]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - net/ipv4/tcp_output.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_output.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37#define pr_fmt(fmt) "TCP: " fmt
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/gfp.h>
43#include <linux/module.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48/* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53/* Default TSQ limit of four TSO segments */
54int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56/* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62/* By default, RFC2861 behavior. */
63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68/* Account for new data that has been sent to the network. */
69static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70{
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84}
85
86/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
93static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94{
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103}
104
105/* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
119static __u16 tcp_advertise_mss(struct sock *sk)
120{
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135}
136
137/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
140void tcp_cwnd_restart(struct sock *sk, s32 delta)
141{
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
156}
157
158/* Congestion state accounting after a packet has been sent. */
159static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161{
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175}
176
177/* Account for an ACK we sent. */
178static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179{
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182}
183
184
185u32 tcp_default_init_rwnd(u32 mss)
186{
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unsent data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
191 */
192 u32 init_rwnd = TCP_INIT_CWND * 2;
193
194 if (mss > 1460)
195 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 return init_rwnd;
197}
198
199/* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
206void tcp_select_initial_window(int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210{
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = space;
234
235 (*rcv_wscale) = 0;
236 if (wscale_ok) {
237 /* Set window scaling on max possible window */
238 space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 space = max_t(u32, space, sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 space >>= 1;
243 (*rcv_wscale)++;
244 }
245 }
246
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 }
252
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255}
256EXPORT_SYMBOL(tcp_select_initial_window);
257
258/* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
262 */
263static u16 tcp_select_window(struct sock *sk)
264{
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 }
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
286
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
289 */
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
297
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 }
307
308 return new_win;
309}
310
311/* Packet ECN state for a SYN-ACK */
312static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313{
314 const struct tcp_sock *tp = tcp_sk(sk);
315
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk) ||
320 tcp_bpf_ca_needs_ecn(sk))
321 INET_ECN_xmit(sk);
322}
323
324/* Packet ECN state for a SYN. */
325static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326{
327 struct tcp_sock *tp = tcp_sk(sk);
328 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
329 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
330 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
331
332 if (!use_ecn) {
333 const struct dst_entry *dst = __sk_dst_get(sk);
334
335 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
336 use_ecn = true;
337 }
338
339 tp->ecn_flags = 0;
340
341 if (use_ecn) {
342 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
343 tp->ecn_flags = TCP_ECN_OK;
344 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
345 INET_ECN_xmit(sk);
346 }
347}
348
349static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
350{
351 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
352 /* tp->ecn_flags are cleared at a later point in time when
353 * SYN ACK is ultimatively being received.
354 */
355 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356}
357
358static void
359tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
360{
361 if (inet_rsk(req)->ecn_ok)
362 th->ece = 1;
363}
364
365/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366 * be sent.
367 */
368static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
369 struct tcphdr *th, int tcp_header_len)
370{
371 struct tcp_sock *tp = tcp_sk(sk);
372
373 if (tp->ecn_flags & TCP_ECN_OK) {
374 /* Not-retransmitted data segment: set ECT and inject CWR. */
375 if (skb->len != tcp_header_len &&
376 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
377 INET_ECN_xmit(sk);
378 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
379 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
380 th->cwr = 1;
381 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
382 }
383 } else if (!tcp_ca_needs_ecn(sk)) {
384 /* ACK or retransmitted segment: clear ECT|CE */
385 INET_ECN_dontxmit(sk);
386 }
387 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
388 th->ece = 1;
389 }
390}
391
392/* Constructs common control bits of non-data skb. If SYN/FIN is present,
393 * auto increment end seqno.
394 */
395static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
396{
397 skb->ip_summed = CHECKSUM_PARTIAL;
398 skb->csum = 0;
399
400 TCP_SKB_CB(skb)->tcp_flags = flags;
401 TCP_SKB_CB(skb)->sacked = 0;
402
403 tcp_skb_pcount_set(skb, 1);
404
405 TCP_SKB_CB(skb)->seq = seq;
406 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
407 seq++;
408 TCP_SKB_CB(skb)->end_seq = seq;
409}
410
411static inline bool tcp_urg_mode(const struct tcp_sock *tp)
412{
413 return tp->snd_una != tp->snd_up;
414}
415
416#define OPTION_SACK_ADVERTISE (1 << 0)
417#define OPTION_TS (1 << 1)
418#define OPTION_MD5 (1 << 2)
419#define OPTION_WSCALE (1 << 3)
420#define OPTION_FAST_OPEN_COOKIE (1 << 8)
421
422struct tcp_out_options {
423 u16 options; /* bit field of OPTION_* */
424 u16 mss; /* 0 to disable */
425 u8 ws; /* window scale, 0 to disable */
426 u8 num_sack_blocks; /* number of SACK blocks to include */
427 u8 hash_size; /* bytes in hash_location */
428 __u8 *hash_location; /* temporary pointer, overloaded */
429 __u32 tsval, tsecr; /* need to include OPTION_TS */
430 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
431};
432
433/* Write previously computed TCP options to the packet.
434 *
435 * Beware: Something in the Internet is very sensitive to the ordering of
436 * TCP options, we learned this through the hard way, so be careful here.
437 * Luckily we can at least blame others for their non-compliance but from
438 * inter-operability perspective it seems that we're somewhat stuck with
439 * the ordering which we have been using if we want to keep working with
440 * those broken things (not that it currently hurts anybody as there isn't
441 * particular reason why the ordering would need to be changed).
442 *
443 * At least SACK_PERM as the first option is known to lead to a disaster
444 * (but it may well be that other scenarios fail similarly).
445 */
446static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
447 struct tcp_out_options *opts)
448{
449 u16 options = opts->options; /* mungable copy */
450
451 if (unlikely(OPTION_MD5 & options)) {
452 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
453 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
454 /* overload cookie hash location */
455 opts->hash_location = (__u8 *)ptr;
456 ptr += 4;
457 }
458
459 if (unlikely(opts->mss)) {
460 *ptr++ = htonl((TCPOPT_MSS << 24) |
461 (TCPOLEN_MSS << 16) |
462 opts->mss);
463 }
464
465 if (likely(OPTION_TS & options)) {
466 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
467 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
468 (TCPOLEN_SACK_PERM << 16) |
469 (TCPOPT_TIMESTAMP << 8) |
470 TCPOLEN_TIMESTAMP);
471 options &= ~OPTION_SACK_ADVERTISE;
472 } else {
473 *ptr++ = htonl((TCPOPT_NOP << 24) |
474 (TCPOPT_NOP << 16) |
475 (TCPOPT_TIMESTAMP << 8) |
476 TCPOLEN_TIMESTAMP);
477 }
478 *ptr++ = htonl(opts->tsval);
479 *ptr++ = htonl(opts->tsecr);
480 }
481
482 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 *ptr++ = htonl((TCPOPT_NOP << 24) |
484 (TCPOPT_NOP << 16) |
485 (TCPOPT_SACK_PERM << 8) |
486 TCPOLEN_SACK_PERM);
487 }
488
489 if (unlikely(OPTION_WSCALE & options)) {
490 *ptr++ = htonl((TCPOPT_NOP << 24) |
491 (TCPOPT_WINDOW << 16) |
492 (TCPOLEN_WINDOW << 8) |
493 opts->ws);
494 }
495
496 if (unlikely(opts->num_sack_blocks)) {
497 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
498 tp->duplicate_sack : tp->selective_acks;
499 int this_sack;
500
501 *ptr++ = htonl((TCPOPT_NOP << 24) |
502 (TCPOPT_NOP << 16) |
503 (TCPOPT_SACK << 8) |
504 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
505 TCPOLEN_SACK_PERBLOCK)));
506
507 for (this_sack = 0; this_sack < opts->num_sack_blocks;
508 ++this_sack) {
509 *ptr++ = htonl(sp[this_sack].start_seq);
510 *ptr++ = htonl(sp[this_sack].end_seq);
511 }
512
513 tp->rx_opt.dsack = 0;
514 }
515
516 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
517 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
518 u8 *p = (u8 *)ptr;
519 u32 len; /* Fast Open option length */
520
521 if (foc->exp) {
522 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
523 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
524 TCPOPT_FASTOPEN_MAGIC);
525 p += TCPOLEN_EXP_FASTOPEN_BASE;
526 } else {
527 len = TCPOLEN_FASTOPEN_BASE + foc->len;
528 *p++ = TCPOPT_FASTOPEN;
529 *p++ = len;
530 }
531
532 memcpy(p, foc->val, foc->len);
533 if ((len & 3) == 2) {
534 p[foc->len] = TCPOPT_NOP;
535 p[foc->len + 1] = TCPOPT_NOP;
536 }
537 ptr += (len + 3) >> 2;
538 }
539}
540
541/* Compute TCP options for SYN packets. This is not the final
542 * network wire format yet.
543 */
544static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
545 struct tcp_out_options *opts,
546 struct tcp_md5sig_key **md5)
547{
548 struct tcp_sock *tp = tcp_sk(sk);
549 unsigned int remaining = MAX_TCP_OPTION_SPACE;
550 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
551
552#ifdef CONFIG_TCP_MD5SIG
553 *md5 = tp->af_specific->md5_lookup(sk, sk);
554 if (*md5) {
555 opts->options |= OPTION_MD5;
556 remaining -= TCPOLEN_MD5SIG_ALIGNED;
557 }
558#else
559 *md5 = NULL;
560#endif
561
562 /* We always get an MSS option. The option bytes which will be seen in
563 * normal data packets should timestamps be used, must be in the MSS
564 * advertised. But we subtract them from tp->mss_cache so that
565 * calculations in tcp_sendmsg are simpler etc. So account for this
566 * fact here if necessary. If we don't do this correctly, as a
567 * receiver we won't recognize data packets as being full sized when we
568 * should, and thus we won't abide by the delayed ACK rules correctly.
569 * SACKs don't matter, we never delay an ACK when we have any of those
570 * going out. */
571 opts->mss = tcp_advertise_mss(sk);
572 remaining -= TCPOLEN_MSS_ALIGNED;
573
574 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
575 opts->options |= OPTION_TS;
576 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
577 opts->tsecr = tp->rx_opt.ts_recent;
578 remaining -= TCPOLEN_TSTAMP_ALIGNED;
579 }
580 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
581 opts->ws = tp->rx_opt.rcv_wscale;
582 opts->options |= OPTION_WSCALE;
583 remaining -= TCPOLEN_WSCALE_ALIGNED;
584 }
585 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
586 opts->options |= OPTION_SACK_ADVERTISE;
587 if (unlikely(!(OPTION_TS & opts->options)))
588 remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 }
590
591 if (fastopen && fastopen->cookie.len >= 0) {
592 u32 need = fastopen->cookie.len;
593
594 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
595 TCPOLEN_FASTOPEN_BASE;
596 need = (need + 3) & ~3U; /* Align to 32 bits */
597 if (remaining >= need) {
598 opts->options |= OPTION_FAST_OPEN_COOKIE;
599 opts->fastopen_cookie = &fastopen->cookie;
600 remaining -= need;
601 tp->syn_fastopen = 1;
602 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 }
604 }
605
606 return MAX_TCP_OPTION_SPACE - remaining;
607}
608
609/* Set up TCP options for SYN-ACKs. */
610static unsigned int tcp_synack_options(struct request_sock *req,
611 unsigned int mss, struct sk_buff *skb,
612 struct tcp_out_options *opts,
613 const struct tcp_md5sig_key *md5,
614 struct tcp_fastopen_cookie *foc)
615{
616 struct inet_request_sock *ireq = inet_rsk(req);
617 unsigned int remaining = MAX_TCP_OPTION_SPACE;
618
619#ifdef CONFIG_TCP_MD5SIG
620 if (md5) {
621 opts->options |= OPTION_MD5;
622 remaining -= TCPOLEN_MD5SIG_ALIGNED;
623
624 /* We can't fit any SACK blocks in a packet with MD5 + TS
625 * options. There was discussion about disabling SACK
626 * rather than TS in order to fit in better with old,
627 * buggy kernels, but that was deemed to be unnecessary.
628 */
629 ireq->tstamp_ok &= !ireq->sack_ok;
630 }
631#endif
632
633 /* We always send an MSS option. */
634 opts->mss = mss;
635 remaining -= TCPOLEN_MSS_ALIGNED;
636
637 if (likely(ireq->wscale_ok)) {
638 opts->ws = ireq->rcv_wscale;
639 opts->options |= OPTION_WSCALE;
640 remaining -= TCPOLEN_WSCALE_ALIGNED;
641 }
642 if (likely(ireq->tstamp_ok)) {
643 opts->options |= OPTION_TS;
644 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
645 opts->tsecr = req->ts_recent;
646 remaining -= TCPOLEN_TSTAMP_ALIGNED;
647 }
648 if (likely(ireq->sack_ok)) {
649 opts->options |= OPTION_SACK_ADVERTISE;
650 if (unlikely(!ireq->tstamp_ok))
651 remaining -= TCPOLEN_SACKPERM_ALIGNED;
652 }
653 if (foc != NULL && foc->len >= 0) {
654 u32 need = foc->len;
655
656 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
657 TCPOLEN_FASTOPEN_BASE;
658 need = (need + 3) & ~3U; /* Align to 32 bits */
659 if (remaining >= need) {
660 opts->options |= OPTION_FAST_OPEN_COOKIE;
661 opts->fastopen_cookie = foc;
662 remaining -= need;
663 }
664 }
665
666 return MAX_TCP_OPTION_SPACE - remaining;
667}
668
669/* Compute TCP options for ESTABLISHED sockets. This is not the
670 * final wire format yet.
671 */
672static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
673 struct tcp_out_options *opts,
674 struct tcp_md5sig_key **md5)
675{
676 struct tcp_sock *tp = tcp_sk(sk);
677 unsigned int size = 0;
678 unsigned int eff_sacks;
679
680 opts->options = 0;
681
682#ifdef CONFIG_TCP_MD5SIG
683 *md5 = tp->af_specific->md5_lookup(sk, sk);
684 if (unlikely(*md5)) {
685 opts->options |= OPTION_MD5;
686 size += TCPOLEN_MD5SIG_ALIGNED;
687 }
688#else
689 *md5 = NULL;
690#endif
691
692 if (likely(tp->rx_opt.tstamp_ok)) {
693 opts->options |= OPTION_TS;
694 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
695 opts->tsecr = tp->rx_opt.ts_recent;
696 size += TCPOLEN_TSTAMP_ALIGNED;
697 }
698
699 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
700 if (unlikely(eff_sacks)) {
701 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
702 opts->num_sack_blocks =
703 min_t(unsigned int, eff_sacks,
704 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
705 TCPOLEN_SACK_PERBLOCK);
706 size += TCPOLEN_SACK_BASE_ALIGNED +
707 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 }
709
710 return size;
711}
712
713
714/* TCP SMALL QUEUES (TSQ)
715 *
716 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717 * to reduce RTT and bufferbloat.
718 * We do this using a special skb destructor (tcp_wfree).
719 *
720 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721 * needs to be reallocated in a driver.
722 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
723 *
724 * Since transmit from skb destructor is forbidden, we use a tasklet
725 * to process all sockets that eventually need to send more skbs.
726 * We use one tasklet per cpu, with its own queue of sockets.
727 */
728struct tsq_tasklet {
729 struct tasklet_struct tasklet;
730 struct list_head head; /* queue of tcp sockets */
731};
732static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
733
734static void tcp_tsq_handler(struct sock *sk)
735{
736 if ((1 << sk->sk_state) &
737 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
738 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
739 struct tcp_sock *tp = tcp_sk(sk);
740
741 if (tp->lost_out > tp->retrans_out &&
742 tp->snd_cwnd > tcp_packets_in_flight(tp))
743 tcp_xmit_retransmit_queue(sk);
744
745 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
746 0, GFP_ATOMIC);
747 }
748}
749/*
750 * One tasklet per cpu tries to send more skbs.
751 * We run in tasklet context but need to disable irqs when
752 * transferring tsq->head because tcp_wfree() might
753 * interrupt us (non NAPI drivers)
754 */
755static void tcp_tasklet_func(unsigned long data)
756{
757 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
758 LIST_HEAD(list);
759 unsigned long flags;
760 struct list_head *q, *n;
761 struct tcp_sock *tp;
762 struct sock *sk;
763
764 local_irq_save(flags);
765 list_splice_init(&tsq->head, &list);
766 local_irq_restore(flags);
767
768 list_for_each_safe(q, n, &list) {
769 tp = list_entry(q, struct tcp_sock, tsq_node);
770 list_del(&tp->tsq_node);
771
772 sk = (struct sock *)tp;
773 smp_mb__before_atomic();
774 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
775
776 if (!sk->sk_lock.owned &&
777 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
778 bh_lock_sock(sk);
779 if (!sock_owned_by_user(sk)) {
780 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
781 tcp_tsq_handler(sk);
782 }
783 bh_unlock_sock(sk);
784 }
785
786 sk_free(sk);
787 }
788}
789
790#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
791 TCPF_WRITE_TIMER_DEFERRED | \
792 TCPF_DELACK_TIMER_DEFERRED | \
793 TCPF_MTU_REDUCED_DEFERRED)
794/**
795 * tcp_release_cb - tcp release_sock() callback
796 * @sk: socket
797 *
798 * called from release_sock() to perform protocol dependent
799 * actions before socket release.
800 */
801void tcp_release_cb(struct sock *sk)
802{
803 unsigned long flags, nflags;
804
805 /* perform an atomic operation only if at least one flag is set */
806 do {
807 flags = sk->sk_tsq_flags;
808 if (!(flags & TCP_DEFERRED_ALL))
809 return;
810 nflags = flags & ~TCP_DEFERRED_ALL;
811 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
812
813 if (flags & TCPF_TSQ_DEFERRED)
814 tcp_tsq_handler(sk);
815
816 /* Here begins the tricky part :
817 * We are called from release_sock() with :
818 * 1) BH disabled
819 * 2) sk_lock.slock spinlock held
820 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 *
822 * But following code is meant to be called from BH handlers,
823 * so we should keep BH disabled, but early release socket ownership
824 */
825 sock_release_ownership(sk);
826
827 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
828 tcp_write_timer_handler(sk);
829 __sock_put(sk);
830 }
831 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
832 tcp_delack_timer_handler(sk);
833 __sock_put(sk);
834 }
835 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
836 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
837 __sock_put(sk);
838 }
839}
840EXPORT_SYMBOL(tcp_release_cb);
841
842void __init tcp_tasklet_init(void)
843{
844 int i;
845
846 for_each_possible_cpu(i) {
847 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
848
849 INIT_LIST_HEAD(&tsq->head);
850 tasklet_init(&tsq->tasklet,
851 tcp_tasklet_func,
852 (unsigned long)tsq);
853 }
854}
855
856/*
857 * Write buffer destructor automatically called from kfree_skb.
858 * We can't xmit new skbs from this context, as we might already
859 * hold qdisc lock.
860 */
861void tcp_wfree(struct sk_buff *skb)
862{
863 struct sock *sk = skb->sk;
864 struct tcp_sock *tp = tcp_sk(sk);
865 unsigned long flags, nval, oval;
866
867 /* Keep one reference on sk_wmem_alloc.
868 * Will be released by sk_free() from here or tcp_tasklet_func()
869 */
870 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
871
872 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
873 * Wait until our queues (qdisc + devices) are drained.
874 * This gives :
875 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
876 * - chance for incoming ACK (processed by another cpu maybe)
877 * to migrate this flow (skb->ooo_okay will be eventually set)
878 */
879 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
880 goto out;
881
882 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
883 struct tsq_tasklet *tsq;
884 bool empty;
885
886 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
887 goto out;
888
889 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
890 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
891 if (nval != oval)
892 continue;
893
894 /* queue this socket to tasklet queue */
895 local_irq_save(flags);
896 tsq = this_cpu_ptr(&tsq_tasklet);
897 empty = list_empty(&tsq->head);
898 list_add(&tp->tsq_node, &tsq->head);
899 if (empty)
900 tasklet_schedule(&tsq->tasklet);
901 local_irq_restore(flags);
902 return;
903 }
904out:
905 sk_free(sk);
906}
907
908/* Note: Called under hard irq.
909 * We can not call TCP stack right away.
910 */
911enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
912{
913 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
914 struct sock *sk = (struct sock *)tp;
915 unsigned long nval, oval;
916
917 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
918 struct tsq_tasklet *tsq;
919 bool empty;
920
921 if (oval & TSQF_QUEUED)
922 break;
923
924 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
925 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
926 if (nval != oval)
927 continue;
928
929 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
930 break;
931 /* queue this socket to tasklet queue */
932 tsq = this_cpu_ptr(&tsq_tasklet);
933 empty = list_empty(&tsq->head);
934 list_add(&tp->tsq_node, &tsq->head);
935 if (empty)
936 tasklet_schedule(&tsq->tasklet);
937 break;
938 }
939 return HRTIMER_NORESTART;
940}
941
942/* BBR congestion control needs pacing.
943 * Same remark for SO_MAX_PACING_RATE.
944 * sch_fq packet scheduler is efficiently handling pacing,
945 * but is not always installed/used.
946 * Return true if TCP stack should pace packets itself.
947 */
948static bool tcp_needs_internal_pacing(const struct sock *sk)
949{
950 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
951}
952
953static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
954{
955 u64 len_ns;
956 u32 rate;
957
958 if (!tcp_needs_internal_pacing(sk))
959 return;
960 rate = sk->sk_pacing_rate;
961 if (!rate || rate == ~0U)
962 return;
963
964 /* Should account for header sizes as sch_fq does,
965 * but lets make things simple.
966 */
967 len_ns = (u64)skb->len * NSEC_PER_SEC;
968 do_div(len_ns, rate);
969 hrtimer_start(&tcp_sk(sk)->pacing_timer,
970 ktime_add_ns(ktime_get(), len_ns),
971 HRTIMER_MODE_ABS_PINNED);
972}
973
974/* This routine actually transmits TCP packets queued in by
975 * tcp_do_sendmsg(). This is used by both the initial
976 * transmission and possible later retransmissions.
977 * All SKB's seen here are completely headerless. It is our
978 * job to build the TCP header, and pass the packet down to
979 * IP so it can do the same plus pass the packet off to the
980 * device.
981 *
982 * We are working here with either a clone of the original
983 * SKB, or a fresh unique copy made by the retransmit engine.
984 */
985static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
986 gfp_t gfp_mask)
987{
988 const struct inet_connection_sock *icsk = inet_csk(sk);
989 struct inet_sock *inet;
990 struct tcp_sock *tp;
991 struct tcp_skb_cb *tcb;
992 struct tcp_out_options opts;
993 unsigned int tcp_options_size, tcp_header_size;
994 struct tcp_md5sig_key *md5;
995 struct tcphdr *th;
996 int err;
997
998 BUG_ON(!skb || !tcp_skb_pcount(skb));
999 tp = tcp_sk(sk);
1000
1001 skb->skb_mstamp = tp->tcp_mstamp;
1002 if (clone_it) {
1003 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1004 - tp->snd_una;
1005 tcp_rate_skb_sent(sk, skb);
1006
1007 if (unlikely(skb_cloned(skb)))
1008 skb = pskb_copy(skb, gfp_mask);
1009 else
1010 skb = skb_clone(skb, gfp_mask);
1011 if (unlikely(!skb))
1012 return -ENOBUFS;
1013 }
1014
1015 inet = inet_sk(sk);
1016 tcb = TCP_SKB_CB(skb);
1017 memset(&opts, 0, sizeof(opts));
1018
1019 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1020 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1021 else
1022 tcp_options_size = tcp_established_options(sk, skb, &opts,
1023 &md5);
1024 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1025
1026 /* if no packet is in qdisc/device queue, then allow XPS to select
1027 * another queue. We can be called from tcp_tsq_handler()
1028 * which holds one reference to sk_wmem_alloc.
1029 *
1030 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1031 * One way to get this would be to set skb->truesize = 2 on them.
1032 */
1033 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1034
1035 /* If we had to use memory reserve to allocate this skb,
1036 * this might cause drops if packet is looped back :
1037 * Other socket might not have SOCK_MEMALLOC.
1038 * Packets not looped back do not care about pfmemalloc.
1039 */
1040 skb->pfmemalloc = 0;
1041
1042 skb_push(skb, tcp_header_size);
1043 skb_reset_transport_header(skb);
1044
1045 skb_orphan(skb);
1046 skb->sk = sk;
1047 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1048 skb_set_hash_from_sk(skb, sk);
1049 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1050
1051 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1052
1053 /* Build TCP header and checksum it. */
1054 th = (struct tcphdr *)skb->data;
1055 th->source = inet->inet_sport;
1056 th->dest = inet->inet_dport;
1057 th->seq = htonl(tcb->seq);
1058 th->ack_seq = htonl(tp->rcv_nxt);
1059 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1060 tcb->tcp_flags);
1061
1062 th->check = 0;
1063 th->urg_ptr = 0;
1064
1065 /* The urg_mode check is necessary during a below snd_una win probe */
1066 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1067 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1068 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1069 th->urg = 1;
1070 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1071 th->urg_ptr = htons(0xFFFF);
1072 th->urg = 1;
1073 }
1074 }
1075
1076 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1077 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1078 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1079 th->window = htons(tcp_select_window(sk));
1080 tcp_ecn_send(sk, skb, th, tcp_header_size);
1081 } else {
1082 /* RFC1323: The window in SYN & SYN/ACK segments
1083 * is never scaled.
1084 */
1085 th->window = htons(min(tp->rcv_wnd, 65535U));
1086 }
1087#ifdef CONFIG_TCP_MD5SIG
1088 /* Calculate the MD5 hash, as we have all we need now */
1089 if (md5) {
1090 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1091 tp->af_specific->calc_md5_hash(opts.hash_location,
1092 md5, sk, skb);
1093 }
1094#endif
1095
1096 icsk->icsk_af_ops->send_check(sk, skb);
1097
1098 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1099 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1100
1101 if (skb->len != tcp_header_size) {
1102 tcp_event_data_sent(tp, sk);
1103 tp->data_segs_out += tcp_skb_pcount(skb);
1104 tcp_internal_pacing(sk, skb);
1105 }
1106
1107 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1108 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1109 tcp_skb_pcount(skb));
1110
1111 tp->segs_out += tcp_skb_pcount(skb);
1112 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1113 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1114 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1115
1116 /* Our usage of tstamp should remain private */
1117 skb->tstamp = 0;
1118
1119 /* Cleanup our debris for IP stacks */
1120 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1121 sizeof(struct inet6_skb_parm)));
1122
1123 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1124
1125 if (likely(err <= 0))
1126 return err;
1127
1128 tcp_enter_cwr(sk);
1129
1130 return net_xmit_eval(err);
1131}
1132
1133/* This routine just queues the buffer for sending.
1134 *
1135 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1136 * otherwise socket can stall.
1137 */
1138static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1139{
1140 struct tcp_sock *tp = tcp_sk(sk);
1141
1142 /* Advance write_seq and place onto the write_queue. */
1143 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1144 __skb_header_release(skb);
1145 tcp_add_write_queue_tail(sk, skb);
1146 sk->sk_wmem_queued += skb->truesize;
1147 sk_mem_charge(sk, skb->truesize);
1148}
1149
1150/* Initialize TSO segments for a packet. */
1151static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1152{
1153 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1154 /* Avoid the costly divide in the normal
1155 * non-TSO case.
1156 */
1157 tcp_skb_pcount_set(skb, 1);
1158 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1159 } else {
1160 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1161 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1162 }
1163}
1164
1165/* When a modification to fackets out becomes necessary, we need to check
1166 * skb is counted to fackets_out or not.
1167 */
1168static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1169 int decr)
1170{
1171 struct tcp_sock *tp = tcp_sk(sk);
1172
1173 if (!tp->sacked_out || tcp_is_reno(tp))
1174 return;
1175
1176 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1177 tp->fackets_out -= decr;
1178}
1179
1180/* Pcount in the middle of the write queue got changed, we need to do various
1181 * tweaks to fix counters
1182 */
1183static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1184{
1185 struct tcp_sock *tp = tcp_sk(sk);
1186
1187 tp->packets_out -= decr;
1188
1189 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1190 tp->sacked_out -= decr;
1191 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1192 tp->retrans_out -= decr;
1193 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1194 tp->lost_out -= decr;
1195
1196 /* Reno case is special. Sigh... */
1197 if (tcp_is_reno(tp) && decr > 0)
1198 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1199
1200 tcp_adjust_fackets_out(sk, skb, decr);
1201
1202 if (tp->lost_skb_hint &&
1203 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1204 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1205 tp->lost_cnt_hint -= decr;
1206
1207 tcp_verify_left_out(tp);
1208}
1209
1210static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1211{
1212 return TCP_SKB_CB(skb)->txstamp_ack ||
1213 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1214}
1215
1216static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1217{
1218 struct skb_shared_info *shinfo = skb_shinfo(skb);
1219
1220 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1221 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1222 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1223 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1224
1225 shinfo->tx_flags &= ~tsflags;
1226 shinfo2->tx_flags |= tsflags;
1227 swap(shinfo->tskey, shinfo2->tskey);
1228 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1229 TCP_SKB_CB(skb)->txstamp_ack = 0;
1230 }
1231}
1232
1233static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1234{
1235 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1236 TCP_SKB_CB(skb)->eor = 0;
1237}
1238
1239/* Function to create two new TCP segments. Shrinks the given segment
1240 * to the specified size and appends a new segment with the rest of the
1241 * packet to the list. This won't be called frequently, I hope.
1242 * Remember, these are still headerless SKBs at this point.
1243 */
1244int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1245 unsigned int mss_now, gfp_t gfp)
1246{
1247 struct tcp_sock *tp = tcp_sk(sk);
1248 struct sk_buff *buff;
1249 int nsize, old_factor;
1250 int nlen;
1251 u8 flags;
1252
1253 if (WARN_ON(len > skb->len))
1254 return -EINVAL;
1255
1256 nsize = skb_headlen(skb) - len;
1257 if (nsize < 0)
1258 nsize = 0;
1259
1260 if (skb_unclone(skb, gfp))
1261 return -ENOMEM;
1262
1263 /* Get a new skb... force flag on. */
1264 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1265 if (!buff)
1266 return -ENOMEM; /* We'll just try again later. */
1267
1268 sk->sk_wmem_queued += buff->truesize;
1269 sk_mem_charge(sk, buff->truesize);
1270 nlen = skb->len - len - nsize;
1271 buff->truesize += nlen;
1272 skb->truesize -= nlen;
1273
1274 /* Correct the sequence numbers. */
1275 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1276 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1277 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1278
1279 /* PSH and FIN should only be set in the second packet. */
1280 flags = TCP_SKB_CB(skb)->tcp_flags;
1281 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1282 TCP_SKB_CB(buff)->tcp_flags = flags;
1283 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1284 tcp_skb_fragment_eor(skb, buff);
1285
1286 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1287 /* Copy and checksum data tail into the new buffer. */
1288 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1289 skb_put(buff, nsize),
1290 nsize, 0);
1291
1292 skb_trim(skb, len);
1293
1294 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1295 } else {
1296 skb->ip_summed = CHECKSUM_PARTIAL;
1297 skb_split(skb, buff, len);
1298 }
1299
1300 buff->ip_summed = skb->ip_summed;
1301
1302 buff->tstamp = skb->tstamp;
1303 tcp_fragment_tstamp(skb, buff);
1304
1305 old_factor = tcp_skb_pcount(skb);
1306
1307 /* Fix up tso_factor for both original and new SKB. */
1308 tcp_set_skb_tso_segs(skb, mss_now);
1309 tcp_set_skb_tso_segs(buff, mss_now);
1310
1311 /* Update delivered info for the new segment */
1312 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1313
1314 /* If this packet has been sent out already, we must
1315 * adjust the various packet counters.
1316 */
1317 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1318 int diff = old_factor - tcp_skb_pcount(skb) -
1319 tcp_skb_pcount(buff);
1320
1321 if (diff)
1322 tcp_adjust_pcount(sk, skb, diff);
1323 }
1324
1325 /* Link BUFF into the send queue. */
1326 __skb_header_release(buff);
1327 tcp_insert_write_queue_after(skb, buff, sk);
1328
1329 return 0;
1330}
1331
1332/* This is similar to __pskb_pull_tail(). The difference is that pulled
1333 * data is not copied, but immediately discarded.
1334 */
1335static int __pskb_trim_head(struct sk_buff *skb, int len)
1336{
1337 struct skb_shared_info *shinfo;
1338 int i, k, eat;
1339
1340 eat = min_t(int, len, skb_headlen(skb));
1341 if (eat) {
1342 __skb_pull(skb, eat);
1343 len -= eat;
1344 if (!len)
1345 return 0;
1346 }
1347 eat = len;
1348 k = 0;
1349 shinfo = skb_shinfo(skb);
1350 for (i = 0; i < shinfo->nr_frags; i++) {
1351 int size = skb_frag_size(&shinfo->frags[i]);
1352
1353 if (size <= eat) {
1354 skb_frag_unref(skb, i);
1355 eat -= size;
1356 } else {
1357 shinfo->frags[k] = shinfo->frags[i];
1358 if (eat) {
1359 shinfo->frags[k].page_offset += eat;
1360 skb_frag_size_sub(&shinfo->frags[k], eat);
1361 eat = 0;
1362 }
1363 k++;
1364 }
1365 }
1366 shinfo->nr_frags = k;
1367
1368 skb->data_len -= len;
1369 skb->len = skb->data_len;
1370 return len;
1371}
1372
1373/* Remove acked data from a packet in the transmit queue. */
1374int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1375{
1376 u32 delta_truesize;
1377
1378 if (skb_unclone(skb, GFP_ATOMIC))
1379 return -ENOMEM;
1380
1381 delta_truesize = __pskb_trim_head(skb, len);
1382
1383 TCP_SKB_CB(skb)->seq += len;
1384 skb->ip_summed = CHECKSUM_PARTIAL;
1385
1386 if (delta_truesize) {
1387 skb->truesize -= delta_truesize;
1388 sk->sk_wmem_queued -= delta_truesize;
1389 sk_mem_uncharge(sk, delta_truesize);
1390 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1391 }
1392
1393 /* Any change of skb->len requires recalculation of tso factor. */
1394 if (tcp_skb_pcount(skb) > 1)
1395 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1396
1397 return 0;
1398}
1399
1400/* Calculate MSS not accounting any TCP options. */
1401static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1402{
1403 const struct tcp_sock *tp = tcp_sk(sk);
1404 const struct inet_connection_sock *icsk = inet_csk(sk);
1405 int mss_now;
1406
1407 /* Calculate base mss without TCP options:
1408 It is MMS_S - sizeof(tcphdr) of rfc1122
1409 */
1410 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1411
1412 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1413 if (icsk->icsk_af_ops->net_frag_header_len) {
1414 const struct dst_entry *dst = __sk_dst_get(sk);
1415
1416 if (dst && dst_allfrag(dst))
1417 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1418 }
1419
1420 /* Clamp it (mss_clamp does not include tcp options) */
1421 if (mss_now > tp->rx_opt.mss_clamp)
1422 mss_now = tp->rx_opt.mss_clamp;
1423
1424 /* Now subtract optional transport overhead */
1425 mss_now -= icsk->icsk_ext_hdr_len;
1426
1427 /* Then reserve room for full set of TCP options and 8 bytes of data */
1428 if (mss_now < 48)
1429 mss_now = 48;
1430 return mss_now;
1431}
1432
1433/* Calculate MSS. Not accounting for SACKs here. */
1434int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1435{
1436 /* Subtract TCP options size, not including SACKs */
1437 return __tcp_mtu_to_mss(sk, pmtu) -
1438 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1439}
1440
1441/* Inverse of above */
1442int tcp_mss_to_mtu(struct sock *sk, int mss)
1443{
1444 const struct tcp_sock *tp = tcp_sk(sk);
1445 const struct inet_connection_sock *icsk = inet_csk(sk);
1446 int mtu;
1447
1448 mtu = mss +
1449 tp->tcp_header_len +
1450 icsk->icsk_ext_hdr_len +
1451 icsk->icsk_af_ops->net_header_len;
1452
1453 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1454 if (icsk->icsk_af_ops->net_frag_header_len) {
1455 const struct dst_entry *dst = __sk_dst_get(sk);
1456
1457 if (dst && dst_allfrag(dst))
1458 mtu += icsk->icsk_af_ops->net_frag_header_len;
1459 }
1460 return mtu;
1461}
1462EXPORT_SYMBOL(tcp_mss_to_mtu);
1463
1464/* MTU probing init per socket */
1465void tcp_mtup_init(struct sock *sk)
1466{
1467 struct tcp_sock *tp = tcp_sk(sk);
1468 struct inet_connection_sock *icsk = inet_csk(sk);
1469 struct net *net = sock_net(sk);
1470
1471 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1472 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1473 icsk->icsk_af_ops->net_header_len;
1474 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1475 icsk->icsk_mtup.probe_size = 0;
1476 if (icsk->icsk_mtup.enabled)
1477 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1478}
1479EXPORT_SYMBOL(tcp_mtup_init);
1480
1481/* This function synchronize snd mss to current pmtu/exthdr set.
1482
1483 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1484 for TCP options, but includes only bare TCP header.
1485
1486 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1487 It is minimum of user_mss and mss received with SYN.
1488 It also does not include TCP options.
1489
1490 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1491
1492 tp->mss_cache is current effective sending mss, including
1493 all tcp options except for SACKs. It is evaluated,
1494 taking into account current pmtu, but never exceeds
1495 tp->rx_opt.mss_clamp.
1496
1497 NOTE1. rfc1122 clearly states that advertised MSS
1498 DOES NOT include either tcp or ip options.
1499
1500 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1501 are READ ONLY outside this function. --ANK (980731)
1502 */
1503unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1504{
1505 struct tcp_sock *tp = tcp_sk(sk);
1506 struct inet_connection_sock *icsk = inet_csk(sk);
1507 int mss_now;
1508
1509 if (icsk->icsk_mtup.search_high > pmtu)
1510 icsk->icsk_mtup.search_high = pmtu;
1511
1512 mss_now = tcp_mtu_to_mss(sk, pmtu);
1513 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1514
1515 /* And store cached results */
1516 icsk->icsk_pmtu_cookie = pmtu;
1517 if (icsk->icsk_mtup.enabled)
1518 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1519 tp->mss_cache = mss_now;
1520
1521 return mss_now;
1522}
1523EXPORT_SYMBOL(tcp_sync_mss);
1524
1525/* Compute the current effective MSS, taking SACKs and IP options,
1526 * and even PMTU discovery events into account.
1527 */
1528unsigned int tcp_current_mss(struct sock *sk)
1529{
1530 const struct tcp_sock *tp = tcp_sk(sk);
1531 const struct dst_entry *dst = __sk_dst_get(sk);
1532 u32 mss_now;
1533 unsigned int header_len;
1534 struct tcp_out_options opts;
1535 struct tcp_md5sig_key *md5;
1536
1537 mss_now = tp->mss_cache;
1538
1539 if (dst) {
1540 u32 mtu = dst_mtu(dst);
1541 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1542 mss_now = tcp_sync_mss(sk, mtu);
1543 }
1544
1545 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1546 sizeof(struct tcphdr);
1547 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1548 * some common options. If this is an odd packet (because we have SACK
1549 * blocks etc) then our calculated header_len will be different, and
1550 * we have to adjust mss_now correspondingly */
1551 if (header_len != tp->tcp_header_len) {
1552 int delta = (int) header_len - tp->tcp_header_len;
1553 mss_now -= delta;
1554 }
1555
1556 return mss_now;
1557}
1558
1559/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1560 * As additional protections, we do not touch cwnd in retransmission phases,
1561 * and if application hit its sndbuf limit recently.
1562 */
1563static void tcp_cwnd_application_limited(struct sock *sk)
1564{
1565 struct tcp_sock *tp = tcp_sk(sk);
1566
1567 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1568 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1569 /* Limited by application or receiver window. */
1570 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1571 u32 win_used = max(tp->snd_cwnd_used, init_win);
1572 if (win_used < tp->snd_cwnd) {
1573 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1574 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1575 }
1576 tp->snd_cwnd_used = 0;
1577 }
1578 tp->snd_cwnd_stamp = tcp_jiffies32;
1579}
1580
1581static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1582{
1583 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1584 struct tcp_sock *tp = tcp_sk(sk);
1585
1586 /* Track the maximum number of outstanding packets in each
1587 * window, and remember whether we were cwnd-limited then.
1588 */
1589 if (!before(tp->snd_una, tp->max_packets_seq) ||
1590 tp->packets_out > tp->max_packets_out) {
1591 tp->max_packets_out = tp->packets_out;
1592 tp->max_packets_seq = tp->snd_nxt;
1593 tp->is_cwnd_limited = is_cwnd_limited;
1594 }
1595
1596 if (tcp_is_cwnd_limited(sk)) {
1597 /* Network is feed fully. */
1598 tp->snd_cwnd_used = 0;
1599 tp->snd_cwnd_stamp = tcp_jiffies32;
1600 } else {
1601 /* Network starves. */
1602 if (tp->packets_out > tp->snd_cwnd_used)
1603 tp->snd_cwnd_used = tp->packets_out;
1604
1605 if (sysctl_tcp_slow_start_after_idle &&
1606 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1607 !ca_ops->cong_control)
1608 tcp_cwnd_application_limited(sk);
1609
1610 /* The following conditions together indicate the starvation
1611 * is caused by insufficient sender buffer:
1612 * 1) just sent some data (see tcp_write_xmit)
1613 * 2) not cwnd limited (this else condition)
1614 * 3) no more data to send (null tcp_send_head )
1615 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1616 */
1617 if (!tcp_send_head(sk) && sk->sk_socket &&
1618 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1619 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1620 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1621 }
1622}
1623
1624/* Minshall's variant of the Nagle send check. */
1625static bool tcp_minshall_check(const struct tcp_sock *tp)
1626{
1627 return after(tp->snd_sml, tp->snd_una) &&
1628 !after(tp->snd_sml, tp->snd_nxt);
1629}
1630
1631/* Update snd_sml if this skb is under mss
1632 * Note that a TSO packet might end with a sub-mss segment
1633 * The test is really :
1634 * if ((skb->len % mss) != 0)
1635 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1636 * But we can avoid doing the divide again given we already have
1637 * skb_pcount = skb->len / mss_now
1638 */
1639static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1640 const struct sk_buff *skb)
1641{
1642 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1643 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1644}
1645
1646/* Return false, if packet can be sent now without violation Nagle's rules:
1647 * 1. It is full sized. (provided by caller in %partial bool)
1648 * 2. Or it contains FIN. (already checked by caller)
1649 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1650 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1651 * With Minshall's modification: all sent small packets are ACKed.
1652 */
1653static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1654 int nonagle)
1655{
1656 return partial &&
1657 ((nonagle & TCP_NAGLE_CORK) ||
1658 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1659}
1660
1661/* Return how many segs we'd like on a TSO packet,
1662 * to send one TSO packet per ms
1663 */
1664u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1665 int min_tso_segs)
1666{
1667 u32 bytes, segs;
1668
1669 bytes = min(sk->sk_pacing_rate >> 10,
1670 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1671
1672 /* Goal is to send at least one packet per ms,
1673 * not one big TSO packet every 100 ms.
1674 * This preserves ACK clocking and is consistent
1675 * with tcp_tso_should_defer() heuristic.
1676 */
1677 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1678
1679 return min_t(u32, segs, sk->sk_gso_max_segs);
1680}
1681EXPORT_SYMBOL(tcp_tso_autosize);
1682
1683/* Return the number of segments we want in the skb we are transmitting.
1684 * See if congestion control module wants to decide; otherwise, autosize.
1685 */
1686static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1687{
1688 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1689 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1690
1691 return tso_segs ? :
1692 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1693}
1694
1695/* Returns the portion of skb which can be sent right away */
1696static unsigned int tcp_mss_split_point(const struct sock *sk,
1697 const struct sk_buff *skb,
1698 unsigned int mss_now,
1699 unsigned int max_segs,
1700 int nonagle)
1701{
1702 const struct tcp_sock *tp = tcp_sk(sk);
1703 u32 partial, needed, window, max_len;
1704
1705 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1706 max_len = mss_now * max_segs;
1707
1708 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1709 return max_len;
1710
1711 needed = min(skb->len, window);
1712
1713 if (max_len <= needed)
1714 return max_len;
1715
1716 partial = needed % mss_now;
1717 /* If last segment is not a full MSS, check if Nagle rules allow us
1718 * to include this last segment in this skb.
1719 * Otherwise, we'll split the skb at last MSS boundary
1720 */
1721 if (tcp_nagle_check(partial != 0, tp, nonagle))
1722 return needed - partial;
1723
1724 return needed;
1725}
1726
1727/* Can at least one segment of SKB be sent right now, according to the
1728 * congestion window rules? If so, return how many segments are allowed.
1729 */
1730static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1731 const struct sk_buff *skb)
1732{
1733 u32 in_flight, cwnd, halfcwnd;
1734
1735 /* Don't be strict about the congestion window for the final FIN. */
1736 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1737 tcp_skb_pcount(skb) == 1)
1738 return 1;
1739
1740 in_flight = tcp_packets_in_flight(tp);
1741 cwnd = tp->snd_cwnd;
1742 if (in_flight >= cwnd)
1743 return 0;
1744
1745 /* For better scheduling, ensure we have at least
1746 * 2 GSO packets in flight.
1747 */
1748 halfcwnd = max(cwnd >> 1, 1U);
1749 return min(halfcwnd, cwnd - in_flight);
1750}
1751
1752/* Initialize TSO state of a skb.
1753 * This must be invoked the first time we consider transmitting
1754 * SKB onto the wire.
1755 */
1756static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1757{
1758 int tso_segs = tcp_skb_pcount(skb);
1759
1760 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1761 tcp_set_skb_tso_segs(skb, mss_now);
1762 tso_segs = tcp_skb_pcount(skb);
1763 }
1764 return tso_segs;
1765}
1766
1767
1768/* Return true if the Nagle test allows this packet to be
1769 * sent now.
1770 */
1771static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1772 unsigned int cur_mss, int nonagle)
1773{
1774 /* Nagle rule does not apply to frames, which sit in the middle of the
1775 * write_queue (they have no chances to get new data).
1776 *
1777 * This is implemented in the callers, where they modify the 'nonagle'
1778 * argument based upon the location of SKB in the send queue.
1779 */
1780 if (nonagle & TCP_NAGLE_PUSH)
1781 return true;
1782
1783 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1784 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1785 return true;
1786
1787 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1788 return true;
1789
1790 return false;
1791}
1792
1793/* Does at least the first segment of SKB fit into the send window? */
1794static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1795 const struct sk_buff *skb,
1796 unsigned int cur_mss)
1797{
1798 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1799
1800 if (skb->len > cur_mss)
1801 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1802
1803 return !after(end_seq, tcp_wnd_end(tp));
1804}
1805
1806/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1807 * should be put on the wire right now. If so, it returns the number of
1808 * packets allowed by the congestion window.
1809 */
1810static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1811 unsigned int cur_mss, int nonagle)
1812{
1813 const struct tcp_sock *tp = tcp_sk(sk);
1814 unsigned int cwnd_quota;
1815
1816 tcp_init_tso_segs(skb, cur_mss);
1817
1818 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1819 return 0;
1820
1821 cwnd_quota = tcp_cwnd_test(tp, skb);
1822 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1823 cwnd_quota = 0;
1824
1825 return cwnd_quota;
1826}
1827
1828/* Test if sending is allowed right now. */
1829bool tcp_may_send_now(struct sock *sk)
1830{
1831 const struct tcp_sock *tp = tcp_sk(sk);
1832 struct sk_buff *skb = tcp_send_head(sk);
1833
1834 return skb &&
1835 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1836 (tcp_skb_is_last(sk, skb) ?
1837 tp->nonagle : TCP_NAGLE_PUSH));
1838}
1839
1840/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1841 * which is put after SKB on the list. It is very much like
1842 * tcp_fragment() except that it may make several kinds of assumptions
1843 * in order to speed up the splitting operation. In particular, we
1844 * know that all the data is in scatter-gather pages, and that the
1845 * packet has never been sent out before (and thus is not cloned).
1846 */
1847static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1848 unsigned int mss_now, gfp_t gfp)
1849{
1850 struct sk_buff *buff;
1851 int nlen = skb->len - len;
1852 u8 flags;
1853
1854 /* All of a TSO frame must be composed of paged data. */
1855 if (skb->len != skb->data_len)
1856 return tcp_fragment(sk, skb, len, mss_now, gfp);
1857
1858 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1859 if (unlikely(!buff))
1860 return -ENOMEM;
1861
1862 sk->sk_wmem_queued += buff->truesize;
1863 sk_mem_charge(sk, buff->truesize);
1864 buff->truesize += nlen;
1865 skb->truesize -= nlen;
1866
1867 /* Correct the sequence numbers. */
1868 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1869 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1870 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1871
1872 /* PSH and FIN should only be set in the second packet. */
1873 flags = TCP_SKB_CB(skb)->tcp_flags;
1874 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1875 TCP_SKB_CB(buff)->tcp_flags = flags;
1876
1877 /* This packet was never sent out yet, so no SACK bits. */
1878 TCP_SKB_CB(buff)->sacked = 0;
1879
1880 tcp_skb_fragment_eor(skb, buff);
1881
1882 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1883 skb_split(skb, buff, len);
1884 tcp_fragment_tstamp(skb, buff);
1885
1886 /* Fix up tso_factor for both original and new SKB. */
1887 tcp_set_skb_tso_segs(skb, mss_now);
1888 tcp_set_skb_tso_segs(buff, mss_now);
1889
1890 /* Link BUFF into the send queue. */
1891 __skb_header_release(buff);
1892 tcp_insert_write_queue_after(skb, buff, sk);
1893
1894 return 0;
1895}
1896
1897/* Try to defer sending, if possible, in order to minimize the amount
1898 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1899 *
1900 * This algorithm is from John Heffner.
1901 */
1902static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1903 bool *is_cwnd_limited, u32 max_segs)
1904{
1905 const struct inet_connection_sock *icsk = inet_csk(sk);
1906 u32 age, send_win, cong_win, limit, in_flight;
1907 struct tcp_sock *tp = tcp_sk(sk);
1908 struct sk_buff *head;
1909 int win_divisor;
1910
1911 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1912 goto send_now;
1913
1914 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1915 goto send_now;
1916
1917 /* Avoid bursty behavior by allowing defer
1918 * only if the last write was recent.
1919 */
1920 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1921 goto send_now;
1922
1923 in_flight = tcp_packets_in_flight(tp);
1924
1925 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1926
1927 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1928
1929 /* From in_flight test above, we know that cwnd > in_flight. */
1930 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1931
1932 limit = min(send_win, cong_win);
1933
1934 /* If a full-sized TSO skb can be sent, do it. */
1935 if (limit >= max_segs * tp->mss_cache)
1936 goto send_now;
1937
1938 /* Middle in queue won't get any more data, full sendable already? */
1939 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1940 goto send_now;
1941
1942 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1943 if (win_divisor) {
1944 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1945
1946 /* If at least some fraction of a window is available,
1947 * just use it.
1948 */
1949 chunk /= win_divisor;
1950 if (limit >= chunk)
1951 goto send_now;
1952 } else {
1953 /* Different approach, try not to defer past a single
1954 * ACK. Receiver should ACK every other full sized
1955 * frame, so if we have space for more than 3 frames
1956 * then send now.
1957 */
1958 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1959 goto send_now;
1960 }
1961
1962 head = tcp_write_queue_head(sk);
1963
1964 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1965 /* If next ACK is likely to come too late (half srtt), do not defer */
1966 if (age < (tp->srtt_us >> 4))
1967 goto send_now;
1968
1969 /* Ok, it looks like it is advisable to defer. */
1970
1971 if (cong_win < send_win && cong_win <= skb->len)
1972 *is_cwnd_limited = true;
1973
1974 return true;
1975
1976send_now:
1977 return false;
1978}
1979
1980static inline void tcp_mtu_check_reprobe(struct sock *sk)
1981{
1982 struct inet_connection_sock *icsk = inet_csk(sk);
1983 struct tcp_sock *tp = tcp_sk(sk);
1984 struct net *net = sock_net(sk);
1985 u32 interval;
1986 s32 delta;
1987
1988 interval = net->ipv4.sysctl_tcp_probe_interval;
1989 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1990 if (unlikely(delta >= interval * HZ)) {
1991 int mss = tcp_current_mss(sk);
1992
1993 /* Update current search range */
1994 icsk->icsk_mtup.probe_size = 0;
1995 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1996 sizeof(struct tcphdr) +
1997 icsk->icsk_af_ops->net_header_len;
1998 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1999
2000 /* Update probe time stamp */
2001 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2002 }
2003}
2004
2005/* Create a new MTU probe if we are ready.
2006 * MTU probe is regularly attempting to increase the path MTU by
2007 * deliberately sending larger packets. This discovers routing
2008 * changes resulting in larger path MTUs.
2009 *
2010 * Returns 0 if we should wait to probe (no cwnd available),
2011 * 1 if a probe was sent,
2012 * -1 otherwise
2013 */
2014static int tcp_mtu_probe(struct sock *sk)
2015{
2016 struct inet_connection_sock *icsk = inet_csk(sk);
2017 struct tcp_sock *tp = tcp_sk(sk);
2018 struct sk_buff *skb, *nskb, *next;
2019 struct net *net = sock_net(sk);
2020 int probe_size;
2021 int size_needed;
2022 int copy, len;
2023 int mss_now;
2024 int interval;
2025
2026 /* Not currently probing/verifying,
2027 * not in recovery,
2028 * have enough cwnd, and
2029 * not SACKing (the variable headers throw things off)
2030 */
2031 if (likely(!icsk->icsk_mtup.enabled ||
2032 icsk->icsk_mtup.probe_size ||
2033 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2034 tp->snd_cwnd < 11 ||
2035 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2036 return -1;
2037
2038 /* Use binary search for probe_size between tcp_mss_base,
2039 * and current mss_clamp. if (search_high - search_low)
2040 * smaller than a threshold, backoff from probing.
2041 */
2042 mss_now = tcp_current_mss(sk);
2043 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2044 icsk->icsk_mtup.search_low) >> 1);
2045 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2046 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2047 /* When misfortune happens, we are reprobing actively,
2048 * and then reprobe timer has expired. We stick with current
2049 * probing process by not resetting search range to its orignal.
2050 */
2051 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2052 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2053 /* Check whether enough time has elaplased for
2054 * another round of probing.
2055 */
2056 tcp_mtu_check_reprobe(sk);
2057 return -1;
2058 }
2059
2060 /* Have enough data in the send queue to probe? */
2061 if (tp->write_seq - tp->snd_nxt < size_needed)
2062 return -1;
2063
2064 if (tp->snd_wnd < size_needed)
2065 return -1;
2066 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2067 return 0;
2068
2069 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2070 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2071 if (!tcp_packets_in_flight(tp))
2072 return -1;
2073 else
2074 return 0;
2075 }
2076
2077 /* We're allowed to probe. Build it now. */
2078 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2079 if (!nskb)
2080 return -1;
2081 sk->sk_wmem_queued += nskb->truesize;
2082 sk_mem_charge(sk, nskb->truesize);
2083
2084 skb = tcp_send_head(sk);
2085
2086 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2087 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2088 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2089 TCP_SKB_CB(nskb)->sacked = 0;
2090 nskb->csum = 0;
2091 nskb->ip_summed = skb->ip_summed;
2092
2093 tcp_insert_write_queue_before(nskb, skb, sk);
2094
2095 len = 0;
2096 tcp_for_write_queue_from_safe(skb, next, sk) {
2097 copy = min_t(int, skb->len, probe_size - len);
2098 if (nskb->ip_summed) {
2099 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2100 } else {
2101 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2102 skb_put(nskb, copy),
2103 copy, 0);
2104 nskb->csum = csum_block_add(nskb->csum, csum, len);
2105 }
2106
2107 if (skb->len <= copy) {
2108 /* We've eaten all the data from this skb.
2109 * Throw it away. */
2110 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2111 tcp_unlink_write_queue(skb, sk);
2112 sk_wmem_free_skb(sk, skb);
2113 } else {
2114 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2115 ~(TCPHDR_FIN|TCPHDR_PSH);
2116 if (!skb_shinfo(skb)->nr_frags) {
2117 skb_pull(skb, copy);
2118 if (skb->ip_summed != CHECKSUM_PARTIAL)
2119 skb->csum = csum_partial(skb->data,
2120 skb->len, 0);
2121 } else {
2122 __pskb_trim_head(skb, copy);
2123 tcp_set_skb_tso_segs(skb, mss_now);
2124 }
2125 TCP_SKB_CB(skb)->seq += copy;
2126 }
2127
2128 len += copy;
2129
2130 if (len >= probe_size)
2131 break;
2132 }
2133 tcp_init_tso_segs(nskb, nskb->len);
2134
2135 /* We're ready to send. If this fails, the probe will
2136 * be resegmented into mss-sized pieces by tcp_write_xmit().
2137 */
2138 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2139 /* Decrement cwnd here because we are sending
2140 * effectively two packets. */
2141 tp->snd_cwnd--;
2142 tcp_event_new_data_sent(sk, nskb);
2143
2144 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2145 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2146 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2147
2148 return 1;
2149 }
2150
2151 return -1;
2152}
2153
2154static bool tcp_pacing_check(const struct sock *sk)
2155{
2156 return tcp_needs_internal_pacing(sk) &&
2157 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2158}
2159
2160/* TCP Small Queues :
2161 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2162 * (These limits are doubled for retransmits)
2163 * This allows for :
2164 * - better RTT estimation and ACK scheduling
2165 * - faster recovery
2166 * - high rates
2167 * Alas, some drivers / subsystems require a fair amount
2168 * of queued bytes to ensure line rate.
2169 * One example is wifi aggregation (802.11 AMPDU)
2170 */
2171static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2172 unsigned int factor)
2173{
2174 unsigned int limit;
2175
2176 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2177 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2178 limit <<= factor;
2179
2180 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2181 /* Always send the 1st or 2nd skb in write queue.
2182 * No need to wait for TX completion to call us back,
2183 * after softirq/tasklet schedule.
2184 * This helps when TX completions are delayed too much.
2185 */
2186 if (skb == sk->sk_write_queue.next ||
2187 skb->prev == sk->sk_write_queue.next)
2188 return false;
2189
2190 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2191 /* It is possible TX completion already happened
2192 * before we set TSQ_THROTTLED, so we must
2193 * test again the condition.
2194 */
2195 smp_mb__after_atomic();
2196 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2197 return true;
2198 }
2199 return false;
2200}
2201
2202static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2203{
2204 const u32 now = tcp_jiffies32;
2205 enum tcp_chrono old = tp->chrono_type;
2206
2207 if (old > TCP_CHRONO_UNSPEC)
2208 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2209 tp->chrono_start = now;
2210 tp->chrono_type = new;
2211}
2212
2213void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2214{
2215 struct tcp_sock *tp = tcp_sk(sk);
2216
2217 /* If there are multiple conditions worthy of tracking in a
2218 * chronograph then the highest priority enum takes precedence
2219 * over the other conditions. So that if something "more interesting"
2220 * starts happening, stop the previous chrono and start a new one.
2221 */
2222 if (type > tp->chrono_type)
2223 tcp_chrono_set(tp, type);
2224}
2225
2226void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2227{
2228 struct tcp_sock *tp = tcp_sk(sk);
2229
2230
2231 /* There are multiple conditions worthy of tracking in a
2232 * chronograph, so that the highest priority enum takes
2233 * precedence over the other conditions (see tcp_chrono_start).
2234 * If a condition stops, we only stop chrono tracking if
2235 * it's the "most interesting" or current chrono we are
2236 * tracking and starts busy chrono if we have pending data.
2237 */
2238 if (tcp_write_queue_empty(sk))
2239 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2240 else if (type == tp->chrono_type)
2241 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2242}
2243
2244/* This routine writes packets to the network. It advances the
2245 * send_head. This happens as incoming acks open up the remote
2246 * window for us.
2247 *
2248 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2249 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2250 * account rare use of URG, this is not a big flaw.
2251 *
2252 * Send at most one packet when push_one > 0. Temporarily ignore
2253 * cwnd limit to force at most one packet out when push_one == 2.
2254
2255 * Returns true, if no segments are in flight and we have queued segments,
2256 * but cannot send anything now because of SWS or another problem.
2257 */
2258static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2259 int push_one, gfp_t gfp)
2260{
2261 struct tcp_sock *tp = tcp_sk(sk);
2262 struct sk_buff *skb;
2263 unsigned int tso_segs, sent_pkts;
2264 int cwnd_quota;
2265 int result;
2266 bool is_cwnd_limited = false, is_rwnd_limited = false;
2267 u32 max_segs;
2268
2269 sent_pkts = 0;
2270
2271 if (!push_one) {
2272 /* Do MTU probing. */
2273 result = tcp_mtu_probe(sk);
2274 if (!result) {
2275 return false;
2276 } else if (result > 0) {
2277 sent_pkts = 1;
2278 }
2279 }
2280
2281 max_segs = tcp_tso_segs(sk, mss_now);
2282 tcp_mstamp_refresh(tp);
2283 while ((skb = tcp_send_head(sk))) {
2284 unsigned int limit;
2285
2286 if (tcp_pacing_check(sk))
2287 break;
2288
2289 tso_segs = tcp_init_tso_segs(skb, mss_now);
2290 BUG_ON(!tso_segs);
2291
2292 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2293 /* "skb_mstamp" is used as a start point for the retransmit timer */
2294 skb->skb_mstamp = tp->tcp_mstamp;
2295 goto repair; /* Skip network transmission */
2296 }
2297
2298 cwnd_quota = tcp_cwnd_test(tp, skb);
2299 if (!cwnd_quota) {
2300 if (push_one == 2)
2301 /* Force out a loss probe pkt. */
2302 cwnd_quota = 1;
2303 else
2304 break;
2305 }
2306
2307 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2308 is_rwnd_limited = true;
2309 break;
2310 }
2311
2312 if (tso_segs == 1) {
2313 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2314 (tcp_skb_is_last(sk, skb) ?
2315 nonagle : TCP_NAGLE_PUSH))))
2316 break;
2317 } else {
2318 if (!push_one &&
2319 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2320 max_segs))
2321 break;
2322 }
2323
2324 limit = mss_now;
2325 if (tso_segs > 1 && !tcp_urg_mode(tp))
2326 limit = tcp_mss_split_point(sk, skb, mss_now,
2327 min_t(unsigned int,
2328 cwnd_quota,
2329 max_segs),
2330 nonagle);
2331
2332 if (skb->len > limit &&
2333 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2334 break;
2335
2336 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2337 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2338 if (tcp_small_queue_check(sk, skb, 0))
2339 break;
2340
2341 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2342 break;
2343
2344repair:
2345 /* Advance the send_head. This one is sent out.
2346 * This call will increment packets_out.
2347 */
2348 tcp_event_new_data_sent(sk, skb);
2349
2350 tcp_minshall_update(tp, mss_now, skb);
2351 sent_pkts += tcp_skb_pcount(skb);
2352
2353 if (push_one)
2354 break;
2355 }
2356
2357 if (is_rwnd_limited)
2358 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2359 else
2360 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2361
2362 if (likely(sent_pkts)) {
2363 if (tcp_in_cwnd_reduction(sk))
2364 tp->prr_out += sent_pkts;
2365
2366 /* Send one loss probe per tail loss episode. */
2367 if (push_one != 2)
2368 tcp_schedule_loss_probe(sk);
2369 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2370 tcp_cwnd_validate(sk, is_cwnd_limited);
2371 return false;
2372 }
2373 return !tp->packets_out && tcp_send_head(sk);
2374}
2375
2376bool tcp_schedule_loss_probe(struct sock *sk)
2377{
2378 struct inet_connection_sock *icsk = inet_csk(sk);
2379 struct tcp_sock *tp = tcp_sk(sk);
2380 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2381 u32 timeout, rto_delta_us;
2382
2383 /* Don't do any loss probe on a Fast Open connection before 3WHS
2384 * finishes.
2385 */
2386 if (tp->fastopen_rsk)
2387 return false;
2388
2389 /* Schedule a loss probe in 2*RTT for SACK capable connections
2390 * in Open state, that are either limited by cwnd or application.
2391 */
2392 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2393 !tp->packets_out || !tcp_is_sack(tp) ||
2394 icsk->icsk_ca_state != TCP_CA_Open)
2395 return false;
2396
2397 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2398 tcp_send_head(sk))
2399 return false;
2400
2401 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2402 * for delayed ack when there's one outstanding packet. If no RTT
2403 * sample is available then probe after TCP_TIMEOUT_INIT.
2404 */
2405 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2406 if (tp->packets_out == 1)
2407 timeout = max_t(u32, timeout,
2408 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2409 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2410
2411 /* If the RTO formula yields an earlier time, then use that time. */
2412 rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */
2413 if (rto_delta_us > 0)
2414 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2415
2416 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2417 TCP_RTO_MAX);
2418 return true;
2419}
2420
2421/* Thanks to skb fast clones, we can detect if a prior transmit of
2422 * a packet is still in a qdisc or driver queue.
2423 * In this case, there is very little point doing a retransmit !
2424 */
2425static bool skb_still_in_host_queue(const struct sock *sk,
2426 const struct sk_buff *skb)
2427{
2428 if (unlikely(skb_fclone_busy(sk, skb))) {
2429 NET_INC_STATS(sock_net(sk),
2430 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2431 return true;
2432 }
2433 return false;
2434}
2435
2436/* When probe timeout (PTO) fires, try send a new segment if possible, else
2437 * retransmit the last segment.
2438 */
2439void tcp_send_loss_probe(struct sock *sk)
2440{
2441 struct tcp_sock *tp = tcp_sk(sk);
2442 struct sk_buff *skb;
2443 int pcount;
2444 int mss = tcp_current_mss(sk);
2445
2446 skb = tcp_send_head(sk);
2447 if (skb) {
2448 if (tcp_snd_wnd_test(tp, skb, mss)) {
2449 pcount = tp->packets_out;
2450 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2451 if (tp->packets_out > pcount)
2452 goto probe_sent;
2453 goto rearm_timer;
2454 }
2455 skb = tcp_write_queue_prev(sk, skb);
2456 } else {
2457 skb = tcp_write_queue_tail(sk);
2458 }
2459
2460 /* At most one outstanding TLP retransmission. */
2461 if (tp->tlp_high_seq)
2462 goto rearm_timer;
2463
2464 /* Retransmit last segment. */
2465 if (WARN_ON(!skb))
2466 goto rearm_timer;
2467
2468 if (skb_still_in_host_queue(sk, skb))
2469 goto rearm_timer;
2470
2471 pcount = tcp_skb_pcount(skb);
2472 if (WARN_ON(!pcount))
2473 goto rearm_timer;
2474
2475 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2476 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2477 GFP_ATOMIC)))
2478 goto rearm_timer;
2479 skb = tcp_write_queue_next(sk, skb);
2480 }
2481
2482 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2483 goto rearm_timer;
2484
2485 if (__tcp_retransmit_skb(sk, skb, 1))
2486 goto rearm_timer;
2487
2488 /* Record snd_nxt for loss detection. */
2489 tp->tlp_high_seq = tp->snd_nxt;
2490
2491probe_sent:
2492 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2493 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2494 inet_csk(sk)->icsk_pending = 0;
2495rearm_timer:
2496 tcp_rearm_rto(sk);
2497}
2498
2499/* Push out any pending frames which were held back due to
2500 * TCP_CORK or attempt at coalescing tiny packets.
2501 * The socket must be locked by the caller.
2502 */
2503void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2504 int nonagle)
2505{
2506 /* If we are closed, the bytes will have to remain here.
2507 * In time closedown will finish, we empty the write queue and
2508 * all will be happy.
2509 */
2510 if (unlikely(sk->sk_state == TCP_CLOSE))
2511 return;
2512
2513 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2514 sk_gfp_mask(sk, GFP_ATOMIC)))
2515 tcp_check_probe_timer(sk);
2516}
2517
2518/* Send _single_ skb sitting at the send head. This function requires
2519 * true push pending frames to setup probe timer etc.
2520 */
2521void tcp_push_one(struct sock *sk, unsigned int mss_now)
2522{
2523 struct sk_buff *skb = tcp_send_head(sk);
2524
2525 BUG_ON(!skb || skb->len < mss_now);
2526
2527 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2528}
2529
2530/* This function returns the amount that we can raise the
2531 * usable window based on the following constraints
2532 *
2533 * 1. The window can never be shrunk once it is offered (RFC 793)
2534 * 2. We limit memory per socket
2535 *
2536 * RFC 1122:
2537 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2538 * RECV.NEXT + RCV.WIN fixed until:
2539 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2540 *
2541 * i.e. don't raise the right edge of the window until you can raise
2542 * it at least MSS bytes.
2543 *
2544 * Unfortunately, the recommended algorithm breaks header prediction,
2545 * since header prediction assumes th->window stays fixed.
2546 *
2547 * Strictly speaking, keeping th->window fixed violates the receiver
2548 * side SWS prevention criteria. The problem is that under this rule
2549 * a stream of single byte packets will cause the right side of the
2550 * window to always advance by a single byte.
2551 *
2552 * Of course, if the sender implements sender side SWS prevention
2553 * then this will not be a problem.
2554 *
2555 * BSD seems to make the following compromise:
2556 *
2557 * If the free space is less than the 1/4 of the maximum
2558 * space available and the free space is less than 1/2 mss,
2559 * then set the window to 0.
2560 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2561 * Otherwise, just prevent the window from shrinking
2562 * and from being larger than the largest representable value.
2563 *
2564 * This prevents incremental opening of the window in the regime
2565 * where TCP is limited by the speed of the reader side taking
2566 * data out of the TCP receive queue. It does nothing about
2567 * those cases where the window is constrained on the sender side
2568 * because the pipeline is full.
2569 *
2570 * BSD also seems to "accidentally" limit itself to windows that are a
2571 * multiple of MSS, at least until the free space gets quite small.
2572 * This would appear to be a side effect of the mbuf implementation.
2573 * Combining these two algorithms results in the observed behavior
2574 * of having a fixed window size at almost all times.
2575 *
2576 * Below we obtain similar behavior by forcing the offered window to
2577 * a multiple of the mss when it is feasible to do so.
2578 *
2579 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2580 * Regular options like TIMESTAMP are taken into account.
2581 */
2582u32 __tcp_select_window(struct sock *sk)
2583{
2584 struct inet_connection_sock *icsk = inet_csk(sk);
2585 struct tcp_sock *tp = tcp_sk(sk);
2586 /* MSS for the peer's data. Previous versions used mss_clamp
2587 * here. I don't know if the value based on our guesses
2588 * of peer's MSS is better for the performance. It's more correct
2589 * but may be worse for the performance because of rcv_mss
2590 * fluctuations. --SAW 1998/11/1
2591 */
2592 int mss = icsk->icsk_ack.rcv_mss;
2593 int free_space = tcp_space(sk);
2594 int allowed_space = tcp_full_space(sk);
2595 int full_space = min_t(int, tp->window_clamp, allowed_space);
2596 int window;
2597
2598 if (unlikely(mss > full_space)) {
2599 mss = full_space;
2600 if (mss <= 0)
2601 return 0;
2602 }
2603 if (free_space < (full_space >> 1)) {
2604 icsk->icsk_ack.quick = 0;
2605
2606 if (tcp_under_memory_pressure(sk))
2607 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2608 4U * tp->advmss);
2609
2610 /* free_space might become our new window, make sure we don't
2611 * increase it due to wscale.
2612 */
2613 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2614
2615 /* if free space is less than mss estimate, or is below 1/16th
2616 * of the maximum allowed, try to move to zero-window, else
2617 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2618 * new incoming data is dropped due to memory limits.
2619 * With large window, mss test triggers way too late in order
2620 * to announce zero window in time before rmem limit kicks in.
2621 */
2622 if (free_space < (allowed_space >> 4) || free_space < mss)
2623 return 0;
2624 }
2625
2626 if (free_space > tp->rcv_ssthresh)
2627 free_space = tp->rcv_ssthresh;
2628
2629 /* Don't do rounding if we are using window scaling, since the
2630 * scaled window will not line up with the MSS boundary anyway.
2631 */
2632 if (tp->rx_opt.rcv_wscale) {
2633 window = free_space;
2634
2635 /* Advertise enough space so that it won't get scaled away.
2636 * Import case: prevent zero window announcement if
2637 * 1<<rcv_wscale > mss.
2638 */
2639 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2640 } else {
2641 window = tp->rcv_wnd;
2642 /* Get the largest window that is a nice multiple of mss.
2643 * Window clamp already applied above.
2644 * If our current window offering is within 1 mss of the
2645 * free space we just keep it. This prevents the divide
2646 * and multiply from happening most of the time.
2647 * We also don't do any window rounding when the free space
2648 * is too small.
2649 */
2650 if (window <= free_space - mss || window > free_space)
2651 window = rounddown(free_space, mss);
2652 else if (mss == full_space &&
2653 free_space > window + (full_space >> 1))
2654 window = free_space;
2655 }
2656
2657 return window;
2658}
2659
2660void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2661 const struct sk_buff *next_skb)
2662{
2663 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2664 const struct skb_shared_info *next_shinfo =
2665 skb_shinfo(next_skb);
2666 struct skb_shared_info *shinfo = skb_shinfo(skb);
2667
2668 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2669 shinfo->tskey = next_shinfo->tskey;
2670 TCP_SKB_CB(skb)->txstamp_ack |=
2671 TCP_SKB_CB(next_skb)->txstamp_ack;
2672 }
2673}
2674
2675/* Collapses two adjacent SKB's during retransmission. */
2676static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2677{
2678 struct tcp_sock *tp = tcp_sk(sk);
2679 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2680 int skb_size, next_skb_size;
2681
2682 skb_size = skb->len;
2683 next_skb_size = next_skb->len;
2684
2685 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2686
2687 if (next_skb_size) {
2688 if (next_skb_size <= skb_availroom(skb))
2689 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2690 next_skb_size);
2691 else if (!skb_shift(skb, next_skb, next_skb_size))
2692 return false;
2693 }
2694 tcp_highest_sack_combine(sk, next_skb, skb);
2695
2696 tcp_unlink_write_queue(next_skb, sk);
2697
2698 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2699 skb->ip_summed = CHECKSUM_PARTIAL;
2700
2701 if (skb->ip_summed != CHECKSUM_PARTIAL)
2702 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2703
2704 /* Update sequence range on original skb. */
2705 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2706
2707 /* Merge over control information. This moves PSH/FIN etc. over */
2708 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2709
2710 /* All done, get rid of second SKB and account for it so
2711 * packet counting does not break.
2712 */
2713 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2714 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2715
2716 /* changed transmit queue under us so clear hints */
2717 tcp_clear_retrans_hints_partial(tp);
2718 if (next_skb == tp->retransmit_skb_hint)
2719 tp->retransmit_skb_hint = skb;
2720
2721 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2722
2723 tcp_skb_collapse_tstamp(skb, next_skb);
2724
2725 sk_wmem_free_skb(sk, next_skb);
2726 return true;
2727}
2728
2729/* Check if coalescing SKBs is legal. */
2730static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2731{
2732 if (tcp_skb_pcount(skb) > 1)
2733 return false;
2734 if (skb_cloned(skb))
2735 return false;
2736 if (skb == tcp_send_head(sk))
2737 return false;
2738 /* Some heuristics for collapsing over SACK'd could be invented */
2739 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2740 return false;
2741
2742 return true;
2743}
2744
2745/* Collapse packets in the retransmit queue to make to create
2746 * less packets on the wire. This is only done on retransmission.
2747 */
2748static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2749 int space)
2750{
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 struct sk_buff *skb = to, *tmp;
2753 bool first = true;
2754
2755 if (!sysctl_tcp_retrans_collapse)
2756 return;
2757 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2758 return;
2759
2760 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2761 if (!tcp_can_collapse(sk, skb))
2762 break;
2763
2764 if (!tcp_skb_can_collapse_to(to))
2765 break;
2766
2767 space -= skb->len;
2768
2769 if (first) {
2770 first = false;
2771 continue;
2772 }
2773
2774 if (space < 0)
2775 break;
2776
2777 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2778 break;
2779
2780 if (!tcp_collapse_retrans(sk, to))
2781 break;
2782 }
2783}
2784
2785/* This retransmits one SKB. Policy decisions and retransmit queue
2786 * state updates are done by the caller. Returns non-zero if an
2787 * error occurred which prevented the send.
2788 */
2789int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2790{
2791 struct inet_connection_sock *icsk = inet_csk(sk);
2792 struct tcp_sock *tp = tcp_sk(sk);
2793 unsigned int cur_mss;
2794 int diff, len, err;
2795
2796
2797 /* Inconclusive MTU probe */
2798 if (icsk->icsk_mtup.probe_size)
2799 icsk->icsk_mtup.probe_size = 0;
2800
2801 /* Do not sent more than we queued. 1/4 is reserved for possible
2802 * copying overhead: fragmentation, tunneling, mangling etc.
2803 */
2804 if (refcount_read(&sk->sk_wmem_alloc) >
2805 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2806 sk->sk_sndbuf))
2807 return -EAGAIN;
2808
2809 if (skb_still_in_host_queue(sk, skb))
2810 return -EBUSY;
2811
2812 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2813 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2814 BUG();
2815 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2816 return -ENOMEM;
2817 }
2818
2819 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2820 return -EHOSTUNREACH; /* Routing failure or similar. */
2821
2822 cur_mss = tcp_current_mss(sk);
2823
2824 /* If receiver has shrunk his window, and skb is out of
2825 * new window, do not retransmit it. The exception is the
2826 * case, when window is shrunk to zero. In this case
2827 * our retransmit serves as a zero window probe.
2828 */
2829 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2830 TCP_SKB_CB(skb)->seq != tp->snd_una)
2831 return -EAGAIN;
2832
2833 len = cur_mss * segs;
2834 if (skb->len > len) {
2835 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2836 return -ENOMEM; /* We'll try again later. */
2837 } else {
2838 if (skb_unclone(skb, GFP_ATOMIC))
2839 return -ENOMEM;
2840
2841 diff = tcp_skb_pcount(skb);
2842 tcp_set_skb_tso_segs(skb, cur_mss);
2843 diff -= tcp_skb_pcount(skb);
2844 if (diff)
2845 tcp_adjust_pcount(sk, skb, diff);
2846 if (skb->len < cur_mss)
2847 tcp_retrans_try_collapse(sk, skb, cur_mss);
2848 }
2849
2850 /* RFC3168, section 6.1.1.1. ECN fallback */
2851 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2852 tcp_ecn_clear_syn(sk, skb);
2853
2854 /* Update global and local TCP statistics. */
2855 segs = tcp_skb_pcount(skb);
2856 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2857 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2858 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2859 tp->total_retrans += segs;
2860
2861 /* make sure skb->data is aligned on arches that require it
2862 * and check if ack-trimming & collapsing extended the headroom
2863 * beyond what csum_start can cover.
2864 */
2865 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2866 skb_headroom(skb) >= 0xFFFF)) {
2867 struct sk_buff *nskb;
2868
2869 skb->skb_mstamp = tp->tcp_mstamp;
2870 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2871 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2872 -ENOBUFS;
2873 } else {
2874 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2875 }
2876
2877 if (likely(!err)) {
2878 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2879 } else if (err != -EBUSY) {
2880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2881 }
2882 return err;
2883}
2884
2885int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2886{
2887 struct tcp_sock *tp = tcp_sk(sk);
2888 int err = __tcp_retransmit_skb(sk, skb, segs);
2889
2890 if (err == 0) {
2891#if FASTRETRANS_DEBUG > 0
2892 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2893 net_dbg_ratelimited("retrans_out leaked\n");
2894 }
2895#endif
2896 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2897 tp->retrans_out += tcp_skb_pcount(skb);
2898
2899 /* Save stamp of the first retransmit. */
2900 if (!tp->retrans_stamp)
2901 tp->retrans_stamp = tcp_skb_timestamp(skb);
2902
2903 }
2904
2905 if (tp->undo_retrans < 0)
2906 tp->undo_retrans = 0;
2907 tp->undo_retrans += tcp_skb_pcount(skb);
2908 return err;
2909}
2910
2911/* This gets called after a retransmit timeout, and the initially
2912 * retransmitted data is acknowledged. It tries to continue
2913 * resending the rest of the retransmit queue, until either
2914 * we've sent it all or the congestion window limit is reached.
2915 * If doing SACK, the first ACK which comes back for a timeout
2916 * based retransmit packet might feed us FACK information again.
2917 * If so, we use it to avoid unnecessarily retransmissions.
2918 */
2919void tcp_xmit_retransmit_queue(struct sock *sk)
2920{
2921 const struct inet_connection_sock *icsk = inet_csk(sk);
2922 struct tcp_sock *tp = tcp_sk(sk);
2923 struct sk_buff *skb;
2924 struct sk_buff *hole = NULL;
2925 u32 max_segs;
2926 int mib_idx;
2927
2928 if (!tp->packets_out)
2929 return;
2930
2931 if (tp->retransmit_skb_hint) {
2932 skb = tp->retransmit_skb_hint;
2933 } else {
2934 skb = tcp_write_queue_head(sk);
2935 }
2936
2937 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2938 tcp_for_write_queue_from(skb, sk) {
2939 __u8 sacked;
2940 int segs;
2941
2942 if (skb == tcp_send_head(sk))
2943 break;
2944
2945 if (tcp_pacing_check(sk))
2946 break;
2947
2948 /* we could do better than to assign each time */
2949 if (!hole)
2950 tp->retransmit_skb_hint = skb;
2951
2952 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2953 if (segs <= 0)
2954 return;
2955 sacked = TCP_SKB_CB(skb)->sacked;
2956 /* In case tcp_shift_skb_data() have aggregated large skbs,
2957 * we need to make sure not sending too bigs TSO packets
2958 */
2959 segs = min_t(int, segs, max_segs);
2960
2961 if (tp->retrans_out >= tp->lost_out) {
2962 break;
2963 } else if (!(sacked & TCPCB_LOST)) {
2964 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2965 hole = skb;
2966 continue;
2967
2968 } else {
2969 if (icsk->icsk_ca_state != TCP_CA_Loss)
2970 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2971 else
2972 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2973 }
2974
2975 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2976 continue;
2977
2978 if (tcp_small_queue_check(sk, skb, 1))
2979 return;
2980
2981 if (tcp_retransmit_skb(sk, skb, segs))
2982 return;
2983
2984 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2985
2986 if (tcp_in_cwnd_reduction(sk))
2987 tp->prr_out += tcp_skb_pcount(skb);
2988
2989 if (skb == tcp_write_queue_head(sk) &&
2990 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2991 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2992 inet_csk(sk)->icsk_rto,
2993 TCP_RTO_MAX);
2994 }
2995}
2996
2997/* We allow to exceed memory limits for FIN packets to expedite
2998 * connection tear down and (memory) recovery.
2999 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3000 * or even be forced to close flow without any FIN.
3001 * In general, we want to allow one skb per socket to avoid hangs
3002 * with edge trigger epoll()
3003 */
3004void sk_forced_mem_schedule(struct sock *sk, int size)
3005{
3006 int amt;
3007
3008 if (size <= sk->sk_forward_alloc)
3009 return;
3010 amt = sk_mem_pages(size);
3011 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3012 sk_memory_allocated_add(sk, amt);
3013
3014 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3015 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3016}
3017
3018/* Send a FIN. The caller locks the socket for us.
3019 * We should try to send a FIN packet really hard, but eventually give up.
3020 */
3021void tcp_send_fin(struct sock *sk)
3022{
3023 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3024 struct tcp_sock *tp = tcp_sk(sk);
3025
3026 /* Optimization, tack on the FIN if we have one skb in write queue and
3027 * this skb was not yet sent, or we are under memory pressure.
3028 * Note: in the latter case, FIN packet will be sent after a timeout,
3029 * as TCP stack thinks it has already been transmitted.
3030 */
3031 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3032coalesce:
3033 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3034 TCP_SKB_CB(tskb)->end_seq++;
3035 tp->write_seq++;
3036 if (!tcp_send_head(sk)) {
3037 /* This means tskb was already sent.
3038 * Pretend we included the FIN on previous transmit.
3039 * We need to set tp->snd_nxt to the value it would have
3040 * if FIN had been sent. This is because retransmit path
3041 * does not change tp->snd_nxt.
3042 */
3043 tp->snd_nxt++;
3044 return;
3045 }
3046 } else {
3047 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3048 if (unlikely(!skb)) {
3049 if (tskb)
3050 goto coalesce;
3051 return;
3052 }
3053 skb_reserve(skb, MAX_TCP_HEADER);
3054 sk_forced_mem_schedule(sk, skb->truesize);
3055 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3056 tcp_init_nondata_skb(skb, tp->write_seq,
3057 TCPHDR_ACK | TCPHDR_FIN);
3058 tcp_queue_skb(sk, skb);
3059 }
3060 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3061}
3062
3063/* We get here when a process closes a file descriptor (either due to
3064 * an explicit close() or as a byproduct of exit()'ing) and there
3065 * was unread data in the receive queue. This behavior is recommended
3066 * by RFC 2525, section 2.17. -DaveM
3067 */
3068void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3069{
3070 struct sk_buff *skb;
3071
3072 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3073
3074 /* NOTE: No TCP options attached and we never retransmit this. */
3075 skb = alloc_skb(MAX_TCP_HEADER, priority);
3076 if (!skb) {
3077 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3078 return;
3079 }
3080
3081 /* Reserve space for headers and prepare control bits. */
3082 skb_reserve(skb, MAX_TCP_HEADER);
3083 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3084 TCPHDR_ACK | TCPHDR_RST);
3085 tcp_mstamp_refresh(tcp_sk(sk));
3086 /* Send it off. */
3087 if (tcp_transmit_skb(sk, skb, 0, priority))
3088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3089}
3090
3091/* Send a crossed SYN-ACK during socket establishment.
3092 * WARNING: This routine must only be called when we have already sent
3093 * a SYN packet that crossed the incoming SYN that caused this routine
3094 * to get called. If this assumption fails then the initial rcv_wnd
3095 * and rcv_wscale values will not be correct.
3096 */
3097int tcp_send_synack(struct sock *sk)
3098{
3099 struct sk_buff *skb;
3100
3101 skb = tcp_write_queue_head(sk);
3102 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3103 pr_debug("%s: wrong queue state\n", __func__);
3104 return -EFAULT;
3105 }
3106 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3107 if (skb_cloned(skb)) {
3108 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3109 if (!nskb)
3110 return -ENOMEM;
3111 tcp_unlink_write_queue(skb, sk);
3112 __skb_header_release(nskb);
3113 __tcp_add_write_queue_head(sk, nskb);
3114 sk_wmem_free_skb(sk, skb);
3115 sk->sk_wmem_queued += nskb->truesize;
3116 sk_mem_charge(sk, nskb->truesize);
3117 skb = nskb;
3118 }
3119
3120 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3121 tcp_ecn_send_synack(sk, skb);
3122 }
3123 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3124}
3125
3126/**
3127 * tcp_make_synack - Prepare a SYN-ACK.
3128 * sk: listener socket
3129 * dst: dst entry attached to the SYNACK
3130 * req: request_sock pointer
3131 *
3132 * Allocate one skb and build a SYNACK packet.
3133 * @dst is consumed : Caller should not use it again.
3134 */
3135struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3136 struct request_sock *req,
3137 struct tcp_fastopen_cookie *foc,
3138 enum tcp_synack_type synack_type)
3139{
3140 struct inet_request_sock *ireq = inet_rsk(req);
3141 const struct tcp_sock *tp = tcp_sk(sk);
3142 struct tcp_md5sig_key *md5 = NULL;
3143 struct tcp_out_options opts;
3144 struct sk_buff *skb;
3145 int tcp_header_size;
3146 struct tcphdr *th;
3147 int mss;
3148
3149 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3150 if (unlikely(!skb)) {
3151 dst_release(dst);
3152 return NULL;
3153 }
3154 /* Reserve space for headers. */
3155 skb_reserve(skb, MAX_TCP_HEADER);
3156
3157 switch (synack_type) {
3158 case TCP_SYNACK_NORMAL:
3159 skb_set_owner_w(skb, req_to_sk(req));
3160 break;
3161 case TCP_SYNACK_COOKIE:
3162 /* Under synflood, we do not attach skb to a socket,
3163 * to avoid false sharing.
3164 */
3165 break;
3166 case TCP_SYNACK_FASTOPEN:
3167 /* sk is a const pointer, because we want to express multiple
3168 * cpu might call us concurrently.
3169 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3170 */
3171 skb_set_owner_w(skb, (struct sock *)sk);
3172 break;
3173 }
3174 skb_dst_set(skb, dst);
3175
3176 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3177
3178 memset(&opts, 0, sizeof(opts));
3179#ifdef CONFIG_SYN_COOKIES
3180 if (unlikely(req->cookie_ts))
3181 skb->skb_mstamp = cookie_init_timestamp(req);
3182 else
3183#endif
3184 skb->skb_mstamp = tcp_clock_us();
3185
3186#ifdef CONFIG_TCP_MD5SIG
3187 rcu_read_lock();
3188 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3189#endif
3190 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3191 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3192 sizeof(*th);
3193
3194 skb_push(skb, tcp_header_size);
3195 skb_reset_transport_header(skb);
3196
3197 th = (struct tcphdr *)skb->data;
3198 memset(th, 0, sizeof(struct tcphdr));
3199 th->syn = 1;
3200 th->ack = 1;
3201 tcp_ecn_make_synack(req, th);
3202 th->source = htons(ireq->ir_num);
3203 th->dest = ireq->ir_rmt_port;
3204 skb->mark = ireq->ir_mark;
3205 /* Setting of flags are superfluous here for callers (and ECE is
3206 * not even correctly set)
3207 */
3208 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3209 TCPHDR_SYN | TCPHDR_ACK);
3210
3211 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3212 /* XXX data is queued and acked as is. No buffer/window check */
3213 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3214
3215 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3216 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3217 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3218 th->doff = (tcp_header_size >> 2);
3219 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3220
3221#ifdef CONFIG_TCP_MD5SIG
3222 /* Okay, we have all we need - do the md5 hash if needed */
3223 if (md5)
3224 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3225 md5, req_to_sk(req), skb);
3226 rcu_read_unlock();
3227#endif
3228
3229 /* Do not fool tcpdump (if any), clean our debris */
3230 skb->tstamp = 0;
3231 return skb;
3232}
3233EXPORT_SYMBOL(tcp_make_synack);
3234
3235static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3236{
3237 struct inet_connection_sock *icsk = inet_csk(sk);
3238 const struct tcp_congestion_ops *ca;
3239 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3240
3241 if (ca_key == TCP_CA_UNSPEC)
3242 return;
3243
3244 rcu_read_lock();
3245 ca = tcp_ca_find_key(ca_key);
3246 if (likely(ca && try_module_get(ca->owner))) {
3247 module_put(icsk->icsk_ca_ops->owner);
3248 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3249 icsk->icsk_ca_ops = ca;
3250 }
3251 rcu_read_unlock();
3252}
3253
3254/* Do all connect socket setups that can be done AF independent. */
3255static void tcp_connect_init(struct sock *sk)
3256{
3257 const struct dst_entry *dst = __sk_dst_get(sk);
3258 struct tcp_sock *tp = tcp_sk(sk);
3259 __u8 rcv_wscale;
3260 u32 rcv_wnd;
3261
3262 /* We'll fix this up when we get a response from the other end.
3263 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3264 */
3265 tp->tcp_header_len = sizeof(struct tcphdr);
3266 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3267 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3268
3269#ifdef CONFIG_TCP_MD5SIG
3270 if (tp->af_specific->md5_lookup(sk, sk))
3271 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3272#endif
3273
3274 /* If user gave his TCP_MAXSEG, record it to clamp */
3275 if (tp->rx_opt.user_mss)
3276 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3277 tp->max_window = 0;
3278 tcp_mtup_init(sk);
3279 tcp_sync_mss(sk, dst_mtu(dst));
3280
3281 tcp_ca_dst_init(sk, dst);
3282
3283 if (!tp->window_clamp)
3284 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3285 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3286
3287 tcp_initialize_rcv_mss(sk);
3288
3289 /* limit the window selection if the user enforce a smaller rx buffer */
3290 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3291 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3292 tp->window_clamp = tcp_full_space(sk);
3293
3294 rcv_wnd = tcp_rwnd_init_bpf(sk);
3295 if (rcv_wnd == 0)
3296 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3297
3298 tcp_select_initial_window(tcp_full_space(sk),
3299 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3300 &tp->rcv_wnd,
3301 &tp->window_clamp,
3302 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3303 &rcv_wscale,
3304 rcv_wnd);
3305
3306 tp->rx_opt.rcv_wscale = rcv_wscale;
3307 tp->rcv_ssthresh = tp->rcv_wnd;
3308
3309 sk->sk_err = 0;
3310 sock_reset_flag(sk, SOCK_DONE);
3311 tp->snd_wnd = 0;
3312 tcp_init_wl(tp, 0);
3313 tp->snd_una = tp->write_seq;
3314 tp->snd_sml = tp->write_seq;
3315 tp->snd_up = tp->write_seq;
3316 tp->snd_nxt = tp->write_seq;
3317
3318 if (likely(!tp->repair))
3319 tp->rcv_nxt = 0;
3320 else
3321 tp->rcv_tstamp = tcp_jiffies32;
3322 tp->rcv_wup = tp->rcv_nxt;
3323 tp->copied_seq = tp->rcv_nxt;
3324
3325 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3326 inet_csk(sk)->icsk_retransmits = 0;
3327 tcp_clear_retrans(tp);
3328}
3329
3330static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3331{
3332 struct tcp_sock *tp = tcp_sk(sk);
3333 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3334
3335 tcb->end_seq += skb->len;
3336 __skb_header_release(skb);
3337 __tcp_add_write_queue_tail(sk, skb);
3338 sk->sk_wmem_queued += skb->truesize;
3339 sk_mem_charge(sk, skb->truesize);
3340 tp->write_seq = tcb->end_seq;
3341 tp->packets_out += tcp_skb_pcount(skb);
3342}
3343
3344/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3345 * queue a data-only packet after the regular SYN, such that regular SYNs
3346 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3347 * only the SYN sequence, the data are retransmitted in the first ACK.
3348 * If cookie is not cached or other error occurs, falls back to send a
3349 * regular SYN with Fast Open cookie request option.
3350 */
3351static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3352{
3353 struct tcp_sock *tp = tcp_sk(sk);
3354 struct tcp_fastopen_request *fo = tp->fastopen_req;
3355 int space, err = 0;
3356 struct sk_buff *syn_data;
3357
3358 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3359 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3360 goto fallback;
3361
3362 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3363 * user-MSS. Reserve maximum option space for middleboxes that add
3364 * private TCP options. The cost is reduced data space in SYN :(
3365 */
3366 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3367
3368 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3369 MAX_TCP_OPTION_SPACE;
3370
3371 space = min_t(size_t, space, fo->size);
3372
3373 /* limit to order-0 allocations */
3374 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3375
3376 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3377 if (!syn_data)
3378 goto fallback;
3379 syn_data->ip_summed = CHECKSUM_PARTIAL;
3380 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3381 if (space) {
3382 int copied = copy_from_iter(skb_put(syn_data, space), space,
3383 &fo->data->msg_iter);
3384 if (unlikely(!copied)) {
3385 kfree_skb(syn_data);
3386 goto fallback;
3387 }
3388 if (copied != space) {
3389 skb_trim(syn_data, copied);
3390 space = copied;
3391 }
3392 }
3393 /* No more data pending in inet_wait_for_connect() */
3394 if (space == fo->size)
3395 fo->data = NULL;
3396 fo->copied = space;
3397
3398 tcp_connect_queue_skb(sk, syn_data);
3399 if (syn_data->len)
3400 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3401
3402 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3403
3404 syn->skb_mstamp = syn_data->skb_mstamp;
3405
3406 /* Now full SYN+DATA was cloned and sent (or not),
3407 * remove the SYN from the original skb (syn_data)
3408 * we keep in write queue in case of a retransmit, as we
3409 * also have the SYN packet (with no data) in the same queue.
3410 */
3411 TCP_SKB_CB(syn_data)->seq++;
3412 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3413 if (!err) {
3414 tp->syn_data = (fo->copied > 0);
3415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3416 goto done;
3417 }
3418
3419fallback:
3420 /* Send a regular SYN with Fast Open cookie request option */
3421 if (fo->cookie.len > 0)
3422 fo->cookie.len = 0;
3423 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3424 if (err)
3425 tp->syn_fastopen = 0;
3426done:
3427 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3428 return err;
3429}
3430
3431/* Build a SYN and send it off. */
3432int tcp_connect(struct sock *sk)
3433{
3434 struct tcp_sock *tp = tcp_sk(sk);
3435 struct sk_buff *buff;
3436 int err;
3437
3438 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3439
3440 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3441 return -EHOSTUNREACH; /* Routing failure or similar. */
3442
3443 tcp_connect_init(sk);
3444
3445 if (unlikely(tp->repair)) {
3446 tcp_finish_connect(sk, NULL);
3447 return 0;
3448 }
3449
3450 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3451 if (unlikely(!buff))
3452 return -ENOBUFS;
3453
3454 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3455 tcp_mstamp_refresh(tp);
3456 tp->retrans_stamp = tcp_time_stamp(tp);
3457 tcp_connect_queue_skb(sk, buff);
3458 tcp_ecn_send_syn(sk, buff);
3459
3460 /* Send off SYN; include data in Fast Open. */
3461 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3462 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3463 if (err == -ECONNREFUSED)
3464 return err;
3465
3466 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3467 * in order to make this packet get counted in tcpOutSegs.
3468 */
3469 tp->snd_nxt = tp->write_seq;
3470 tp->pushed_seq = tp->write_seq;
3471 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3472
3473 /* Timer for repeating the SYN until an answer. */
3474 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3475 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3476 return 0;
3477}
3478EXPORT_SYMBOL(tcp_connect);
3479
3480/* Send out a delayed ack, the caller does the policy checking
3481 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3482 * for details.
3483 */
3484void tcp_send_delayed_ack(struct sock *sk)
3485{
3486 struct inet_connection_sock *icsk = inet_csk(sk);
3487 int ato = icsk->icsk_ack.ato;
3488 unsigned long timeout;
3489
3490 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3491
3492 if (ato > TCP_DELACK_MIN) {
3493 const struct tcp_sock *tp = tcp_sk(sk);
3494 int max_ato = HZ / 2;
3495
3496 if (icsk->icsk_ack.pingpong ||
3497 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3498 max_ato = TCP_DELACK_MAX;
3499
3500 /* Slow path, intersegment interval is "high". */
3501
3502 /* If some rtt estimate is known, use it to bound delayed ack.
3503 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3504 * directly.
3505 */
3506 if (tp->srtt_us) {
3507 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3508 TCP_DELACK_MIN);
3509
3510 if (rtt < max_ato)
3511 max_ato = rtt;
3512 }
3513
3514 ato = min(ato, max_ato);
3515 }
3516
3517 /* Stay within the limit we were given */
3518 timeout = jiffies + ato;
3519
3520 /* Use new timeout only if there wasn't a older one earlier. */
3521 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3522 /* If delack timer was blocked or is about to expire,
3523 * send ACK now.
3524 */
3525 if (icsk->icsk_ack.blocked ||
3526 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3527 tcp_send_ack(sk);
3528 return;
3529 }
3530
3531 if (!time_before(timeout, icsk->icsk_ack.timeout))
3532 timeout = icsk->icsk_ack.timeout;
3533 }
3534 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3535 icsk->icsk_ack.timeout = timeout;
3536 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3537}
3538
3539/* This routine sends an ack and also updates the window. */
3540void tcp_send_ack(struct sock *sk)
3541{
3542 struct sk_buff *buff;
3543
3544 /* If we have been reset, we may not send again. */
3545 if (sk->sk_state == TCP_CLOSE)
3546 return;
3547
3548 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3549
3550 /* We are not putting this on the write queue, so
3551 * tcp_transmit_skb() will set the ownership to this
3552 * sock.
3553 */
3554 buff = alloc_skb(MAX_TCP_HEADER,
3555 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3556 if (unlikely(!buff)) {
3557 inet_csk_schedule_ack(sk);
3558 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3559 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3560 TCP_DELACK_MAX, TCP_RTO_MAX);
3561 return;
3562 }
3563
3564 /* Reserve space for headers and prepare control bits. */
3565 skb_reserve(buff, MAX_TCP_HEADER);
3566 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3567
3568 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3569 * too much.
3570 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3571 */
3572 skb_set_tcp_pure_ack(buff);
3573
3574 /* Send it off, this clears delayed acks for us. */
3575 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3576}
3577EXPORT_SYMBOL_GPL(tcp_send_ack);
3578
3579/* This routine sends a packet with an out of date sequence
3580 * number. It assumes the other end will try to ack it.
3581 *
3582 * Question: what should we make while urgent mode?
3583 * 4.4BSD forces sending single byte of data. We cannot send
3584 * out of window data, because we have SND.NXT==SND.MAX...
3585 *
3586 * Current solution: to send TWO zero-length segments in urgent mode:
3587 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3588 * out-of-date with SND.UNA-1 to probe window.
3589 */
3590static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3591{
3592 struct tcp_sock *tp = tcp_sk(sk);
3593 struct sk_buff *skb;
3594
3595 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3596 skb = alloc_skb(MAX_TCP_HEADER,
3597 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3598 if (!skb)
3599 return -1;
3600
3601 /* Reserve space for headers and set control bits. */
3602 skb_reserve(skb, MAX_TCP_HEADER);
3603 /* Use a previous sequence. This should cause the other
3604 * end to send an ack. Don't queue or clone SKB, just
3605 * send it.
3606 */
3607 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3608 NET_INC_STATS(sock_net(sk), mib);
3609 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3610}
3611
3612/* Called from setsockopt( ... TCP_REPAIR ) */
3613void tcp_send_window_probe(struct sock *sk)
3614{
3615 if (sk->sk_state == TCP_ESTABLISHED) {
3616 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3617 tcp_mstamp_refresh(tcp_sk(sk));
3618 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3619 }
3620}
3621
3622/* Initiate keepalive or window probe from timer. */
3623int tcp_write_wakeup(struct sock *sk, int mib)
3624{
3625 struct tcp_sock *tp = tcp_sk(sk);
3626 struct sk_buff *skb;
3627
3628 if (sk->sk_state == TCP_CLOSE)
3629 return -1;
3630
3631 skb = tcp_send_head(sk);
3632 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3633 int err;
3634 unsigned int mss = tcp_current_mss(sk);
3635 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3636
3637 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3638 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3639
3640 /* We are probing the opening of a window
3641 * but the window size is != 0
3642 * must have been a result SWS avoidance ( sender )
3643 */
3644 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3645 skb->len > mss) {
3646 seg_size = min(seg_size, mss);
3647 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3648 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3649 return -1;
3650 } else if (!tcp_skb_pcount(skb))
3651 tcp_set_skb_tso_segs(skb, mss);
3652
3653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3654 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3655 if (!err)
3656 tcp_event_new_data_sent(sk, skb);
3657 return err;
3658 } else {
3659 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3660 tcp_xmit_probe_skb(sk, 1, mib);
3661 return tcp_xmit_probe_skb(sk, 0, mib);
3662 }
3663}
3664
3665/* A window probe timeout has occurred. If window is not closed send
3666 * a partial packet else a zero probe.
3667 */
3668void tcp_send_probe0(struct sock *sk)
3669{
3670 struct inet_connection_sock *icsk = inet_csk(sk);
3671 struct tcp_sock *tp = tcp_sk(sk);
3672 struct net *net = sock_net(sk);
3673 unsigned long probe_max;
3674 int err;
3675
3676 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3677
3678 if (tp->packets_out || !tcp_send_head(sk)) {
3679 /* Cancel probe timer, if it is not required. */
3680 icsk->icsk_probes_out = 0;
3681 icsk->icsk_backoff = 0;
3682 return;
3683 }
3684
3685 if (err <= 0) {
3686 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3687 icsk->icsk_backoff++;
3688 icsk->icsk_probes_out++;
3689 probe_max = TCP_RTO_MAX;
3690 } else {
3691 /* If packet was not sent due to local congestion,
3692 * do not backoff and do not remember icsk_probes_out.
3693 * Let local senders to fight for local resources.
3694 *
3695 * Use accumulated backoff yet.
3696 */
3697 if (!icsk->icsk_probes_out)
3698 icsk->icsk_probes_out = 1;
3699 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3700 }
3701 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3702 tcp_probe0_when(sk, probe_max),
3703 TCP_RTO_MAX);
3704}
3705
3706int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3707{
3708 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3709 struct flowi fl;
3710 int res;
3711
3712 tcp_rsk(req)->txhash = net_tx_rndhash();
3713 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3714 if (!res) {
3715 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3716 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3717 if (unlikely(tcp_passive_fastopen(sk)))
3718 tcp_sk(sk)->total_retrans++;
3719 }
3720 return res;
3721}
3722EXPORT_SYMBOL(tcp_rtx_synack);