]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - net/mac80211/rx.c
sctp: Fixup v4mapped behaviour to comply with Sock API
[mirror_ubuntu-jammy-kernel.git] / net / mac80211 / rx.c
... / ...
CommitLineData
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/jiffies.h>
13#include <linux/slab.h>
14#include <linux/kernel.h>
15#include <linux/skbuff.h>
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/rcupdate.h>
19#include <linux/export.h>
20#include <net/mac80211.h>
21#include <net/ieee80211_radiotap.h>
22#include <asm/unaligned.h>
23
24#include "ieee80211_i.h"
25#include "driver-ops.h"
26#include "led.h"
27#include "mesh.h"
28#include "wep.h"
29#include "wpa.h"
30#include "tkip.h"
31#include "wme.h"
32#include "rate.h"
33
34/*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42{
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 return NULL;
51 }
52 }
53
54 return skb;
55}
56
57static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len)
58{
59 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 struct ieee80211_hdr *hdr = (void *)skb->data;
61
62 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
63 RX_FLAG_FAILED_PLCP_CRC |
64 RX_FLAG_AMPDU_IS_ZEROLEN))
65 return true;
66
67 if (unlikely(skb->len < 16 + present_fcs_len))
68 return true;
69
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return true;
74
75 return false;
76}
77
78static int
79ieee80211_rx_radiotap_space(struct ieee80211_local *local,
80 struct ieee80211_rx_status *status)
81{
82 int len;
83
84 /* always present fields */
85 len = sizeof(struct ieee80211_radiotap_header) + 8;
86
87 /* allocate extra bitmaps */
88 if (status->chains)
89 len += 4 * hweight8(status->chains);
90
91 if (ieee80211_have_rx_timestamp(status)) {
92 len = ALIGN(len, 8);
93 len += 8;
94 }
95 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
96 len += 1;
97
98 /* antenna field, if we don't have per-chain info */
99 if (!status->chains)
100 len += 1;
101
102 /* padding for RX_FLAGS if necessary */
103 len = ALIGN(len, 2);
104
105 if (status->flag & RX_FLAG_HT) /* HT info */
106 len += 3;
107
108 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
109 len = ALIGN(len, 4);
110 len += 8;
111 }
112
113 if (status->flag & RX_FLAG_VHT) {
114 len = ALIGN(len, 2);
115 len += 12;
116 }
117
118 if (status->chains) {
119 /* antenna and antenna signal fields */
120 len += 2 * hweight8(status->chains);
121 }
122
123 return len;
124}
125
126/*
127 * ieee80211_add_rx_radiotap_header - add radiotap header
128 *
129 * add a radiotap header containing all the fields which the hardware provided.
130 */
131static void
132ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
133 struct sk_buff *skb,
134 struct ieee80211_rate *rate,
135 int rtap_len, bool has_fcs)
136{
137 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
138 struct ieee80211_radiotap_header *rthdr;
139 unsigned char *pos;
140 __le32 *it_present;
141 u32 it_present_val;
142 u16 rx_flags = 0;
143 u16 channel_flags = 0;
144 int mpdulen, chain;
145 unsigned long chains = status->chains;
146
147 mpdulen = skb->len;
148 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
149 mpdulen += FCS_LEN;
150
151 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
152 memset(rthdr, 0, rtap_len);
153 it_present = &rthdr->it_present;
154
155 /* radiotap header, set always present flags */
156 rthdr->it_len = cpu_to_le16(rtap_len);
157 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
158 BIT(IEEE80211_RADIOTAP_CHANNEL) |
159 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
160
161 if (!status->chains)
162 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
163
164 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
165 it_present_val |=
166 BIT(IEEE80211_RADIOTAP_EXT) |
167 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
168 put_unaligned_le32(it_present_val, it_present);
169 it_present++;
170 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
171 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
172 }
173
174 put_unaligned_le32(it_present_val, it_present);
175
176 pos = (void *)(it_present + 1);
177
178 /* the order of the following fields is important */
179
180 /* IEEE80211_RADIOTAP_TSFT */
181 if (ieee80211_have_rx_timestamp(status)) {
182 /* padding */
183 while ((pos - (u8 *)rthdr) & 7)
184 *pos++ = 0;
185 put_unaligned_le64(
186 ieee80211_calculate_rx_timestamp(local, status,
187 mpdulen, 0),
188 pos);
189 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190 pos += 8;
191 }
192
193 /* IEEE80211_RADIOTAP_FLAGS */
194 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
195 *pos |= IEEE80211_RADIOTAP_F_FCS;
196 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
197 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
198 if (status->flag & RX_FLAG_SHORTPRE)
199 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
200 pos++;
201
202 /* IEEE80211_RADIOTAP_RATE */
203 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
204 /*
205 * Without rate information don't add it. If we have,
206 * MCS information is a separate field in radiotap,
207 * added below. The byte here is needed as padding
208 * for the channel though, so initialise it to 0.
209 */
210 *pos = 0;
211 } else {
212 int shift = 0;
213 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
214 if (status->flag & RX_FLAG_10MHZ)
215 shift = 1;
216 else if (status->flag & RX_FLAG_5MHZ)
217 shift = 2;
218 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
219 }
220 pos++;
221
222 /* IEEE80211_RADIOTAP_CHANNEL */
223 put_unaligned_le16(status->freq, pos);
224 pos += 2;
225 if (status->flag & RX_FLAG_10MHZ)
226 channel_flags |= IEEE80211_CHAN_HALF;
227 else if (status->flag & RX_FLAG_5MHZ)
228 channel_flags |= IEEE80211_CHAN_QUARTER;
229
230 if (status->band == IEEE80211_BAND_5GHZ)
231 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
232 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
233 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
234 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
235 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
236 else if (rate)
237 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
238 else
239 channel_flags |= IEEE80211_CHAN_2GHZ;
240 put_unaligned_le16(channel_flags, pos);
241 pos += 2;
242
243 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
244 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
245 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
246 *pos = status->signal;
247 rthdr->it_present |=
248 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
249 pos++;
250 }
251
252 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
253
254 if (!status->chains) {
255 /* IEEE80211_RADIOTAP_ANTENNA */
256 *pos = status->antenna;
257 pos++;
258 }
259
260 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
261
262 /* IEEE80211_RADIOTAP_RX_FLAGS */
263 /* ensure 2 byte alignment for the 2 byte field as required */
264 if ((pos - (u8 *)rthdr) & 1)
265 *pos++ = 0;
266 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
267 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
268 put_unaligned_le16(rx_flags, pos);
269 pos += 2;
270
271 if (status->flag & RX_FLAG_HT) {
272 unsigned int stbc;
273
274 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
275 *pos++ = local->hw.radiotap_mcs_details;
276 *pos = 0;
277 if (status->flag & RX_FLAG_SHORT_GI)
278 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
279 if (status->flag & RX_FLAG_40MHZ)
280 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
281 if (status->flag & RX_FLAG_HT_GF)
282 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
283 if (status->flag & RX_FLAG_LDPC)
284 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
285 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
286 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
287 pos++;
288 *pos++ = status->rate_idx;
289 }
290
291 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
292 u16 flags = 0;
293
294 /* ensure 4 byte alignment */
295 while ((pos - (u8 *)rthdr) & 3)
296 pos++;
297 rthdr->it_present |=
298 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
299 put_unaligned_le32(status->ampdu_reference, pos);
300 pos += 4;
301 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
302 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
303 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
304 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
305 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
306 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
307 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
308 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
309 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
310 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
311 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
312 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
313 put_unaligned_le16(flags, pos);
314 pos += 2;
315 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
316 *pos++ = status->ampdu_delimiter_crc;
317 else
318 *pos++ = 0;
319 *pos++ = 0;
320 }
321
322 if (status->flag & RX_FLAG_VHT) {
323 u16 known = local->hw.radiotap_vht_details;
324
325 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
326 /* known field - how to handle 80+80? */
327 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
328 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
329 put_unaligned_le16(known, pos);
330 pos += 2;
331 /* flags */
332 if (status->flag & RX_FLAG_SHORT_GI)
333 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
334 /* in VHT, STBC is binary */
335 if (status->flag & RX_FLAG_STBC_MASK)
336 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
337 if (status->vht_flag & RX_VHT_FLAG_BF)
338 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
339 pos++;
340 /* bandwidth */
341 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
342 *pos++ = 4;
343 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
344 *pos++ = 0; /* marked not known above */
345 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
346 *pos++ = 11;
347 else if (status->flag & RX_FLAG_40MHZ)
348 *pos++ = 1;
349 else /* 20 MHz */
350 *pos++ = 0;
351 /* MCS/NSS */
352 *pos = (status->rate_idx << 4) | status->vht_nss;
353 pos += 4;
354 /* coding field */
355 if (status->flag & RX_FLAG_LDPC)
356 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
357 pos++;
358 /* group ID */
359 pos++;
360 /* partial_aid */
361 pos += 2;
362 }
363
364 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
365 *pos++ = status->chain_signal[chain];
366 *pos++ = chain;
367 }
368}
369
370/*
371 * This function copies a received frame to all monitor interfaces and
372 * returns a cleaned-up SKB that no longer includes the FCS nor the
373 * radiotap header the driver might have added.
374 */
375static struct sk_buff *
376ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
377 struct ieee80211_rate *rate)
378{
379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
380 struct ieee80211_sub_if_data *sdata;
381 int needed_headroom;
382 struct sk_buff *skb, *skb2;
383 struct net_device *prev_dev = NULL;
384 int present_fcs_len = 0;
385
386 /*
387 * First, we may need to make a copy of the skb because
388 * (1) we need to modify it for radiotap (if not present), and
389 * (2) the other RX handlers will modify the skb we got.
390 *
391 * We don't need to, of course, if we aren't going to return
392 * the SKB because it has a bad FCS/PLCP checksum.
393 */
394
395 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
396 present_fcs_len = FCS_LEN;
397
398 /* ensure hdr->frame_control is in skb head */
399 if (!pskb_may_pull(origskb, 2)) {
400 dev_kfree_skb(origskb);
401 return NULL;
402 }
403
404 if (!local->monitors) {
405 if (should_drop_frame(origskb, present_fcs_len)) {
406 dev_kfree_skb(origskb);
407 return NULL;
408 }
409
410 return remove_monitor_info(local, origskb);
411 }
412
413 /* room for the radiotap header based on driver features */
414 needed_headroom = ieee80211_rx_radiotap_space(local, status);
415
416 if (should_drop_frame(origskb, present_fcs_len)) {
417 /* only need to expand headroom if necessary */
418 skb = origskb;
419 origskb = NULL;
420
421 /*
422 * This shouldn't trigger often because most devices have an
423 * RX header they pull before we get here, and that should
424 * be big enough for our radiotap information. We should
425 * probably export the length to drivers so that we can have
426 * them allocate enough headroom to start with.
427 */
428 if (skb_headroom(skb) < needed_headroom &&
429 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
430 dev_kfree_skb(skb);
431 return NULL;
432 }
433 } else {
434 /*
435 * Need to make a copy and possibly remove radiotap header
436 * and FCS from the original.
437 */
438 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
439
440 origskb = remove_monitor_info(local, origskb);
441
442 if (!skb)
443 return origskb;
444 }
445
446 /* prepend radiotap information */
447 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
448 true);
449
450 skb_reset_mac_header(skb);
451 skb->ip_summed = CHECKSUM_UNNECESSARY;
452 skb->pkt_type = PACKET_OTHERHOST;
453 skb->protocol = htons(ETH_P_802_2);
454
455 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
456 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
457 continue;
458
459 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
460 continue;
461
462 if (!ieee80211_sdata_running(sdata))
463 continue;
464
465 if (prev_dev) {
466 skb2 = skb_clone(skb, GFP_ATOMIC);
467 if (skb2) {
468 skb2->dev = prev_dev;
469 netif_receive_skb(skb2);
470 }
471 }
472
473 prev_dev = sdata->dev;
474 sdata->dev->stats.rx_packets++;
475 sdata->dev->stats.rx_bytes += skb->len;
476 }
477
478 if (prev_dev) {
479 skb->dev = prev_dev;
480 netif_receive_skb(skb);
481 } else
482 dev_kfree_skb(skb);
483
484 return origskb;
485}
486
487static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
488{
489 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
490 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
491 int tid, seqno_idx, security_idx;
492
493 /* does the frame have a qos control field? */
494 if (ieee80211_is_data_qos(hdr->frame_control)) {
495 u8 *qc = ieee80211_get_qos_ctl(hdr);
496 /* frame has qos control */
497 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
498 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
499 status->rx_flags |= IEEE80211_RX_AMSDU;
500
501 seqno_idx = tid;
502 security_idx = tid;
503 } else {
504 /*
505 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
506 *
507 * Sequence numbers for management frames, QoS data
508 * frames with a broadcast/multicast address in the
509 * Address 1 field, and all non-QoS data frames sent
510 * by QoS STAs are assigned using an additional single
511 * modulo-4096 counter, [...]
512 *
513 * We also use that counter for non-QoS STAs.
514 */
515 seqno_idx = IEEE80211_NUM_TIDS;
516 security_idx = 0;
517 if (ieee80211_is_mgmt(hdr->frame_control))
518 security_idx = IEEE80211_NUM_TIDS;
519 tid = 0;
520 }
521
522 rx->seqno_idx = seqno_idx;
523 rx->security_idx = security_idx;
524 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
525 * For now, set skb->priority to 0 for other cases. */
526 rx->skb->priority = (tid > 7) ? 0 : tid;
527}
528
529/**
530 * DOC: Packet alignment
531 *
532 * Drivers always need to pass packets that are aligned to two-byte boundaries
533 * to the stack.
534 *
535 * Additionally, should, if possible, align the payload data in a way that
536 * guarantees that the contained IP header is aligned to a four-byte
537 * boundary. In the case of regular frames, this simply means aligning the
538 * payload to a four-byte boundary (because either the IP header is directly
539 * contained, or IV/RFC1042 headers that have a length divisible by four are
540 * in front of it). If the payload data is not properly aligned and the
541 * architecture doesn't support efficient unaligned operations, mac80211
542 * will align the data.
543 *
544 * With A-MSDU frames, however, the payload data address must yield two modulo
545 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
546 * push the IP header further back to a multiple of four again. Thankfully, the
547 * specs were sane enough this time around to require padding each A-MSDU
548 * subframe to a length that is a multiple of four.
549 *
550 * Padding like Atheros hardware adds which is between the 802.11 header and
551 * the payload is not supported, the driver is required to move the 802.11
552 * header to be directly in front of the payload in that case.
553 */
554static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
555{
556#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
557 WARN_ONCE((unsigned long)rx->skb->data & 1,
558 "unaligned packet at 0x%p\n", rx->skb->data);
559#endif
560}
561
562
563/* rx handlers */
564
565static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
566{
567 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
568
569 if (is_multicast_ether_addr(hdr->addr1))
570 return 0;
571
572 return ieee80211_is_robust_mgmt_frame(skb);
573}
574
575
576static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
577{
578 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
579
580 if (!is_multicast_ether_addr(hdr->addr1))
581 return 0;
582
583 return ieee80211_is_robust_mgmt_frame(skb);
584}
585
586
587/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
588static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
589{
590 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
591 struct ieee80211_mmie *mmie;
592
593 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
594 return -1;
595
596 if (!ieee80211_is_robust_mgmt_frame(skb))
597 return -1; /* not a robust management frame */
598
599 mmie = (struct ieee80211_mmie *)
600 (skb->data + skb->len - sizeof(*mmie));
601 if (mmie->element_id != WLAN_EID_MMIE ||
602 mmie->length != sizeof(*mmie) - 2)
603 return -1;
604
605 return le16_to_cpu(mmie->key_id);
606}
607
608static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
609 struct sk_buff *skb)
610{
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
612 __le16 fc;
613 int hdrlen;
614 u8 keyid;
615
616 fc = hdr->frame_control;
617 hdrlen = ieee80211_hdrlen(fc);
618
619 if (skb->len < hdrlen + cs->hdr_len)
620 return -EINVAL;
621
622 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
623 keyid &= cs->key_idx_mask;
624 keyid >>= cs->key_idx_shift;
625
626 return keyid;
627}
628
629static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
630{
631 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
632 char *dev_addr = rx->sdata->vif.addr;
633
634 if (ieee80211_is_data(hdr->frame_control)) {
635 if (is_multicast_ether_addr(hdr->addr1)) {
636 if (ieee80211_has_tods(hdr->frame_control) ||
637 !ieee80211_has_fromds(hdr->frame_control))
638 return RX_DROP_MONITOR;
639 if (ether_addr_equal(hdr->addr3, dev_addr))
640 return RX_DROP_MONITOR;
641 } else {
642 if (!ieee80211_has_a4(hdr->frame_control))
643 return RX_DROP_MONITOR;
644 if (ether_addr_equal(hdr->addr4, dev_addr))
645 return RX_DROP_MONITOR;
646 }
647 }
648
649 /* If there is not an established peer link and this is not a peer link
650 * establisment frame, beacon or probe, drop the frame.
651 */
652
653 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
654 struct ieee80211_mgmt *mgmt;
655
656 if (!ieee80211_is_mgmt(hdr->frame_control))
657 return RX_DROP_MONITOR;
658
659 if (ieee80211_is_action(hdr->frame_control)) {
660 u8 category;
661
662 /* make sure category field is present */
663 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
664 return RX_DROP_MONITOR;
665
666 mgmt = (struct ieee80211_mgmt *)hdr;
667 category = mgmt->u.action.category;
668 if (category != WLAN_CATEGORY_MESH_ACTION &&
669 category != WLAN_CATEGORY_SELF_PROTECTED)
670 return RX_DROP_MONITOR;
671 return RX_CONTINUE;
672 }
673
674 if (ieee80211_is_probe_req(hdr->frame_control) ||
675 ieee80211_is_probe_resp(hdr->frame_control) ||
676 ieee80211_is_beacon(hdr->frame_control) ||
677 ieee80211_is_auth(hdr->frame_control))
678 return RX_CONTINUE;
679
680 return RX_DROP_MONITOR;
681 }
682
683 return RX_CONTINUE;
684}
685
686static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
687 struct tid_ampdu_rx *tid_agg_rx,
688 int index,
689 struct sk_buff_head *frames)
690{
691 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
692 struct sk_buff *skb;
693 struct ieee80211_rx_status *status;
694
695 lockdep_assert_held(&tid_agg_rx->reorder_lock);
696
697 if (skb_queue_empty(skb_list))
698 goto no_frame;
699
700 if (!ieee80211_rx_reorder_ready(skb_list)) {
701 __skb_queue_purge(skb_list);
702 goto no_frame;
703 }
704
705 /* release frames from the reorder ring buffer */
706 tid_agg_rx->stored_mpdu_num--;
707 while ((skb = __skb_dequeue(skb_list))) {
708 status = IEEE80211_SKB_RXCB(skb);
709 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
710 __skb_queue_tail(frames, skb);
711 }
712
713no_frame:
714 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
715}
716
717static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
718 struct tid_ampdu_rx *tid_agg_rx,
719 u16 head_seq_num,
720 struct sk_buff_head *frames)
721{
722 int index;
723
724 lockdep_assert_held(&tid_agg_rx->reorder_lock);
725
726 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
727 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
728 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
729 frames);
730 }
731}
732
733/*
734 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
735 * the skb was added to the buffer longer than this time ago, the earlier
736 * frames that have not yet been received are assumed to be lost and the skb
737 * can be released for processing. This may also release other skb's from the
738 * reorder buffer if there are no additional gaps between the frames.
739 *
740 * Callers must hold tid_agg_rx->reorder_lock.
741 */
742#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
743
744static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
745 struct tid_ampdu_rx *tid_agg_rx,
746 struct sk_buff_head *frames)
747{
748 int index, i, j;
749
750 lockdep_assert_held(&tid_agg_rx->reorder_lock);
751
752 /* release the buffer until next missing frame */
753 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
754 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
755 tid_agg_rx->stored_mpdu_num) {
756 /*
757 * No buffers ready to be released, but check whether any
758 * frames in the reorder buffer have timed out.
759 */
760 int skipped = 1;
761 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
762 j = (j + 1) % tid_agg_rx->buf_size) {
763 if (!ieee80211_rx_reorder_ready(
764 &tid_agg_rx->reorder_buf[j])) {
765 skipped++;
766 continue;
767 }
768 if (skipped &&
769 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
770 HT_RX_REORDER_BUF_TIMEOUT))
771 goto set_release_timer;
772
773 /* don't leave incomplete A-MSDUs around */
774 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
775 i = (i + 1) % tid_agg_rx->buf_size)
776 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
777
778 ht_dbg_ratelimited(sdata,
779 "release an RX reorder frame due to timeout on earlier frames\n");
780 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
781 frames);
782
783 /*
784 * Increment the head seq# also for the skipped slots.
785 */
786 tid_agg_rx->head_seq_num =
787 (tid_agg_rx->head_seq_num +
788 skipped) & IEEE80211_SN_MASK;
789 skipped = 0;
790 }
791 } else while (ieee80211_rx_reorder_ready(
792 &tid_agg_rx->reorder_buf[index])) {
793 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
794 frames);
795 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
796 }
797
798 if (tid_agg_rx->stored_mpdu_num) {
799 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
800
801 for (; j != (index - 1) % tid_agg_rx->buf_size;
802 j = (j + 1) % tid_agg_rx->buf_size) {
803 if (ieee80211_rx_reorder_ready(
804 &tid_agg_rx->reorder_buf[j]))
805 break;
806 }
807
808 set_release_timer:
809
810 mod_timer(&tid_agg_rx->reorder_timer,
811 tid_agg_rx->reorder_time[j] + 1 +
812 HT_RX_REORDER_BUF_TIMEOUT);
813 } else {
814 del_timer(&tid_agg_rx->reorder_timer);
815 }
816}
817
818/*
819 * As this function belongs to the RX path it must be under
820 * rcu_read_lock protection. It returns false if the frame
821 * can be processed immediately, true if it was consumed.
822 */
823static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
824 struct tid_ampdu_rx *tid_agg_rx,
825 struct sk_buff *skb,
826 struct sk_buff_head *frames)
827{
828 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
829 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
830 u16 sc = le16_to_cpu(hdr->seq_ctrl);
831 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
832 u16 head_seq_num, buf_size;
833 int index;
834 bool ret = true;
835
836 spin_lock(&tid_agg_rx->reorder_lock);
837
838 buf_size = tid_agg_rx->buf_size;
839 head_seq_num = tid_agg_rx->head_seq_num;
840
841 /* frame with out of date sequence number */
842 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
843 dev_kfree_skb(skb);
844 goto out;
845 }
846
847 /*
848 * If frame the sequence number exceeds our buffering window
849 * size release some previous frames to make room for this one.
850 */
851 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
852 head_seq_num = ieee80211_sn_inc(
853 ieee80211_sn_sub(mpdu_seq_num, buf_size));
854 /* release stored frames up to new head to stack */
855 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
856 head_seq_num, frames);
857 }
858
859 /* Now the new frame is always in the range of the reordering buffer */
860
861 index = mpdu_seq_num % tid_agg_rx->buf_size;
862
863 /* check if we already stored this frame */
864 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
865 dev_kfree_skb(skb);
866 goto out;
867 }
868
869 /*
870 * If the current MPDU is in the right order and nothing else
871 * is stored we can process it directly, no need to buffer it.
872 * If it is first but there's something stored, we may be able
873 * to release frames after this one.
874 */
875 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
876 tid_agg_rx->stored_mpdu_num == 0) {
877 if (!(status->flag & RX_FLAG_AMSDU_MORE))
878 tid_agg_rx->head_seq_num =
879 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
880 ret = false;
881 goto out;
882 }
883
884 /* put the frame in the reordering buffer */
885 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
886 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
887 tid_agg_rx->reorder_time[index] = jiffies;
888 tid_agg_rx->stored_mpdu_num++;
889 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
890 }
891
892 out:
893 spin_unlock(&tid_agg_rx->reorder_lock);
894 return ret;
895}
896
897/*
898 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
899 * true if the MPDU was buffered, false if it should be processed.
900 */
901static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
902 struct sk_buff_head *frames)
903{
904 struct sk_buff *skb = rx->skb;
905 struct ieee80211_local *local = rx->local;
906 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
907 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
908 struct sta_info *sta = rx->sta;
909 struct tid_ampdu_rx *tid_agg_rx;
910 u16 sc;
911 u8 tid, ack_policy;
912
913 if (!ieee80211_is_data_qos(hdr->frame_control) ||
914 is_multicast_ether_addr(hdr->addr1))
915 goto dont_reorder;
916
917 /*
918 * filter the QoS data rx stream according to
919 * STA/TID and check if this STA/TID is on aggregation
920 */
921
922 if (!sta)
923 goto dont_reorder;
924
925 ack_policy = *ieee80211_get_qos_ctl(hdr) &
926 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
927 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
928
929 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
930 if (!tid_agg_rx)
931 goto dont_reorder;
932
933 /* qos null data frames are excluded */
934 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
935 goto dont_reorder;
936
937 /* not part of a BA session */
938 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
939 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
940 goto dont_reorder;
941
942 /* not actually part of this BA session */
943 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
944 goto dont_reorder;
945
946 /* new, potentially un-ordered, ampdu frame - process it */
947
948 /* reset session timer */
949 if (tid_agg_rx->timeout)
950 tid_agg_rx->last_rx = jiffies;
951
952 /* if this mpdu is fragmented - terminate rx aggregation session */
953 sc = le16_to_cpu(hdr->seq_ctrl);
954 if (sc & IEEE80211_SCTL_FRAG) {
955 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
956 skb_queue_tail(&rx->sdata->skb_queue, skb);
957 ieee80211_queue_work(&local->hw, &rx->sdata->work);
958 return;
959 }
960
961 /*
962 * No locking needed -- we will only ever process one
963 * RX packet at a time, and thus own tid_agg_rx. All
964 * other code manipulating it needs to (and does) make
965 * sure that we cannot get to it any more before doing
966 * anything with it.
967 */
968 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
969 frames))
970 return;
971
972 dont_reorder:
973 __skb_queue_tail(frames, skb);
974}
975
976static ieee80211_rx_result debug_noinline
977ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
978{
979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
981
982 /*
983 * Drop duplicate 802.11 retransmissions
984 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
985 */
986 if (rx->skb->len >= 24 && rx->sta &&
987 !ieee80211_is_ctl(hdr->frame_control) &&
988 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
989 !is_multicast_ether_addr(hdr->addr1)) {
990 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
991 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
992 hdr->seq_ctrl)) {
993 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
994 rx->local->dot11FrameDuplicateCount++;
995 rx->sta->num_duplicates++;
996 }
997 return RX_DROP_UNUSABLE;
998 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
999 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1000 }
1001 }
1002
1003 if (unlikely(rx->skb->len < 16)) {
1004 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1005 return RX_DROP_MONITOR;
1006 }
1007
1008 /* Drop disallowed frame classes based on STA auth/assoc state;
1009 * IEEE 802.11, Chap 5.5.
1010 *
1011 * mac80211 filters only based on association state, i.e. it drops
1012 * Class 3 frames from not associated stations. hostapd sends
1013 * deauth/disassoc frames when needed. In addition, hostapd is
1014 * responsible for filtering on both auth and assoc states.
1015 */
1016
1017 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1018 return ieee80211_rx_mesh_check(rx);
1019
1020 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1021 ieee80211_is_pspoll(hdr->frame_control)) &&
1022 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1023 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1024 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1025 /*
1026 * accept port control frames from the AP even when it's not
1027 * yet marked ASSOC to prevent a race where we don't set the
1028 * assoc bit quickly enough before it sends the first frame
1029 */
1030 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1031 ieee80211_is_data_present(hdr->frame_control)) {
1032 unsigned int hdrlen;
1033 __be16 ethertype;
1034
1035 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1036
1037 if (rx->skb->len < hdrlen + 8)
1038 return RX_DROP_MONITOR;
1039
1040 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1041 if (ethertype == rx->sdata->control_port_protocol)
1042 return RX_CONTINUE;
1043 }
1044
1045 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1046 cfg80211_rx_spurious_frame(rx->sdata->dev,
1047 hdr->addr2,
1048 GFP_ATOMIC))
1049 return RX_DROP_UNUSABLE;
1050
1051 return RX_DROP_MONITOR;
1052 }
1053
1054 return RX_CONTINUE;
1055}
1056
1057
1058static ieee80211_rx_result debug_noinline
1059ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1060{
1061 struct ieee80211_local *local;
1062 struct ieee80211_hdr *hdr;
1063 struct sk_buff *skb;
1064
1065 local = rx->local;
1066 skb = rx->skb;
1067 hdr = (struct ieee80211_hdr *) skb->data;
1068
1069 if (!local->pspolling)
1070 return RX_CONTINUE;
1071
1072 if (!ieee80211_has_fromds(hdr->frame_control))
1073 /* this is not from AP */
1074 return RX_CONTINUE;
1075
1076 if (!ieee80211_is_data(hdr->frame_control))
1077 return RX_CONTINUE;
1078
1079 if (!ieee80211_has_moredata(hdr->frame_control)) {
1080 /* AP has no more frames buffered for us */
1081 local->pspolling = false;
1082 return RX_CONTINUE;
1083 }
1084
1085 /* more data bit is set, let's request a new frame from the AP */
1086 ieee80211_send_pspoll(local, rx->sdata);
1087
1088 return RX_CONTINUE;
1089}
1090
1091static void sta_ps_start(struct sta_info *sta)
1092{
1093 struct ieee80211_sub_if_data *sdata = sta->sdata;
1094 struct ieee80211_local *local = sdata->local;
1095 struct ps_data *ps;
1096
1097 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1098 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1099 ps = &sdata->bss->ps;
1100 else
1101 return;
1102
1103 atomic_inc(&ps->num_sta_ps);
1104 set_sta_flag(sta, WLAN_STA_PS_STA);
1105 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1106 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1107 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1108 sta->sta.addr, sta->sta.aid);
1109}
1110
1111static void sta_ps_end(struct sta_info *sta)
1112{
1113 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1114 sta->sta.addr, sta->sta.aid);
1115
1116 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1117 /*
1118 * Clear the flag only if the other one is still set
1119 * so that the TX path won't start TX'ing new frames
1120 * directly ... In the case that the driver flag isn't
1121 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1122 */
1123 clear_sta_flag(sta, WLAN_STA_PS_STA);
1124 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1125 sta->sta.addr, sta->sta.aid);
1126 return;
1127 }
1128
1129 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1130 clear_sta_flag(sta, WLAN_STA_PS_STA);
1131 ieee80211_sta_ps_deliver_wakeup(sta);
1132}
1133
1134int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1135{
1136 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1137 bool in_ps;
1138
1139 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1140
1141 /* Don't let the same PS state be set twice */
1142 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1143 if ((start && in_ps) || (!start && !in_ps))
1144 return -EINVAL;
1145
1146 if (start)
1147 sta_ps_start(sta_inf);
1148 else
1149 sta_ps_end(sta_inf);
1150
1151 return 0;
1152}
1153EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1154
1155static ieee80211_rx_result debug_noinline
1156ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1157{
1158 struct ieee80211_sub_if_data *sdata = rx->sdata;
1159 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1161 int tid, ac;
1162
1163 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1164 return RX_CONTINUE;
1165
1166 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1167 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1168 return RX_CONTINUE;
1169
1170 /*
1171 * The device handles station powersave, so don't do anything about
1172 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1173 * it to mac80211 since they're handled.)
1174 */
1175 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1176 return RX_CONTINUE;
1177
1178 /*
1179 * Don't do anything if the station isn't already asleep. In
1180 * the uAPSD case, the station will probably be marked asleep,
1181 * in the PS-Poll case the station must be confused ...
1182 */
1183 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1184 return RX_CONTINUE;
1185
1186 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1187 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1188 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1189 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1190 else
1191 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1192 }
1193
1194 /* Free PS Poll skb here instead of returning RX_DROP that would
1195 * count as an dropped frame. */
1196 dev_kfree_skb(rx->skb);
1197
1198 return RX_QUEUED;
1199 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1200 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1201 ieee80211_has_pm(hdr->frame_control) &&
1202 (ieee80211_is_data_qos(hdr->frame_control) ||
1203 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1204 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1205 ac = ieee802_1d_to_ac[tid & 7];
1206
1207 /*
1208 * If this AC is not trigger-enabled do nothing.
1209 *
1210 * NB: This could/should check a separate bitmap of trigger-
1211 * enabled queues, but for now we only implement uAPSD w/o
1212 * TSPEC changes to the ACs, so they're always the same.
1213 */
1214 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1215 return RX_CONTINUE;
1216
1217 /* if we are in a service period, do nothing */
1218 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1219 return RX_CONTINUE;
1220
1221 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1222 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1223 else
1224 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1225 }
1226
1227 return RX_CONTINUE;
1228}
1229
1230static ieee80211_rx_result debug_noinline
1231ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1232{
1233 struct sta_info *sta = rx->sta;
1234 struct sk_buff *skb = rx->skb;
1235 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1236 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1237 int i;
1238
1239 if (!sta)
1240 return RX_CONTINUE;
1241
1242 /*
1243 * Update last_rx only for IBSS packets which are for the current
1244 * BSSID and for station already AUTHORIZED to avoid keeping the
1245 * current IBSS network alive in cases where other STAs start
1246 * using different BSSID. This will also give the station another
1247 * chance to restart the authentication/authorization in case
1248 * something went wrong the first time.
1249 */
1250 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1251 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1252 NL80211_IFTYPE_ADHOC);
1253 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1254 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1255 sta->last_rx = jiffies;
1256 if (ieee80211_is_data(hdr->frame_control) &&
1257 !is_multicast_ether_addr(hdr->addr1)) {
1258 sta->last_rx_rate_idx = status->rate_idx;
1259 sta->last_rx_rate_flag = status->flag;
1260 sta->last_rx_rate_vht_flag = status->vht_flag;
1261 sta->last_rx_rate_vht_nss = status->vht_nss;
1262 }
1263 }
1264 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1265 /*
1266 * Mesh beacons will update last_rx when if they are found to
1267 * match the current local configuration when processed.
1268 */
1269 sta->last_rx = jiffies;
1270 if (ieee80211_is_data(hdr->frame_control)) {
1271 sta->last_rx_rate_idx = status->rate_idx;
1272 sta->last_rx_rate_flag = status->flag;
1273 sta->last_rx_rate_vht_flag = status->vht_flag;
1274 sta->last_rx_rate_vht_nss = status->vht_nss;
1275 }
1276 }
1277
1278 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1279 return RX_CONTINUE;
1280
1281 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1282 ieee80211_sta_rx_notify(rx->sdata, hdr);
1283
1284 sta->rx_fragments++;
1285 sta->rx_bytes += rx->skb->len;
1286 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1287 sta->last_signal = status->signal;
1288 ewma_add(&sta->avg_signal, -status->signal);
1289 }
1290
1291 if (status->chains) {
1292 sta->chains = status->chains;
1293 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1294 int signal = status->chain_signal[i];
1295
1296 if (!(status->chains & BIT(i)))
1297 continue;
1298
1299 sta->chain_signal_last[i] = signal;
1300 ewma_add(&sta->chain_signal_avg[i], -signal);
1301 }
1302 }
1303
1304 /*
1305 * Change STA power saving mode only at the end of a frame
1306 * exchange sequence.
1307 */
1308 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1309 !ieee80211_has_morefrags(hdr->frame_control) &&
1310 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1311 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1312 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1313 /* PM bit is only checked in frames where it isn't reserved,
1314 * in AP mode it's reserved in non-bufferable management frames
1315 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1316 */
1317 (!ieee80211_is_mgmt(hdr->frame_control) ||
1318 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1319 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1320 if (!ieee80211_has_pm(hdr->frame_control))
1321 sta_ps_end(sta);
1322 } else {
1323 if (ieee80211_has_pm(hdr->frame_control))
1324 sta_ps_start(sta);
1325 }
1326 }
1327
1328 /* mesh power save support */
1329 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1330 ieee80211_mps_rx_h_sta_process(sta, hdr);
1331
1332 /*
1333 * Drop (qos-)data::nullfunc frames silently, since they
1334 * are used only to control station power saving mode.
1335 */
1336 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1337 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1338 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1339
1340 /*
1341 * If we receive a 4-addr nullfunc frame from a STA
1342 * that was not moved to a 4-addr STA vlan yet send
1343 * the event to userspace and for older hostapd drop
1344 * the frame to the monitor interface.
1345 */
1346 if (ieee80211_has_a4(hdr->frame_control) &&
1347 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1348 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1349 !rx->sdata->u.vlan.sta))) {
1350 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1351 cfg80211_rx_unexpected_4addr_frame(
1352 rx->sdata->dev, sta->sta.addr,
1353 GFP_ATOMIC);
1354 return RX_DROP_MONITOR;
1355 }
1356 /*
1357 * Update counter and free packet here to avoid
1358 * counting this as a dropped packed.
1359 */
1360 sta->rx_packets++;
1361 dev_kfree_skb(rx->skb);
1362 return RX_QUEUED;
1363 }
1364
1365 return RX_CONTINUE;
1366} /* ieee80211_rx_h_sta_process */
1367
1368static ieee80211_rx_result debug_noinline
1369ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1370{
1371 struct sk_buff *skb = rx->skb;
1372 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1373 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1374 int keyidx;
1375 int hdrlen;
1376 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1377 struct ieee80211_key *sta_ptk = NULL;
1378 int mmie_keyidx = -1;
1379 __le16 fc;
1380 const struct ieee80211_cipher_scheme *cs = NULL;
1381
1382 /*
1383 * Key selection 101
1384 *
1385 * There are four types of keys:
1386 * - GTK (group keys)
1387 * - IGTK (group keys for management frames)
1388 * - PTK (pairwise keys)
1389 * - STK (station-to-station pairwise keys)
1390 *
1391 * When selecting a key, we have to distinguish between multicast
1392 * (including broadcast) and unicast frames, the latter can only
1393 * use PTKs and STKs while the former always use GTKs and IGTKs.
1394 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1395 * unicast frames can also use key indices like GTKs. Hence, if we
1396 * don't have a PTK/STK we check the key index for a WEP key.
1397 *
1398 * Note that in a regular BSS, multicast frames are sent by the
1399 * AP only, associated stations unicast the frame to the AP first
1400 * which then multicasts it on their behalf.
1401 *
1402 * There is also a slight problem in IBSS mode: GTKs are negotiated
1403 * with each station, that is something we don't currently handle.
1404 * The spec seems to expect that one negotiates the same key with
1405 * every station but there's no such requirement; VLANs could be
1406 * possible.
1407 */
1408
1409 /*
1410 * No point in finding a key and decrypting if the frame is neither
1411 * addressed to us nor a multicast frame.
1412 */
1413 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1414 return RX_CONTINUE;
1415
1416 /* start without a key */
1417 rx->key = NULL;
1418 fc = hdr->frame_control;
1419
1420 if (rx->sta) {
1421 int keyid = rx->sta->ptk_idx;
1422
1423 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1424 cs = rx->sta->cipher_scheme;
1425 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1426 if (unlikely(keyid < 0))
1427 return RX_DROP_UNUSABLE;
1428 }
1429 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1430 }
1431
1432 if (!ieee80211_has_protected(fc))
1433 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1434
1435 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1436 rx->key = sta_ptk;
1437 if ((status->flag & RX_FLAG_DECRYPTED) &&
1438 (status->flag & RX_FLAG_IV_STRIPPED))
1439 return RX_CONTINUE;
1440 /* Skip decryption if the frame is not protected. */
1441 if (!ieee80211_has_protected(fc))
1442 return RX_CONTINUE;
1443 } else if (mmie_keyidx >= 0) {
1444 /* Broadcast/multicast robust management frame / BIP */
1445 if ((status->flag & RX_FLAG_DECRYPTED) &&
1446 (status->flag & RX_FLAG_IV_STRIPPED))
1447 return RX_CONTINUE;
1448
1449 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1450 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1451 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1452 if (rx->sta)
1453 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1454 if (!rx->key)
1455 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1456 } else if (!ieee80211_has_protected(fc)) {
1457 /*
1458 * The frame was not protected, so skip decryption. However, we
1459 * need to set rx->key if there is a key that could have been
1460 * used so that the frame may be dropped if encryption would
1461 * have been expected.
1462 */
1463 struct ieee80211_key *key = NULL;
1464 struct ieee80211_sub_if_data *sdata = rx->sdata;
1465 int i;
1466
1467 if (ieee80211_is_mgmt(fc) &&
1468 is_multicast_ether_addr(hdr->addr1) &&
1469 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1470 rx->key = key;
1471 else {
1472 if (rx->sta) {
1473 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1474 key = rcu_dereference(rx->sta->gtk[i]);
1475 if (key)
1476 break;
1477 }
1478 }
1479 if (!key) {
1480 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1481 key = rcu_dereference(sdata->keys[i]);
1482 if (key)
1483 break;
1484 }
1485 }
1486 if (key)
1487 rx->key = key;
1488 }
1489 return RX_CONTINUE;
1490 } else {
1491 u8 keyid;
1492
1493 /*
1494 * The device doesn't give us the IV so we won't be
1495 * able to look up the key. That's ok though, we
1496 * don't need to decrypt the frame, we just won't
1497 * be able to keep statistics accurate.
1498 * Except for key threshold notifications, should
1499 * we somehow allow the driver to tell us which key
1500 * the hardware used if this flag is set?
1501 */
1502 if ((status->flag & RX_FLAG_DECRYPTED) &&
1503 (status->flag & RX_FLAG_IV_STRIPPED))
1504 return RX_CONTINUE;
1505
1506 hdrlen = ieee80211_hdrlen(fc);
1507
1508 if (cs) {
1509 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1510
1511 if (unlikely(keyidx < 0))
1512 return RX_DROP_UNUSABLE;
1513 } else {
1514 if (rx->skb->len < 8 + hdrlen)
1515 return RX_DROP_UNUSABLE; /* TODO: count this? */
1516 /*
1517 * no need to call ieee80211_wep_get_keyidx,
1518 * it verifies a bunch of things we've done already
1519 */
1520 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1521 keyidx = keyid >> 6;
1522 }
1523
1524 /* check per-station GTK first, if multicast packet */
1525 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1526 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1527
1528 /* if not found, try default key */
1529 if (!rx->key) {
1530 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1531
1532 /*
1533 * RSNA-protected unicast frames should always be
1534 * sent with pairwise or station-to-station keys,
1535 * but for WEP we allow using a key index as well.
1536 */
1537 if (rx->key &&
1538 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1539 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1540 !is_multicast_ether_addr(hdr->addr1))
1541 rx->key = NULL;
1542 }
1543 }
1544
1545 if (rx->key) {
1546 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1547 return RX_DROP_MONITOR;
1548
1549 rx->key->tx_rx_count++;
1550 /* TODO: add threshold stuff again */
1551 } else {
1552 return RX_DROP_MONITOR;
1553 }
1554
1555 switch (rx->key->conf.cipher) {
1556 case WLAN_CIPHER_SUITE_WEP40:
1557 case WLAN_CIPHER_SUITE_WEP104:
1558 result = ieee80211_crypto_wep_decrypt(rx);
1559 break;
1560 case WLAN_CIPHER_SUITE_TKIP:
1561 result = ieee80211_crypto_tkip_decrypt(rx);
1562 break;
1563 case WLAN_CIPHER_SUITE_CCMP:
1564 result = ieee80211_crypto_ccmp_decrypt(rx);
1565 break;
1566 case WLAN_CIPHER_SUITE_AES_CMAC:
1567 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1568 break;
1569 default:
1570 result = ieee80211_crypto_hw_decrypt(rx);
1571 }
1572
1573 /* the hdr variable is invalid after the decrypt handlers */
1574
1575 /* either the frame has been decrypted or will be dropped */
1576 status->flag |= RX_FLAG_DECRYPTED;
1577
1578 return result;
1579}
1580
1581static inline struct ieee80211_fragment_entry *
1582ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1583 unsigned int frag, unsigned int seq, int rx_queue,
1584 struct sk_buff **skb)
1585{
1586 struct ieee80211_fragment_entry *entry;
1587
1588 entry = &sdata->fragments[sdata->fragment_next++];
1589 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1590 sdata->fragment_next = 0;
1591
1592 if (!skb_queue_empty(&entry->skb_list))
1593 __skb_queue_purge(&entry->skb_list);
1594
1595 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1596 *skb = NULL;
1597 entry->first_frag_time = jiffies;
1598 entry->seq = seq;
1599 entry->rx_queue = rx_queue;
1600 entry->last_frag = frag;
1601 entry->ccmp = 0;
1602 entry->extra_len = 0;
1603
1604 return entry;
1605}
1606
1607static inline struct ieee80211_fragment_entry *
1608ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1609 unsigned int frag, unsigned int seq,
1610 int rx_queue, struct ieee80211_hdr *hdr)
1611{
1612 struct ieee80211_fragment_entry *entry;
1613 int i, idx;
1614
1615 idx = sdata->fragment_next;
1616 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1617 struct ieee80211_hdr *f_hdr;
1618
1619 idx--;
1620 if (idx < 0)
1621 idx = IEEE80211_FRAGMENT_MAX - 1;
1622
1623 entry = &sdata->fragments[idx];
1624 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1625 entry->rx_queue != rx_queue ||
1626 entry->last_frag + 1 != frag)
1627 continue;
1628
1629 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1630
1631 /*
1632 * Check ftype and addresses are equal, else check next fragment
1633 */
1634 if (((hdr->frame_control ^ f_hdr->frame_control) &
1635 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1636 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1637 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1638 continue;
1639
1640 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1641 __skb_queue_purge(&entry->skb_list);
1642 continue;
1643 }
1644 return entry;
1645 }
1646
1647 return NULL;
1648}
1649
1650static ieee80211_rx_result debug_noinline
1651ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1652{
1653 struct ieee80211_hdr *hdr;
1654 u16 sc;
1655 __le16 fc;
1656 unsigned int frag, seq;
1657 struct ieee80211_fragment_entry *entry;
1658 struct sk_buff *skb;
1659 struct ieee80211_rx_status *status;
1660
1661 hdr = (struct ieee80211_hdr *)rx->skb->data;
1662 fc = hdr->frame_control;
1663
1664 if (ieee80211_is_ctl(fc))
1665 return RX_CONTINUE;
1666
1667 sc = le16_to_cpu(hdr->seq_ctrl);
1668 frag = sc & IEEE80211_SCTL_FRAG;
1669
1670 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1671 is_multicast_ether_addr(hdr->addr1))) {
1672 /* not fragmented */
1673 goto out;
1674 }
1675 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1676
1677 if (skb_linearize(rx->skb))
1678 return RX_DROP_UNUSABLE;
1679
1680 /*
1681 * skb_linearize() might change the skb->data and
1682 * previously cached variables (in this case, hdr) need to
1683 * be refreshed with the new data.
1684 */
1685 hdr = (struct ieee80211_hdr *)rx->skb->data;
1686 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1687
1688 if (frag == 0) {
1689 /* This is the first fragment of a new frame. */
1690 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1691 rx->seqno_idx, &(rx->skb));
1692 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1693 ieee80211_has_protected(fc)) {
1694 int queue = rx->security_idx;
1695 /* Store CCMP PN so that we can verify that the next
1696 * fragment has a sequential PN value. */
1697 entry->ccmp = 1;
1698 memcpy(entry->last_pn,
1699 rx->key->u.ccmp.rx_pn[queue],
1700 IEEE80211_CCMP_PN_LEN);
1701 }
1702 return RX_QUEUED;
1703 }
1704
1705 /* This is a fragment for a frame that should already be pending in
1706 * fragment cache. Add this fragment to the end of the pending entry.
1707 */
1708 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1709 rx->seqno_idx, hdr);
1710 if (!entry) {
1711 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1712 return RX_DROP_MONITOR;
1713 }
1714
1715 /* Verify that MPDUs within one MSDU have sequential PN values.
1716 * (IEEE 802.11i, 8.3.3.4.5) */
1717 if (entry->ccmp) {
1718 int i;
1719 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1720 int queue;
1721 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1722 return RX_DROP_UNUSABLE;
1723 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1724 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1725 pn[i]++;
1726 if (pn[i])
1727 break;
1728 }
1729 queue = rx->security_idx;
1730 rpn = rx->key->u.ccmp.rx_pn[queue];
1731 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1732 return RX_DROP_UNUSABLE;
1733 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1734 }
1735
1736 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1737 __skb_queue_tail(&entry->skb_list, rx->skb);
1738 entry->last_frag = frag;
1739 entry->extra_len += rx->skb->len;
1740 if (ieee80211_has_morefrags(fc)) {
1741 rx->skb = NULL;
1742 return RX_QUEUED;
1743 }
1744
1745 rx->skb = __skb_dequeue(&entry->skb_list);
1746 if (skb_tailroom(rx->skb) < entry->extra_len) {
1747 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1748 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1749 GFP_ATOMIC))) {
1750 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1751 __skb_queue_purge(&entry->skb_list);
1752 return RX_DROP_UNUSABLE;
1753 }
1754 }
1755 while ((skb = __skb_dequeue(&entry->skb_list))) {
1756 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1757 dev_kfree_skb(skb);
1758 }
1759
1760 /* Complete frame has been reassembled - process it now */
1761 status = IEEE80211_SKB_RXCB(rx->skb);
1762 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1763
1764 out:
1765 if (rx->sta)
1766 rx->sta->rx_packets++;
1767 if (is_multicast_ether_addr(hdr->addr1))
1768 rx->local->dot11MulticastReceivedFrameCount++;
1769 else
1770 ieee80211_led_rx(rx->local);
1771 return RX_CONTINUE;
1772}
1773
1774static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1775{
1776 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1777 return -EACCES;
1778
1779 return 0;
1780}
1781
1782static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1783{
1784 struct sk_buff *skb = rx->skb;
1785 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1786
1787 /*
1788 * Pass through unencrypted frames if the hardware has
1789 * decrypted them already.
1790 */
1791 if (status->flag & RX_FLAG_DECRYPTED)
1792 return 0;
1793
1794 /* Drop unencrypted frames if key is set. */
1795 if (unlikely(!ieee80211_has_protected(fc) &&
1796 !ieee80211_is_nullfunc(fc) &&
1797 ieee80211_is_data(fc) &&
1798 (rx->key || rx->sdata->drop_unencrypted)))
1799 return -EACCES;
1800
1801 return 0;
1802}
1803
1804static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1805{
1806 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1807 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1808 __le16 fc = hdr->frame_control;
1809
1810 /*
1811 * Pass through unencrypted frames if the hardware has
1812 * decrypted them already.
1813 */
1814 if (status->flag & RX_FLAG_DECRYPTED)
1815 return 0;
1816
1817 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1818 if (unlikely(!ieee80211_has_protected(fc) &&
1819 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1820 rx->key)) {
1821 if (ieee80211_is_deauth(fc) ||
1822 ieee80211_is_disassoc(fc))
1823 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1824 rx->skb->data,
1825 rx->skb->len);
1826 return -EACCES;
1827 }
1828 /* BIP does not use Protected field, so need to check MMIE */
1829 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1830 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1831 if (ieee80211_is_deauth(fc) ||
1832 ieee80211_is_disassoc(fc))
1833 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1834 rx->skb->data,
1835 rx->skb->len);
1836 return -EACCES;
1837 }
1838 /*
1839 * When using MFP, Action frames are not allowed prior to
1840 * having configured keys.
1841 */
1842 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1843 ieee80211_is_robust_mgmt_frame(rx->skb)))
1844 return -EACCES;
1845 }
1846
1847 return 0;
1848}
1849
1850static int
1851__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1852{
1853 struct ieee80211_sub_if_data *sdata = rx->sdata;
1854 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1855 bool check_port_control = false;
1856 struct ethhdr *ehdr;
1857 int ret;
1858
1859 *port_control = false;
1860 if (ieee80211_has_a4(hdr->frame_control) &&
1861 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1862 return -1;
1863
1864 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1865 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1866
1867 if (!sdata->u.mgd.use_4addr)
1868 return -1;
1869 else
1870 check_port_control = true;
1871 }
1872
1873 if (is_multicast_ether_addr(hdr->addr1) &&
1874 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1875 return -1;
1876
1877 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1878 if (ret < 0)
1879 return ret;
1880
1881 ehdr = (struct ethhdr *) rx->skb->data;
1882 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1883 *port_control = true;
1884 else if (check_port_control)
1885 return -1;
1886
1887 return 0;
1888}
1889
1890/*
1891 * requires that rx->skb is a frame with ethernet header
1892 */
1893static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1894{
1895 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1896 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1897 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1898
1899 /*
1900 * Allow EAPOL frames to us/the PAE group address regardless
1901 * of whether the frame was encrypted or not.
1902 */
1903 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1904 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1905 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1906 return true;
1907
1908 if (ieee80211_802_1x_port_control(rx) ||
1909 ieee80211_drop_unencrypted(rx, fc))
1910 return false;
1911
1912 return true;
1913}
1914
1915/*
1916 * requires that rx->skb is a frame with ethernet header
1917 */
1918static void
1919ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1920{
1921 struct ieee80211_sub_if_data *sdata = rx->sdata;
1922 struct net_device *dev = sdata->dev;
1923 struct sk_buff *skb, *xmit_skb;
1924 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1925 struct sta_info *dsta;
1926 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1927
1928 skb = rx->skb;
1929 xmit_skb = NULL;
1930
1931 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1932 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1933 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1934 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1935 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1936 if (is_multicast_ether_addr(ehdr->h_dest)) {
1937 /*
1938 * send multicast frames both to higher layers in
1939 * local net stack and back to the wireless medium
1940 */
1941 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1942 if (!xmit_skb)
1943 net_info_ratelimited("%s: failed to clone multicast frame\n",
1944 dev->name);
1945 } else {
1946 dsta = sta_info_get(sdata, skb->data);
1947 if (dsta) {
1948 /*
1949 * The destination station is associated to
1950 * this AP (in this VLAN), so send the frame
1951 * directly to it and do not pass it to local
1952 * net stack.
1953 */
1954 xmit_skb = skb;
1955 skb = NULL;
1956 }
1957 }
1958 }
1959
1960#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1961 if (skb) {
1962 /* 'align' will only take the values 0 or 2 here since all
1963 * frames are required to be aligned to 2-byte boundaries
1964 * when being passed to mac80211; the code here works just
1965 * as well if that isn't true, but mac80211 assumes it can
1966 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1967 */
1968 int align;
1969
1970 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1971 if (align) {
1972 if (WARN_ON(skb_headroom(skb) < 3)) {
1973 dev_kfree_skb(skb);
1974 skb = NULL;
1975 } else {
1976 u8 *data = skb->data;
1977 size_t len = skb_headlen(skb);
1978 skb->data -= align;
1979 memmove(skb->data, data, len);
1980 skb_set_tail_pointer(skb, len);
1981 }
1982 }
1983 }
1984#endif
1985
1986 if (skb) {
1987 /* deliver to local stack */
1988 skb->protocol = eth_type_trans(skb, dev);
1989 memset(skb->cb, 0, sizeof(skb->cb));
1990 if (rx->local->napi)
1991 napi_gro_receive(rx->local->napi, skb);
1992 else
1993 netif_receive_skb(skb);
1994 }
1995
1996 if (xmit_skb) {
1997 /*
1998 * Send to wireless media and increase priority by 256 to
1999 * keep the received priority instead of reclassifying
2000 * the frame (see cfg80211_classify8021d).
2001 */
2002 xmit_skb->priority += 256;
2003 xmit_skb->protocol = htons(ETH_P_802_3);
2004 skb_reset_network_header(xmit_skb);
2005 skb_reset_mac_header(xmit_skb);
2006 dev_queue_xmit(xmit_skb);
2007 }
2008}
2009
2010static ieee80211_rx_result debug_noinline
2011ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2012{
2013 struct net_device *dev = rx->sdata->dev;
2014 struct sk_buff *skb = rx->skb;
2015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2016 __le16 fc = hdr->frame_control;
2017 struct sk_buff_head frame_list;
2018 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2019
2020 if (unlikely(!ieee80211_is_data(fc)))
2021 return RX_CONTINUE;
2022
2023 if (unlikely(!ieee80211_is_data_present(fc)))
2024 return RX_DROP_MONITOR;
2025
2026 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2027 return RX_CONTINUE;
2028
2029 if (ieee80211_has_a4(hdr->frame_control) &&
2030 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2031 !rx->sdata->u.vlan.sta)
2032 return RX_DROP_UNUSABLE;
2033
2034 if (is_multicast_ether_addr(hdr->addr1) &&
2035 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2036 rx->sdata->u.vlan.sta) ||
2037 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2038 rx->sdata->u.mgd.use_4addr)))
2039 return RX_DROP_UNUSABLE;
2040
2041 skb->dev = dev;
2042 __skb_queue_head_init(&frame_list);
2043
2044 if (skb_linearize(skb))
2045 return RX_DROP_UNUSABLE;
2046
2047 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2048 rx->sdata->vif.type,
2049 rx->local->hw.extra_tx_headroom, true);
2050
2051 while (!skb_queue_empty(&frame_list)) {
2052 rx->skb = __skb_dequeue(&frame_list);
2053
2054 if (!ieee80211_frame_allowed(rx, fc)) {
2055 dev_kfree_skb(rx->skb);
2056 continue;
2057 }
2058 dev->stats.rx_packets++;
2059 dev->stats.rx_bytes += rx->skb->len;
2060
2061 ieee80211_deliver_skb(rx);
2062 }
2063
2064 return RX_QUEUED;
2065}
2066
2067#ifdef CONFIG_MAC80211_MESH
2068static ieee80211_rx_result
2069ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2070{
2071 struct ieee80211_hdr *fwd_hdr, *hdr;
2072 struct ieee80211_tx_info *info;
2073 struct ieee80211s_hdr *mesh_hdr;
2074 struct sk_buff *skb = rx->skb, *fwd_skb;
2075 struct ieee80211_local *local = rx->local;
2076 struct ieee80211_sub_if_data *sdata = rx->sdata;
2077 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2078 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2079 u16 q, hdrlen;
2080
2081 hdr = (struct ieee80211_hdr *) skb->data;
2082 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2083
2084 /* make sure fixed part of mesh header is there, also checks skb len */
2085 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2086 return RX_DROP_MONITOR;
2087
2088 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2089
2090 /* make sure full mesh header is there, also checks skb len */
2091 if (!pskb_may_pull(rx->skb,
2092 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2093 return RX_DROP_MONITOR;
2094
2095 /* reload pointers */
2096 hdr = (struct ieee80211_hdr *) skb->data;
2097 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2098
2099 /* frame is in RMC, don't forward */
2100 if (ieee80211_is_data(hdr->frame_control) &&
2101 is_multicast_ether_addr(hdr->addr1) &&
2102 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2103 return RX_DROP_MONITOR;
2104
2105 if (!ieee80211_is_data(hdr->frame_control) ||
2106 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2107 return RX_CONTINUE;
2108
2109 if (!mesh_hdr->ttl)
2110 return RX_DROP_MONITOR;
2111
2112 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2113 struct mesh_path *mppath;
2114 char *proxied_addr;
2115 char *mpp_addr;
2116
2117 if (is_multicast_ether_addr(hdr->addr1)) {
2118 mpp_addr = hdr->addr3;
2119 proxied_addr = mesh_hdr->eaddr1;
2120 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2121 /* has_a4 already checked in ieee80211_rx_mesh_check */
2122 mpp_addr = hdr->addr4;
2123 proxied_addr = mesh_hdr->eaddr2;
2124 } else {
2125 return RX_DROP_MONITOR;
2126 }
2127
2128 rcu_read_lock();
2129 mppath = mpp_path_lookup(sdata, proxied_addr);
2130 if (!mppath) {
2131 mpp_path_add(sdata, proxied_addr, mpp_addr);
2132 } else {
2133 spin_lock_bh(&mppath->state_lock);
2134 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2135 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2136 spin_unlock_bh(&mppath->state_lock);
2137 }
2138 rcu_read_unlock();
2139 }
2140
2141 /* Frame has reached destination. Don't forward */
2142 if (!is_multicast_ether_addr(hdr->addr1) &&
2143 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2144 return RX_CONTINUE;
2145
2146 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2147 if (ieee80211_queue_stopped(&local->hw, q)) {
2148 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2149 return RX_DROP_MONITOR;
2150 }
2151 skb_set_queue_mapping(skb, q);
2152
2153 if (!--mesh_hdr->ttl) {
2154 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2155 goto out;
2156 }
2157
2158 if (!ifmsh->mshcfg.dot11MeshForwarding)
2159 goto out;
2160
2161 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2162 if (!fwd_skb) {
2163 net_info_ratelimited("%s: failed to clone mesh frame\n",
2164 sdata->name);
2165 goto out;
2166 }
2167
2168 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2169 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2170 info = IEEE80211_SKB_CB(fwd_skb);
2171 memset(info, 0, sizeof(*info));
2172 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2173 info->control.vif = &rx->sdata->vif;
2174 info->control.jiffies = jiffies;
2175 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2176 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2177 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2178 /* update power mode indication when forwarding */
2179 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2180 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2181 /* mesh power mode flags updated in mesh_nexthop_lookup */
2182 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2183 } else {
2184 /* unable to resolve next hop */
2185 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2186 fwd_hdr->addr3, 0,
2187 WLAN_REASON_MESH_PATH_NOFORWARD,
2188 fwd_hdr->addr2);
2189 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2190 kfree_skb(fwd_skb);
2191 return RX_DROP_MONITOR;
2192 }
2193
2194 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2195 ieee80211_add_pending_skb(local, fwd_skb);
2196 out:
2197 if (is_multicast_ether_addr(hdr->addr1) ||
2198 sdata->dev->flags & IFF_PROMISC)
2199 return RX_CONTINUE;
2200 else
2201 return RX_DROP_MONITOR;
2202}
2203#endif
2204
2205static ieee80211_rx_result debug_noinline
2206ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2207{
2208 struct ieee80211_sub_if_data *sdata = rx->sdata;
2209 struct ieee80211_local *local = rx->local;
2210 struct net_device *dev = sdata->dev;
2211 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2212 __le16 fc = hdr->frame_control;
2213 bool port_control;
2214 int err;
2215
2216 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2217 return RX_CONTINUE;
2218
2219 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2220 return RX_DROP_MONITOR;
2221
2222 /*
2223 * Send unexpected-4addr-frame event to hostapd. For older versions,
2224 * also drop the frame to cooked monitor interfaces.
2225 */
2226 if (ieee80211_has_a4(hdr->frame_control) &&
2227 sdata->vif.type == NL80211_IFTYPE_AP) {
2228 if (rx->sta &&
2229 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2230 cfg80211_rx_unexpected_4addr_frame(
2231 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2232 return RX_DROP_MONITOR;
2233 }
2234
2235 err = __ieee80211_data_to_8023(rx, &port_control);
2236 if (unlikely(err))
2237 return RX_DROP_UNUSABLE;
2238
2239 if (!ieee80211_frame_allowed(rx, fc))
2240 return RX_DROP_MONITOR;
2241
2242 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2243 unlikely(port_control) && sdata->bss) {
2244 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2245 u.ap);
2246 dev = sdata->dev;
2247 rx->sdata = sdata;
2248 }
2249
2250 rx->skb->dev = dev;
2251
2252 dev->stats.rx_packets++;
2253 dev->stats.rx_bytes += rx->skb->len;
2254
2255 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2256 !is_multicast_ether_addr(
2257 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2258 (!local->scanning &&
2259 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2260 mod_timer(&local->dynamic_ps_timer, jiffies +
2261 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2262 }
2263
2264 ieee80211_deliver_skb(rx);
2265
2266 return RX_QUEUED;
2267}
2268
2269static ieee80211_rx_result debug_noinline
2270ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2271{
2272 struct sk_buff *skb = rx->skb;
2273 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2274 struct tid_ampdu_rx *tid_agg_rx;
2275 u16 start_seq_num;
2276 u16 tid;
2277
2278 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2279 return RX_CONTINUE;
2280
2281 if (ieee80211_is_back_req(bar->frame_control)) {
2282 struct {
2283 __le16 control, start_seq_num;
2284 } __packed bar_data;
2285
2286 if (!rx->sta)
2287 return RX_DROP_MONITOR;
2288
2289 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2290 &bar_data, sizeof(bar_data)))
2291 return RX_DROP_MONITOR;
2292
2293 tid = le16_to_cpu(bar_data.control) >> 12;
2294
2295 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2296 if (!tid_agg_rx)
2297 return RX_DROP_MONITOR;
2298
2299 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2300
2301 /* reset session timer */
2302 if (tid_agg_rx->timeout)
2303 mod_timer(&tid_agg_rx->session_timer,
2304 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2305
2306 spin_lock(&tid_agg_rx->reorder_lock);
2307 /* release stored frames up to start of BAR */
2308 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2309 start_seq_num, frames);
2310 spin_unlock(&tid_agg_rx->reorder_lock);
2311
2312 kfree_skb(skb);
2313 return RX_QUEUED;
2314 }
2315
2316 /*
2317 * After this point, we only want management frames,
2318 * so we can drop all remaining control frames to
2319 * cooked monitor interfaces.
2320 */
2321 return RX_DROP_MONITOR;
2322}
2323
2324static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2325 struct ieee80211_mgmt *mgmt,
2326 size_t len)
2327{
2328 struct ieee80211_local *local = sdata->local;
2329 struct sk_buff *skb;
2330 struct ieee80211_mgmt *resp;
2331
2332 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2333 /* Not to own unicast address */
2334 return;
2335 }
2336
2337 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2338 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2339 /* Not from the current AP or not associated yet. */
2340 return;
2341 }
2342
2343 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2344 /* Too short SA Query request frame */
2345 return;
2346 }
2347
2348 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2349 if (skb == NULL)
2350 return;
2351
2352 skb_reserve(skb, local->hw.extra_tx_headroom);
2353 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2354 memset(resp, 0, 24);
2355 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2356 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2357 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2358 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2359 IEEE80211_STYPE_ACTION);
2360 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2361 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2362 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2363 memcpy(resp->u.action.u.sa_query.trans_id,
2364 mgmt->u.action.u.sa_query.trans_id,
2365 WLAN_SA_QUERY_TR_ID_LEN);
2366
2367 ieee80211_tx_skb(sdata, skb);
2368}
2369
2370static ieee80211_rx_result debug_noinline
2371ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2372{
2373 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2374 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2375
2376 /*
2377 * From here on, look only at management frames.
2378 * Data and control frames are already handled,
2379 * and unknown (reserved) frames are useless.
2380 */
2381 if (rx->skb->len < 24)
2382 return RX_DROP_MONITOR;
2383
2384 if (!ieee80211_is_mgmt(mgmt->frame_control))
2385 return RX_DROP_MONITOR;
2386
2387 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2388 ieee80211_is_beacon(mgmt->frame_control) &&
2389 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2390 int sig = 0;
2391
2392 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2393 sig = status->signal;
2394
2395 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2396 rx->skb->data, rx->skb->len,
2397 status->freq, sig);
2398 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2399 }
2400
2401 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2402 return RX_DROP_MONITOR;
2403
2404 if (ieee80211_drop_unencrypted_mgmt(rx))
2405 return RX_DROP_UNUSABLE;
2406
2407 return RX_CONTINUE;
2408}
2409
2410static ieee80211_rx_result debug_noinline
2411ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2412{
2413 struct ieee80211_local *local = rx->local;
2414 struct ieee80211_sub_if_data *sdata = rx->sdata;
2415 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2416 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2417 int len = rx->skb->len;
2418
2419 if (!ieee80211_is_action(mgmt->frame_control))
2420 return RX_CONTINUE;
2421
2422 /* drop too small frames */
2423 if (len < IEEE80211_MIN_ACTION_SIZE)
2424 return RX_DROP_UNUSABLE;
2425
2426 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2427 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2428 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2429 return RX_DROP_UNUSABLE;
2430
2431 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2432 return RX_DROP_UNUSABLE;
2433
2434 switch (mgmt->u.action.category) {
2435 case WLAN_CATEGORY_HT:
2436 /* reject HT action frames from stations not supporting HT */
2437 if (!rx->sta->sta.ht_cap.ht_supported)
2438 goto invalid;
2439
2440 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2441 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2442 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2443 sdata->vif.type != NL80211_IFTYPE_AP &&
2444 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2445 break;
2446
2447 /* verify action & smps_control/chanwidth are present */
2448 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2449 goto invalid;
2450
2451 switch (mgmt->u.action.u.ht_smps.action) {
2452 case WLAN_HT_ACTION_SMPS: {
2453 struct ieee80211_supported_band *sband;
2454 enum ieee80211_smps_mode smps_mode;
2455
2456 /* convert to HT capability */
2457 switch (mgmt->u.action.u.ht_smps.smps_control) {
2458 case WLAN_HT_SMPS_CONTROL_DISABLED:
2459 smps_mode = IEEE80211_SMPS_OFF;
2460 break;
2461 case WLAN_HT_SMPS_CONTROL_STATIC:
2462 smps_mode = IEEE80211_SMPS_STATIC;
2463 break;
2464 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2465 smps_mode = IEEE80211_SMPS_DYNAMIC;
2466 break;
2467 default:
2468 goto invalid;
2469 }
2470
2471 /* if no change do nothing */
2472 if (rx->sta->sta.smps_mode == smps_mode)
2473 goto handled;
2474 rx->sta->sta.smps_mode = smps_mode;
2475
2476 sband = rx->local->hw.wiphy->bands[status->band];
2477
2478 rate_control_rate_update(local, sband, rx->sta,
2479 IEEE80211_RC_SMPS_CHANGED);
2480 goto handled;
2481 }
2482 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2483 struct ieee80211_supported_band *sband;
2484 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2485 enum ieee80211_sta_rx_bandwidth new_bw;
2486
2487 /* If it doesn't support 40 MHz it can't change ... */
2488 if (!(rx->sta->sta.ht_cap.cap &
2489 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2490 goto handled;
2491
2492 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2493 new_bw = IEEE80211_STA_RX_BW_20;
2494 else
2495 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2496
2497 if (rx->sta->sta.bandwidth == new_bw)
2498 goto handled;
2499
2500 sband = rx->local->hw.wiphy->bands[status->band];
2501
2502 rate_control_rate_update(local, sband, rx->sta,
2503 IEEE80211_RC_BW_CHANGED);
2504 goto handled;
2505 }
2506 default:
2507 goto invalid;
2508 }
2509
2510 break;
2511 case WLAN_CATEGORY_PUBLIC:
2512 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2513 goto invalid;
2514 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2515 break;
2516 if (!rx->sta)
2517 break;
2518 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2519 break;
2520 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2521 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2522 break;
2523 if (len < offsetof(struct ieee80211_mgmt,
2524 u.action.u.ext_chan_switch.variable))
2525 goto invalid;
2526 goto queue;
2527 case WLAN_CATEGORY_VHT:
2528 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2529 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2530 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2531 sdata->vif.type != NL80211_IFTYPE_AP &&
2532 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2533 break;
2534
2535 /* verify action code is present */
2536 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2537 goto invalid;
2538
2539 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2540 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2541 u8 opmode;
2542
2543 /* verify opmode is present */
2544 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2545 goto invalid;
2546
2547 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2548
2549 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2550 opmode, status->band,
2551 false);
2552 goto handled;
2553 }
2554 default:
2555 break;
2556 }
2557 break;
2558 case WLAN_CATEGORY_BACK:
2559 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2560 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2561 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2562 sdata->vif.type != NL80211_IFTYPE_AP &&
2563 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2564 break;
2565
2566 /* verify action_code is present */
2567 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2568 break;
2569
2570 switch (mgmt->u.action.u.addba_req.action_code) {
2571 case WLAN_ACTION_ADDBA_REQ:
2572 if (len < (IEEE80211_MIN_ACTION_SIZE +
2573 sizeof(mgmt->u.action.u.addba_req)))
2574 goto invalid;
2575 break;
2576 case WLAN_ACTION_ADDBA_RESP:
2577 if (len < (IEEE80211_MIN_ACTION_SIZE +
2578 sizeof(mgmt->u.action.u.addba_resp)))
2579 goto invalid;
2580 break;
2581 case WLAN_ACTION_DELBA:
2582 if (len < (IEEE80211_MIN_ACTION_SIZE +
2583 sizeof(mgmt->u.action.u.delba)))
2584 goto invalid;
2585 break;
2586 default:
2587 goto invalid;
2588 }
2589
2590 goto queue;
2591 case WLAN_CATEGORY_SPECTRUM_MGMT:
2592 /* verify action_code is present */
2593 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2594 break;
2595
2596 switch (mgmt->u.action.u.measurement.action_code) {
2597 case WLAN_ACTION_SPCT_MSR_REQ:
2598 if (status->band != IEEE80211_BAND_5GHZ)
2599 break;
2600
2601 if (len < (IEEE80211_MIN_ACTION_SIZE +
2602 sizeof(mgmt->u.action.u.measurement)))
2603 break;
2604
2605 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2606 break;
2607
2608 ieee80211_process_measurement_req(sdata, mgmt, len);
2609 goto handled;
2610 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2611 u8 *bssid;
2612 if (len < (IEEE80211_MIN_ACTION_SIZE +
2613 sizeof(mgmt->u.action.u.chan_switch)))
2614 break;
2615
2616 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2617 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2618 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2619 break;
2620
2621 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2622 bssid = sdata->u.mgd.bssid;
2623 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2624 bssid = sdata->u.ibss.bssid;
2625 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2626 bssid = mgmt->sa;
2627 else
2628 break;
2629
2630 if (!ether_addr_equal(mgmt->bssid, bssid))
2631 break;
2632
2633 goto queue;
2634 }
2635 }
2636 break;
2637 case WLAN_CATEGORY_SA_QUERY:
2638 if (len < (IEEE80211_MIN_ACTION_SIZE +
2639 sizeof(mgmt->u.action.u.sa_query)))
2640 break;
2641
2642 switch (mgmt->u.action.u.sa_query.action) {
2643 case WLAN_ACTION_SA_QUERY_REQUEST:
2644 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2645 break;
2646 ieee80211_process_sa_query_req(sdata, mgmt, len);
2647 goto handled;
2648 }
2649 break;
2650 case WLAN_CATEGORY_SELF_PROTECTED:
2651 if (len < (IEEE80211_MIN_ACTION_SIZE +
2652 sizeof(mgmt->u.action.u.self_prot.action_code)))
2653 break;
2654
2655 switch (mgmt->u.action.u.self_prot.action_code) {
2656 case WLAN_SP_MESH_PEERING_OPEN:
2657 case WLAN_SP_MESH_PEERING_CLOSE:
2658 case WLAN_SP_MESH_PEERING_CONFIRM:
2659 if (!ieee80211_vif_is_mesh(&sdata->vif))
2660 goto invalid;
2661 if (sdata->u.mesh.user_mpm)
2662 /* userspace handles this frame */
2663 break;
2664 goto queue;
2665 case WLAN_SP_MGK_INFORM:
2666 case WLAN_SP_MGK_ACK:
2667 if (!ieee80211_vif_is_mesh(&sdata->vif))
2668 goto invalid;
2669 break;
2670 }
2671 break;
2672 case WLAN_CATEGORY_MESH_ACTION:
2673 if (len < (IEEE80211_MIN_ACTION_SIZE +
2674 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2675 break;
2676
2677 if (!ieee80211_vif_is_mesh(&sdata->vif))
2678 break;
2679 if (mesh_action_is_path_sel(mgmt) &&
2680 !mesh_path_sel_is_hwmp(sdata))
2681 break;
2682 goto queue;
2683 }
2684
2685 return RX_CONTINUE;
2686
2687 invalid:
2688 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2689 /* will return in the next handlers */
2690 return RX_CONTINUE;
2691
2692 handled:
2693 if (rx->sta)
2694 rx->sta->rx_packets++;
2695 dev_kfree_skb(rx->skb);
2696 return RX_QUEUED;
2697
2698 queue:
2699 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2700 skb_queue_tail(&sdata->skb_queue, rx->skb);
2701 ieee80211_queue_work(&local->hw, &sdata->work);
2702 if (rx->sta)
2703 rx->sta->rx_packets++;
2704 return RX_QUEUED;
2705}
2706
2707static ieee80211_rx_result debug_noinline
2708ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2709{
2710 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2711 int sig = 0;
2712
2713 /* skip known-bad action frames and return them in the next handler */
2714 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2715 return RX_CONTINUE;
2716
2717 /*
2718 * Getting here means the kernel doesn't know how to handle
2719 * it, but maybe userspace does ... include returned frames
2720 * so userspace can register for those to know whether ones
2721 * it transmitted were processed or returned.
2722 */
2723
2724 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2725 sig = status->signal;
2726
2727 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2728 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2729 if (rx->sta)
2730 rx->sta->rx_packets++;
2731 dev_kfree_skb(rx->skb);
2732 return RX_QUEUED;
2733 }
2734
2735 return RX_CONTINUE;
2736}
2737
2738static ieee80211_rx_result debug_noinline
2739ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2740{
2741 struct ieee80211_local *local = rx->local;
2742 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2743 struct sk_buff *nskb;
2744 struct ieee80211_sub_if_data *sdata = rx->sdata;
2745 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2746
2747 if (!ieee80211_is_action(mgmt->frame_control))
2748 return RX_CONTINUE;
2749
2750 /*
2751 * For AP mode, hostapd is responsible for handling any action
2752 * frames that we didn't handle, including returning unknown
2753 * ones. For all other modes we will return them to the sender,
2754 * setting the 0x80 bit in the action category, as required by
2755 * 802.11-2012 9.24.4.
2756 * Newer versions of hostapd shall also use the management frame
2757 * registration mechanisms, but older ones still use cooked
2758 * monitor interfaces so push all frames there.
2759 */
2760 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2761 (sdata->vif.type == NL80211_IFTYPE_AP ||
2762 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2763 return RX_DROP_MONITOR;
2764
2765 if (is_multicast_ether_addr(mgmt->da))
2766 return RX_DROP_MONITOR;
2767
2768 /* do not return rejected action frames */
2769 if (mgmt->u.action.category & 0x80)
2770 return RX_DROP_UNUSABLE;
2771
2772 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2773 GFP_ATOMIC);
2774 if (nskb) {
2775 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2776
2777 nmgmt->u.action.category |= 0x80;
2778 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2779 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2780
2781 memset(nskb->cb, 0, sizeof(nskb->cb));
2782
2783 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2784 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2785
2786 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2787 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2788 IEEE80211_TX_CTL_NO_CCK_RATE;
2789 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2790 info->hw_queue =
2791 local->hw.offchannel_tx_hw_queue;
2792 }
2793
2794 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2795 status->band);
2796 }
2797 dev_kfree_skb(rx->skb);
2798 return RX_QUEUED;
2799}
2800
2801static ieee80211_rx_result debug_noinline
2802ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2803{
2804 struct ieee80211_sub_if_data *sdata = rx->sdata;
2805 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2806 __le16 stype;
2807
2808 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2809
2810 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2811 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2812 sdata->vif.type != NL80211_IFTYPE_STATION)
2813 return RX_DROP_MONITOR;
2814
2815 switch (stype) {
2816 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2817 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2818 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2819 /* process for all: mesh, mlme, ibss */
2820 break;
2821 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2822 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2823 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2824 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2825 if (is_multicast_ether_addr(mgmt->da) &&
2826 !is_broadcast_ether_addr(mgmt->da))
2827 return RX_DROP_MONITOR;
2828
2829 /* process only for station */
2830 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2831 return RX_DROP_MONITOR;
2832 break;
2833 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2834 /* process only for ibss and mesh */
2835 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2836 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2837 return RX_DROP_MONITOR;
2838 break;
2839 default:
2840 return RX_DROP_MONITOR;
2841 }
2842
2843 /* queue up frame and kick off work to process it */
2844 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2845 skb_queue_tail(&sdata->skb_queue, rx->skb);
2846 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2847 if (rx->sta)
2848 rx->sta->rx_packets++;
2849
2850 return RX_QUEUED;
2851}
2852
2853/* TODO: use IEEE80211_RX_FRAGMENTED */
2854static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2855 struct ieee80211_rate *rate)
2856{
2857 struct ieee80211_sub_if_data *sdata;
2858 struct ieee80211_local *local = rx->local;
2859 struct sk_buff *skb = rx->skb, *skb2;
2860 struct net_device *prev_dev = NULL;
2861 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2862 int needed_headroom;
2863
2864 /*
2865 * If cooked monitor has been processed already, then
2866 * don't do it again. If not, set the flag.
2867 */
2868 if (rx->flags & IEEE80211_RX_CMNTR)
2869 goto out_free_skb;
2870 rx->flags |= IEEE80211_RX_CMNTR;
2871
2872 /* If there are no cooked monitor interfaces, just free the SKB */
2873 if (!local->cooked_mntrs)
2874 goto out_free_skb;
2875
2876 /* room for the radiotap header based on driver features */
2877 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2878
2879 if (skb_headroom(skb) < needed_headroom &&
2880 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2881 goto out_free_skb;
2882
2883 /* prepend radiotap information */
2884 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2885 false);
2886
2887 skb_set_mac_header(skb, 0);
2888 skb->ip_summed = CHECKSUM_UNNECESSARY;
2889 skb->pkt_type = PACKET_OTHERHOST;
2890 skb->protocol = htons(ETH_P_802_2);
2891
2892 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2893 if (!ieee80211_sdata_running(sdata))
2894 continue;
2895
2896 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2897 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2898 continue;
2899
2900 if (prev_dev) {
2901 skb2 = skb_clone(skb, GFP_ATOMIC);
2902 if (skb2) {
2903 skb2->dev = prev_dev;
2904 netif_receive_skb(skb2);
2905 }
2906 }
2907
2908 prev_dev = sdata->dev;
2909 sdata->dev->stats.rx_packets++;
2910 sdata->dev->stats.rx_bytes += skb->len;
2911 }
2912
2913 if (prev_dev) {
2914 skb->dev = prev_dev;
2915 netif_receive_skb(skb);
2916 return;
2917 }
2918
2919 out_free_skb:
2920 dev_kfree_skb(skb);
2921}
2922
2923static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2924 ieee80211_rx_result res)
2925{
2926 switch (res) {
2927 case RX_DROP_MONITOR:
2928 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2929 if (rx->sta)
2930 rx->sta->rx_dropped++;
2931 /* fall through */
2932 case RX_CONTINUE: {
2933 struct ieee80211_rate *rate = NULL;
2934 struct ieee80211_supported_band *sband;
2935 struct ieee80211_rx_status *status;
2936
2937 status = IEEE80211_SKB_RXCB((rx->skb));
2938
2939 sband = rx->local->hw.wiphy->bands[status->band];
2940 if (!(status->flag & RX_FLAG_HT) &&
2941 !(status->flag & RX_FLAG_VHT))
2942 rate = &sband->bitrates[status->rate_idx];
2943
2944 ieee80211_rx_cooked_monitor(rx, rate);
2945 break;
2946 }
2947 case RX_DROP_UNUSABLE:
2948 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2949 if (rx->sta)
2950 rx->sta->rx_dropped++;
2951 dev_kfree_skb(rx->skb);
2952 break;
2953 case RX_QUEUED:
2954 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2955 break;
2956 }
2957}
2958
2959static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2960 struct sk_buff_head *frames)
2961{
2962 ieee80211_rx_result res = RX_DROP_MONITOR;
2963 struct sk_buff *skb;
2964
2965#define CALL_RXH(rxh) \
2966 do { \
2967 res = rxh(rx); \
2968 if (res != RX_CONTINUE) \
2969 goto rxh_next; \
2970 } while (0);
2971
2972 spin_lock_bh(&rx->local->rx_path_lock);
2973
2974 while ((skb = __skb_dequeue(frames))) {
2975 /*
2976 * all the other fields are valid across frames
2977 * that belong to an aMPDU since they are on the
2978 * same TID from the same station
2979 */
2980 rx->skb = skb;
2981
2982 CALL_RXH(ieee80211_rx_h_check_more_data)
2983 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2984 CALL_RXH(ieee80211_rx_h_sta_process)
2985 CALL_RXH(ieee80211_rx_h_decrypt)
2986 CALL_RXH(ieee80211_rx_h_defragment)
2987 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2988 /* must be after MMIC verify so header is counted in MPDU mic */
2989#ifdef CONFIG_MAC80211_MESH
2990 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2991 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2992#endif
2993 CALL_RXH(ieee80211_rx_h_amsdu)
2994 CALL_RXH(ieee80211_rx_h_data)
2995
2996 /* special treatment -- needs the queue */
2997 res = ieee80211_rx_h_ctrl(rx, frames);
2998 if (res != RX_CONTINUE)
2999 goto rxh_next;
3000
3001 CALL_RXH(ieee80211_rx_h_mgmt_check)
3002 CALL_RXH(ieee80211_rx_h_action)
3003 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3004 CALL_RXH(ieee80211_rx_h_action_return)
3005 CALL_RXH(ieee80211_rx_h_mgmt)
3006
3007 rxh_next:
3008 ieee80211_rx_handlers_result(rx, res);
3009
3010#undef CALL_RXH
3011 }
3012
3013 spin_unlock_bh(&rx->local->rx_path_lock);
3014}
3015
3016static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3017{
3018 struct sk_buff_head reorder_release;
3019 ieee80211_rx_result res = RX_DROP_MONITOR;
3020
3021 __skb_queue_head_init(&reorder_release);
3022
3023#define CALL_RXH(rxh) \
3024 do { \
3025 res = rxh(rx); \
3026 if (res != RX_CONTINUE) \
3027 goto rxh_next; \
3028 } while (0);
3029
3030 CALL_RXH(ieee80211_rx_h_check)
3031
3032 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3033
3034 ieee80211_rx_handlers(rx, &reorder_release);
3035 return;
3036
3037 rxh_next:
3038 ieee80211_rx_handlers_result(rx, res);
3039
3040#undef CALL_RXH
3041}
3042
3043/*
3044 * This function makes calls into the RX path, therefore
3045 * it has to be invoked under RCU read lock.
3046 */
3047void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3048{
3049 struct sk_buff_head frames;
3050 struct ieee80211_rx_data rx = {
3051 .sta = sta,
3052 .sdata = sta->sdata,
3053 .local = sta->local,
3054 /* This is OK -- must be QoS data frame */
3055 .security_idx = tid,
3056 .seqno_idx = tid,
3057 .flags = 0,
3058 };
3059 struct tid_ampdu_rx *tid_agg_rx;
3060
3061 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3062 if (!tid_agg_rx)
3063 return;
3064
3065 __skb_queue_head_init(&frames);
3066
3067 spin_lock(&tid_agg_rx->reorder_lock);
3068 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3069 spin_unlock(&tid_agg_rx->reorder_lock);
3070
3071 ieee80211_rx_handlers(&rx, &frames);
3072}
3073
3074/* main receive path */
3075
3076static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3077 struct ieee80211_hdr *hdr)
3078{
3079 struct ieee80211_sub_if_data *sdata = rx->sdata;
3080 struct sk_buff *skb = rx->skb;
3081 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3082 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3083 int multicast = is_multicast_ether_addr(hdr->addr1);
3084
3085 switch (sdata->vif.type) {
3086 case NL80211_IFTYPE_STATION:
3087 if (!bssid && !sdata->u.mgd.use_4addr)
3088 return false;
3089 if (!multicast &&
3090 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3091 if (!(sdata->dev->flags & IFF_PROMISC) ||
3092 sdata->u.mgd.use_4addr)
3093 return false;
3094 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3095 }
3096 break;
3097 case NL80211_IFTYPE_ADHOC:
3098 if (!bssid)
3099 return false;
3100 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3101 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3102 return false;
3103 if (ieee80211_is_beacon(hdr->frame_control)) {
3104 return true;
3105 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3106 return false;
3107 } else if (!multicast &&
3108 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3109 if (!(sdata->dev->flags & IFF_PROMISC))
3110 return false;
3111 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3112 } else if (!rx->sta) {
3113 int rate_idx;
3114 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3115 rate_idx = 0; /* TODO: HT/VHT rates */
3116 else
3117 rate_idx = status->rate_idx;
3118 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3119 BIT(rate_idx));
3120 }
3121 break;
3122 case NL80211_IFTYPE_MESH_POINT:
3123 if (!multicast &&
3124 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3125 if (!(sdata->dev->flags & IFF_PROMISC))
3126 return false;
3127
3128 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3129 }
3130 break;
3131 case NL80211_IFTYPE_AP_VLAN:
3132 case NL80211_IFTYPE_AP:
3133 if (!bssid) {
3134 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3135 return false;
3136 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3137 /*
3138 * Accept public action frames even when the
3139 * BSSID doesn't match, this is used for P2P
3140 * and location updates. Note that mac80211
3141 * itself never looks at these frames.
3142 */
3143 if (!multicast &&
3144 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3145 return false;
3146 if (ieee80211_is_public_action(hdr, skb->len))
3147 return true;
3148 if (!ieee80211_is_beacon(hdr->frame_control))
3149 return false;
3150 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3151 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3152 /* ignore data frames to TDLS-peers */
3153 if (ieee80211_is_data(hdr->frame_control))
3154 return false;
3155 /* ignore action frames to TDLS-peers */
3156 if (ieee80211_is_action(hdr->frame_control) &&
3157 !ether_addr_equal(bssid, hdr->addr1))
3158 return false;
3159 }
3160 break;
3161 case NL80211_IFTYPE_WDS:
3162 if (bssid || !ieee80211_is_data(hdr->frame_control))
3163 return false;
3164 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3165 return false;
3166 break;
3167 case NL80211_IFTYPE_P2P_DEVICE:
3168 if (!ieee80211_is_public_action(hdr, skb->len) &&
3169 !ieee80211_is_probe_req(hdr->frame_control) &&
3170 !ieee80211_is_probe_resp(hdr->frame_control) &&
3171 !ieee80211_is_beacon(hdr->frame_control))
3172 return false;
3173 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3174 !multicast)
3175 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3176 break;
3177 default:
3178 /* should never get here */
3179 WARN_ON_ONCE(1);
3180 break;
3181 }
3182
3183 return true;
3184}
3185
3186/*
3187 * This function returns whether or not the SKB
3188 * was destined for RX processing or not, which,
3189 * if consume is true, is equivalent to whether
3190 * or not the skb was consumed.
3191 */
3192static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3193 struct sk_buff *skb, bool consume)
3194{
3195 struct ieee80211_local *local = rx->local;
3196 struct ieee80211_sub_if_data *sdata = rx->sdata;
3197 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3198 struct ieee80211_hdr *hdr = (void *)skb->data;
3199
3200 rx->skb = skb;
3201 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3202
3203 if (!prepare_for_handlers(rx, hdr))
3204 return false;
3205
3206 if (!consume) {
3207 skb = skb_copy(skb, GFP_ATOMIC);
3208 if (!skb) {
3209 if (net_ratelimit())
3210 wiphy_debug(local->hw.wiphy,
3211 "failed to copy skb for %s\n",
3212 sdata->name);
3213 return true;
3214 }
3215
3216 rx->skb = skb;
3217 }
3218
3219 ieee80211_invoke_rx_handlers(rx);
3220 return true;
3221}
3222
3223/*
3224 * This is the actual Rx frames handler. as it belongs to Rx path it must
3225 * be called with rcu_read_lock protection.
3226 */
3227static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3228 struct sk_buff *skb)
3229{
3230 struct ieee80211_local *local = hw_to_local(hw);
3231 struct ieee80211_sub_if_data *sdata;
3232 struct ieee80211_hdr *hdr;
3233 __le16 fc;
3234 struct ieee80211_rx_data rx;
3235 struct ieee80211_sub_if_data *prev;
3236 struct sta_info *sta, *tmp, *prev_sta;
3237 int err = 0;
3238
3239 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3240 memset(&rx, 0, sizeof(rx));
3241 rx.skb = skb;
3242 rx.local = local;
3243
3244 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3245 local->dot11ReceivedFragmentCount++;
3246
3247 if (ieee80211_is_mgmt(fc)) {
3248 /* drop frame if too short for header */
3249 if (skb->len < ieee80211_hdrlen(fc))
3250 err = -ENOBUFS;
3251 else
3252 err = skb_linearize(skb);
3253 } else {
3254 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3255 }
3256
3257 if (err) {
3258 dev_kfree_skb(skb);
3259 return;
3260 }
3261
3262 hdr = (struct ieee80211_hdr *)skb->data;
3263 ieee80211_parse_qos(&rx);
3264 ieee80211_verify_alignment(&rx);
3265
3266 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3267 ieee80211_is_beacon(hdr->frame_control)))
3268 ieee80211_scan_rx(local, skb);
3269
3270 if (ieee80211_is_data(fc)) {
3271 prev_sta = NULL;
3272
3273 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3274 if (!prev_sta) {
3275 prev_sta = sta;
3276 continue;
3277 }
3278
3279 rx.sta = prev_sta;
3280 rx.sdata = prev_sta->sdata;
3281 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3282
3283 prev_sta = sta;
3284 }
3285
3286 if (prev_sta) {
3287 rx.sta = prev_sta;
3288 rx.sdata = prev_sta->sdata;
3289
3290 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3291 return;
3292 goto out;
3293 }
3294 }
3295
3296 prev = NULL;
3297
3298 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3299 if (!ieee80211_sdata_running(sdata))
3300 continue;
3301
3302 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3303 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3304 continue;
3305
3306 /*
3307 * frame is destined for this interface, but if it's
3308 * not also for the previous one we handle that after
3309 * the loop to avoid copying the SKB once too much
3310 */
3311
3312 if (!prev) {
3313 prev = sdata;
3314 continue;
3315 }
3316
3317 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3318 rx.sdata = prev;
3319 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3320
3321 prev = sdata;
3322 }
3323
3324 if (prev) {
3325 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3326 rx.sdata = prev;
3327
3328 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3329 return;
3330 }
3331
3332 out:
3333 dev_kfree_skb(skb);
3334}
3335
3336/*
3337 * This is the receive path handler. It is called by a low level driver when an
3338 * 802.11 MPDU is received from the hardware.
3339 */
3340void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3341{
3342 struct ieee80211_local *local = hw_to_local(hw);
3343 struct ieee80211_rate *rate = NULL;
3344 struct ieee80211_supported_band *sband;
3345 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3346
3347 WARN_ON_ONCE(softirq_count() == 0);
3348
3349 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3350 goto drop;
3351
3352 sband = local->hw.wiphy->bands[status->band];
3353 if (WARN_ON(!sband))
3354 goto drop;
3355
3356 /*
3357 * If we're suspending, it is possible although not too likely
3358 * that we'd be receiving frames after having already partially
3359 * quiesced the stack. We can't process such frames then since
3360 * that might, for example, cause stations to be added or other
3361 * driver callbacks be invoked.
3362 */
3363 if (unlikely(local->quiescing || local->suspended))
3364 goto drop;
3365
3366 /* We might be during a HW reconfig, prevent Rx for the same reason */
3367 if (unlikely(local->in_reconfig))
3368 goto drop;
3369
3370 /*
3371 * The same happens when we're not even started,
3372 * but that's worth a warning.
3373 */
3374 if (WARN_ON(!local->started))
3375 goto drop;
3376
3377 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3378 /*
3379 * Validate the rate, unless a PLCP error means that
3380 * we probably can't have a valid rate here anyway.
3381 */
3382
3383 if (status->flag & RX_FLAG_HT) {
3384 /*
3385 * rate_idx is MCS index, which can be [0-76]
3386 * as documented on:
3387 *
3388 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3389 *
3390 * Anything else would be some sort of driver or
3391 * hardware error. The driver should catch hardware
3392 * errors.
3393 */
3394 if (WARN(status->rate_idx > 76,
3395 "Rate marked as an HT rate but passed "
3396 "status->rate_idx is not "
3397 "an MCS index [0-76]: %d (0x%02x)\n",
3398 status->rate_idx,
3399 status->rate_idx))
3400 goto drop;
3401 } else if (status->flag & RX_FLAG_VHT) {
3402 if (WARN_ONCE(status->rate_idx > 9 ||
3403 !status->vht_nss ||
3404 status->vht_nss > 8,
3405 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3406 status->rate_idx, status->vht_nss))
3407 goto drop;
3408 } else {
3409 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3410 goto drop;
3411 rate = &sband->bitrates[status->rate_idx];
3412 }
3413 }
3414
3415 status->rx_flags = 0;
3416
3417 /*
3418 * key references and virtual interfaces are protected using RCU
3419 * and this requires that we are in a read-side RCU section during
3420 * receive processing
3421 */
3422 rcu_read_lock();
3423
3424 /*
3425 * Frames with failed FCS/PLCP checksum are not returned,
3426 * all other frames are returned without radiotap header
3427 * if it was previously present.
3428 * Also, frames with less than 16 bytes are dropped.
3429 */
3430 skb = ieee80211_rx_monitor(local, skb, rate);
3431 if (!skb) {
3432 rcu_read_unlock();
3433 return;
3434 }
3435
3436 ieee80211_tpt_led_trig_rx(local,
3437 ((struct ieee80211_hdr *)skb->data)->frame_control,
3438 skb->len);
3439 __ieee80211_rx_handle_packet(hw, skb);
3440
3441 rcu_read_unlock();
3442
3443 return;
3444 drop:
3445 kfree_skb(skb);
3446}
3447EXPORT_SYMBOL(ieee80211_rx);
3448
3449/* This is a version of the rx handler that can be called from hard irq
3450 * context. Post the skb on the queue and schedule the tasklet */
3451void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3452{
3453 struct ieee80211_local *local = hw_to_local(hw);
3454
3455 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3456
3457 skb->pkt_type = IEEE80211_RX_MSG;
3458 skb_queue_tail(&local->skb_queue, skb);
3459 tasklet_schedule(&local->tasklet);
3460}
3461EXPORT_SYMBOL(ieee80211_rx_irqsafe);