk);
2590 struct sk_buff *skb;
2591 unsigned int mss = tcp_current_mss(sk, 0);
2592 u32 prior_lost = tp->lost_out;
2593
2594 tcp_for_write_queue(skb, sk) {
2595 if (skb == tcp_send_head(sk))
2596 break;
2597 if (skb->len > mss &&
2598 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2599 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2600 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2601 tp->retrans_out -= tcp_skb_pcount(skb);
2602 }
2603 tcp_skb_mark_lost_uncond_verify(tp, skb);
2604 }
2605 }
2606
2607 tcp_clear_retrans_hints_partial(tp);
2608
2609 if (prior_lost == tp->lost_out)
2610 return;
2611
2612 if (tcp_is_reno(tp))
2613 tcp_limit_reno_sacked(tp);
2614
2615 tcp_verify_left_out(tp);
2616
2617 /* Don't muck with the congestion window here.
2618 * Reason is that we do not increase amount of _data_
2619 * in network, but units changed and effective
2620 * cwnd/ssthresh really reduced now.
2621 */
2622 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2623 tp->high_seq = tp->snd_nxt;
2624 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2625 tp->prior_ssthresh = 0;
2626 tp->undo_marker = 0;
2627 tcp_set_ca_state(sk, TCP_CA_Loss);
2628 }
2629 tcp_xmit_retransmit_queue(sk);
2630}
2631
2632/* Process an event, which can update packets-in-flight not trivially.
2633 * Main goal of this function is to calculate new estimate for left_out,
2634 * taking into account both packets sitting in receiver's buffer and
2635 * packets lost by network.
2636 *
2637 * Besides that it does CWND reduction, when packet loss is detected
2638 * and changes state of machine.
2639 *
2640 * It does _not_ decide what to send, it is made in function
2641 * tcp_xmit_retransmit_queue().
2642 */
2643static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2644{
2645 struct inet_connection_sock *icsk = inet_csk(sk);
2646 struct tcp_sock *tp = tcp_sk(sk);
2647 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2648 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2649 (tcp_fackets_out(tp) > tp->reordering));
2650 int fast_rexmit = 0, mib_idx;
2651
2652 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2653 tp->sacked_out = 0;
2654 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2655 tp->fackets_out = 0;
2656
2657 /* Now state machine starts.
2658 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2659 if (flag & FLAG_ECE)
2660 tp->prior_ssthresh = 0;
2661
2662 /* B. In all the states check for reneging SACKs. */
2663 if (tcp_check_sack_reneging(sk, flag))
2664 return;
2665
2666 /* C. Process data loss notification, provided it is valid. */
2667 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2668 before(tp->snd_una, tp->high_seq) &&
2669 icsk->icsk_ca_state != TCP_CA_Open &&
2670 tp->fackets_out > tp->reordering) {
2671 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2672 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2673 }
2674
2675 /* D. Check consistency of the current state. */
2676 tcp_verify_left_out(tp);
2677
2678 /* E. Check state exit conditions. State can be terminated
2679 * when high_seq is ACKed. */
2680 if (icsk->icsk_ca_state == TCP_CA_Open) {
2681 WARN_ON(tp->retrans_out != 0);
2682 tp->retrans_stamp = 0;
2683 } else if (!before(tp->snd_una, tp->high_seq)) {
2684 switch (icsk->icsk_ca_state) {
2685 case TCP_CA_Loss:
2686 icsk->icsk_retransmits = 0;
2687 if (tcp_try_undo_recovery(sk))
2688 return;
2689 break;
2690
2691 case TCP_CA_CWR:
2692 /* CWR is to be held something *above* high_seq
2693 * is ACKed for CWR bit to reach receiver. */
2694 if (tp->snd_una != tp->high_seq) {
2695 tcp_complete_cwr(sk);
2696 tcp_set_ca_state(sk, TCP_CA_Open);
2697 }
2698 break;
2699
2700 case TCP_CA_Disorder:
2701 tcp_try_undo_dsack(sk);
2702 if (!tp->undo_marker ||
2703 /* For SACK case do not Open to allow to undo
2704 * catching for all duplicate ACKs. */
2705 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2706 tp->undo_marker = 0;
2707 tcp_set_ca_state(sk, TCP_CA_Open);
2708 }
2709 break;
2710
2711 case TCP_CA_Recovery:
2712 if (tcp_is_reno(tp))
2713 tcp_reset_reno_sack(tp);
2714 if (tcp_try_undo_recovery(sk))
2715 return;
2716 tcp_complete_cwr(sk);
2717 break;
2718 }
2719 }
2720
2721 /* F. Process state. */
2722 switch (icsk->icsk_ca_state) {
2723 case TCP_CA_Recovery:
2724 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2725 if (tcp_is_reno(tp) && is_dupack)
2726 tcp_add_reno_sack(sk);
2727 } else
2728 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2729 break;
2730 case TCP_CA_Loss:
2731 if (flag & FLAG_DATA_ACKED)
2732 icsk->icsk_retransmits = 0;
2733 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2734 tcp_reset_reno_sack(tp);
2735 if (!tcp_try_undo_loss(sk)) {
2736 tcp_moderate_cwnd(tp);
2737 tcp_xmit_retransmit_queue(sk);
2738 return;
2739 }
2740 if (icsk->icsk_ca_state != TCP_CA_Open)
2741 return;
2742 /* Loss is undone; fall through to processing in Open state. */
2743 default:
2744 if (tcp_is_reno(tp)) {
2745 if (flag & FLAG_SND_UNA_ADVANCED)
2746 tcp_reset_reno_sack(tp);
2747 if (is_dupack)
2748 tcp_add_reno_sack(sk);
2749 }
2750
2751 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2752 tcp_try_undo_dsack(sk);
2753
2754 if (!tcp_time_to_recover(sk)) {
2755 tcp_try_to_open(sk, flag);
2756 return;
2757 }
2758
2759 /* MTU probe failure: don't reduce cwnd */
2760 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2761 icsk->icsk_mtup.probe_size &&
2762 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2763 tcp_mtup_probe_failed(sk);
2764 /* Restores the reduction we did in tcp_mtup_probe() */
2765 tp->snd_cwnd++;
2766 tcp_simple_retransmit(sk);
2767 return;
2768 }
2769
2770 /* Otherwise enter Recovery state */
2771
2772 if (tcp_is_reno(tp))
2773 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2774 else
2775 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2776
2777 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2778
2779 tp->high_seq = tp->snd_nxt;
2780 tp->prior_ssthresh = 0;
2781 tp->undo_marker = tp->snd_una;
2782 tp->undo_retrans = tp->retrans_out;
2783
2784 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2785 if (!(flag & FLAG_ECE))
2786 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2787 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2788 TCP_ECN_queue_cwr(tp);
2789 }
2790
2791 tp->bytes_acked = 0;
2792 tp->snd_cwnd_cnt = 0;
2793 tcp_set_ca_state(sk, TCP_CA_Recovery);
2794 fast_rexmit = 1;
2795 }
2796
2797 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2798 tcp_update_scoreboard(sk, fast_rexmit);
2799 tcp_cwnd_down(sk, flag);
2800 tcp_xmit_retransmit_queue(sk);
2801}
2802
2803/* Read draft-ietf-tcplw-high-performance before mucking
2804 * with this code. (Supersedes RFC1323)
2805 */
2806static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2807{
2808 /* RTTM Rule: A TSecr value received in a segment is used to
2809 * update the averaged RTT measurement only if the segment
2810 * acknowledges some new data, i.e., only if it advances the
2811 * left edge of the send window.
2812 *
2813 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2814 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2815 *
2816 * Changed: reset backoff as soon as we see the first valid sample.
2817 * If we do not, we get strongly overestimated rto. With timestamps
2818 * samples are accepted even from very old segments: f.e., when rtt=1
2819 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2820 * answer arrives rto becomes 120 seconds! If at least one of segments
2821 * in window is lost... Voila. --ANK (010210)
2822 */
2823 struct tcp_sock *tp = tcp_sk(sk);
2824 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2825 tcp_rtt_estimator(sk, seq_rtt);
2826 tcp_set_rto(sk);
2827 inet_csk(sk)->icsk_backoff = 0;
2828 tcp_bound_rto(sk);
2829}
2830
2831static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2832{
2833 /* We don't have a timestamp. Can only use
2834 * packets that are not retransmitted to determine
2835 * rtt estimates. Also, we must not reset the
2836 * backoff for rto until we get a non-retransmitted
2837 * packet. This allows us to deal with a situation
2838 * where the network delay has increased suddenly.
2839 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2840 */
2841
2842 if (flag & FLAG_RETRANS_DATA_ACKED)
2843 return;
2844
2845 tcp_rtt_estimator(sk, seq_rtt);
2846 tcp_set_rto(sk);
2847 inet_csk(sk)->icsk_backoff = 0;
2848 tcp_bound_rto(sk);
2849}
2850
2851static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2852 const s32 seq_rtt)
2853{
2854 const struct tcp_sock *tp = tcp_sk(sk);
2855 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2856 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2857 tcp_ack_saw_tstamp(sk, flag);
2858 else if (seq_rtt >= 0)
2859 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2860}
2861
2862static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2863{
2864 const struct inet_connection_sock *icsk = inet_csk(sk);
2865 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2866 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2867}
2868
2869/* Restart timer after forward progress on connection.
2870 * RFC2988 recommends to restart timer to now+rto.
2871 */
2872static void tcp_rearm_rto(struct sock *sk)
2873{
2874 struct tcp_sock *tp = tcp_sk(sk);
2875
2876 if (!tp->packets_out) {
2877 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2878 } else {
2879 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2880 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2881 }
2882}
2883
2884/* If we get here, the whole TSO packet has not been acked. */
2885static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2886{
2887 struct tcp_sock *tp = tcp_sk(sk);
2888 u32 packets_acked;
2889
2890 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2891
2892 packets_acked = tcp_skb_pcount(skb);
2893 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2894 return 0;
2895 packets_acked -= tcp_skb_pcount(skb);
2896
2897 if (packets_acked) {
2898 BUG_ON(tcp_skb_pcount(skb) == 0);
2899 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2900 }
2901
2902 return packets_acked;
2903}
2904
2905/* Remove acknowledged frames from the retransmission queue. If our packet
2906 * is before the ack sequence we can discard it as it's confirmed to have
2907 * arrived at the other end.
2908 */
2909static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2910 u32 prior_snd_una)
2911{
2912 struct tcp_sock *tp = tcp_sk(sk);
2913 const struct inet_connection_sock *icsk = inet_csk(sk);
2914 struct sk_buff *skb;
2915 u32 now = tcp_time_stamp;
2916 int fully_acked = 1;
2917 int flag = 0;
2918 u32 pkts_acked = 0;
2919 u32 reord = tp->packets_out;
2920 u32 prior_sacked = tp->sacked_out;
2921 s32 seq_rtt = -1;
2922 s32 ca_seq_rtt = -1;
2923 ktime_t last_ackt = net_invalid_timestamp();
2924
2925 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2926 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2927 u32 end_seq;
2928 u32 acked_pcount;
2929 u8 sacked = scb->sacked;
2930
2931 /* Determine how many packets and what bytes were acked, tso and else */
2932 if (after(scb->end_seq, tp->snd_una)) {
2933 if (tcp_skb_pcount(skb) == 1 ||
2934 !after(tp->snd_una, scb->seq))
2935 break;
2936
2937 acked_pcount = tcp_tso_acked(sk, skb);
2938 if (!acked_pcount)
2939 break;
2940
2941 fully_acked = 0;
2942 end_seq = tp->snd_una;
2943 } else {
2944 acked_pcount = tcp_skb_pcount(skb);
2945 end_seq = scb->end_seq;
2946 }
2947
2948 /* MTU probing checks */
2949 if (fully_acked && icsk->icsk_mtup.probe_size &&
2950 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2951 tcp_mtup_probe_success(sk, skb);
2952 }
2953
2954 if (sacked & TCPCB_RETRANS) {
2955 if (sacked & TCPCB_SACKED_RETRANS)
2956 tp->retrans_out -= acked_pcount;
2957 flag |= FLAG_RETRANS_DATA_ACKED;
2958 ca_seq_rtt = -1;
2959 seq_rtt = -1;
2960 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2961 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2962 } else {
2963 ca_seq_rtt = now - scb->when;
2964 last_ackt = skb->tstamp;
2965 if (seq_rtt < 0) {
2966 seq_rtt = ca_seq_rtt;
2967 }
2968 if (!(sacked & TCPCB_SACKED_ACKED))
2969 reord = min(pkts_acked, reord);
2970 }
2971
2972 if (sacked & TCPCB_SACKED_ACKED)
2973 tp->sacked_out -= acked_pcount;
2974 if (sacked & TCPCB_LOST)
2975 tp->lost_out -= acked_pcount;
2976
2977 tp->packets_out -= acked_pcount;
2978 pkts_acked += acked_pcount;
2979
2980 /* Initial outgoing SYN's get put onto the write_queue
2981 * just like anything else we transmit. It is not
2982 * true data, and if we misinform our callers that
2983 * this ACK acks real data, we will erroneously exit
2984 * connection startup slow start one packet too
2985 * quickly. This is severely frowned upon behavior.
2986 */
2987 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2988 flag |= FLAG_DATA_ACKED;
2989 } else {
2990 flag |= FLAG_SYN_ACKED;
2991 tp->retrans_stamp = 0;
2992 }
2993
2994 if (!fully_acked)
2995 break;
2996
2997 tcp_unlink_write_queue(skb, sk);
2998 sk_wmem_free_skb(sk, skb);
2999 tp->scoreboard_skb_hint = NULL;
3000 if (skb == tp->retransmit_skb_hint)
3001 tp->retransmit_skb_hint = NULL;
3002 if (skb == tp->lost_skb_hint)
3003 tp->lost_skb_hint = NULL;
3004 }
3005
3006 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3007 tp->snd_up = tp->snd_una;
3008
3009 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3010 flag |= FLAG_SACK_RENEGING;
3011
3012 if (flag & FLAG_ACKED) {
3013 const struct tcp_congestion_ops *ca_ops
3014 = inet_csk(sk)->icsk_ca_ops;
3015
3016 tcp_ack_update_rtt(sk, flag, seq_rtt);
3017 tcp_rearm_rto(sk);
3018
3019 if (tcp_is_reno(tp)) {
3020 tcp_remove_reno_sacks(sk, pkts_acked);
3021 } else {
3022 /* Non-retransmitted hole got filled? That's reordering */
3023 if (reord < prior_fackets)
3024 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3025
3026 /* No need to care for underflows here because
3027 * the lost_skb_hint gets NULLed if we're past it
3028 * (or something non-trivial happened)
3029 */
3030 if (tcp_is_fack(tp))
3031 tp->lost_cnt_hint -= pkts_acked;
3032 else
3033 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3034 }
3035
3036 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3037
3038 if (ca_ops->pkts_acked) {
3039 s32 rtt_us = -1;
3040
3041 /* Is the ACK triggering packet unambiguous? */
3042 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3043 /* High resolution needed and available? */
3044 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3045 !ktime_equal(last_ackt,
3046 net_invalid_timestamp()))
3047 rtt_us = ktime_us_delta(ktime_get_real(),
3048 last_ackt);
3049 else if (ca_seq_rtt > 0)
3050 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3051 }
3052
3053 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3054 }
3055 }
3056
3057#if FASTRETRANS_DEBUG > 0
3058 WARN_ON((int)tp->sacked_out < 0);
3059 WARN_ON((int)tp->lost_out < 0);
3060 WARN_ON((int)tp->retrans_out < 0);
3061 if (!tp->packets_out && tcp_is_sack(tp)) {
3062 icsk = inet_csk(sk);
3063 if (tp->lost_out) {
3064 printk(KERN_DEBUG "Leak l=%u %d\n",
3065 tp->lost_out, icsk->icsk_ca_state);
3066 tp->lost_out = 0;
3067 }
3068 if (tp->sacked_out) {
3069 printk(KERN_DEBUG "Leak s=%u %d\n",
3070 tp->sacked_out, icsk->icsk_ca_state);
3071 tp->sacked_out = 0;
3072 }
3073 if (tp->retrans_out) {
3074 printk(KERN_DEBUG "Leak r=%u %d\n",
3075 tp->retrans_out, icsk->icsk_ca_state);
3076 tp->retrans_out = 0;
3077 }
3078 }
3079#endif
3080 return flag;
3081}
3082
3083static void tcp_ack_probe(struct sock *sk)
3084{
3085 const struct tcp_sock *tp = tcp_sk(sk);
3086 struct inet_connection_sock *icsk = inet_csk(sk);
3087
3088 /* Was it a usable window open? */
3089
3090 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3091 icsk->icsk_backoff = 0;
3092 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3093 /* Socket must be waked up by subsequent tcp_data_snd_check().
3094 * This function is not for random using!
3095 */
3096 } else {
3097 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3098 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3099 TCP_RTO_MAX);
3100 }
3101}
3102
3103static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3104{
3105 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3106 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3107}
3108
3109static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3110{
3111 const struct tcp_sock *tp = tcp_sk(sk);
3112 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3113 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3114}
3115
3116/* Check that window update is acceptable.
3117 * The function assumes that snd_una<=ack<=snd_next.
3118 */
3119static inline int tcp_may_update_window(const struct tcp_sock *tp,
3120 const u32 ack, const u32 ack_seq,
3121 const u32 nwin)
3122{
3123 return (after(ack, tp->snd_una) ||
3124 after(ack_seq, tp->snd_wl1) ||
3125 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3126}
3127
3128/* Update our send window.
3129 *
3130 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3131 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3132 */
3133static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3134 u32 ack_seq)
3135{
3136 struct tcp_sock *tp = tcp_sk(sk);
3137 int flag = 0;
3138 u32 nwin = ntohs(tcp_hdr(skb)->window);
3139
3140 if (likely(!tcp_hdr(skb)->syn))
3141 nwin <<= tp->rx_opt.snd_wscale;
3142
3143 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3144 flag |= FLAG_WIN_UPDATE;
3145 tcp_update_wl(tp, ack, ack_seq);
3146
3147 if (tp->snd_wnd != nwin) {
3148 tp->snd_wnd = nwin;
3149
3150 /* Note, it is the only place, where
3151 * fast path is recovered for sending TCP.
3152 */
3153 tp->pred_flags = 0;
3154 tcp_fast_path_check(sk);
3155
3156 if (nwin > tp->max_window) {
3157 tp->max_window = nwin;
3158 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3159 }
3160 }
3161 }
3162
3163 tp->snd_una = ack;
3164
3165 return flag;
3166}
3167
3168/* A very conservative spurious RTO response algorithm: reduce cwnd and
3169 * continue in congestion avoidance.
3170 */
3171static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3172{
3173 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3174 tp->snd_cwnd_cnt = 0;
3175 tp->bytes_acked = 0;
3176 TCP_ECN_queue_cwr(tp);
3177 tcp_moderate_cwnd(tp);
3178}
3179
3180/* A conservative spurious RTO response algorithm: reduce cwnd using
3181 * rate halving and continue in congestion avoidance.
3182 */
3183static void tcp_ratehalving_spur_to_response(struct sock *sk)
3184{
3185 tcp_enter_cwr(sk, 0);
3186}
3187
3188static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3189{
3190 if (flag & FLAG_ECE)
3191 tcp_ratehalving_spur_to_response(sk);
3192 else
3193 tcp_undo_cwr(sk, 1);
3194}
3195
3196/* F-RTO spurious RTO detection algorithm (RFC4138)
3197 *
3198 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3199 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3200 * window (but not to or beyond highest sequence sent before RTO):
3201 * On First ACK, send two new segments out.
3202 * On Second ACK, RTO was likely spurious. Do spurious response (response
3203 * algorithm is not part of the F-RTO detection algorithm
3204 * given in RFC4138 but can be selected separately).
3205 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3206 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3207 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3208 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3209 *
3210 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3211 * original window even after we transmit two new data segments.
3212 *
3213 * SACK version:
3214 * on first step, wait until first cumulative ACK arrives, then move to
3215 * the second step. In second step, the next ACK decides.
3216 *
3217 * F-RTO is implemented (mainly) in four functions:
3218 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3219 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3220 * called when tcp_use_frto() showed green light
3221 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3222 * - tcp_enter_frto_loss() is called if there is not enough evidence
3223 * to prove that the RTO is indeed spurious. It transfers the control
3224 * from F-RTO to the conventional RTO recovery
3225 */
3226static int tcp_process_frto(struct sock *sk, int flag)
3227{
3228 struct tcp_sock *tp = tcp_sk(sk);
3229
3230 tcp_verify_left_out(tp);
3231
3232 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3233 if (flag & FLAG_DATA_ACKED)
3234 inet_csk(sk)->icsk_retransmits = 0;
3235
3236 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3237 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3238 tp->undo_marker = 0;
3239
3240 if (!before(tp->snd_una, tp->frto_highmark)) {
3241 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3242 return 1;
3243 }
3244
3245 if (!tcp_is_sackfrto(tp)) {
3246 /* RFC4138 shortcoming in step 2; should also have case c):
3247 * ACK isn't duplicate nor advances window, e.g., opposite dir
3248 * data, winupdate
3249 */
3250 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3251 return 1;
3252
3253 if (!(flag & FLAG_DATA_ACKED)) {
3254 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3255 flag);
3256 return 1;
3257 }
3258 } else {
3259 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3260 /* Prevent sending of new data. */
3261 tp->snd_cwnd = min(tp->snd_cwnd,
3262 tcp_packets_in_flight(tp));
3263 return 1;
3264 }
3265
3266 if ((tp->frto_counter >= 2) &&
3267 (!(flag & FLAG_FORWARD_PROGRESS) ||
3268 ((flag & FLAG_DATA_SACKED) &&
3269 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3270 /* RFC4138 shortcoming (see comment above) */
3271 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3272 (flag & FLAG_NOT_DUP))
3273 return 1;
3274
3275 tcp_enter_frto_loss(sk, 3, flag);
3276 return 1;
3277 }
3278 }
3279
3280 if (tp->frto_counter == 1) {
3281 /* tcp_may_send_now needs to see updated state */
3282 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3283 tp->frto_counter = 2;
3284
3285 if (!tcp_may_send_now(sk))
3286 tcp_enter_frto_loss(sk, 2, flag);
3287
3288 return 1;
3289 } else {
3290 switch (sysctl_tcp_frto_response) {
3291 case 2:
3292 tcp_undo_spur_to_response(sk, flag);
3293 break;
3294 case 1:
3295 tcp_conservative_spur_to_response(tp);
3296 break;
3297 default:
3298 tcp_ratehalving_spur_to_response(sk);
3299 break;
3300 }
3301 tp->frto_counter = 0;
3302 tp->undo_marker = 0;
3303 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3304 }
3305 return 0;
3306}
3307
3308/* This routine deals with incoming acks, but not outgoing ones. */
3309static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3310{
3311 struct inet_connection_sock *icsk = inet_csk(sk);
3312 struct tcp_sock *tp = tcp_sk(sk);
3313 u32 prior_snd_una = tp->snd_una;
3314 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3315 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3316 u32 prior_in_flight;
3317 u32 prior_fackets;
3318 int prior_packets;
3319 int frto_cwnd = 0;
3320
3321 /* If the ack is newer than sent or older than previous acks
3322 * then we can probably ignore it.
3323 */
3324 if (after(ack, tp->snd_nxt))
3325 goto uninteresting_ack;
3326
3327 if (before(ack, prior_snd_una))
3328 goto old_ack;
3329
3330 if (after(ack, prior_snd_una))
3331 flag |= FLAG_SND_UNA_ADVANCED;
3332
3333 if (sysctl_tcp_abc) {
3334 if (icsk->icsk_ca_state < TCP_CA_CWR)
3335 tp->bytes_acked += ack - prior_snd_una;
3336 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3337 /* we assume just one segment left network */
3338 tp->bytes_acked += min(ack - prior_snd_una,
3339 tp->mss_cache);
3340 }
3341
3342 prior_fackets = tp->fackets_out;
3343 prior_in_flight = tcp_packets_in_flight(tp);
3344
3345 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3346 /* Window is constant, pure forward advance.
3347 * No more checks are required.
3348 * Note, we use the fact that SND.UNA>=SND.WL2.
3349 */
3350 tcp_update_wl(tp, ack, ack_seq);
3351 tp->snd_una = ack;
3352 flag |= FLAG_WIN_UPDATE;
3353
3354 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3355
3356 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3357 } else {
3358 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3359 flag |= FLAG_DATA;
3360 else
3361 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3362
3363 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3364
3365 if (TCP_SKB_CB(skb)->sacked)
3366 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3367
3368 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3369 flag |= FLAG_ECE;
3370
3371 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3372 }
3373
3374 /* We passed data and got it acked, remove any soft error
3375 * log. Something worked...
3376 */
3377 sk->sk_err_soft = 0;
3378 icsk->icsk_probes_out = 0;
3379 tp->rcv_tstamp = tcp_time_stamp;
3380 prior_packets = tp->packets_out;
3381 if (!prior_packets)
3382 goto no_queue;
3383
3384 /* See if we can take anything off of the retransmit queue. */
3385 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3386
3387 if (tp->frto_counter)
3388 frto_cwnd = tcp_process_frto(sk, flag);
3389 /* Guarantee sacktag reordering detection against wrap-arounds */
3390 if (before(tp->frto_highmark, tp->snd_una))
3391 tp->frto_highmark = 0;
3392
3393 if (tcp_ack_is_dubious(sk, flag)) {
3394 /* Advance CWND, if state allows this. */
3395 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3396 tcp_may_raise_cwnd(sk, flag))
3397 tcp_cong_avoid(sk, ack, prior_in_flight);
3398 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3399 flag);
3400 } else {
3401 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3402 tcp_cong_avoid(sk, ack, prior_in_flight);
3403 }
3404
3405 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3406 dst_confirm(sk->sk_dst_cache);
3407
3408 return 1;
3409
3410no_queue:
3411 /* If this ack opens up a zero window, clear backoff. It was
3412 * being used to time the probes, and is probably far higher than
3413 * it needs to be for normal retransmission.
3414 */
3415 if (tcp_send_head(sk))
3416 tcp_ack_probe(sk);
3417 return 1;
3418
3419old_ack:
3420 if (TCP_SKB_CB(skb)->sacked) {
3421 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3422 if (icsk->icsk_ca_state == TCP_CA_Open)
3423 tcp_try_keep_open(sk);
3424 }
3425
3426uninteresting_ack:
3427 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3428 return 0;
3429}
3430
3431/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3432 * But, this can also be called on packets in the established flow when
3433 * the fast version below fails.
3434 */
3435void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3436 int estab)
3437{
3438 unsigned char *ptr;
3439 struct tcphdr *th = tcp_hdr(skb);
3440 int length = (th->doff * 4) - sizeof(struct tcphdr);
3441
3442 ptr = (unsigned char *)(th + 1);
3443 opt_rx->saw_tstamp = 0;
3444
3445 while (length > 0) {
3446 int opcode = *ptr++;
3447 int opsize;
3448
3449 switch (opcode) {
3450 case TCPOPT_EOL:
3451 return;
3452 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3453 length--;
3454 continue;
3455 default:
3456 opsize = *ptr++;
3457 if (opsize < 2) /* "silly options" */
3458 return;
3459 if (opsize > length)
3460 return; /* don't parse partial options */
3461 switch (opcode) {
3462 case TCPOPT_MSS:
3463 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3464 u16 in_mss = get_unaligned_be16(ptr);
3465 if (in_mss) {
3466 if (opt_rx->user_mss &&
3467 opt_rx->user_mss < in_mss)
3468 in_mss = opt_rx->user_mss;
3469 opt_rx->mss_clamp = in_mss;
3470 }
3471 }
3472 break;
3473 case TCPOPT_WINDOW:
3474 if (opsize == TCPOLEN_WINDOW && th->syn &&
3475 !estab && sysctl_tcp_window_scaling) {
3476 __u8 snd_wscale = *(__u8 *)ptr;
3477 opt_rx->wscale_ok = 1;
3478 if (snd_wscale > 14) {
3479 if (net_ratelimit())
3480 printk(KERN_INFO "tcp_parse_options: Illegal window "
3481 "scaling value %d >14 received.\n",
3482 snd_wscale);
3483 snd_wscale = 14;
3484 }
3485 opt_rx->snd_wscale = snd_wscale;
3486 }
3487 break;
3488 case TCPOPT_TIMESTAMP:
3489 if ((opsize == TCPOLEN_TIMESTAMP) &&
3490 ((estab && opt_rx->tstamp_ok) ||
3491 (!estab && sysctl_tcp_timestamps))) {
3492 opt_rx->saw_tstamp = 1;
3493 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3494 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3495 }
3496 break;
3497 case TCPOPT_SACK_PERM:
3498 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3499 !estab && sysctl_tcp_sack) {
3500 opt_rx->sack_ok = 1;
3501 tcp_sack_reset(opt_rx);
3502 }
3503 break;
3504
3505 case TCPOPT_SACK:
3506 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3507 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3508 opt_rx->sack_ok) {
3509 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3510 }
3511 break;
3512#ifdef CONFIG_TCP_MD5SIG
3513 case TCPOPT_MD5SIG:
3514 /*
3515 * The MD5 Hash has already been
3516 * checked (see tcp_v{4,6}_do_rcv()).
3517 */
3518 break;
3519#endif
3520 }
3521
3522 ptr += opsize-2;
3523 length -= opsize;
3524 }
3525 }
3526}
3527
3528static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3529{
3530 __be32 *ptr = (__be32 *)(th + 1);
3531
3532 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3533 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3534 tp->rx_opt.saw_tstamp = 1;
3535 ++ptr;
3536 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3537 ++ptr;
3538 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3539 return 1;
3540 }
3541 return 0;
3542}
3543
3544/* Fast parse options. This hopes to only see timestamps.
3545 * If it is wrong it falls back on tcp_parse_options().
3546 */
3547static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3548 struct tcp_sock *tp)
3549{
3550 if (th->doff == sizeof(struct tcphdr) >> 2) {
3551 tp->rx_opt.saw_tstamp = 0;
3552 return 0;
3553 } else if (tp->rx_opt.tstamp_ok &&
3554 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3555 if (tcp_parse_aligned_timestamp(tp, th))
3556 return 1;
3557 }
3558 tcp_parse_options(skb, &tp->rx_opt, 1);
3559 return 1;
3560}
3561
3562#ifdef CONFIG_TCP_MD5SIG
3563/*
3564 * Parse MD5 Signature option
3565 */
3566u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3567{
3568 int length = (th->doff << 2) - sizeof (*th);
3569 u8 *ptr = (u8*)(th + 1);
3570
3571 /* If the TCP option is too short, we can short cut */
3572 if (length < TCPOLEN_MD5SIG)
3573 return NULL;
3574
3575 while (length > 0) {
3576 int opcode = *ptr++;
3577 int opsize;
3578
3579 switch(opcode) {
3580 case TCPOPT_EOL:
3581 return NULL;
3582 case TCPOPT_NOP:
3583 length--;
3584 continue;
3585 default:
3586 opsize = *ptr++;
3587 if (opsize < 2 || opsize > length)
3588 return NULL;
3589 if (opcode == TCPOPT_MD5SIG)
3590 return ptr;
3591 }
3592 ptr += opsize - 2;
3593 length -= opsize;
3594 }
3595 return NULL;
3596}
3597#endif
3598
3599static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3600{
3601 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3602 tp->rx_opt.ts_recent_stamp = get_seconds();
3603}
3604
3605static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3606{
3607 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3608 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3609 * extra check below makes sure this can only happen
3610 * for pure ACK frames. -DaveM
3611 *
3612 * Not only, also it occurs for expired timestamps.
3613 */
3614
3615 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3616 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3617 tcp_store_ts_recent(tp);
3618 }
3619}
3620
3621/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3622 *
3623 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3624 * it can pass through stack. So, the following predicate verifies that
3625 * this segment is not used for anything but congestion avoidance or
3626 * fast retransmit. Moreover, we even are able to eliminate most of such
3627 * second order effects, if we apply some small "replay" window (~RTO)
3628 * to timestamp space.
3629 *
3630 * All these measures still do not guarantee that we reject wrapped ACKs
3631 * on networks with high bandwidth, when sequence space is recycled fastly,
3632 * but it guarantees that such events will be very rare and do not affect
3633 * connection seriously. This doesn't look nice, but alas, PAWS is really
3634 * buggy extension.
3635 *
3636 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3637 * states that events when retransmit arrives after original data are rare.
3638 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3639 * the biggest problem on large power networks even with minor reordering.
3640 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3641 * up to bandwidth of 18Gigabit/sec. 8) ]
3642 */
3643
3644static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3645{
3646 struct tcp_sock *tp = tcp_sk(sk);
3647 struct tcphdr *th = tcp_hdr(skb);
3648 u32 seq = TCP_SKB_CB(skb)->seq;
3649 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3650
3651 return (/* 1. Pure ACK with correct sequence number. */
3652 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3653
3654 /* 2. ... and duplicate ACK. */
3655 ack == tp->snd_una &&
3656
3657 /* 3. ... and does not update window. */
3658 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3659
3660 /* 4. ... and sits in replay window. */
3661 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3662}
3663
3664static inline int tcp_paws_discard(const struct sock *sk,
3665 const struct sk_buff *skb)
3666{
3667 const struct tcp_sock *tp = tcp_sk(sk);
3668 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3669 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3670 !tcp_disordered_ack(sk, skb));
3671}
3672
3673/* Check segment sequence number for validity.
3674 *
3675 * Segment controls are considered valid, if the segment
3676 * fits to the window after truncation to the window. Acceptability
3677 * of data (and SYN, FIN, of course) is checked separately.
3678 * See tcp_data_queue(), for example.
3679 *
3680 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3681 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3682 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3683 * (borrowed from freebsd)
3684 */
3685
3686static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3687{
3688 return !before(end_seq, tp->rcv_wup) &&
3689 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3690}
3691
3692/* When we get a reset we do this. */
3693static void tcp_reset(struct sock *sk)
3694{
3695 /* We want the right error as BSD sees it (and indeed as we do). */
3696 switch (sk->sk_state) {
3697 case TCP_SYN_SENT:
3698 sk->sk_err = ECONNREFUSED;
3699 break;
3700 case TCP_CLOSE_WAIT:
3701 sk->sk_err = EPIPE;
3702 break;
3703 case TCP_CLOSE:
3704 return;
3705 default:
3706 sk->sk_err = ECONNRESET;
3707 }
3708
3709 if (!sock_flag(sk, SOCK_DEAD))
3710 sk->sk_error_report(sk);
3711
3712 tcp_done(sk);
3713}
3714
3715/*
3716 * Process the FIN bit. This now behaves as it is supposed to work
3717 * and the FIN takes effect when it is validly part of sequence
3718 * space. Not before when we get holes.
3719 *
3720 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3721 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3722 * TIME-WAIT)
3723 *
3724 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3725 * close and we go into CLOSING (and later onto TIME-WAIT)
3726 *
3727 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3728 */
3729static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3730{
3731 struct tcp_sock *tp = tcp_sk(sk);
3732
3733 inet_csk_schedule_ack(sk);
3734
3735 sk->sk_shutdown |= RCV_SHUTDOWN;
3736 sock_set_flag(sk, SOCK_DONE);
3737
3738 switch (sk->sk_state) {
3739 case TCP_SYN_RECV:
3740 case TCP_ESTABLISHED:
3741 /* Move to CLOSE_WAIT */
3742 tcp_set_state(sk, TCP_CLOSE_WAIT);
3743 inet_csk(sk)->icsk_ack.pingpong = 1;
3744 break;
3745
3746 case TCP_CLOSE_WAIT:
3747 case TCP_CLOSING:
3748 /* Received a retransmission of the FIN, do
3749 * nothing.
3750 */
3751 break;
3752 case TCP_LAST_ACK:
3753 /* RFC793: Remain in the LAST-ACK state. */
3754 break;
3755
3756 case TCP_FIN_WAIT1:
3757 /* This case occurs when a simultaneous close
3758 * happens, we must ack the received FIN and
3759 * enter the CLOSING state.
3760 */
3761 tcp_send_ack(sk);
3762 tcp_set_state(sk, TCP_CLOSING);
3763 break;
3764 case TCP_FIN_WAIT2:
3765 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3766 tcp_send_ack(sk);
3767 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3768 break;
3769 default:
3770 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3771 * cases we should never reach this piece of code.
3772 */
3773 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3774 __func__, sk->sk_state);
3775 break;
3776 }
3777
3778 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3779 * Probably, we should reset in this case. For now drop them.
3780 */
3781 __skb_queue_purge(&tp->out_of_order_queue);
3782 if (tcp_is_sack(tp))
3783 tcp_sack_reset(&tp->rx_opt);
3784 sk_mem_reclaim(sk);
3785
3786 if (!sock_flag(sk, SOCK_DEAD)) {
3787 sk->sk_state_change(sk);
3788
3789 /* Do not send POLL_HUP for half duplex close. */
3790 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3791 sk->sk_state == TCP_CLOSE)
3792 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3793 else
3794 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3795 }
3796}
3797
3798static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3799 u32 end_seq)
3800{
3801 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3802 if (before(seq, sp->start_seq))
3803 sp->start_seq = seq;
3804 if (after(end_seq, sp->end_seq))
3805 sp->end_seq = end_seq;
3806 return 1;
3807 }
3808 return 0;
3809}
3810
3811static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3812{
3813 struct tcp_sock *tp = tcp_sk(sk);
3814
3815 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3816 int mib_idx;
3817
3818 if (before(seq, tp->rcv_nxt))
3819 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3820 else
3821 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3822
3823 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3824
3825 tp->rx_opt.dsack = 1;
3826 tp->duplicate_sack[0].start_seq = seq;
3827 tp->duplicate_sack[0].end_seq = end_seq;
3828 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3829 }
3830}
3831
3832static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3833{
3834 struct tcp_sock *tp = tcp_sk(sk);
3835
3836 if (!tp->rx_opt.dsack)
3837 tcp_dsack_set(sk, seq, end_seq);
3838 else
3839 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3840}
3841
3842static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3843{
3844 struct tcp_sock *tp = tcp_sk(sk);
3845
3846 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3847 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3848 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3849 tcp_enter_quickack_mode(sk);
3850
3851 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3852 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3853
3854 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3855 end_seq = tp->rcv_nxt;
3856 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3857 }
3858 }
3859
3860 tcp_send_ack(sk);
3861}
3862
3863/* These routines update the SACK block as out-of-order packets arrive or
3864 * in-order packets close up the sequence space.
3865 */
3866static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3867{
3868 int this_sack;
3869 struct tcp_sack_block *sp = &tp->selective_acks[0];
3870 struct tcp_sack_block *swalk = sp + 1;
3871
3872 /* See if the recent change to the first SACK eats into
3873 * or hits the sequence space of other SACK blocks, if so coalesce.
3874 */
3875 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3876 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3877 int i;
3878
3879 /* Zap SWALK, by moving every further SACK up by one slot.
3880 * Decrease num_sacks.
3881 */
3882 tp->rx_opt.num_sacks--;
3883 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3884 tp->rx_opt.dsack;
3885 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3886 sp[i] = sp[i + 1];
3887 continue;
3888 }
3889 this_sack++, swalk++;
3890 }
3891}
3892
3893static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3894 struct tcp_sack_block *sack2)
3895{
3896 __u32 tmp;
3897
3898 tmp = sack1->start_seq;
3899 sack1->start_seq = sack2->start_seq;
3900 sack2->start_seq = tmp;
3901
3902 tmp = sack1->end_seq;
3903 sack1->end_seq = sack2->end_seq;
3904 sack2->end_seq = tmp;
3905}
3906
3907static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3908{
3909 struct tcp_sock *tp = tcp_sk(sk);
3910 struct tcp_sack_block *sp = &tp->selective_acks[0];
3911 int cur_sacks = tp->rx_opt.num_sacks;
3912 int this_sack;
3913
3914 if (!cur_sacks)
3915 goto new_sack;
3916
3917 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3918 if (tcp_sack_extend(sp, seq, end_seq)) {
3919 /* Rotate this_sack to the first one. */
3920 for (; this_sack > 0; this_sack--, sp--)
3921 tcp_sack_swap(sp, sp - 1);
3922 if (cur_sacks > 1)
3923 tcp_sack_maybe_coalesce(tp);
3924 return;
3925 }
3926 }
3927
3928 /* Could not find an adjacent existing SACK, build a new one,
3929 * put it at the front, and shift everyone else down. We
3930 * always know there is at least one SACK present already here.
3931 *
3932 * If the sack array is full, forget about the last one.
3933 */
3934 if (this_sack >= TCP_NUM_SACKS) {
3935 this_sack--;
3936 tp->rx_opt.num_sacks--;
3937 sp--;
3938 }
3939 for (; this_sack > 0; this_sack--, sp--)
3940 *sp = *(sp - 1);
3941
3942new_sack:
3943 /* Build the new head SACK, and we're done. */
3944 sp->start_seq = seq;
3945 sp->end_seq = end_seq;
3946 tp->rx_opt.num_sacks++;
3947 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3948}
3949
3950/* RCV.NXT advances, some SACKs should be eaten. */
3951
3952static void tcp_sack_remove(struct tcp_sock *tp)
3953{
3954 struct tcp_sack_block *sp = &tp->selective_acks[0];
3955 int num_sacks = tp->rx_opt.num_sacks;
3956 int this_sack;
3957
3958 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3959 if (skb_queue_empty(&tp->out_of_order_queue)) {
3960 tp->rx_opt.num_sacks = 0;
3961 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3962 return;
3963 }
3964
3965 for (this_sack = 0; this_sack < num_sacks;) {
3966 /* Check if the start of the sack is covered by RCV.NXT. */
3967 if (!before(tp->rcv_nxt, sp->start_seq)) {
3968 int i;
3969
3970 /* RCV.NXT must cover all the block! */
3971 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3972
3973 /* Zap this SACK, by moving forward any other SACKS. */
3974 for (i=this_sack+1; i < num_sacks; i++)
3975 tp->selective_acks[i-1] = tp->selective_acks[i];
3976 num_sacks--;
3977 continue;
3978 }
3979 this_sack++;
3980 sp++;
3981 }
3982 if (num_sacks != tp->rx_opt.num_sacks) {
3983 tp->rx_opt.num_sacks = num_sacks;
3984 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3985 tp->rx_opt.dsack;
3986 }
3987}
3988
3989/* This one checks to see if we can put data from the
3990 * out_of_order queue into the receive_queue.
3991 */
3992static void tcp_ofo_queue(struct sock *sk)
3993{
3994 struct tcp_sock *tp = tcp_sk(sk);
3995 __u32 dsack_high = tp->rcv_nxt;
3996 struct sk_buff *skb;
3997
3998 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3999 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4000 break;
4001
4002 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4003 __u32 dsack = dsack_high;
4004 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4005 dsack_high = TCP_SKB_CB(skb)->end_seq;
4006 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4007 }
4008
4009 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4010 SOCK_DEBUG(sk, "ofo packet was already received \n");
4011 __skb_unlink(skb, &tp->out_of_order_queue);
4012 __kfree_skb(skb);
4013 continue;
4014 }
4015 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4016 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4017 TCP_SKB_CB(skb)->end_seq);
4018
4019 __skb_unlink(skb, &tp->out_of_order_queue);
4020 __skb_queue_tail(&sk->sk_receive_queue, skb);
4021 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4022 if (tcp_hdr(skb)->fin)
4023 tcp_fin(skb, sk, tcp_hdr(skb));
4024 }
4025}
4026
4027static int tcp_prune_ofo_queue(struct sock *sk);
4028static int tcp_prune_queue(struct sock *sk);
4029
4030static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4031{
4032 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4033 !sk_rmem_schedule(sk, size)) {
4034
4035 if (tcp_prune_queue(sk) < 0)
4036 return -1;
4037
4038 if (!sk_rmem_schedule(sk, size)) {
4039 if (!tcp_prune_ofo_queue(sk))
4040 return -1;
4041
4042 if (!sk_rmem_schedule(sk, size))
4043 return -1;
4044 }
4045 }
4046 return 0;
4047}
4048
4049static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4050{
4051 struct tcphdr *th = tcp_hdr(skb);
4052 struct tcp_sock *tp = tcp_sk(sk);
4053 int eaten = -1;
4054
4055 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4056 goto drop;
4057
4058 __skb_pull(skb, th->doff * 4);
4059
4060 TCP_ECN_accept_cwr(tp, skb);
4061
4062 if (tp->rx_opt.dsack) {
4063 tp->rx_opt.dsack = 0;
4064 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4065 }
4066
4067 /* Queue data for delivery to the user.
4068 * Packets in sequence go to the receive queue.
4069 * Out of sequence packets to the out_of_order_queue.
4070 */
4071 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4072 if (tcp_receive_window(tp) == 0)
4073 goto out_of_window;
4074
4075 /* Ok. In sequence. In window. */
4076 if (tp->ucopy.task == current &&
4077 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4078 sock_owned_by_user(sk) && !tp->urg_data) {
4079 int chunk = min_t(unsigned int, skb->len,
4080 tp->ucopy.len);
4081
4082 __set_current_state(TASK_RUNNING);
4083
4084 local_bh_enable();
4085 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4086 tp->ucopy.len -= chunk;
4087 tp->copied_seq += chunk;
4088 eaten = (chunk == skb->len && !th->fin);
4089 tcp_rcv_space_adjust(sk);
4090 }
4091 local_bh_disable();
4092 }
4093
4094 if (eaten <= 0) {
4095queue_and_out:
4096 if (eaten < 0 &&
4097 tcp_try_rmem_schedule(sk, skb->truesize))
4098 goto drop;
4099
4100 skb_set_owner_r(skb, sk);
4101 __skb_queue_tail(&sk->sk_receive_queue, skb);
4102 }
4103 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4104 if (skb->len)
4105 tcp_event_data_recv(sk, skb);
4106 if (th->fin)
4107 tcp_fin(skb, sk, th);
4108
4109 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4110 tcp_ofo_queue(sk);
4111
4112 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4113 * gap in queue is filled.
4114 */
4115 if (skb_queue_empty(&tp->out_of_order_queue))
4116 inet_csk(sk)->icsk_ack.pingpong = 0;
4117 }
4118
4119 if (tp->rx_opt.num_sacks)
4120 tcp_sack_remove(tp);
4121
4122 tcp_fast_path_check(sk);
4123
4124 if (eaten > 0)
4125 __kfree_skb(skb);
4126 else if (!sock_flag(sk, SOCK_DEAD))
4127 sk->sk_data_ready(sk, 0);
4128 return;
4129 }
4130
4131 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4132 /* A retransmit, 2nd most common case. Force an immediate ack. */
4133 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4134 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4135
4136out_of_window:
4137 tcp_enter_quickack_mode(sk);
4138 inet_csk_schedule_ack(sk);
4139drop:
4140 __kfree_skb(skb);
4141 return;
4142 }
4143
4144 /* Out of window. F.e. zero window probe. */
4145 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4146 goto out_of_window;
4147
4148 tcp_enter_quickack_mode(sk);
4149
4150 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4151 /* Partial packet, seq < rcv_next < end_seq */
4152 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4153 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4154 TCP_SKB_CB(skb)->end_seq);
4155
4156 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4157
4158 /* If window is closed, drop tail of packet. But after
4159 * remembering D-SACK for its head made in previous line.
4160 */
4161 if (!tcp_receive_window(tp))
4162 goto out_of_window;
4163 goto queue_and_out;
4164 }
4165
4166 TCP_ECN_check_ce(tp, skb);
4167
4168 if (tcp_try_rmem_schedule(sk, skb->truesize))
4169 goto drop;
4170
4171 /* Disable header prediction. */
4172 tp->pred_flags = 0;
4173 inet_csk_schedule_ack(sk);
4174
4175 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4176 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4177
4178 skb_set_owner_r(skb, sk);
4179
4180 if (!skb_peek(&tp->out_of_order_queue)) {
4181 /* Initial out of order segment, build 1 SACK. */
4182 if (tcp_is_sack(tp)) {
4183 tp->rx_opt.num_sacks = 1;
4184 tp->rx_opt.dsack = 0;
4185 tp->rx_opt.eff_sacks = 1;
4186 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4187 tp->selective_acks[0].end_seq =
4188 TCP_SKB_CB(skb)->end_seq;
4189 }
4190 __skb_queue_head(&tp->out_of_order_queue, skb);
4191 } else {
4192 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4193 u32 seq = TCP_SKB_CB(skb)->seq;
4194 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4195
4196 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4197 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4198
4199 if (!tp->rx_opt.num_sacks ||
4200 tp->selective_acks[0].end_seq != seq)
4201 goto add_sack;
4202
4203 /* Common case: data arrive in order after hole. */
4204 tp->selective_acks[0].end_seq = end_seq;
4205 return;
4206 }
4207
4208 /* Find place to insert this segment. */
4209 do {
4210 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4211 break;
4212 } while ((skb1 = skb1->prev) !=
4213 (struct sk_buff *)&tp->out_of_order_queue);
4214
4215 /* Do skb overlap to previous one? */
4216 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4217 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4218 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4219 /* All the bits are present. Drop. */
4220 __kfree_skb(skb);
4221 tcp_dsack_set(sk, seq, end_seq);
4222 goto add_sack;
4223 }
4224 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4225 /* Partial overlap. */
4226 tcp_dsack_set(sk, seq,
4227 TCP_SKB_CB(skb1)->end_seq);
4228 } else {
4229 skb1 = skb1->prev;
4230 }
4231 }
4232 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4233
4234 /* And clean segments covered by new one as whole. */
4235 while ((skb1 = skb->next) !=
4236 (struct sk_buff *)&tp->out_of_order_queue &&
4237 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4238 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4239 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4240 end_seq);
4241 break;
4242 }
4243 __skb_unlink(skb1, &tp->out_of_order_queue);
4244 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4245 TCP_SKB_CB(skb1)->end_seq);
4246 __kfree_skb(skb1);
4247 }
4248
4249add_sack:
4250 if (tcp_is_sack(tp))
4251 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4252 }
4253}
4254
4255static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4256 struct sk_buff_head *list)
4257{
4258 struct sk_buff *next = skb->next;
4259
4260 __skb_unlink(skb, list);
4261 __kfree_skb(skb);
4262 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4263
4264 return next;
4265}
4266
4267/* Collapse contiguous sequence of skbs head..tail with
4268 * sequence numbers start..end.
4269 * Segments with FIN/SYN are not collapsed (only because this
4270 * simplifies code)
4271 */
4272static void
4273tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4274 struct sk_buff *head, struct sk_buff *tail,
4275 u32 start, u32 end)
4276{
4277 struct sk_buff *skb;
4278
4279 /* First, check that queue is collapsible and find
4280 * the point where collapsing can be useful. */
4281 for (skb = head; skb != tail;) {
4282 /* No new bits? It is possible on ofo queue. */
4283 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4284 skb = tcp_collapse_one(sk, skb, list);
4285 continue;
4286 }
4287
4288 /* The first skb to collapse is:
4289 * - not SYN/FIN and
4290 * - bloated or contains data before "start" or
4291 * overlaps to the next one.
4292 */
4293 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4294 (tcp_win_from_space(skb->truesize) > skb->len ||
4295 before(TCP_SKB_CB(skb)->seq, start) ||
4296 (skb->next != tail &&
4297 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4298 break;
4299
4300 /* Decided to skip this, advance start seq. */
4301 start = TCP_SKB_CB(skb)->end_seq;
4302 skb = skb->next;
4303 }
4304 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4305 return;
4306
4307 while (before(start, end)) {
4308 struct sk_buff *nskb;
4309 unsigned int header = skb_headroom(skb);
4310 int copy = SKB_MAX_ORDER(header, 0);
4311
4312 /* Too big header? This can happen with IPv6. */
4313 if (copy < 0)
4314 return;
4315 if (end - start < copy)
4316 copy = end - start;
4317 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4318 if (!nskb)
4319 return;
4320
4321 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4322 skb_set_network_header(nskb, (skb_network_header(skb) -
4323 skb->head));
4324 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4325 skb->head));
4326 skb_reserve(nskb, header);
4327 memcpy(nskb->head, skb->head, header);
4328 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4329 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4330 __skb_queue_before(list, skb, nskb);
4331 skb_set_owner_r(nskb, sk);
4332
4333 /* Copy data, releasing collapsed skbs. */
4334 while (copy > 0) {
4335 int offset = start - TCP_SKB_CB(skb)->seq;
4336 int size = TCP_SKB_CB(skb)->end_seq - start;
4337
4338 BUG_ON(offset < 0);
4339 if (size > 0) {
4340 size = min(copy, size);
4341 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4342 BUG();
4343 TCP_SKB_CB(nskb)->end_seq += size;
4344 copy -= size;
4345 start += size;
4346 }
4347 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4348 skb = tcp_collapse_one(sk, skb, list);
4349 if (skb == tail ||
4350 tcp_hdr(skb)->syn ||
4351 tcp_hdr(skb)->fin)
4352 return;
4353 }
4354 }
4355 }
4356}
4357
4358/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4359 * and tcp_collapse() them until all the queue is collapsed.
4360 */
4361static void tcp_collapse_ofo_queue(struct sock *sk)
4362{
4363 struct tcp_sock *tp = tcp_sk(sk);
4364 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4365 struct sk_buff *head;
4366 u32 start, end;
4367
4368 if (skb == NULL)
4369 return;
4370
4371 start = TCP_SKB_CB(skb)->seq;
4372 end = TCP_SKB_CB(skb)->end_seq;
4373 head = skb;
4374
4375 for (;;) {
4376 skb = skb->next;
4377
4378 /* Segment is terminated when we see gap or when
4379 * we are at the end of all the queue. */
4380 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4381 after(TCP_SKB_CB(skb)->seq, end) ||
4382 before(TCP_SKB_CB(skb)->end_seq, start)) {
4383 tcp_collapse(sk, &tp->out_of_order_queue,
4384 head, skb, start, end);
4385 head = skb;
4386 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4387 break;
4388 /* Start new segment */
4389 start = TCP_SKB_CB(skb)->seq;
4390 end = TCP_SKB_CB(skb)->end_seq;
4391 } else {
4392 if (before(TCP_SKB_CB(skb)->seq, start))
4393 start = TCP_SKB_CB(skb)->seq;
4394 if (after(TCP_SKB_CB(skb)->end_seq, end))
4395 end = TCP_SKB_CB(skb)->end_seq;
4396 }
4397 }
4398}
4399
4400/*
4401 * Purge the out-of-order queue.
4402 * Return true if queue was pruned.
4403 */
4404static int tcp_prune_ofo_queue(struct sock *sk)
4405{
4406 struct tcp_sock *tp = tcp_sk(sk);
4407 int res = 0;
4408
4409 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4410 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4411 __skb_queue_purge(&tp->out_of_order_queue);
4412
4413 /* Reset SACK state. A conforming SACK implementation will
4414 * do the same at a timeout based retransmit. When a connection
4415 * is in a sad state like this, we care only about integrity
4416 * of the connection not performance.
4417 */
4418 if (tp->rx_opt.sack_ok)
4419 tcp_sack_reset(&tp->rx_opt);
4420 sk_mem_reclaim(sk);
4421 res = 1;
4422 }
4423 return res;
4424}
4425
4426/* Reduce allocated memory if we can, trying to get
4427 * the socket within its memory limits again.
4428 *
4429 * Return less than zero if we should start dropping frames
4430 * until the socket owning process reads some of the data
4431 * to stabilize the situation.
4432 */
4433static int tcp_prune_queue(struct sock *sk)
4434{
4435 struct tcp_sock *tp = tcp_sk(sk);
4436
4437 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4438
4439 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4440
4441 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4442 tcp_clamp_window(sk);
4443 else if (tcp_memory_pressure)
4444 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4445
4446 tcp_collapse_ofo_queue(sk);
4447 tcp_collapse(sk, &sk->sk_receive_queue,
4448 sk->sk_receive_queue.next,
4449 (struct sk_buff *)&sk->sk_receive_queue,
4450 tp->copied_seq, tp->rcv_nxt);
4451 sk_mem_reclaim(sk);
4452
4453 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4454 return 0;
4455
4456 /* Collapsing did not help, destructive actions follow.
4457 * This must not ever occur. */
4458
4459 tcp_prune_ofo_queue(sk);
4460
4461 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4462 return 0;
4463
4464 /* If we are really being abused, tell the caller to silently
4465 * drop receive data on the floor. It will get retransmitted
4466 * and hopefully then we'll have sufficient space.
4467 */
4468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4469
4470 /* Massive buffer overcommit. */
4471 tp->pred_flags = 0;
4472 return -1;
4473}
4474
4475/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4476 * As additional protections, we do not touch cwnd in retransmission phases,
4477 * and if application hit its sndbuf limit recently.
4478 */
4479void tcp_cwnd_application_limited(struct sock *sk)
4480{
4481 struct tcp_sock *tp = tcp_sk(sk);
4482
4483 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4484 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4485 /* Limited by application or receiver window. */
4486 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4487 u32 win_used = max(tp->snd_cwnd_used, init_win);
4488 if (win_used < tp->snd_cwnd) {
4489 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4490 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4491 }
4492 tp->snd_cwnd_used = 0;
4493 }
4494 tp->snd_cwnd_stamp = tcp_time_stamp;
4495}
4496
4497static int tcp_should_expand_sndbuf(struct sock *sk)
4498{
4499 struct tcp_sock *tp = tcp_sk(sk);
4500
4501 /* If the user specified a specific send buffer setting, do
4502 * not modify it.
4503 */
4504 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4505 return 0;
4506
4507 /* If we are under global TCP memory pressure, do not expand. */
4508 if (tcp_memory_pressure)
4509 return 0;
4510
4511 /* If we are under soft global TCP memory pressure, do not expand. */
4512 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4513 return 0;
4514
4515 /* If we filled the congestion window, do not expand. */
4516 if (tp->packets_out >= tp->snd_cwnd)
4517 return 0;
4518
4519 return 1;
4520}
4521
4522/* When incoming ACK allowed to free some skb from write_queue,
4523 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4524 * on the exit from tcp input handler.
4525 *
4526 * PROBLEM: sndbuf expansion does not work well with largesend.
4527 */
4528static void tcp_new_space(struct sock *sk)
4529{
4530 struct tcp_sock *tp = tcp_sk(sk);
4531
4532 if (tcp_should_expand_sndbuf(sk)) {
4533 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4534 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4535 int demanded = max_t(unsigned int, tp->snd_cwnd,
4536 tp->reordering + 1);
4537 sndmem *= 2 * demanded;
4538 if (sndmem > sk->sk_sndbuf)
4539 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4540 tp->snd_cwnd_stamp = tcp_time_stamp;
4541 }
4542
4543 sk->sk_write_space(sk);
4544}
4545
4546static void tcp_check_space(struct sock *sk)
4547{
4548 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4549 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4550 if (sk->sk_socket &&
4551 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4552 tcp_new_space(sk);
4553 }
4554}
4555
4556static inline void tcp_data_snd_check(struct sock *sk)
4557{
4558 tcp_push_pending_frames(sk);
4559 tcp_check_space(sk);
4560}
4561
4562/*
4563 * Check if sending an ack is needed.
4564 */
4565static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4566{
4567 struct tcp_sock *tp = tcp_sk(sk);
4568
4569 /* More than one full frame received... */
4570 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4571 /* ... and right edge of window advances far enough.
4572 * (tcp_recvmsg() will send ACK otherwise). Or...
4573 */
4574 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4575 /* We ACK each frame or... */
4576 tcp_in_quickack_mode(sk) ||
4577 /* We have out of order data. */
4578 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4579 /* Then ack it now */
4580 tcp_send_ack(sk);
4581 } else {
4582 /* Else, send delayed ack. */
4583 tcp_send_delayed_ack(sk);
4584 }
4585}
4586
4587static inline void tcp_ack_snd_check(struct sock *sk)
4588{
4589 if (!inet_csk_ack_scheduled(sk)) {
4590 /* We sent a data segment already. */
4591 return;
4592 }
4593 __tcp_ack_snd_check(sk, 1);
4594}
4595
4596/*
4597 * This routine is only called when we have urgent data
4598 * signaled. Its the 'slow' part of tcp_urg. It could be
4599 * moved inline now as tcp_urg is only called from one
4600 * place. We handle URGent data wrong. We have to - as
4601 * BSD still doesn't use the correction from RFC961.
4602 * For 1003.1g we should support a new option TCP_STDURG to permit
4603 * either form (or just set the sysctl tcp_stdurg).
4604 */
4605
4606static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4607{
4608 struct tcp_sock *tp = tcp_sk(sk);
4609 u32 ptr = ntohs(th->urg_ptr);
4610
4611 if (ptr && !sysctl_tcp_stdurg)
4612 ptr--;
4613 ptr += ntohl(th->seq);
4614
4615 /* Ignore urgent data that we've already seen and read. */
4616 if (after(tp->copied_seq, ptr))
4617 return;
4618
4619 /* Do not replay urg ptr.
4620 *
4621 * NOTE: interesting situation not covered by specs.
4622 * Misbehaving sender may send urg ptr, pointing to segment,
4623 * which we already have in ofo queue. We are not able to fetch
4624 * such data and will stay in TCP_URG_NOTYET until will be eaten
4625 * by recvmsg(). Seems, we are not obliged to handle such wicked
4626 * situations. But it is worth to think about possibility of some
4627 * DoSes using some hypothetical application level deadlock.
4628 */
4629 if (before(ptr, tp->rcv_nxt))
4630 return;
4631
4632 /* Do we already have a newer (or duplicate) urgent pointer? */
4633 if (tp->urg_data && !after(ptr, tp->urg_seq))
4634 return;
4635
4636 /* Tell the world about our new urgent pointer. */
4637 sk_send_sigurg(sk);
4638
4639 /* We may be adding urgent data when the last byte read was
4640 * urgent. To do this requires some care. We cannot just ignore
4641 * tp->copied_seq since we would read the last urgent byte again
4642 * as data, nor can we alter copied_seq until this data arrives
4643 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4644 *
4645 * NOTE. Double Dutch. Rendering to plain English: author of comment
4646 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4647 * and expect that both A and B disappear from stream. This is _wrong_.
4648 * Though this happens in BSD with high probability, this is occasional.
4649 * Any application relying on this is buggy. Note also, that fix "works"
4650 * only in this artificial test. Insert some normal data between A and B and we will
4651 * decline of BSD again. Verdict: it is better to remove to trap
4652 * buggy users.
4653 */
4654 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4655 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4656 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4657 tp->copied_seq++;
4658 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4659 __skb_unlink(skb, &sk->sk_receive_queue);
4660 __kfree_skb(skb);
4661 }
4662 }
4663
4664 tp->urg_data = TCP_URG_NOTYET;
4665 tp->urg_seq = ptr;
4666
4667 /* Disable header prediction. */
4668 tp->pred_flags = 0;
4669}
4670
4671/* This is the 'fast' part of urgent handling. */
4672static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4673{
4674 struct tcp_sock *tp = tcp_sk(sk);
4675
4676 /* Check if we get a new urgent pointer - normally not. */
4677 if (th->urg)
4678 tcp_check_urg(sk, th);
4679
4680 /* Do we wait for any urgent data? - normally not... */
4681 if (tp->urg_data == TCP_URG_NOTYET) {
4682 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4683 th->syn;
4684
4685 /* Is the urgent pointer pointing into this packet? */
4686 if (ptr < skb->len) {
4687 u8 tmp;
4688 if (skb_copy_bits(skb, ptr, &tmp, 1))
4689 BUG();
4690 tp->urg_data = TCP_URG_VALID | tmp;
4691 if (!sock_flag(sk, SOCK_DEAD))
4692 sk->sk_data_ready(sk, 0);
4693 }
4694 }
4695}
4696
4697static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4698{
4699 struct tcp_sock *tp = tcp_sk(sk);
4700 int chunk = skb->len - hlen;
4701 int err;
4702
4703 local_bh_enable();
4704 if (skb_csum_unnecessary(skb))
4705 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4706 else
4707 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4708 tp->ucopy.iov);
4709
4710 if (!err) {
4711 tp->ucopy.len -= chunk;
4712 tp->copied_seq += chunk;
4713 tcp_rcv_space_adjust(sk);
4714 }
4715
4716 local_bh_disable();
4717 return err;
4718}
4719
4720static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4721 struct sk_buff *skb)
4722{
4723 __sum16 result;
4724
4725 if (sock_owned_by_user(sk)) {
4726 local_bh_enable();
4727 result = __tcp_checksum_complete(skb);
4728 local_bh_disable();
4729 } else {
4730 result = __tcp_checksum_complete(skb);
4731 }
4732 return result;
4733}
4734
4735static inline int tcp_checksum_complete_user(struct sock *sk,
4736 struct sk_buff *skb)
4737{
4738 return !skb_csum_unnecessary(skb) &&
4739 __tcp_checksum_complete_user(sk, skb);
4740}
4741
4742#ifdef CONFIG_NET_DMA
4743static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4744 int hlen)
4745{
4746 struct tcp_sock *tp = tcp_sk(sk);
4747 int chunk = skb->len - hlen;
4748 int dma_cookie;
4749 int copied_early = 0;
4750
4751 if (tp->ucopy.wakeup)
4752 return 0;
4753
4754 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4755 tp->ucopy.dma_chan = get_softnet_dma();
4756
4757 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4758
4759 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4760 skb, hlen,
4761 tp->ucopy.iov, chunk,
4762 tp->ucopy.pinned_list);
4763
4764 if (dma_cookie < 0)
4765 goto out;
4766
4767 tp->ucopy.dma_cookie = dma_cookie;
4768 copied_early = 1;
4769
4770 tp->ucopy.len -= chunk;
4771 tp->copied_seq += chunk;
4772 tcp_rcv_space_adjust(sk);
4773
4774 if ((tp->ucopy.len == 0) ||
4775 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4776 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4777 tp->ucopy.wakeup = 1;
4778 sk->sk_data_ready(sk, 0);
4779 }
4780 } else if (chunk > 0) {
4781 tp->ucopy.wakeup = 1;
4782 sk->sk_data_ready(sk, 0);
4783 }
4784out:
4785 return copied_early;
4786}
4787#endif /* CONFIG_NET_DMA */
4788
4789/* Does PAWS and seqno based validation of an incoming segment, flags will
4790 * play significant role here.
4791 */
4792static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4793 struct tcphdr *th, int syn_inerr)
4794{
4795 struct tcp_sock *tp = tcp_sk(sk);
4796
4797 /* RFC1323: H1. Apply PAWS check first. */
4798 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4799 tcp_paws_discard(sk, skb)) {
4800 if (!th->rst) {
4801 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4802 tcp_send_dupack(sk, skb);
4803 goto discard;
4804 }
4805 /* Reset is accepted even if it did not pass PAWS. */
4806 }
4807
4808 /* Step 1: check sequence number */
4809 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4810 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4811 * (RST) segments are validated by checking their SEQ-fields."
4812 * And page 69: "If an incoming segment is not acceptable,
4813 * an acknowledgment should be sent in reply (unless the RST
4814 * bit is set, if so drop the segment and return)".
4815 */
4816 if (!th->rst)
4817 tcp_send_dupack(sk, skb);
4818 goto discard;
4819 }
4820
4821 /* Step 2: check RST bit */
4822 if (th->rst) {
4823 tcp_reset(sk);
4824 goto discard;
4825 }
4826
4827 /* ts_recent update must be made after we are sure that the packet
4828 * is in window.
4829 */
4830 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4831
4832 /* step 3: check security and precedence [ignored] */
4833
4834 /* step 4: Check for a SYN in window. */
4835 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4836 if (syn_inerr)
4837 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4838 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4839 tcp_reset(sk);
4840 return -1;
4841 }
4842
4843 return 1;
4844
4845discard:
4846 __kfree_skb(skb);
4847 return 0;
4848}
4849
4850/*
4851 * TCP receive function for the ESTABLISHED state.
4852 *
4853 * It is split into a fast path and a slow path. The fast path is
4854 * disabled when:
4855 * - A zero window was announced from us - zero window probing
4856 * is only handled properly in the slow path.
4857 * - Out of order segments arrived.
4858 * - Urgent data is expected.
4859 * - There is no buffer space left
4860 * - Unexpected TCP flags/window values/header lengths are received
4861 * (detected by checking the TCP header against pred_flags)
4862 * - Data is sent in both directions. Fast path only supports pure senders
4863 * or pure receivers (this means either the sequence number or the ack
4864 * value must stay constant)
4865 * - Unexpected TCP option.
4866 *
4867 * When these conditions are not satisfied it drops into a standard
4868 * receive procedure patterned after RFC793 to handle all cases.
4869 * The first three cases are guaranteed by proper pred_flags setting,
4870 * the rest is checked inline. Fast processing is turned on in
4871 * tcp_data_queue when everything is OK.
4872 */
4873int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4874 struct tcphdr *th, unsigned len)
4875{
4876 struct tcp_sock *tp = tcp_sk(sk);
4877 int res;
4878
4879 /*
4880 * Header prediction.
4881 * The code loosely follows the one in the famous
4882 * "30 instruction TCP receive" Van Jacobson mail.
4883 *
4884 * Van's trick is to deposit buffers into socket queue
4885 * on a device interrupt, to call tcp_recv function
4886 * on the receive process context and checksum and copy
4887 * the buffer to user space. smart...
4888 *
4889 * Our current scheme is not silly either but we take the
4890 * extra cost of the net_bh soft interrupt processing...
4891 * We do checksum and copy also but from device to kernel.
4892 */
4893
4894 tp->rx_opt.saw_tstamp = 0;
4895
4896 /* pred_flags is 0xS?10 << 16 + snd_wnd
4897 * if header_prediction is to be made
4898 * 'S' will always be tp->tcp_header_len >> 2
4899 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4900 * turn it off (when there are holes in the receive
4901 * space for instance)
4902 * PSH flag is ignored.
4903 */
4904
4905 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4906 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4907 int tcp_header_len = tp->tcp_header_len;
4908
4909 /* Timestamp header prediction: tcp_header_len
4910 * is automatically equal to th->doff*4 due to pred_flags
4911 * match.
4912 */
4913
4914 /* Check timestamp */
4915 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4916 /* No? Slow path! */
4917 if (!tcp_parse_aligned_timestamp(tp, th))
4918 goto slow_path;
4919
4920 /* If PAWS failed, check it more carefully in slow path */
4921 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4922 goto slow_path;
4923
4924 /* DO NOT update ts_recent here, if checksum fails
4925 * and timestamp was corrupted part, it will result
4926 * in a hung connection since we will drop all
4927 * future packets due to the PAWS test.
4928 */
4929 }
4930
4931 if (len <= tcp_header_len) {
4932 /* Bulk data transfer: sender */
4933 if (len == tcp_header_len) {
4934 /* Predicted packet is in window by definition.
4935 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4936 * Hence, check seq<=rcv_wup reduces to:
4937 */
4938 if (tcp_header_len ==
4939 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4940 tp->rcv_nxt == tp->rcv_wup)
4941 tcp_store_ts_recent(tp);
4942
4943 /* We know that such packets are checksummed
4944 * on entry.
4945 */
4946 tcp_ack(sk, skb, 0);
4947 __kfree_skb(skb);
4948 tcp_data_snd_check(sk);
4949 return 0;
4950 } else { /* Header too small */
4951 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4952 goto discard;
4953 }
4954 } else {
4955 int eaten = 0;
4956 int copied_early = 0;
4957
4958 if (tp->copied_seq == tp->rcv_nxt &&
4959 len - tcp_header_len <= tp->ucopy.len) {
4960#ifdef CONFIG_NET_DMA
4961 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4962 copied_early = 1;
4963 eaten = 1;
4964 }
4965#endif
4966 if (tp->ucopy.task == current &&
4967 sock_owned_by_user(sk) && !copied_early) {
4968 __set_current_state(TASK_RUNNING);
4969
4970 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4971 eaten = 1;
4972 }
4973 if (eaten) {
4974 /* Predicted packet is in window by definition.
4975 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4976 * Hence, check seq<=rcv_wup reduces to:
4977 */
4978 if (tcp_header_len ==
4979 (sizeof(struct tcphdr) +
4980 TCPOLEN_TSTAMP_ALIGNED) &&
4981 tp->rcv_nxt == tp->rcv_wup)
4982 tcp_store_ts_recent(tp);
4983
4984 tcp_rcv_rtt_measure_ts(sk, skb);
4985
4986 __skb_pull(skb, tcp_header_len);
4987 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4989 }
4990 if (copied_early)
4991 tcp_cleanup_rbuf(sk, skb->len);
4992 }
4993 if (!eaten) {
4994 if (tcp_checksum_complete_user(sk, skb))
4995 goto csum_error;
4996
4997 /* Predicted packet is in window by definition.
4998 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4999 * Hence, check seq<=rcv_wup reduces to:
5000 */
5001 if (tcp_header_len ==
5002 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5003 tp->rcv_nxt == tp->rcv_wup)
5004 tcp_store_ts_recent(tp);
5005
5006 tcp_rcv_rtt_measure_ts(sk, skb);
5007
5008 if ((int)skb->truesize > sk->sk_forward_alloc)
5009 goto step5;
5010
5011 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5012
5013 /* Bulk data transfer: receiver */
5014 __skb_pull(skb, tcp_header_len);
5015 __skb_queue_tail(&sk->sk_receive_queue, skb);
5016 skb_set_owner_r(skb, sk);
5017 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5018 }
5019
5020 tcp_event_data_recv(sk, skb);
5021
5022 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5023 /* Well, only one small jumplet in fast path... */
5024 tcp_ack(sk, skb, FLAG_DATA);
5025 tcp_data_snd_check(sk);
5026 if (!inet_csk_ack_scheduled(sk))
5027 goto no_ack;
5028 }
5029
5030 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5031 __tcp_ack_snd_check(sk, 0);
5032no_ack:
5033#ifdef CONFIG_NET_DMA
5034 if (copied_early)
5035 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5036 else
5037#endif
5038 if (eaten)
5039 __kfree_skb(skb);
5040 else
5041 sk->sk_data_ready(sk, 0);
5042 return 0;
5043 }
5044 }
5045
5046slow_path:
5047 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5048 goto csum_error;
5049
5050 /*
5051 * Standard slow path.
5052 */
5053
5054 res = tcp_validate_incoming(sk, skb, th, 1);
5055 if (res <= 0)
5056 return -res;
5057
5058step5:
5059 if (th->ack)
5060 tcp_ack(sk, skb, FLAG_SLOWPATH);
5061
5062 tcp_rcv_rtt_measure_ts(sk, skb);
5063
5064 /* Process urgent data. */
5065 tcp_urg(sk, skb, th);
5066
5067 /* step 7: process the segment text */
5068 tcp_data_queue(sk, skb);
5069
5070 tcp_data_snd_check(sk);
5071 tcp_ack_snd_check(sk);
5072 return 0;
5073
5074csum_error:
5075 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5076
5077discard:
5078 __kfree_skb(skb);
5079 return 0;
5080}
5081
5082static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5083 struct tcphdr *th, unsigned len)
5084{
5085 struct tcp_sock *tp = tcp_sk(sk);
5086 struct inet_connection_sock *icsk = inet_csk(sk);
5087 int saved_clamp = tp->rx_opt.mss_clamp;
5088
5089 tcp_parse_options(skb, &tp->rx_opt, 0);
5090
5091 if (th->ack) {
5092 /* rfc793:
5093 * "If the state is SYN-SENT then
5094 * first check the ACK bit
5095 * If the ACK bit is set
5096 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5097 * a reset (unless the RST bit is set, if so drop
5098 * the segment and return)"
5099 *
5100 * We do not send data with SYN, so that RFC-correct
5101 * test reduces to:
5102 */
5103 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5104 goto reset_and_undo;
5105
5106 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5107 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5108 tcp_time_stamp)) {
5109 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5110 goto reset_and_undo;
5111 }
5112
5113 /* Now ACK is acceptable.
5114 *
5115 * "If the RST bit is set
5116 * If the ACK was acceptable then signal the user "error:
5117 * connection reset", drop the segment, enter CLOSED state,
5118 * delete TCB, and return."
5119 */
5120
5121 if (th->rst) {
5122 tcp_reset(sk);
5123 goto discard;
5124 }
5125
5126 /* rfc793:
5127 * "fifth, if neither of the SYN or RST bits is set then
5128 * drop the segment and return."
5129 *
5130 * See note below!
5131 * --ANK(990513)
5132 */
5133 if (!th->syn)
5134 goto discard_and_undo;
5135
5136 /* rfc793:
5137 * "If the SYN bit is on ...
5138 * are acceptable then ...
5139 * (our SYN has been ACKed), change the connection
5140 * state to ESTABLISHED..."
5141 */
5142
5143 TCP_ECN_rcv_synack(tp, th);
5144
5145 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5146 tcp_ack(sk, skb, FLAG_SLOWPATH);
5147
5148 /* Ok.. it's good. Set up sequence numbers and
5149 * move to established.
5150 */
5151 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5152 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5153
5154 /* RFC1323: The window in SYN & SYN/ACK segments is
5155 * never scaled.
5156 */
5157 tp->snd_wnd = ntohs(th->window);
5158 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5159
5160 if (!tp->rx_opt.wscale_ok) {
5161 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5162 tp->window_clamp = min(tp->window_clamp, 65535U);
5163 }
5164
5165 if (tp->rx_opt.saw_tstamp) {
5166 tp->rx_opt.tstamp_ok = 1;
5167 tp->tcp_header_len =
5168 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5169 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5170 tcp_store_ts_recent(tp);
5171 } else {
5172 tp->tcp_header_len = sizeof(struct tcphdr);
5173 }
5174
5175 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5176 tcp_enable_fack(tp);
5177
5178 tcp_mtup_init(sk);
5179 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5180 tcp_initialize_rcv_mss(sk);
5181
5182 /* Remember, tcp_poll() does not lock socket!
5183 * Change state from SYN-SENT only after copied_seq
5184 * is initialized. */
5185 tp->copied_seq = tp->rcv_nxt;
5186 smp_mb();
5187 tcp_set_state(sk, TCP_ESTABLISHED);
5188
5189 security_inet_conn_established(sk, skb);
5190
5191 /* Make sure socket is routed, for correct metrics. */
5192 icsk->icsk_af_ops->rebuild_header(sk);
5193
5194 tcp_init_metrics(sk);
5195
5196 tcp_init_congestion_control(sk);
5197
5198 /* Prevent spurious tcp_cwnd_restart() on first data
5199 * packet.
5200 */
5201 tp->lsndtime = tcp_time_stamp;
5202
5203 tcp_init_buffer_space(sk);
5204
5205 if (sock_flag(sk, SOCK_KEEPOPEN))
5206 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5207
5208 if (!tp->rx_opt.snd_wscale)
5209 __tcp_fast_path_on(tp, tp->snd_wnd);
5210 else
5211 tp->pred_flags = 0;
5212
5213 if (!sock_flag(sk, SOCK_DEAD)) {
5214 sk->sk_state_change(sk);
5215 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5216 }
5217
5218 if (sk->sk_write_pending ||
5219 icsk->icsk_accept_queue.rskq_defer_accept ||
5220 icsk->icsk_ack.pingpong) {
5221 /* Save one ACK. Data will be ready after
5222 * several ticks, if write_pending is set.
5223 *
5224 * It may be deleted, but with this feature tcpdumps
5225 * look so _wonderfully_ clever, that I was not able
5226 * to stand against the temptation 8) --ANK
5227 */
5228 inet_csk_schedule_ack(sk);
5229 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5230 icsk->icsk_ack.ato = TCP_ATO_MIN;
5231 tcp_incr_quickack(sk);
5232 tcp_enter_quickack_mode(sk);
5233 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5234 TCP_DELACK_MAX, TCP_RTO_MAX);
5235
5236discard:
5237 __kfree_skb(skb);
5238 return 0;
5239 } else {
5240 tcp_send_ack(sk);
5241 }
5242 return -1;
5243 }
5244
5245 /* No ACK in the segment */
5246
5247 if (th->rst) {
5248 /* rfc793:
5249 * "If the RST bit is set
5250 *
5251 * Otherwise (no ACK) drop the segment and return."
5252 */
5253
5254 goto discard_and_undo;
5255 }
5256
5257 /* PAWS check. */
5258 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5259 tcp_paws_check(&tp->rx_opt, 0))
5260 goto discard_and_undo;
5261
5262 if (th->syn) {
5263 /* We see SYN without ACK. It is attempt of
5264 * simultaneous connect with crossed SYNs.
5265 * Particularly, it can be connect to self.
5266 */
5267 tcp_set_state(sk, TCP_SYN_RECV);
5268
5269 if (tp->rx_opt.saw_tstamp) {
5270 tp->rx_opt.tstamp_ok = 1;
5271 tcp_store_ts_recent(tp);
5272 tp->tcp_header_len =
5273 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5274 } else {
5275 tp->tcp_header_len = sizeof(struct tcphdr);
5276 }
5277
5278 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5279 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5280
5281 /* RFC1323: The window in SYN & SYN/ACK segments is
5282 * never scaled.
5283 */
5284 tp->snd_wnd = ntohs(th->window);
5285 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5286 tp->max_window = tp->snd_wnd;
5287
5288 TCP_ECN_rcv_syn(tp, th);
5289
5290 tcp_mtup_init(sk);
5291 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5292 tcp_initialize_rcv_mss(sk);
5293
5294 tcp_send_synack(sk);
5295#if 0
5296 /* Note, we could accept data and URG from this segment.
5297 * There are no obstacles to make this.
5298 *
5299 * However, if we ignore data in ACKless segments sometimes,
5300 * we have no reasons to accept it sometimes.
5301 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5302 * is not flawless. So, discard packet for sanity.
5303 * Uncomment this return to process the data.
5304 */
5305 return -1;
5306#else
5307 goto discard;
5308#endif
5309 }
5310 /* "fifth, if neither of the SYN or RST bits is set then
5311 * drop the segment and return."
5312 */
5313
5314discard_and_undo:
5315 tcp_clear_options(&tp->rx_opt);
5316 tp->rx_opt.mss_clamp = saved_clamp;
5317 goto discard;
5318
5319reset_and_undo:
5320 tcp_clear_options(&tp->rx_opt);
5321 tp->rx_opt.mss_clamp = saved_clamp;
5322 return 1;
5323}
5324
5325/*
5326 * This function implements the receiving procedure of RFC 793 for
5327 * all states except ESTABLISHED and TIME_WAIT.
5328 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5329 * address independent.
5330 */
5331
5332int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5333 struct tcphdr *th, unsigned len)
5334{
5335 struct tcp_sock *tp = tcp_sk(sk);
5336 struct inet_connection_sock *icsk = inet_csk(sk);
5337 int queued = 0;
5338 int res;
5339
5340 tp->rx_opt.saw_tstamp = 0;
5341
5342 switch (sk->sk_state) {
5343 case TCP_CLOSE:
5344 goto discard;
5345
5346 case TCP_LISTEN:
5347 if (th->ack)
5348 return 1;
5349
5350 if (th->rst)
5351 goto discard;
5352
5353 if (th->syn) {
5354 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5355 return 1;
5356
5357 /* Now we have several options: In theory there is
5358 * nothing else in the frame. KA9Q has an option to
5359 * send data with the syn, BSD accepts data with the
5360 * syn up to the [to be] advertised window and
5361 * Solaris 2.1 gives you a protocol error. For now
5362 * we just ignore it, that fits the spec precisely
5363 * and avoids incompatibilities. It would be nice in
5364 * future to drop through and process the data.
5365 *
5366 * Now that TTCP is starting to be used we ought to
5367 * queue this data.
5368 * But, this leaves one open to an easy denial of
5369 * service attack, and SYN cookies can't defend
5370 * against this problem. So, we drop the data
5371 * in the interest of security over speed unless
5372 * it's still in use.
5373 */
5374 kfree_skb(skb);
5375 return 0;
5376 }
5377 goto discard;
5378
5379 case TCP_SYN_SENT:
5380 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5381 if (queued >= 0)
5382 return queued;
5383
5384 /* Do step6 onward by hand. */
5385 tcp_urg(sk, skb, th);
5386 __kfree_skb(skb);
5387 tcp_data_snd_check(sk);
5388 return 0;
5389 }
5390
5391 res = tcp_validate_incoming(sk, skb, th, 0);
5392 if (res <= 0)
5393 return -res;
5394
5395 /* step 5: check the ACK field */
5396 if (th->ack) {
5397 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5398
5399 switch (sk->sk_state) {
5400 case TCP_SYN_RECV:
5401 if (acceptable) {
5402 tp->copied_seq = tp->rcv_nxt;
5403 smp_mb();
5404 tcp_set_state(sk, TCP_ESTABLISHED);
5405 sk->sk_state_change(sk);
5406
5407 /* Note, that this wakeup is only for marginal
5408 * crossed SYN case. Passively open sockets
5409 * are not waked up, because sk->sk_sleep ==
5410 * NULL and sk->sk_socket == NULL.
5411 */
5412 if (sk->sk_socket)
5413 sk_wake_async(sk,
5414 SOCK_WAKE_IO, POLL_OUT);
5415
5416 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5417 tp->snd_wnd = ntohs(th->window) <<
5418 tp->rx_opt.snd_wscale;
5419 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5420 TCP_SKB_CB(skb)->seq);
5421
5422 /* tcp_ack considers this ACK as duplicate
5423 * and does not calculate rtt.
5424 * Fix it at least with timestamps.
5425 */
5426 if (tp->rx_opt.saw_tstamp &&
5427 tp->rx_opt.rcv_tsecr && !tp->srtt)
5428 tcp_ack_saw_tstamp(sk, 0);
5429
5430 if (tp->rx_opt.tstamp_ok)
5431 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5432
5433 /* Make sure socket is routed, for
5434 * correct metrics.
5435 */
5436 icsk->icsk_af_ops->rebuild_header(sk);
5437
5438 tcp_init_metrics(sk);
5439
5440 tcp_init_congestion_control(sk);
5441
5442 /* Prevent spurious tcp_cwnd_restart() on
5443 * first data packet.
5444 */
5445 tp->lsndtime = tcp_time_stamp;
5446
5447 tcp_mtup_init(sk);
5448 tcp_initialize_rcv_mss(sk);
5449 tcp_init_buffer_space(sk);
5450 tcp_fast_path_on(tp);
5451 } else {
5452 return 1;
5453 }
5454 break;
5455
5456 case TCP_FIN_WAIT1:
5457 if (tp->snd_una == tp->write_seq) {
5458 tcp_set_state(sk, TCP_FIN_WAIT2);
5459 sk->sk_shutdown |= SEND_SHUTDOWN;
5460 dst_confirm(sk->sk_dst_cache);
5461
5462 if (!sock_flag(sk, SOCK_DEAD))
5463 /* Wake up lingering close() */
5464 sk->sk_state_change(sk);
5465 else {
5466 int tmo;
5467
5468 if (tp->linger2 < 0 ||
5469 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5470 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5471 tcp_done(sk);
5472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5473 return 1;
5474 }
5475
5476 tmo = tcp_fin_time(sk);
5477 if (tmo > TCP_TIMEWAIT_LEN) {
5478 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5479 } else if (th->fin || sock_owned_by_user(sk)) {
5480 /* Bad case. We could lose such FIN otherwise.
5481 * It is not a big problem, but it looks confusing
5482 * and not so rare event. We still can lose it now,
5483 * if it spins in bh_lock_sock(), but it is really
5484 * marginal case.
5485 */
5486 inet_csk_reset_keepalive_timer(sk, tmo);
5487 } else {
5488 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5489 goto discard;
5490 }
5491 }
5492 }
5493 break;
5494
5495 case TCP_CLOSING:
5496 if (tp->snd_una == tp->write_seq) {
5497 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5498 goto discard;
5499 }
5500 break;
5501
5502 case TCP_LAST_ACK:
5503 if (tp->snd_una == tp->write_seq) {
5504 tcp_update_metrics(sk);
5505 tcp_done(sk);
5506 goto discard;
5507 }
5508 break;
5509 }
5510 } else
5511 goto discard;
5512
5513 /* step 6: check the URG bit */
5514 tcp_urg(sk, skb, th);
5515
5516 /* step 7: process the segment text */
5517 switch (sk->sk_state) {
5518 case TCP_CLOSE_WAIT:
5519 case TCP_CLOSING:
5520 case TCP_LAST_ACK:
5521 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5522 break;
5523 case TCP_FIN_WAIT1:
5524 case TCP_FIN_WAIT2:
5525 /* RFC 793 says to queue data in these states,
5526 * RFC 1122 says we MUST send a reset.
5527 * BSD 4.4 also does reset.
5528 */
5529 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5530 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5531 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5532 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5533 tcp_reset(sk);
5534 return 1;
5535 }
5536 }
5537 /* Fall through */
5538 case TCP_ESTABLISHED:
5539 tcp_data_queue(sk, skb);
5540 queued = 1;
5541 break;
5542 }
5543
5544 /* tcp_data could move socket to TIME-WAIT */
5545 if (sk->sk_state != TCP_CLOSE) {
5546 tcp_data_snd_check(sk);
5547 tcp_ack_snd_check(sk);
5548 }
5549
5550 if (!queued) {
5551discard:
5552 __kfree_skb(skb);
5553 }
5554 return 0;
5555}
5556
5557EXPORT_SYMBOL(sysctl_tcp_ecn);
5558EXPORT_SYMBOL(sysctl_tcp_reordering);
5559EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5560EXPORT_SYMBOL(tcp_parse_options);
5561#ifdef CONFIG_TCP_MD5SIG
5562EXPORT_SYMBOL(tcp_parse_md5sig_option);
5563#endif
5564EXPORT_SYMBOL(tcp_rcv_established);
5565EXPORT_SYMBOL(tcp_rcv_state_process);
5566EXPORT_SYMBOL(tcp_initialize_rcv_mss);