]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - net/ipv6/ip6_fib.c
net: ipv6: Add support to dump multipath routes via RTA_MULTIPATH attribute
[mirror_ubuntu-jammy-kernel.git] / net / ipv6 / ip6_fib.c
... / ...
CommitLineData
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20#define pr_fmt(fmt) "IPv6: " fmt
21
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31
32#include <net/ipv6.h>
33#include <net/ndisc.h>
34#include <net/addrconf.h>
35#include <net/lwtunnel.h>
36
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40#define RT6_DEBUG 2
41
42#if RT6_DEBUG >= 3
43#define RT6_TRACE(x...) pr_debug(x)
44#else
45#define RT6_TRACE(x...) do { ; } while (0)
46#endif
47
48static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56};
57
58#ifdef CONFIG_IPV6_SUBTREES
59#define FWS_INIT FWS_S
60#else
61#define FWS_INIT FWS_L
62#endif
63
64static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67static int fib6_walk(struct net *net, struct fib6_walker *w);
68static int fib6_walk_continue(struct fib6_walker *w);
69
70/*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77static void fib6_gc_timer_cb(unsigned long arg);
78
79#define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83{
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87}
88
89static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90{
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94}
95
96static int fib6_new_sernum(struct net *net)
97{
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106}
107
108enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110};
111
112/*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119/*
120 * test bit
121 */
122#if defined(__LITTLE_ENDIAN)
123# define BITOP_BE32_SWIZZLE (0x1F & ~7)
124#else
125# define BITOP_BE32_SWIZZLE 0
126#endif
127
128static __be32 addr_bit_set(const void *token, int fn_bit)
129{
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140}
141
142static struct fib6_node *node_alloc(void)
143{
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149}
150
151static void node_free(struct fib6_node *fn)
152{
153 kmem_cache_free(fib6_node_kmem, fn);
154}
155
156static void rt6_rcu_free(struct rt6_info *rt)
157{
158 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159}
160
161static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162{
163 int cpu;
164
165 if (!non_pcpu_rt->rt6i_pcpu)
166 return;
167
168 for_each_possible_cpu(cpu) {
169 struct rt6_info **ppcpu_rt;
170 struct rt6_info *pcpu_rt;
171
172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 pcpu_rt = *ppcpu_rt;
174 if (pcpu_rt) {
175 rt6_rcu_free(pcpu_rt);
176 *ppcpu_rt = NULL;
177 }
178 }
179
180 free_percpu(non_pcpu_rt->rt6i_pcpu);
181 non_pcpu_rt->rt6i_pcpu = NULL;
182}
183
184static void rt6_release(struct rt6_info *rt)
185{
186 if (atomic_dec_and_test(&rt->rt6i_ref)) {
187 rt6_free_pcpu(rt);
188 rt6_rcu_free(rt);
189 }
190}
191
192static void fib6_link_table(struct net *net, struct fib6_table *tb)
193{
194 unsigned int h;
195
196 /*
197 * Initialize table lock at a single place to give lockdep a key,
198 * tables aren't visible prior to being linked to the list.
199 */
200 rwlock_init(&tb->tb6_lock);
201
202 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
203
204 /*
205 * No protection necessary, this is the only list mutatation
206 * operation, tables never disappear once they exist.
207 */
208 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
209}
210
211#ifdef CONFIG_IPV6_MULTIPLE_TABLES
212
213static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214{
215 struct fib6_table *table;
216
217 table = kzalloc(sizeof(*table), GFP_ATOMIC);
218 if (table) {
219 table->tb6_id = id;
220 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
221 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222 inet_peer_base_init(&table->tb6_peers);
223 }
224
225 return table;
226}
227
228struct fib6_table *fib6_new_table(struct net *net, u32 id)
229{
230 struct fib6_table *tb;
231
232 if (id == 0)
233 id = RT6_TABLE_MAIN;
234 tb = fib6_get_table(net, id);
235 if (tb)
236 return tb;
237
238 tb = fib6_alloc_table(net, id);
239 if (tb)
240 fib6_link_table(net, tb);
241
242 return tb;
243}
244EXPORT_SYMBOL_GPL(fib6_new_table);
245
246struct fib6_table *fib6_get_table(struct net *net, u32 id)
247{
248 struct fib6_table *tb;
249 struct hlist_head *head;
250 unsigned int h;
251
252 if (id == 0)
253 id = RT6_TABLE_MAIN;
254 h = id & (FIB6_TABLE_HASHSZ - 1);
255 rcu_read_lock();
256 head = &net->ipv6.fib_table_hash[h];
257 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 if (tb->tb6_id == id) {
259 rcu_read_unlock();
260 return tb;
261 }
262 }
263 rcu_read_unlock();
264
265 return NULL;
266}
267EXPORT_SYMBOL_GPL(fib6_get_table);
268
269static void __net_init fib6_tables_init(struct net *net)
270{
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 fib6_link_table(net, net->ipv6.fib6_local_tbl);
273}
274#else
275
276struct fib6_table *fib6_new_table(struct net *net, u32 id)
277{
278 return fib6_get_table(net, id);
279}
280
281struct fib6_table *fib6_get_table(struct net *net, u32 id)
282{
283 return net->ipv6.fib6_main_tbl;
284}
285
286struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287 int flags, pol_lookup_t lookup)
288{
289 struct rt6_info *rt;
290
291 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292 if (rt->rt6i_flags & RTF_REJECT &&
293 rt->dst.error == -EAGAIN) {
294 ip6_rt_put(rt);
295 rt = net->ipv6.ip6_null_entry;
296 dst_hold(&rt->dst);
297 }
298
299 return &rt->dst;
300}
301
302static void __net_init fib6_tables_init(struct net *net)
303{
304 fib6_link_table(net, net->ipv6.fib6_main_tbl);
305}
306
307#endif
308
309static int fib6_dump_node(struct fib6_walker *w)
310{
311 int res;
312 struct rt6_info *rt;
313
314 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315 res = rt6_dump_route(rt, w->args);
316 if (res < 0) {
317 /* Frame is full, suspend walking */
318 w->leaf = rt;
319 return 1;
320 }
321
322 /* Multipath routes are dumped in one route with the
323 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
324 * last sibling of this route (no need to dump the
325 * sibling routes again)
326 */
327 if (rt->rt6i_nsiblings)
328 rt = list_last_entry(&rt->rt6i_siblings,
329 struct rt6_info,
330 rt6i_siblings);
331 }
332 w->leaf = NULL;
333 return 0;
334}
335
336static void fib6_dump_end(struct netlink_callback *cb)
337{
338 struct net *net = sock_net(cb->skb->sk);
339 struct fib6_walker *w = (void *)cb->args[2];
340
341 if (w) {
342 if (cb->args[4]) {
343 cb->args[4] = 0;
344 fib6_walker_unlink(net, w);
345 }
346 cb->args[2] = 0;
347 kfree(w);
348 }
349 cb->done = (void *)cb->args[3];
350 cb->args[1] = 3;
351}
352
353static int fib6_dump_done(struct netlink_callback *cb)
354{
355 fib6_dump_end(cb);
356 return cb->done ? cb->done(cb) : 0;
357}
358
359static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
360 struct netlink_callback *cb)
361{
362 struct net *net = sock_net(skb->sk);
363 struct fib6_walker *w;
364 int res;
365
366 w = (void *)cb->args[2];
367 w->root = &table->tb6_root;
368
369 if (cb->args[4] == 0) {
370 w->count = 0;
371 w->skip = 0;
372
373 read_lock_bh(&table->tb6_lock);
374 res = fib6_walk(net, w);
375 read_unlock_bh(&table->tb6_lock);
376 if (res > 0) {
377 cb->args[4] = 1;
378 cb->args[5] = w->root->fn_sernum;
379 }
380 } else {
381 if (cb->args[5] != w->root->fn_sernum) {
382 /* Begin at the root if the tree changed */
383 cb->args[5] = w->root->fn_sernum;
384 w->state = FWS_INIT;
385 w->node = w->root;
386 w->skip = w->count;
387 } else
388 w->skip = 0;
389
390 read_lock_bh(&table->tb6_lock);
391 res = fib6_walk_continue(w);
392 read_unlock_bh(&table->tb6_lock);
393 if (res <= 0) {
394 fib6_walker_unlink(net, w);
395 cb->args[4] = 0;
396 }
397 }
398
399 return res;
400}
401
402static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
403{
404 struct net *net = sock_net(skb->sk);
405 unsigned int h, s_h;
406 unsigned int e = 0, s_e;
407 struct rt6_rtnl_dump_arg arg;
408 struct fib6_walker *w;
409 struct fib6_table *tb;
410 struct hlist_head *head;
411 int res = 0;
412
413 s_h = cb->args[0];
414 s_e = cb->args[1];
415
416 w = (void *)cb->args[2];
417 if (!w) {
418 /* New dump:
419 *
420 * 1. hook callback destructor.
421 */
422 cb->args[3] = (long)cb->done;
423 cb->done = fib6_dump_done;
424
425 /*
426 * 2. allocate and initialize walker.
427 */
428 w = kzalloc(sizeof(*w), GFP_ATOMIC);
429 if (!w)
430 return -ENOMEM;
431 w->func = fib6_dump_node;
432 cb->args[2] = (long)w;
433 }
434
435 arg.skb = skb;
436 arg.cb = cb;
437 arg.net = net;
438 w->args = &arg;
439
440 rcu_read_lock();
441 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
442 e = 0;
443 head = &net->ipv6.fib_table_hash[h];
444 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
445 if (e < s_e)
446 goto next;
447 res = fib6_dump_table(tb, skb, cb);
448 if (res != 0)
449 goto out;
450next:
451 e++;
452 }
453 }
454out:
455 rcu_read_unlock();
456 cb->args[1] = e;
457 cb->args[0] = h;
458
459 res = res < 0 ? res : skb->len;
460 if (res <= 0)
461 fib6_dump_end(cb);
462 return res;
463}
464
465/*
466 * Routing Table
467 *
468 * return the appropriate node for a routing tree "add" operation
469 * by either creating and inserting or by returning an existing
470 * node.
471 */
472
473static struct fib6_node *fib6_add_1(struct fib6_node *root,
474 struct in6_addr *addr, int plen,
475 int offset, int allow_create,
476 int replace_required, int sernum)
477{
478 struct fib6_node *fn, *in, *ln;
479 struct fib6_node *pn = NULL;
480 struct rt6key *key;
481 int bit;
482 __be32 dir = 0;
483
484 RT6_TRACE("fib6_add_1\n");
485
486 /* insert node in tree */
487
488 fn = root;
489
490 do {
491 key = (struct rt6key *)((u8 *)fn->leaf + offset);
492
493 /*
494 * Prefix match
495 */
496 if (plen < fn->fn_bit ||
497 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
498 if (!allow_create) {
499 if (replace_required) {
500 pr_warn("Can't replace route, no match found\n");
501 return ERR_PTR(-ENOENT);
502 }
503 pr_warn("NLM_F_CREATE should be set when creating new route\n");
504 }
505 goto insert_above;
506 }
507
508 /*
509 * Exact match ?
510 */
511
512 if (plen == fn->fn_bit) {
513 /* clean up an intermediate node */
514 if (!(fn->fn_flags & RTN_RTINFO)) {
515 rt6_release(fn->leaf);
516 fn->leaf = NULL;
517 }
518
519 fn->fn_sernum = sernum;
520
521 return fn;
522 }
523
524 /*
525 * We have more bits to go
526 */
527
528 /* Try to walk down on tree. */
529 fn->fn_sernum = sernum;
530 dir = addr_bit_set(addr, fn->fn_bit);
531 pn = fn;
532 fn = dir ? fn->right : fn->left;
533 } while (fn);
534
535 if (!allow_create) {
536 /* We should not create new node because
537 * NLM_F_REPLACE was specified without NLM_F_CREATE
538 * I assume it is safe to require NLM_F_CREATE when
539 * REPLACE flag is used! Later we may want to remove the
540 * check for replace_required, because according
541 * to netlink specification, NLM_F_CREATE
542 * MUST be specified if new route is created.
543 * That would keep IPv6 consistent with IPv4
544 */
545 if (replace_required) {
546 pr_warn("Can't replace route, no match found\n");
547 return ERR_PTR(-ENOENT);
548 }
549 pr_warn("NLM_F_CREATE should be set when creating new route\n");
550 }
551 /*
552 * We walked to the bottom of tree.
553 * Create new leaf node without children.
554 */
555
556 ln = node_alloc();
557
558 if (!ln)
559 return ERR_PTR(-ENOMEM);
560 ln->fn_bit = plen;
561
562 ln->parent = pn;
563 ln->fn_sernum = sernum;
564
565 if (dir)
566 pn->right = ln;
567 else
568 pn->left = ln;
569
570 return ln;
571
572
573insert_above:
574 /*
575 * split since we don't have a common prefix anymore or
576 * we have a less significant route.
577 * we've to insert an intermediate node on the list
578 * this new node will point to the one we need to create
579 * and the current
580 */
581
582 pn = fn->parent;
583
584 /* find 1st bit in difference between the 2 addrs.
585
586 See comment in __ipv6_addr_diff: bit may be an invalid value,
587 but if it is >= plen, the value is ignored in any case.
588 */
589
590 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
591
592 /*
593 * (intermediate)[in]
594 * / \
595 * (new leaf node)[ln] (old node)[fn]
596 */
597 if (plen > bit) {
598 in = node_alloc();
599 ln = node_alloc();
600
601 if (!in || !ln) {
602 if (in)
603 node_free(in);
604 if (ln)
605 node_free(ln);
606 return ERR_PTR(-ENOMEM);
607 }
608
609 /*
610 * new intermediate node.
611 * RTN_RTINFO will
612 * be off since that an address that chooses one of
613 * the branches would not match less specific routes
614 * in the other branch
615 */
616
617 in->fn_bit = bit;
618
619 in->parent = pn;
620 in->leaf = fn->leaf;
621 atomic_inc(&in->leaf->rt6i_ref);
622
623 in->fn_sernum = sernum;
624
625 /* update parent pointer */
626 if (dir)
627 pn->right = in;
628 else
629 pn->left = in;
630
631 ln->fn_bit = plen;
632
633 ln->parent = in;
634 fn->parent = in;
635
636 ln->fn_sernum = sernum;
637
638 if (addr_bit_set(addr, bit)) {
639 in->right = ln;
640 in->left = fn;
641 } else {
642 in->left = ln;
643 in->right = fn;
644 }
645 } else { /* plen <= bit */
646
647 /*
648 * (new leaf node)[ln]
649 * / \
650 * (old node)[fn] NULL
651 */
652
653 ln = node_alloc();
654
655 if (!ln)
656 return ERR_PTR(-ENOMEM);
657
658 ln->fn_bit = plen;
659
660 ln->parent = pn;
661
662 ln->fn_sernum = sernum;
663
664 if (dir)
665 pn->right = ln;
666 else
667 pn->left = ln;
668
669 if (addr_bit_set(&key->addr, plen))
670 ln->right = fn;
671 else
672 ln->left = fn;
673
674 fn->parent = ln;
675 }
676 return ln;
677}
678
679static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
680{
681 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
682 RTF_GATEWAY;
683}
684
685static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
686{
687 int i;
688
689 for (i = 0; i < RTAX_MAX; i++) {
690 if (test_bit(i, mxc->mx_valid))
691 mp[i] = mxc->mx[i];
692 }
693}
694
695static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
696{
697 if (!mxc->mx)
698 return 0;
699
700 if (dst->flags & DST_HOST) {
701 u32 *mp = dst_metrics_write_ptr(dst);
702
703 if (unlikely(!mp))
704 return -ENOMEM;
705
706 fib6_copy_metrics(mp, mxc);
707 } else {
708 dst_init_metrics(dst, mxc->mx, false);
709
710 /* We've stolen mx now. */
711 mxc->mx = NULL;
712 }
713
714 return 0;
715}
716
717static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
718 struct net *net)
719{
720 if (atomic_read(&rt->rt6i_ref) != 1) {
721 /* This route is used as dummy address holder in some split
722 * nodes. It is not leaked, but it still holds other resources,
723 * which must be released in time. So, scan ascendant nodes
724 * and replace dummy references to this route with references
725 * to still alive ones.
726 */
727 while (fn) {
728 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
729 fn->leaf = fib6_find_prefix(net, fn);
730 atomic_inc(&fn->leaf->rt6i_ref);
731 rt6_release(rt);
732 }
733 fn = fn->parent;
734 }
735 /* No more references are possible at this point. */
736 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
737 }
738}
739
740/*
741 * Insert routing information in a node.
742 */
743
744static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
745 struct nl_info *info, struct mx6_config *mxc)
746{
747 struct rt6_info *iter = NULL;
748 struct rt6_info **ins;
749 struct rt6_info **fallback_ins = NULL;
750 int replace = (info->nlh &&
751 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
752 int add = (!info->nlh ||
753 (info->nlh->nlmsg_flags & NLM_F_CREATE));
754 int found = 0;
755 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
756 u16 nlflags = NLM_F_EXCL;
757 int err;
758
759 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
760 nlflags |= NLM_F_APPEND;
761
762 ins = &fn->leaf;
763
764 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
765 /*
766 * Search for duplicates
767 */
768
769 if (iter->rt6i_metric == rt->rt6i_metric) {
770 /*
771 * Same priority level
772 */
773 if (info->nlh &&
774 (info->nlh->nlmsg_flags & NLM_F_EXCL))
775 return -EEXIST;
776
777 nlflags &= ~NLM_F_EXCL;
778 if (replace) {
779 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
780 found++;
781 break;
782 }
783 if (rt_can_ecmp)
784 fallback_ins = fallback_ins ?: ins;
785 goto next_iter;
786 }
787
788 if (iter->dst.dev == rt->dst.dev &&
789 iter->rt6i_idev == rt->rt6i_idev &&
790 ipv6_addr_equal(&iter->rt6i_gateway,
791 &rt->rt6i_gateway)) {
792 if (rt->rt6i_nsiblings)
793 rt->rt6i_nsiblings = 0;
794 if (!(iter->rt6i_flags & RTF_EXPIRES))
795 return -EEXIST;
796 if (!(rt->rt6i_flags & RTF_EXPIRES))
797 rt6_clean_expires(iter);
798 else
799 rt6_set_expires(iter, rt->dst.expires);
800 iter->rt6i_pmtu = rt->rt6i_pmtu;
801 return -EEXIST;
802 }
803 /* If we have the same destination and the same metric,
804 * but not the same gateway, then the route we try to
805 * add is sibling to this route, increment our counter
806 * of siblings, and later we will add our route to the
807 * list.
808 * Only static routes (which don't have flag
809 * RTF_EXPIRES) are used for ECMPv6.
810 *
811 * To avoid long list, we only had siblings if the
812 * route have a gateway.
813 */
814 if (rt_can_ecmp &&
815 rt6_qualify_for_ecmp(iter))
816 rt->rt6i_nsiblings++;
817 }
818
819 if (iter->rt6i_metric > rt->rt6i_metric)
820 break;
821
822next_iter:
823 ins = &iter->dst.rt6_next;
824 }
825
826 if (fallback_ins && !found) {
827 /* No ECMP-able route found, replace first non-ECMP one */
828 ins = fallback_ins;
829 iter = *ins;
830 found++;
831 }
832
833 /* Reset round-robin state, if necessary */
834 if (ins == &fn->leaf)
835 fn->rr_ptr = NULL;
836
837 /* Link this route to others same route. */
838 if (rt->rt6i_nsiblings) {
839 unsigned int rt6i_nsiblings;
840 struct rt6_info *sibling, *temp_sibling;
841
842 /* Find the first route that have the same metric */
843 sibling = fn->leaf;
844 while (sibling) {
845 if (sibling->rt6i_metric == rt->rt6i_metric &&
846 rt6_qualify_for_ecmp(sibling)) {
847 list_add_tail(&rt->rt6i_siblings,
848 &sibling->rt6i_siblings);
849 break;
850 }
851 sibling = sibling->dst.rt6_next;
852 }
853 /* For each sibling in the list, increment the counter of
854 * siblings. BUG() if counters does not match, list of siblings
855 * is broken!
856 */
857 rt6i_nsiblings = 0;
858 list_for_each_entry_safe(sibling, temp_sibling,
859 &rt->rt6i_siblings, rt6i_siblings) {
860 sibling->rt6i_nsiblings++;
861 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
862 rt6i_nsiblings++;
863 }
864 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
865 }
866
867 /*
868 * insert node
869 */
870 if (!replace) {
871 if (!add)
872 pr_warn("NLM_F_CREATE should be set when creating new route\n");
873
874add:
875 nlflags |= NLM_F_CREATE;
876 err = fib6_commit_metrics(&rt->dst, mxc);
877 if (err)
878 return err;
879
880 rt->dst.rt6_next = iter;
881 *ins = rt;
882 rt->rt6i_node = fn;
883 atomic_inc(&rt->rt6i_ref);
884 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
885 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
886
887 if (!(fn->fn_flags & RTN_RTINFO)) {
888 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
889 fn->fn_flags |= RTN_RTINFO;
890 }
891
892 } else {
893 int nsiblings;
894
895 if (!found) {
896 if (add)
897 goto add;
898 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
899 return -ENOENT;
900 }
901
902 err = fib6_commit_metrics(&rt->dst, mxc);
903 if (err)
904 return err;
905
906 *ins = rt;
907 rt->rt6i_node = fn;
908 rt->dst.rt6_next = iter->dst.rt6_next;
909 atomic_inc(&rt->rt6i_ref);
910 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
911 if (!(fn->fn_flags & RTN_RTINFO)) {
912 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
913 fn->fn_flags |= RTN_RTINFO;
914 }
915 nsiblings = iter->rt6i_nsiblings;
916 fib6_purge_rt(iter, fn, info->nl_net);
917 rt6_release(iter);
918
919 if (nsiblings) {
920 /* Replacing an ECMP route, remove all siblings */
921 ins = &rt->dst.rt6_next;
922 iter = *ins;
923 while (iter) {
924 if (rt6_qualify_for_ecmp(iter)) {
925 *ins = iter->dst.rt6_next;
926 fib6_purge_rt(iter, fn, info->nl_net);
927 rt6_release(iter);
928 nsiblings--;
929 } else {
930 ins = &iter->dst.rt6_next;
931 }
932 iter = *ins;
933 }
934 WARN_ON(nsiblings != 0);
935 }
936 }
937
938 return 0;
939}
940
941static void fib6_start_gc(struct net *net, struct rt6_info *rt)
942{
943 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
944 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
945 mod_timer(&net->ipv6.ip6_fib_timer,
946 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
947}
948
949void fib6_force_start_gc(struct net *net)
950{
951 if (!timer_pending(&net->ipv6.ip6_fib_timer))
952 mod_timer(&net->ipv6.ip6_fib_timer,
953 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
954}
955
956/*
957 * Add routing information to the routing tree.
958 * <destination addr>/<source addr>
959 * with source addr info in sub-trees
960 */
961
962int fib6_add(struct fib6_node *root, struct rt6_info *rt,
963 struct nl_info *info, struct mx6_config *mxc)
964{
965 struct fib6_node *fn, *pn = NULL;
966 int err = -ENOMEM;
967 int allow_create = 1;
968 int replace_required = 0;
969 int sernum = fib6_new_sernum(info->nl_net);
970
971 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
972 !atomic_read(&rt->dst.__refcnt)))
973 return -EINVAL;
974
975 if (info->nlh) {
976 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
977 allow_create = 0;
978 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
979 replace_required = 1;
980 }
981 if (!allow_create && !replace_required)
982 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
983
984 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
985 offsetof(struct rt6_info, rt6i_dst), allow_create,
986 replace_required, sernum);
987 if (IS_ERR(fn)) {
988 err = PTR_ERR(fn);
989 fn = NULL;
990 goto out;
991 }
992
993 pn = fn;
994
995#ifdef CONFIG_IPV6_SUBTREES
996 if (rt->rt6i_src.plen) {
997 struct fib6_node *sn;
998
999 if (!fn->subtree) {
1000 struct fib6_node *sfn;
1001
1002 /*
1003 * Create subtree.
1004 *
1005 * fn[main tree]
1006 * |
1007 * sfn[subtree root]
1008 * \
1009 * sn[new leaf node]
1010 */
1011
1012 /* Create subtree root node */
1013 sfn = node_alloc();
1014 if (!sfn)
1015 goto st_failure;
1016
1017 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1018 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1019 sfn->fn_flags = RTN_ROOT;
1020 sfn->fn_sernum = sernum;
1021
1022 /* Now add the first leaf node to new subtree */
1023
1024 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1025 rt->rt6i_src.plen,
1026 offsetof(struct rt6_info, rt6i_src),
1027 allow_create, replace_required, sernum);
1028
1029 if (IS_ERR(sn)) {
1030 /* If it is failed, discard just allocated
1031 root, and then (in st_failure) stale node
1032 in main tree.
1033 */
1034 node_free(sfn);
1035 err = PTR_ERR(sn);
1036 goto st_failure;
1037 }
1038
1039 /* Now link new subtree to main tree */
1040 sfn->parent = fn;
1041 fn->subtree = sfn;
1042 } else {
1043 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1044 rt->rt6i_src.plen,
1045 offsetof(struct rt6_info, rt6i_src),
1046 allow_create, replace_required, sernum);
1047
1048 if (IS_ERR(sn)) {
1049 err = PTR_ERR(sn);
1050 goto st_failure;
1051 }
1052 }
1053
1054 if (!fn->leaf) {
1055 fn->leaf = rt;
1056 atomic_inc(&rt->rt6i_ref);
1057 }
1058 fn = sn;
1059 }
1060#endif
1061
1062 err = fib6_add_rt2node(fn, rt, info, mxc);
1063 if (!err) {
1064 fib6_start_gc(info->nl_net, rt);
1065 if (!(rt->rt6i_flags & RTF_CACHE))
1066 fib6_prune_clones(info->nl_net, pn);
1067 rt->dst.flags &= ~DST_NOCACHE;
1068 }
1069
1070out:
1071 if (err) {
1072#ifdef CONFIG_IPV6_SUBTREES
1073 /*
1074 * If fib6_add_1 has cleared the old leaf pointer in the
1075 * super-tree leaf node we have to find a new one for it.
1076 */
1077 if (pn != fn && pn->leaf == rt) {
1078 pn->leaf = NULL;
1079 atomic_dec(&rt->rt6i_ref);
1080 }
1081 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1082 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1083#if RT6_DEBUG >= 2
1084 if (!pn->leaf) {
1085 WARN_ON(pn->leaf == NULL);
1086 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1087 }
1088#endif
1089 atomic_inc(&pn->leaf->rt6i_ref);
1090 }
1091#endif
1092 if (!(rt->dst.flags & DST_NOCACHE))
1093 dst_free(&rt->dst);
1094 }
1095 return err;
1096
1097#ifdef CONFIG_IPV6_SUBTREES
1098 /* Subtree creation failed, probably main tree node
1099 is orphan. If it is, shoot it.
1100 */
1101st_failure:
1102 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1103 fib6_repair_tree(info->nl_net, fn);
1104 if (!(rt->dst.flags & DST_NOCACHE))
1105 dst_free(&rt->dst);
1106 return err;
1107#endif
1108}
1109
1110/*
1111 * Routing tree lookup
1112 *
1113 */
1114
1115struct lookup_args {
1116 int offset; /* key offset on rt6_info */
1117 const struct in6_addr *addr; /* search key */
1118};
1119
1120static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1121 struct lookup_args *args)
1122{
1123 struct fib6_node *fn;
1124 __be32 dir;
1125
1126 if (unlikely(args->offset == 0))
1127 return NULL;
1128
1129 /*
1130 * Descend on a tree
1131 */
1132
1133 fn = root;
1134
1135 for (;;) {
1136 struct fib6_node *next;
1137
1138 dir = addr_bit_set(args->addr, fn->fn_bit);
1139
1140 next = dir ? fn->right : fn->left;
1141
1142 if (next) {
1143 fn = next;
1144 continue;
1145 }
1146 break;
1147 }
1148
1149 while (fn) {
1150 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1151 struct rt6key *key;
1152
1153 key = (struct rt6key *) ((u8 *) fn->leaf +
1154 args->offset);
1155
1156 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1157#ifdef CONFIG_IPV6_SUBTREES
1158 if (fn->subtree) {
1159 struct fib6_node *sfn;
1160 sfn = fib6_lookup_1(fn->subtree,
1161 args + 1);
1162 if (!sfn)
1163 goto backtrack;
1164 fn = sfn;
1165 }
1166#endif
1167 if (fn->fn_flags & RTN_RTINFO)
1168 return fn;
1169 }
1170 }
1171#ifdef CONFIG_IPV6_SUBTREES
1172backtrack:
1173#endif
1174 if (fn->fn_flags & RTN_ROOT)
1175 break;
1176
1177 fn = fn->parent;
1178 }
1179
1180 return NULL;
1181}
1182
1183struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1184 const struct in6_addr *saddr)
1185{
1186 struct fib6_node *fn;
1187 struct lookup_args args[] = {
1188 {
1189 .offset = offsetof(struct rt6_info, rt6i_dst),
1190 .addr = daddr,
1191 },
1192#ifdef CONFIG_IPV6_SUBTREES
1193 {
1194 .offset = offsetof(struct rt6_info, rt6i_src),
1195 .addr = saddr,
1196 },
1197#endif
1198 {
1199 .offset = 0, /* sentinel */
1200 }
1201 };
1202
1203 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1204 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1205 fn = root;
1206
1207 return fn;
1208}
1209
1210/*
1211 * Get node with specified destination prefix (and source prefix,
1212 * if subtrees are used)
1213 */
1214
1215
1216static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1217 const struct in6_addr *addr,
1218 int plen, int offset)
1219{
1220 struct fib6_node *fn;
1221
1222 for (fn = root; fn ; ) {
1223 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1224
1225 /*
1226 * Prefix match
1227 */
1228 if (plen < fn->fn_bit ||
1229 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1230 return NULL;
1231
1232 if (plen == fn->fn_bit)
1233 return fn;
1234
1235 /*
1236 * We have more bits to go
1237 */
1238 if (addr_bit_set(addr, fn->fn_bit))
1239 fn = fn->right;
1240 else
1241 fn = fn->left;
1242 }
1243 return NULL;
1244}
1245
1246struct fib6_node *fib6_locate(struct fib6_node *root,
1247 const struct in6_addr *daddr, int dst_len,
1248 const struct in6_addr *saddr, int src_len)
1249{
1250 struct fib6_node *fn;
1251
1252 fn = fib6_locate_1(root, daddr, dst_len,
1253 offsetof(struct rt6_info, rt6i_dst));
1254
1255#ifdef CONFIG_IPV6_SUBTREES
1256 if (src_len) {
1257 WARN_ON(saddr == NULL);
1258 if (fn && fn->subtree)
1259 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1260 offsetof(struct rt6_info, rt6i_src));
1261 }
1262#endif
1263
1264 if (fn && fn->fn_flags & RTN_RTINFO)
1265 return fn;
1266
1267 return NULL;
1268}
1269
1270
1271/*
1272 * Deletion
1273 *
1274 */
1275
1276static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1277{
1278 if (fn->fn_flags & RTN_ROOT)
1279 return net->ipv6.ip6_null_entry;
1280
1281 while (fn) {
1282 if (fn->left)
1283 return fn->left->leaf;
1284 if (fn->right)
1285 return fn->right->leaf;
1286
1287 fn = FIB6_SUBTREE(fn);
1288 }
1289 return NULL;
1290}
1291
1292/*
1293 * Called to trim the tree of intermediate nodes when possible. "fn"
1294 * is the node we want to try and remove.
1295 */
1296
1297static struct fib6_node *fib6_repair_tree(struct net *net,
1298 struct fib6_node *fn)
1299{
1300 int children;
1301 int nstate;
1302 struct fib6_node *child, *pn;
1303 struct fib6_walker *w;
1304 int iter = 0;
1305
1306 for (;;) {
1307 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1308 iter++;
1309
1310 WARN_ON(fn->fn_flags & RTN_RTINFO);
1311 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1312 WARN_ON(fn->leaf);
1313
1314 children = 0;
1315 child = NULL;
1316 if (fn->right)
1317 child = fn->right, children |= 1;
1318 if (fn->left)
1319 child = fn->left, children |= 2;
1320
1321 if (children == 3 || FIB6_SUBTREE(fn)
1322#ifdef CONFIG_IPV6_SUBTREES
1323 /* Subtree root (i.e. fn) may have one child */
1324 || (children && fn->fn_flags & RTN_ROOT)
1325#endif
1326 ) {
1327 fn->leaf = fib6_find_prefix(net, fn);
1328#if RT6_DEBUG >= 2
1329 if (!fn->leaf) {
1330 WARN_ON(!fn->leaf);
1331 fn->leaf = net->ipv6.ip6_null_entry;
1332 }
1333#endif
1334 atomic_inc(&fn->leaf->rt6i_ref);
1335 return fn->parent;
1336 }
1337
1338 pn = fn->parent;
1339#ifdef CONFIG_IPV6_SUBTREES
1340 if (FIB6_SUBTREE(pn) == fn) {
1341 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1342 FIB6_SUBTREE(pn) = NULL;
1343 nstate = FWS_L;
1344 } else {
1345 WARN_ON(fn->fn_flags & RTN_ROOT);
1346#endif
1347 if (pn->right == fn)
1348 pn->right = child;
1349 else if (pn->left == fn)
1350 pn->left = child;
1351#if RT6_DEBUG >= 2
1352 else
1353 WARN_ON(1);
1354#endif
1355 if (child)
1356 child->parent = pn;
1357 nstate = FWS_R;
1358#ifdef CONFIG_IPV6_SUBTREES
1359 }
1360#endif
1361
1362 read_lock(&net->ipv6.fib6_walker_lock);
1363 FOR_WALKERS(net, w) {
1364 if (!child) {
1365 if (w->root == fn) {
1366 w->root = w->node = NULL;
1367 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1368 } else if (w->node == fn) {
1369 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1370 w->node = pn;
1371 w->state = nstate;
1372 }
1373 } else {
1374 if (w->root == fn) {
1375 w->root = child;
1376 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1377 }
1378 if (w->node == fn) {
1379 w->node = child;
1380 if (children&2) {
1381 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1382 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1383 } else {
1384 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1385 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1386 }
1387 }
1388 }
1389 }
1390 read_unlock(&net->ipv6.fib6_walker_lock);
1391
1392 node_free(fn);
1393 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1394 return pn;
1395
1396 rt6_release(pn->leaf);
1397 pn->leaf = NULL;
1398 fn = pn;
1399 }
1400}
1401
1402static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1403 struct nl_info *info)
1404{
1405 struct fib6_walker *w;
1406 struct rt6_info *rt = *rtp;
1407 struct net *net = info->nl_net;
1408
1409 RT6_TRACE("fib6_del_route\n");
1410
1411 /* Unlink it */
1412 *rtp = rt->dst.rt6_next;
1413 rt->rt6i_node = NULL;
1414 net->ipv6.rt6_stats->fib_rt_entries--;
1415 net->ipv6.rt6_stats->fib_discarded_routes++;
1416
1417 /* Reset round-robin state, if necessary */
1418 if (fn->rr_ptr == rt)
1419 fn->rr_ptr = NULL;
1420
1421 /* Remove this entry from other siblings */
1422 if (rt->rt6i_nsiblings) {
1423 struct rt6_info *sibling, *next_sibling;
1424
1425 list_for_each_entry_safe(sibling, next_sibling,
1426 &rt->rt6i_siblings, rt6i_siblings)
1427 sibling->rt6i_nsiblings--;
1428 rt->rt6i_nsiblings = 0;
1429 list_del_init(&rt->rt6i_siblings);
1430 }
1431
1432 /* Adjust walkers */
1433 read_lock(&net->ipv6.fib6_walker_lock);
1434 FOR_WALKERS(net, w) {
1435 if (w->state == FWS_C && w->leaf == rt) {
1436 RT6_TRACE("walker %p adjusted by delroute\n", w);
1437 w->leaf = rt->dst.rt6_next;
1438 if (!w->leaf)
1439 w->state = FWS_U;
1440 }
1441 }
1442 read_unlock(&net->ipv6.fib6_walker_lock);
1443
1444 rt->dst.rt6_next = NULL;
1445
1446 /* If it was last route, expunge its radix tree node */
1447 if (!fn->leaf) {
1448 fn->fn_flags &= ~RTN_RTINFO;
1449 net->ipv6.rt6_stats->fib_route_nodes--;
1450 fn = fib6_repair_tree(net, fn);
1451 }
1452
1453 fib6_purge_rt(rt, fn, net);
1454
1455 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1456 rt6_release(rt);
1457}
1458
1459int fib6_del(struct rt6_info *rt, struct nl_info *info)
1460{
1461 struct net *net = info->nl_net;
1462 struct fib6_node *fn = rt->rt6i_node;
1463 struct rt6_info **rtp;
1464
1465#if RT6_DEBUG >= 2
1466 if (rt->dst.obsolete > 0) {
1467 WARN_ON(fn);
1468 return -ENOENT;
1469 }
1470#endif
1471 if (!fn || rt == net->ipv6.ip6_null_entry)
1472 return -ENOENT;
1473
1474 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1475
1476 if (!(rt->rt6i_flags & RTF_CACHE)) {
1477 struct fib6_node *pn = fn;
1478#ifdef CONFIG_IPV6_SUBTREES
1479 /* clones of this route might be in another subtree */
1480 if (rt->rt6i_src.plen) {
1481 while (!(pn->fn_flags & RTN_ROOT))
1482 pn = pn->parent;
1483 pn = pn->parent;
1484 }
1485#endif
1486 fib6_prune_clones(info->nl_net, pn);
1487 }
1488
1489 /*
1490 * Walk the leaf entries looking for ourself
1491 */
1492
1493 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1494 if (*rtp == rt) {
1495 fib6_del_route(fn, rtp, info);
1496 return 0;
1497 }
1498 }
1499 return -ENOENT;
1500}
1501
1502/*
1503 * Tree traversal function.
1504 *
1505 * Certainly, it is not interrupt safe.
1506 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1507 * It means, that we can modify tree during walking
1508 * and use this function for garbage collection, clone pruning,
1509 * cleaning tree when a device goes down etc. etc.
1510 *
1511 * It guarantees that every node will be traversed,
1512 * and that it will be traversed only once.
1513 *
1514 * Callback function w->func may return:
1515 * 0 -> continue walking.
1516 * positive value -> walking is suspended (used by tree dumps,
1517 * and probably by gc, if it will be split to several slices)
1518 * negative value -> terminate walking.
1519 *
1520 * The function itself returns:
1521 * 0 -> walk is complete.
1522 * >0 -> walk is incomplete (i.e. suspended)
1523 * <0 -> walk is terminated by an error.
1524 */
1525
1526static int fib6_walk_continue(struct fib6_walker *w)
1527{
1528 struct fib6_node *fn, *pn;
1529
1530 for (;;) {
1531 fn = w->node;
1532 if (!fn)
1533 return 0;
1534
1535 if (w->prune && fn != w->root &&
1536 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1537 w->state = FWS_C;
1538 w->leaf = fn->leaf;
1539 }
1540 switch (w->state) {
1541#ifdef CONFIG_IPV6_SUBTREES
1542 case FWS_S:
1543 if (FIB6_SUBTREE(fn)) {
1544 w->node = FIB6_SUBTREE(fn);
1545 continue;
1546 }
1547 w->state = FWS_L;
1548#endif
1549 case FWS_L:
1550 if (fn->left) {
1551 w->node = fn->left;
1552 w->state = FWS_INIT;
1553 continue;
1554 }
1555 w->state = FWS_R;
1556 case FWS_R:
1557 if (fn->right) {
1558 w->node = fn->right;
1559 w->state = FWS_INIT;
1560 continue;
1561 }
1562 w->state = FWS_C;
1563 w->leaf = fn->leaf;
1564 case FWS_C:
1565 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1566 int err;
1567
1568 if (w->skip) {
1569 w->skip--;
1570 goto skip;
1571 }
1572
1573 err = w->func(w);
1574 if (err)
1575 return err;
1576
1577 w->count++;
1578 continue;
1579 }
1580skip:
1581 w->state = FWS_U;
1582 case FWS_U:
1583 if (fn == w->root)
1584 return 0;
1585 pn = fn->parent;
1586 w->node = pn;
1587#ifdef CONFIG_IPV6_SUBTREES
1588 if (FIB6_SUBTREE(pn) == fn) {
1589 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1590 w->state = FWS_L;
1591 continue;
1592 }
1593#endif
1594 if (pn->left == fn) {
1595 w->state = FWS_R;
1596 continue;
1597 }
1598 if (pn->right == fn) {
1599 w->state = FWS_C;
1600 w->leaf = w->node->leaf;
1601 continue;
1602 }
1603#if RT6_DEBUG >= 2
1604 WARN_ON(1);
1605#endif
1606 }
1607 }
1608}
1609
1610static int fib6_walk(struct net *net, struct fib6_walker *w)
1611{
1612 int res;
1613
1614 w->state = FWS_INIT;
1615 w->node = w->root;
1616
1617 fib6_walker_link(net, w);
1618 res = fib6_walk_continue(w);
1619 if (res <= 0)
1620 fib6_walker_unlink(net, w);
1621 return res;
1622}
1623
1624static int fib6_clean_node(struct fib6_walker *w)
1625{
1626 int res;
1627 struct rt6_info *rt;
1628 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1629 struct nl_info info = {
1630 .nl_net = c->net,
1631 };
1632
1633 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1634 w->node->fn_sernum != c->sernum)
1635 w->node->fn_sernum = c->sernum;
1636
1637 if (!c->func) {
1638 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1639 w->leaf = NULL;
1640 return 0;
1641 }
1642
1643 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1644 res = c->func(rt, c->arg);
1645 if (res < 0) {
1646 w->leaf = rt;
1647 res = fib6_del(rt, &info);
1648 if (res) {
1649#if RT6_DEBUG >= 2
1650 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1651 __func__, rt, rt->rt6i_node, res);
1652#endif
1653 continue;
1654 }
1655 return 0;
1656 }
1657 WARN_ON(res != 0);
1658 }
1659 w->leaf = rt;
1660 return 0;
1661}
1662
1663/*
1664 * Convenient frontend to tree walker.
1665 *
1666 * func is called on each route.
1667 * It may return -1 -> delete this route.
1668 * 0 -> continue walking
1669 *
1670 * prune==1 -> only immediate children of node (certainly,
1671 * ignoring pure split nodes) will be scanned.
1672 */
1673
1674static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1675 int (*func)(struct rt6_info *, void *arg),
1676 bool prune, int sernum, void *arg)
1677{
1678 struct fib6_cleaner c;
1679
1680 c.w.root = root;
1681 c.w.func = fib6_clean_node;
1682 c.w.prune = prune;
1683 c.w.count = 0;
1684 c.w.skip = 0;
1685 c.func = func;
1686 c.sernum = sernum;
1687 c.arg = arg;
1688 c.net = net;
1689
1690 fib6_walk(net, &c.w);
1691}
1692
1693static void __fib6_clean_all(struct net *net,
1694 int (*func)(struct rt6_info *, void *),
1695 int sernum, void *arg)
1696{
1697 struct fib6_table *table;
1698 struct hlist_head *head;
1699 unsigned int h;
1700
1701 rcu_read_lock();
1702 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1703 head = &net->ipv6.fib_table_hash[h];
1704 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1705 write_lock_bh(&table->tb6_lock);
1706 fib6_clean_tree(net, &table->tb6_root,
1707 func, false, sernum, arg);
1708 write_unlock_bh(&table->tb6_lock);
1709 }
1710 }
1711 rcu_read_unlock();
1712}
1713
1714void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1715 void *arg)
1716{
1717 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1718}
1719
1720static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1721{
1722 if (rt->rt6i_flags & RTF_CACHE) {
1723 RT6_TRACE("pruning clone %p\n", rt);
1724 return -1;
1725 }
1726
1727 return 0;
1728}
1729
1730static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1731{
1732 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1733 FIB6_NO_SERNUM_CHANGE, NULL);
1734}
1735
1736static void fib6_flush_trees(struct net *net)
1737{
1738 int new_sernum = fib6_new_sernum(net);
1739
1740 __fib6_clean_all(net, NULL, new_sernum, NULL);
1741}
1742
1743/*
1744 * Garbage collection
1745 */
1746
1747struct fib6_gc_args
1748{
1749 int timeout;
1750 int more;
1751};
1752
1753static int fib6_age(struct rt6_info *rt, void *arg)
1754{
1755 struct fib6_gc_args *gc_args = arg;
1756 unsigned long now = jiffies;
1757
1758 /*
1759 * check addrconf expiration here.
1760 * Routes are expired even if they are in use.
1761 *
1762 * Also age clones. Note, that clones are aged out
1763 * only if they are not in use now.
1764 */
1765
1766 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1767 if (time_after(now, rt->dst.expires)) {
1768 RT6_TRACE("expiring %p\n", rt);
1769 return -1;
1770 }
1771 gc_args->more++;
1772 } else if (rt->rt6i_flags & RTF_CACHE) {
1773 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1774 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1775 RT6_TRACE("aging clone %p\n", rt);
1776 return -1;
1777 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1778 struct neighbour *neigh;
1779 __u8 neigh_flags = 0;
1780
1781 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1782 if (neigh) {
1783 neigh_flags = neigh->flags;
1784 neigh_release(neigh);
1785 }
1786 if (!(neigh_flags & NTF_ROUTER)) {
1787 RT6_TRACE("purging route %p via non-router but gateway\n",
1788 rt);
1789 return -1;
1790 }
1791 }
1792 gc_args->more++;
1793 }
1794
1795 return 0;
1796}
1797
1798void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1799{
1800 struct fib6_gc_args gc_args;
1801 unsigned long now;
1802
1803 if (force) {
1804 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1805 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1806 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1807 return;
1808 }
1809 gc_args.timeout = expires ? (int)expires :
1810 net->ipv6.sysctl.ip6_rt_gc_interval;
1811
1812 gc_args.more = icmp6_dst_gc();
1813
1814 fib6_clean_all(net, fib6_age, &gc_args);
1815 now = jiffies;
1816 net->ipv6.ip6_rt_last_gc = now;
1817
1818 if (gc_args.more)
1819 mod_timer(&net->ipv6.ip6_fib_timer,
1820 round_jiffies(now
1821 + net->ipv6.sysctl.ip6_rt_gc_interval));
1822 else
1823 del_timer(&net->ipv6.ip6_fib_timer);
1824 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1825}
1826
1827static void fib6_gc_timer_cb(unsigned long arg)
1828{
1829 fib6_run_gc(0, (struct net *)arg, true);
1830}
1831
1832static int __net_init fib6_net_init(struct net *net)
1833{
1834 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1835
1836 spin_lock_init(&net->ipv6.fib6_gc_lock);
1837 rwlock_init(&net->ipv6.fib6_walker_lock);
1838 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1839 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1840
1841 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1842 if (!net->ipv6.rt6_stats)
1843 goto out_timer;
1844
1845 /* Avoid false sharing : Use at least a full cache line */
1846 size = max_t(size_t, size, L1_CACHE_BYTES);
1847
1848 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1849 if (!net->ipv6.fib_table_hash)
1850 goto out_rt6_stats;
1851
1852 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1853 GFP_KERNEL);
1854 if (!net->ipv6.fib6_main_tbl)
1855 goto out_fib_table_hash;
1856
1857 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1858 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1859 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1860 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1861 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1862
1863#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1864 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1865 GFP_KERNEL);
1866 if (!net->ipv6.fib6_local_tbl)
1867 goto out_fib6_main_tbl;
1868 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1869 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1870 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1871 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1872 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1873#endif
1874 fib6_tables_init(net);
1875
1876 return 0;
1877
1878#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1879out_fib6_main_tbl:
1880 kfree(net->ipv6.fib6_main_tbl);
1881#endif
1882out_fib_table_hash:
1883 kfree(net->ipv6.fib_table_hash);
1884out_rt6_stats:
1885 kfree(net->ipv6.rt6_stats);
1886out_timer:
1887 return -ENOMEM;
1888}
1889
1890static void fib6_net_exit(struct net *net)
1891{
1892 rt6_ifdown(net, NULL);
1893 del_timer_sync(&net->ipv6.ip6_fib_timer);
1894
1895#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1896 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1897 kfree(net->ipv6.fib6_local_tbl);
1898#endif
1899 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1900 kfree(net->ipv6.fib6_main_tbl);
1901 kfree(net->ipv6.fib_table_hash);
1902 kfree(net->ipv6.rt6_stats);
1903}
1904
1905static struct pernet_operations fib6_net_ops = {
1906 .init = fib6_net_init,
1907 .exit = fib6_net_exit,
1908};
1909
1910int __init fib6_init(void)
1911{
1912 int ret = -ENOMEM;
1913
1914 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1915 sizeof(struct fib6_node),
1916 0, SLAB_HWCACHE_ALIGN,
1917 NULL);
1918 if (!fib6_node_kmem)
1919 goto out;
1920
1921 ret = register_pernet_subsys(&fib6_net_ops);
1922 if (ret)
1923 goto out_kmem_cache_create;
1924
1925 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1926 NULL);
1927 if (ret)
1928 goto out_unregister_subsys;
1929
1930 __fib6_flush_trees = fib6_flush_trees;
1931out:
1932 return ret;
1933
1934out_unregister_subsys:
1935 unregister_pernet_subsys(&fib6_net_ops);
1936out_kmem_cache_create:
1937 kmem_cache_destroy(fib6_node_kmem);
1938 goto out;
1939}
1940
1941void fib6_gc_cleanup(void)
1942{
1943 unregister_pernet_subsys(&fib6_net_ops);
1944 kmem_cache_destroy(fib6_node_kmem);
1945}
1946
1947#ifdef CONFIG_PROC_FS
1948
1949struct ipv6_route_iter {
1950 struct seq_net_private p;
1951 struct fib6_walker w;
1952 loff_t skip;
1953 struct fib6_table *tbl;
1954 int sernum;
1955};
1956
1957static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1958{
1959 struct rt6_info *rt = v;
1960 struct ipv6_route_iter *iter = seq->private;
1961
1962 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1963
1964#ifdef CONFIG_IPV6_SUBTREES
1965 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1966#else
1967 seq_puts(seq, "00000000000000000000000000000000 00 ");
1968#endif
1969 if (rt->rt6i_flags & RTF_GATEWAY)
1970 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1971 else
1972 seq_puts(seq, "00000000000000000000000000000000");
1973
1974 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1975 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1976 rt->dst.__use, rt->rt6i_flags,
1977 rt->dst.dev ? rt->dst.dev->name : "");
1978 iter->w.leaf = NULL;
1979 return 0;
1980}
1981
1982static int ipv6_route_yield(struct fib6_walker *w)
1983{
1984 struct ipv6_route_iter *iter = w->args;
1985
1986 if (!iter->skip)
1987 return 1;
1988
1989 do {
1990 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1991 iter->skip--;
1992 if (!iter->skip && iter->w.leaf)
1993 return 1;
1994 } while (iter->w.leaf);
1995
1996 return 0;
1997}
1998
1999static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2000 struct net *net)
2001{
2002 memset(&iter->w, 0, sizeof(iter->w));
2003 iter->w.func = ipv6_route_yield;
2004 iter->w.root = &iter->tbl->tb6_root;
2005 iter->w.state = FWS_INIT;
2006 iter->w.node = iter->w.root;
2007 iter->w.args = iter;
2008 iter->sernum = iter->w.root->fn_sernum;
2009 INIT_LIST_HEAD(&iter->w.lh);
2010 fib6_walker_link(net, &iter->w);
2011}
2012
2013static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2014 struct net *net)
2015{
2016 unsigned int h;
2017 struct hlist_node *node;
2018
2019 if (tbl) {
2020 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2021 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2022 } else {
2023 h = 0;
2024 node = NULL;
2025 }
2026
2027 while (!node && h < FIB6_TABLE_HASHSZ) {
2028 node = rcu_dereference_bh(
2029 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2030 }
2031 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2032}
2033
2034static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2035{
2036 if (iter->sernum != iter->w.root->fn_sernum) {
2037 iter->sernum = iter->w.root->fn_sernum;
2038 iter->w.state = FWS_INIT;
2039 iter->w.node = iter->w.root;
2040 WARN_ON(iter->w.skip);
2041 iter->w.skip = iter->w.count;
2042 }
2043}
2044
2045static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2046{
2047 int r;
2048 struct rt6_info *n;
2049 struct net *net = seq_file_net(seq);
2050 struct ipv6_route_iter *iter = seq->private;
2051
2052 if (!v)
2053 goto iter_table;
2054
2055 n = ((struct rt6_info *)v)->dst.rt6_next;
2056 if (n) {
2057 ++*pos;
2058 return n;
2059 }
2060
2061iter_table:
2062 ipv6_route_check_sernum(iter);
2063 read_lock(&iter->tbl->tb6_lock);
2064 r = fib6_walk_continue(&iter->w);
2065 read_unlock(&iter->tbl->tb6_lock);
2066 if (r > 0) {
2067 if (v)
2068 ++*pos;
2069 return iter->w.leaf;
2070 } else if (r < 0) {
2071 fib6_walker_unlink(net, &iter->w);
2072 return NULL;
2073 }
2074 fib6_walker_unlink(net, &iter->w);
2075
2076 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2077 if (!iter->tbl)
2078 return NULL;
2079
2080 ipv6_route_seq_setup_walk(iter, net);
2081 goto iter_table;
2082}
2083
2084static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2085 __acquires(RCU_BH)
2086{
2087 struct net *net = seq_file_net(seq);
2088 struct ipv6_route_iter *iter = seq->private;
2089
2090 rcu_read_lock_bh();
2091 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2092 iter->skip = *pos;
2093
2094 if (iter->tbl) {
2095 ipv6_route_seq_setup_walk(iter, net);
2096 return ipv6_route_seq_next(seq, NULL, pos);
2097 } else {
2098 return NULL;
2099 }
2100}
2101
2102static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2103{
2104 struct fib6_walker *w = &iter->w;
2105 return w->node && !(w->state == FWS_U && w->node == w->root);
2106}
2107
2108static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2109 __releases(RCU_BH)
2110{
2111 struct net *net = seq_file_net(seq);
2112 struct ipv6_route_iter *iter = seq->private;
2113
2114 if (ipv6_route_iter_active(iter))
2115 fib6_walker_unlink(net, &iter->w);
2116
2117 rcu_read_unlock_bh();
2118}
2119
2120static const struct seq_operations ipv6_route_seq_ops = {
2121 .start = ipv6_route_seq_start,
2122 .next = ipv6_route_seq_next,
2123 .stop = ipv6_route_seq_stop,
2124 .show = ipv6_route_seq_show
2125};
2126
2127int ipv6_route_open(struct inode *inode, struct file *file)
2128{
2129 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2130 sizeof(struct ipv6_route_iter));
2131}
2132
2133#endif /* CONFIG_PROC_FS */