]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - net/netfilter/nf_conntrack_core.c
netfilter: nftables: add connlabel set support
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_conntrack_core.c
... / ...
CommitLineData
1/* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5/* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/types.h>
18#include <linux/netfilter.h>
19#include <linux/module.h>
20#include <linux/sched.h>
21#include <linux/skbuff.h>
22#include <linux/proc_fs.h>
23#include <linux/vmalloc.h>
24#include <linux/stddef.h>
25#include <linux/slab.h>
26#include <linux/random.h>
27#include <linux/jhash.h>
28#include <linux/err.h>
29#include <linux/percpu.h>
30#include <linux/moduleparam.h>
31#include <linux/notifier.h>
32#include <linux/kernel.h>
33#include <linux/netdevice.h>
34#include <linux/socket.h>
35#include <linux/mm.h>
36#include <linux/nsproxy.h>
37#include <linux/rculist_nulls.h>
38
39#include <net/netfilter/nf_conntrack.h>
40#include <net/netfilter/nf_conntrack_l3proto.h>
41#include <net/netfilter/nf_conntrack_l4proto.h>
42#include <net/netfilter/nf_conntrack_expect.h>
43#include <net/netfilter/nf_conntrack_helper.h>
44#include <net/netfilter/nf_conntrack_seqadj.h>
45#include <net/netfilter/nf_conntrack_core.h>
46#include <net/netfilter/nf_conntrack_extend.h>
47#include <net/netfilter/nf_conntrack_acct.h>
48#include <net/netfilter/nf_conntrack_ecache.h>
49#include <net/netfilter/nf_conntrack_zones.h>
50#include <net/netfilter/nf_conntrack_timestamp.h>
51#include <net/netfilter/nf_conntrack_timeout.h>
52#include <net/netfilter/nf_conntrack_labels.h>
53#include <net/netfilter/nf_conntrack_synproxy.h>
54#include <net/netfilter/nf_nat.h>
55#include <net/netfilter/nf_nat_core.h>
56#include <net/netfilter/nf_nat_helper.h>
57
58#define NF_CONNTRACK_VERSION "0.5.0"
59
60int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
61 enum nf_nat_manip_type manip,
62 const struct nlattr *attr) __read_mostly;
63EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
64
65__cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
66EXPORT_SYMBOL_GPL(nf_conntrack_locks);
67
68__cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
69EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
70
71static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
72static __read_mostly seqcount_t nf_conntrack_generation;
73static __read_mostly bool nf_conntrack_locks_all;
74
75void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
76{
77 spin_lock(lock);
78 while (unlikely(nf_conntrack_locks_all)) {
79 spin_unlock(lock);
80 spin_unlock_wait(&nf_conntrack_locks_all_lock);
81 spin_lock(lock);
82 }
83}
84EXPORT_SYMBOL_GPL(nf_conntrack_lock);
85
86static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
87{
88 h1 %= CONNTRACK_LOCKS;
89 h2 %= CONNTRACK_LOCKS;
90 spin_unlock(&nf_conntrack_locks[h1]);
91 if (h1 != h2)
92 spin_unlock(&nf_conntrack_locks[h2]);
93}
94
95/* return true if we need to recompute hashes (in case hash table was resized) */
96static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
97 unsigned int h2, unsigned int sequence)
98{
99 h1 %= CONNTRACK_LOCKS;
100 h2 %= CONNTRACK_LOCKS;
101 if (h1 <= h2) {
102 nf_conntrack_lock(&nf_conntrack_locks[h1]);
103 if (h1 != h2)
104 spin_lock_nested(&nf_conntrack_locks[h2],
105 SINGLE_DEPTH_NESTING);
106 } else {
107 nf_conntrack_lock(&nf_conntrack_locks[h2]);
108 spin_lock_nested(&nf_conntrack_locks[h1],
109 SINGLE_DEPTH_NESTING);
110 }
111 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
112 nf_conntrack_double_unlock(h1, h2);
113 return true;
114 }
115 return false;
116}
117
118static void nf_conntrack_all_lock(void)
119{
120 int i;
121
122 spin_lock(&nf_conntrack_locks_all_lock);
123 nf_conntrack_locks_all = true;
124
125 for (i = 0; i < CONNTRACK_LOCKS; i++) {
126 spin_unlock_wait(&nf_conntrack_locks[i]);
127 }
128}
129
130static void nf_conntrack_all_unlock(void)
131{
132 nf_conntrack_locks_all = false;
133 spin_unlock(&nf_conntrack_locks_all_lock);
134}
135
136unsigned int nf_conntrack_htable_size __read_mostly;
137EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
138
139unsigned int nf_conntrack_max __read_mostly;
140EXPORT_SYMBOL_GPL(nf_conntrack_max);
141
142DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
143EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
144
145static unsigned int nf_conntrack_hash_rnd __read_mostly;
146
147static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple)
148{
149 unsigned int n;
150
151 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
152
153 /* The direction must be ignored, so we hash everything up to the
154 * destination ports (which is a multiple of 4) and treat the last
155 * three bytes manually.
156 */
157 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
158 return jhash2((u32 *)tuple, n, nf_conntrack_hash_rnd ^
159 (((__force __u16)tuple->dst.u.all << 16) |
160 tuple->dst.protonum));
161}
162
163static u32 __hash_bucket(u32 hash, unsigned int size)
164{
165 return reciprocal_scale(hash, size);
166}
167
168static u32 hash_bucket(u32 hash, const struct net *net)
169{
170 return __hash_bucket(hash, net->ct.htable_size);
171}
172
173static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
174 unsigned int size)
175{
176 return __hash_bucket(hash_conntrack_raw(tuple), size);
177}
178
179static inline u_int32_t hash_conntrack(const struct net *net,
180 const struct nf_conntrack_tuple *tuple)
181{
182 return __hash_conntrack(tuple, net->ct.htable_size);
183}
184
185bool
186nf_ct_get_tuple(const struct sk_buff *skb,
187 unsigned int nhoff,
188 unsigned int dataoff,
189 u_int16_t l3num,
190 u_int8_t protonum,
191 struct net *net,
192 struct nf_conntrack_tuple *tuple,
193 const struct nf_conntrack_l3proto *l3proto,
194 const struct nf_conntrack_l4proto *l4proto)
195{
196 memset(tuple, 0, sizeof(*tuple));
197
198 tuple->src.l3num = l3num;
199 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
200 return false;
201
202 tuple->dst.protonum = protonum;
203 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
204
205 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
206}
207EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
208
209bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
210 u_int16_t l3num,
211 struct net *net, struct nf_conntrack_tuple *tuple)
212{
213 struct nf_conntrack_l3proto *l3proto;
214 struct nf_conntrack_l4proto *l4proto;
215 unsigned int protoff;
216 u_int8_t protonum;
217 int ret;
218
219 rcu_read_lock();
220
221 l3proto = __nf_ct_l3proto_find(l3num);
222 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
223 if (ret != NF_ACCEPT) {
224 rcu_read_unlock();
225 return false;
226 }
227
228 l4proto = __nf_ct_l4proto_find(l3num, protonum);
229
230 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
231 l3proto, l4proto);
232
233 rcu_read_unlock();
234 return ret;
235}
236EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
237
238bool
239nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
240 const struct nf_conntrack_tuple *orig,
241 const struct nf_conntrack_l3proto *l3proto,
242 const struct nf_conntrack_l4proto *l4proto)
243{
244 memset(inverse, 0, sizeof(*inverse));
245
246 inverse->src.l3num = orig->src.l3num;
247 if (l3proto->invert_tuple(inverse, orig) == 0)
248 return false;
249
250 inverse->dst.dir = !orig->dst.dir;
251
252 inverse->dst.protonum = orig->dst.protonum;
253 return l4proto->invert_tuple(inverse, orig);
254}
255EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
256
257static void
258clean_from_lists(struct nf_conn *ct)
259{
260 pr_debug("clean_from_lists(%p)\n", ct);
261 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
262 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
263
264 /* Destroy all pending expectations */
265 nf_ct_remove_expectations(ct);
266}
267
268/* must be called with local_bh_disable */
269static void nf_ct_add_to_dying_list(struct nf_conn *ct)
270{
271 struct ct_pcpu *pcpu;
272
273 /* add this conntrack to the (per cpu) dying list */
274 ct->cpu = smp_processor_id();
275 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
276
277 spin_lock(&pcpu->lock);
278 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
279 &pcpu->dying);
280 spin_unlock(&pcpu->lock);
281}
282
283/* must be called with local_bh_disable */
284static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
285{
286 struct ct_pcpu *pcpu;
287
288 /* add this conntrack to the (per cpu) unconfirmed list */
289 ct->cpu = smp_processor_id();
290 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
291
292 spin_lock(&pcpu->lock);
293 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
294 &pcpu->unconfirmed);
295 spin_unlock(&pcpu->lock);
296}
297
298/* must be called with local_bh_disable */
299static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
300{
301 struct ct_pcpu *pcpu;
302
303 /* We overload first tuple to link into unconfirmed or dying list.*/
304 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
305
306 spin_lock(&pcpu->lock);
307 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
308 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
309 spin_unlock(&pcpu->lock);
310}
311
312/* Released via destroy_conntrack() */
313struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
314 const struct nf_conntrack_zone *zone,
315 gfp_t flags)
316{
317 struct nf_conn *tmpl;
318
319 tmpl = kzalloc(sizeof(*tmpl), flags);
320 if (tmpl == NULL)
321 return NULL;
322
323 tmpl->status = IPS_TEMPLATE;
324 write_pnet(&tmpl->ct_net, net);
325
326 if (nf_ct_zone_add(tmpl, flags, zone) < 0)
327 goto out_free;
328
329 atomic_set(&tmpl->ct_general.use, 0);
330
331 return tmpl;
332out_free:
333 kfree(tmpl);
334 return NULL;
335}
336EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
337
338void nf_ct_tmpl_free(struct nf_conn *tmpl)
339{
340 nf_ct_ext_destroy(tmpl);
341 nf_ct_ext_free(tmpl);
342 kfree(tmpl);
343}
344EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
345
346static void
347destroy_conntrack(struct nf_conntrack *nfct)
348{
349 struct nf_conn *ct = (struct nf_conn *)nfct;
350 struct net *net = nf_ct_net(ct);
351 struct nf_conntrack_l4proto *l4proto;
352
353 pr_debug("destroy_conntrack(%p)\n", ct);
354 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
355 NF_CT_ASSERT(!timer_pending(&ct->timeout));
356
357 if (unlikely(nf_ct_is_template(ct))) {
358 nf_ct_tmpl_free(ct);
359 return;
360 }
361 rcu_read_lock();
362 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
363 if (l4proto && l4proto->destroy)
364 l4proto->destroy(ct);
365
366 rcu_read_unlock();
367
368 local_bh_disable();
369 /* Expectations will have been removed in clean_from_lists,
370 * except TFTP can create an expectation on the first packet,
371 * before connection is in the list, so we need to clean here,
372 * too.
373 */
374 nf_ct_remove_expectations(ct);
375
376 nf_ct_del_from_dying_or_unconfirmed_list(ct);
377
378 NF_CT_STAT_INC(net, delete);
379 local_bh_enable();
380
381 if (ct->master)
382 nf_ct_put(ct->master);
383
384 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
385 nf_conntrack_free(ct);
386}
387
388static void nf_ct_delete_from_lists(struct nf_conn *ct)
389{
390 struct net *net = nf_ct_net(ct);
391 unsigned int hash, reply_hash;
392 unsigned int sequence;
393
394 nf_ct_helper_destroy(ct);
395
396 local_bh_disable();
397 do {
398 sequence = read_seqcount_begin(&nf_conntrack_generation);
399 hash = hash_conntrack(net,
400 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
401 reply_hash = hash_conntrack(net,
402 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
403 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
404
405 clean_from_lists(ct);
406 nf_conntrack_double_unlock(hash, reply_hash);
407
408 nf_ct_add_to_dying_list(ct);
409
410 NF_CT_STAT_INC(net, delete_list);
411 local_bh_enable();
412}
413
414bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
415{
416 struct nf_conn_tstamp *tstamp;
417
418 tstamp = nf_conn_tstamp_find(ct);
419 if (tstamp && tstamp->stop == 0)
420 tstamp->stop = ktime_get_real_ns();
421
422 if (nf_ct_is_dying(ct))
423 goto delete;
424
425 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
426 portid, report) < 0) {
427 /* destroy event was not delivered */
428 nf_ct_delete_from_lists(ct);
429 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
430 return false;
431 }
432
433 nf_conntrack_ecache_work(nf_ct_net(ct));
434 set_bit(IPS_DYING_BIT, &ct->status);
435 delete:
436 nf_ct_delete_from_lists(ct);
437 nf_ct_put(ct);
438 return true;
439}
440EXPORT_SYMBOL_GPL(nf_ct_delete);
441
442static void death_by_timeout(unsigned long ul_conntrack)
443{
444 nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
445}
446
447static inline bool
448nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
449 const struct nf_conntrack_tuple *tuple,
450 const struct nf_conntrack_zone *zone)
451{
452 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
453
454 /* A conntrack can be recreated with the equal tuple,
455 * so we need to check that the conntrack is confirmed
456 */
457 return nf_ct_tuple_equal(tuple, &h->tuple) &&
458 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
459 nf_ct_is_confirmed(ct);
460}
461
462/*
463 * Warning :
464 * - Caller must take a reference on returned object
465 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
466 */
467static struct nf_conntrack_tuple_hash *
468____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
469 const struct nf_conntrack_tuple *tuple, u32 hash)
470{
471 struct nf_conntrack_tuple_hash *h;
472 struct hlist_nulls_node *n;
473 unsigned int bucket = hash_bucket(hash, net);
474
475 /* Disable BHs the entire time since we normally need to disable them
476 * at least once for the stats anyway.
477 */
478 local_bh_disable();
479begin:
480 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
481 if (nf_ct_key_equal(h, tuple, zone)) {
482 NF_CT_STAT_INC(net, found);
483 local_bh_enable();
484 return h;
485 }
486 NF_CT_STAT_INC(net, searched);
487 }
488 /*
489 * if the nulls value we got at the end of this lookup is
490 * not the expected one, we must restart lookup.
491 * We probably met an item that was moved to another chain.
492 */
493 if (get_nulls_value(n) != bucket) {
494 NF_CT_STAT_INC(net, search_restart);
495 goto begin;
496 }
497 local_bh_enable();
498
499 return NULL;
500}
501
502/* Find a connection corresponding to a tuple. */
503static struct nf_conntrack_tuple_hash *
504__nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
505 const struct nf_conntrack_tuple *tuple, u32 hash)
506{
507 struct nf_conntrack_tuple_hash *h;
508 struct nf_conn *ct;
509
510 rcu_read_lock();
511begin:
512 h = ____nf_conntrack_find(net, zone, tuple, hash);
513 if (h) {
514 ct = nf_ct_tuplehash_to_ctrack(h);
515 if (unlikely(nf_ct_is_dying(ct) ||
516 !atomic_inc_not_zero(&ct->ct_general.use)))
517 h = NULL;
518 else {
519 if (unlikely(!nf_ct_key_equal(h, tuple, zone))) {
520 nf_ct_put(ct);
521 goto begin;
522 }
523 }
524 }
525 rcu_read_unlock();
526
527 return h;
528}
529
530struct nf_conntrack_tuple_hash *
531nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
532 const struct nf_conntrack_tuple *tuple)
533{
534 return __nf_conntrack_find_get(net, zone, tuple,
535 hash_conntrack_raw(tuple));
536}
537EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
538
539static void __nf_conntrack_hash_insert(struct nf_conn *ct,
540 unsigned int hash,
541 unsigned int reply_hash)
542{
543 struct net *net = nf_ct_net(ct);
544
545 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
546 &net->ct.hash[hash]);
547 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
548 &net->ct.hash[reply_hash]);
549}
550
551int
552nf_conntrack_hash_check_insert(struct nf_conn *ct)
553{
554 const struct nf_conntrack_zone *zone;
555 struct net *net = nf_ct_net(ct);
556 unsigned int hash, reply_hash;
557 struct nf_conntrack_tuple_hash *h;
558 struct hlist_nulls_node *n;
559 unsigned int sequence;
560
561 zone = nf_ct_zone(ct);
562
563 local_bh_disable();
564 do {
565 sequence = read_seqcount_begin(&nf_conntrack_generation);
566 hash = hash_conntrack(net,
567 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
568 reply_hash = hash_conntrack(net,
569 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
570 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
571
572 /* See if there's one in the list already, including reverse */
573 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
574 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
575 &h->tuple) &&
576 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
577 NF_CT_DIRECTION(h)))
578 goto out;
579 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
580 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
581 &h->tuple) &&
582 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
583 NF_CT_DIRECTION(h)))
584 goto out;
585
586 add_timer(&ct->timeout);
587 smp_wmb();
588 /* The caller holds a reference to this object */
589 atomic_set(&ct->ct_general.use, 2);
590 __nf_conntrack_hash_insert(ct, hash, reply_hash);
591 nf_conntrack_double_unlock(hash, reply_hash);
592 NF_CT_STAT_INC(net, insert);
593 local_bh_enable();
594 return 0;
595
596out:
597 nf_conntrack_double_unlock(hash, reply_hash);
598 NF_CT_STAT_INC(net, insert_failed);
599 local_bh_enable();
600 return -EEXIST;
601}
602EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
603
604/* Confirm a connection given skb; places it in hash table */
605int
606__nf_conntrack_confirm(struct sk_buff *skb)
607{
608 const struct nf_conntrack_zone *zone;
609 unsigned int hash, reply_hash;
610 struct nf_conntrack_tuple_hash *h;
611 struct nf_conn *ct;
612 struct nf_conn_help *help;
613 struct nf_conn_tstamp *tstamp;
614 struct hlist_nulls_node *n;
615 enum ip_conntrack_info ctinfo;
616 struct net *net;
617 unsigned int sequence;
618
619 ct = nf_ct_get(skb, &ctinfo);
620 net = nf_ct_net(ct);
621
622 /* ipt_REJECT uses nf_conntrack_attach to attach related
623 ICMP/TCP RST packets in other direction. Actual packet
624 which created connection will be IP_CT_NEW or for an
625 expected connection, IP_CT_RELATED. */
626 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
627 return NF_ACCEPT;
628
629 zone = nf_ct_zone(ct);
630 local_bh_disable();
631
632 do {
633 sequence = read_seqcount_begin(&nf_conntrack_generation);
634 /* reuse the hash saved before */
635 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
636 hash = hash_bucket(hash, net);
637 reply_hash = hash_conntrack(net,
638 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
639
640 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
641
642 /* We're not in hash table, and we refuse to set up related
643 * connections for unconfirmed conns. But packet copies and
644 * REJECT will give spurious warnings here.
645 */
646 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
647
648 /* No external references means no one else could have
649 * confirmed us.
650 */
651 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
652 pr_debug("Confirming conntrack %p\n", ct);
653 /* We have to check the DYING flag after unlink to prevent
654 * a race against nf_ct_get_next_corpse() possibly called from
655 * user context, else we insert an already 'dead' hash, blocking
656 * further use of that particular connection -JM.
657 */
658 nf_ct_del_from_dying_or_unconfirmed_list(ct);
659
660 if (unlikely(nf_ct_is_dying(ct)))
661 goto out;
662
663 /* See if there's one in the list already, including reverse:
664 NAT could have grabbed it without realizing, since we're
665 not in the hash. If there is, we lost race. */
666 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
667 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
668 &h->tuple) &&
669 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
670 NF_CT_DIRECTION(h)))
671 goto out;
672 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
673 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
674 &h->tuple) &&
675 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
676 NF_CT_DIRECTION(h)))
677 goto out;
678
679 /* Timer relative to confirmation time, not original
680 setting time, otherwise we'd get timer wrap in
681 weird delay cases. */
682 ct->timeout.expires += jiffies;
683 add_timer(&ct->timeout);
684 atomic_inc(&ct->ct_general.use);
685 ct->status |= IPS_CONFIRMED;
686
687 /* set conntrack timestamp, if enabled. */
688 tstamp = nf_conn_tstamp_find(ct);
689 if (tstamp) {
690 if (skb->tstamp.tv64 == 0)
691 __net_timestamp(skb);
692
693 tstamp->start = ktime_to_ns(skb->tstamp);
694 }
695 /* Since the lookup is lockless, hash insertion must be done after
696 * starting the timer and setting the CONFIRMED bit. The RCU barriers
697 * guarantee that no other CPU can find the conntrack before the above
698 * stores are visible.
699 */
700 __nf_conntrack_hash_insert(ct, hash, reply_hash);
701 nf_conntrack_double_unlock(hash, reply_hash);
702 NF_CT_STAT_INC(net, insert);
703 local_bh_enable();
704
705 help = nfct_help(ct);
706 if (help && help->helper)
707 nf_conntrack_event_cache(IPCT_HELPER, ct);
708
709 nf_conntrack_event_cache(master_ct(ct) ?
710 IPCT_RELATED : IPCT_NEW, ct);
711 return NF_ACCEPT;
712
713out:
714 nf_ct_add_to_dying_list(ct);
715 nf_conntrack_double_unlock(hash, reply_hash);
716 NF_CT_STAT_INC(net, insert_failed);
717 local_bh_enable();
718 return NF_DROP;
719}
720EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
721
722/* Returns true if a connection correspondings to the tuple (required
723 for NAT). */
724int
725nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
726 const struct nf_conn *ignored_conntrack)
727{
728 struct net *net = nf_ct_net(ignored_conntrack);
729 const struct nf_conntrack_zone *zone;
730 struct nf_conntrack_tuple_hash *h;
731 struct hlist_nulls_node *n;
732 struct nf_conn *ct;
733 unsigned int hash;
734
735 zone = nf_ct_zone(ignored_conntrack);
736 hash = hash_conntrack(net, tuple);
737
738 /* Disable BHs the entire time since we need to disable them at
739 * least once for the stats anyway.
740 */
741 rcu_read_lock_bh();
742 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
743 ct = nf_ct_tuplehash_to_ctrack(h);
744 if (ct != ignored_conntrack &&
745 nf_ct_tuple_equal(tuple, &h->tuple) &&
746 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h))) {
747 NF_CT_STAT_INC(net, found);
748 rcu_read_unlock_bh();
749 return 1;
750 }
751 NF_CT_STAT_INC(net, searched);
752 }
753 rcu_read_unlock_bh();
754
755 return 0;
756}
757EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
758
759#define NF_CT_EVICTION_RANGE 8
760
761/* There's a small race here where we may free a just-assured
762 connection. Too bad: we're in trouble anyway. */
763static noinline int early_drop(struct net *net, unsigned int _hash)
764{
765 /* Use oldest entry, which is roughly LRU */
766 struct nf_conntrack_tuple_hash *h;
767 struct nf_conn *ct = NULL, *tmp;
768 struct hlist_nulls_node *n;
769 unsigned int i = 0, cnt = 0;
770 int dropped = 0;
771 unsigned int hash, sequence;
772 spinlock_t *lockp;
773
774 local_bh_disable();
775restart:
776 sequence = read_seqcount_begin(&nf_conntrack_generation);
777 hash = hash_bucket(_hash, net);
778 for (; i < net->ct.htable_size; i++) {
779 lockp = &nf_conntrack_locks[hash % CONNTRACK_LOCKS];
780 nf_conntrack_lock(lockp);
781 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
782 spin_unlock(lockp);
783 goto restart;
784 }
785 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
786 hnnode) {
787 tmp = nf_ct_tuplehash_to_ctrack(h);
788 if (!test_bit(IPS_ASSURED_BIT, &tmp->status) &&
789 !nf_ct_is_dying(tmp) &&
790 atomic_inc_not_zero(&tmp->ct_general.use)) {
791 ct = tmp;
792 break;
793 }
794 cnt++;
795 }
796
797 hash = (hash + 1) % net->ct.htable_size;
798 spin_unlock(lockp);
799
800 if (ct || cnt >= NF_CT_EVICTION_RANGE)
801 break;
802
803 }
804 local_bh_enable();
805
806 if (!ct)
807 return dropped;
808
809 if (del_timer(&ct->timeout)) {
810 if (nf_ct_delete(ct, 0, 0)) {
811 dropped = 1;
812 NF_CT_STAT_INC_ATOMIC(net, early_drop);
813 }
814 }
815 nf_ct_put(ct);
816 return dropped;
817}
818
819static struct nf_conn *
820__nf_conntrack_alloc(struct net *net,
821 const struct nf_conntrack_zone *zone,
822 const struct nf_conntrack_tuple *orig,
823 const struct nf_conntrack_tuple *repl,
824 gfp_t gfp, u32 hash)
825{
826 struct nf_conn *ct;
827
828 /* We don't want any race condition at early drop stage */
829 atomic_inc(&net->ct.count);
830
831 if (nf_conntrack_max &&
832 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
833 if (!early_drop(net, hash)) {
834 atomic_dec(&net->ct.count);
835 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
836 return ERR_PTR(-ENOMEM);
837 }
838 }
839
840 /*
841 * Do not use kmem_cache_zalloc(), as this cache uses
842 * SLAB_DESTROY_BY_RCU.
843 */
844 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
845 if (ct == NULL)
846 goto out;
847
848 spin_lock_init(&ct->lock);
849 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
850 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
851 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
852 /* save hash for reusing when confirming */
853 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
854 ct->status = 0;
855 /* Don't set timer yet: wait for confirmation */
856 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
857 write_pnet(&ct->ct_net, net);
858 memset(&ct->__nfct_init_offset[0], 0,
859 offsetof(struct nf_conn, proto) -
860 offsetof(struct nf_conn, __nfct_init_offset[0]));
861
862 if (zone && nf_ct_zone_add(ct, GFP_ATOMIC, zone) < 0)
863 goto out_free;
864
865 /* Because we use RCU lookups, we set ct_general.use to zero before
866 * this is inserted in any list.
867 */
868 atomic_set(&ct->ct_general.use, 0);
869 return ct;
870out_free:
871 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
872out:
873 atomic_dec(&net->ct.count);
874 return ERR_PTR(-ENOMEM);
875}
876
877struct nf_conn *nf_conntrack_alloc(struct net *net,
878 const struct nf_conntrack_zone *zone,
879 const struct nf_conntrack_tuple *orig,
880 const struct nf_conntrack_tuple *repl,
881 gfp_t gfp)
882{
883 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
884}
885EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
886
887void nf_conntrack_free(struct nf_conn *ct)
888{
889 struct net *net = nf_ct_net(ct);
890
891 /* A freed object has refcnt == 0, that's
892 * the golden rule for SLAB_DESTROY_BY_RCU
893 */
894 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
895
896 nf_ct_ext_destroy(ct);
897 nf_ct_ext_free(ct);
898 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
899 smp_mb__before_atomic();
900 atomic_dec(&net->ct.count);
901}
902EXPORT_SYMBOL_GPL(nf_conntrack_free);
903
904
905/* Allocate a new conntrack: we return -ENOMEM if classification
906 failed due to stress. Otherwise it really is unclassifiable. */
907static struct nf_conntrack_tuple_hash *
908init_conntrack(struct net *net, struct nf_conn *tmpl,
909 const struct nf_conntrack_tuple *tuple,
910 struct nf_conntrack_l3proto *l3proto,
911 struct nf_conntrack_l4proto *l4proto,
912 struct sk_buff *skb,
913 unsigned int dataoff, u32 hash)
914{
915 struct nf_conn *ct;
916 struct nf_conn_help *help;
917 struct nf_conntrack_tuple repl_tuple;
918 struct nf_conntrack_ecache *ecache;
919 struct nf_conntrack_expect *exp = NULL;
920 const struct nf_conntrack_zone *zone;
921 struct nf_conn_timeout *timeout_ext;
922 struct nf_conntrack_zone tmp;
923 unsigned int *timeouts;
924
925 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
926 pr_debug("Can't invert tuple.\n");
927 return NULL;
928 }
929
930 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
931 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
932 hash);
933 if (IS_ERR(ct))
934 return (struct nf_conntrack_tuple_hash *)ct;
935
936 if (tmpl && nfct_synproxy(tmpl)) {
937 nfct_seqadj_ext_add(ct);
938 nfct_synproxy_ext_add(ct);
939 }
940
941 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
942 if (timeout_ext) {
943 timeouts = nf_ct_timeout_data(timeout_ext);
944 if (unlikely(!timeouts))
945 timeouts = l4proto->get_timeouts(net);
946 } else {
947 timeouts = l4proto->get_timeouts(net);
948 }
949
950 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
951 nf_conntrack_free(ct);
952 pr_debug("can't track with proto module\n");
953 return NULL;
954 }
955
956 if (timeout_ext)
957 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
958 GFP_ATOMIC);
959
960 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
961 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
962 nf_ct_labels_ext_add(ct);
963
964 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
965 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
966 ecache ? ecache->expmask : 0,
967 GFP_ATOMIC);
968
969 local_bh_disable();
970 if (net->ct.expect_count) {
971 spin_lock(&nf_conntrack_expect_lock);
972 exp = nf_ct_find_expectation(net, zone, tuple);
973 if (exp) {
974 pr_debug("expectation arrives ct=%p exp=%p\n",
975 ct, exp);
976 /* Welcome, Mr. Bond. We've been expecting you... */
977 __set_bit(IPS_EXPECTED_BIT, &ct->status);
978 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
979 ct->master = exp->master;
980 if (exp->helper) {
981 help = nf_ct_helper_ext_add(ct, exp->helper,
982 GFP_ATOMIC);
983 if (help)
984 rcu_assign_pointer(help->helper, exp->helper);
985 }
986
987#ifdef CONFIG_NF_CONNTRACK_MARK
988 ct->mark = exp->master->mark;
989#endif
990#ifdef CONFIG_NF_CONNTRACK_SECMARK
991 ct->secmark = exp->master->secmark;
992#endif
993 NF_CT_STAT_INC(net, expect_new);
994 }
995 spin_unlock(&nf_conntrack_expect_lock);
996 }
997 if (!exp) {
998 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
999 NF_CT_STAT_INC(net, new);
1000 }
1001
1002 /* Now it is inserted into the unconfirmed list, bump refcount */
1003 nf_conntrack_get(&ct->ct_general);
1004 nf_ct_add_to_unconfirmed_list(ct);
1005
1006 local_bh_enable();
1007
1008 if (exp) {
1009 if (exp->expectfn)
1010 exp->expectfn(ct, exp);
1011 nf_ct_expect_put(exp);
1012 }
1013
1014 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1015}
1016
1017/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1018static inline struct nf_conn *
1019resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1020 struct sk_buff *skb,
1021 unsigned int dataoff,
1022 u_int16_t l3num,
1023 u_int8_t protonum,
1024 struct nf_conntrack_l3proto *l3proto,
1025 struct nf_conntrack_l4proto *l4proto,
1026 int *set_reply,
1027 enum ip_conntrack_info *ctinfo)
1028{
1029 const struct nf_conntrack_zone *zone;
1030 struct nf_conntrack_tuple tuple;
1031 struct nf_conntrack_tuple_hash *h;
1032 struct nf_conntrack_zone tmp;
1033 struct nf_conn *ct;
1034 u32 hash;
1035
1036 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1037 dataoff, l3num, protonum, net, &tuple, l3proto,
1038 l4proto)) {
1039 pr_debug("Can't get tuple\n");
1040 return NULL;
1041 }
1042
1043 /* look for tuple match */
1044 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1045 hash = hash_conntrack_raw(&tuple);
1046 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1047 if (!h) {
1048 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1049 skb, dataoff, hash);
1050 if (!h)
1051 return NULL;
1052 if (IS_ERR(h))
1053 return (void *)h;
1054 }
1055 ct = nf_ct_tuplehash_to_ctrack(h);
1056
1057 /* It exists; we have (non-exclusive) reference. */
1058 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1059 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1060 /* Please set reply bit if this packet OK */
1061 *set_reply = 1;
1062 } else {
1063 /* Once we've had two way comms, always ESTABLISHED. */
1064 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1065 pr_debug("normal packet for %p\n", ct);
1066 *ctinfo = IP_CT_ESTABLISHED;
1067 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1068 pr_debug("related packet for %p\n", ct);
1069 *ctinfo = IP_CT_RELATED;
1070 } else {
1071 pr_debug("new packet for %p\n", ct);
1072 *ctinfo = IP_CT_NEW;
1073 }
1074 *set_reply = 0;
1075 }
1076 skb->nfct = &ct->ct_general;
1077 skb->nfctinfo = *ctinfo;
1078 return ct;
1079}
1080
1081unsigned int
1082nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1083 struct sk_buff *skb)
1084{
1085 struct nf_conn *ct, *tmpl = NULL;
1086 enum ip_conntrack_info ctinfo;
1087 struct nf_conntrack_l3proto *l3proto;
1088 struct nf_conntrack_l4proto *l4proto;
1089 unsigned int *timeouts;
1090 unsigned int dataoff;
1091 u_int8_t protonum;
1092 int set_reply = 0;
1093 int ret;
1094
1095 if (skb->nfct) {
1096 /* Previously seen (loopback or untracked)? Ignore. */
1097 tmpl = (struct nf_conn *)skb->nfct;
1098 if (!nf_ct_is_template(tmpl)) {
1099 NF_CT_STAT_INC_ATOMIC(net, ignore);
1100 return NF_ACCEPT;
1101 }
1102 skb->nfct = NULL;
1103 }
1104
1105 /* rcu_read_lock()ed by nf_hook_slow */
1106 l3proto = __nf_ct_l3proto_find(pf);
1107 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1108 &dataoff, &protonum);
1109 if (ret <= 0) {
1110 pr_debug("not prepared to track yet or error occurred\n");
1111 NF_CT_STAT_INC_ATOMIC(net, error);
1112 NF_CT_STAT_INC_ATOMIC(net, invalid);
1113 ret = -ret;
1114 goto out;
1115 }
1116
1117 l4proto = __nf_ct_l4proto_find(pf, protonum);
1118
1119 /* It may be an special packet, error, unclean...
1120 * inverse of the return code tells to the netfilter
1121 * core what to do with the packet. */
1122 if (l4proto->error != NULL) {
1123 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1124 pf, hooknum);
1125 if (ret <= 0) {
1126 NF_CT_STAT_INC_ATOMIC(net, error);
1127 NF_CT_STAT_INC_ATOMIC(net, invalid);
1128 ret = -ret;
1129 goto out;
1130 }
1131 /* ICMP[v6] protocol trackers may assign one conntrack. */
1132 if (skb->nfct)
1133 goto out;
1134 }
1135
1136 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1137 l3proto, l4proto, &set_reply, &ctinfo);
1138 if (!ct) {
1139 /* Not valid part of a connection */
1140 NF_CT_STAT_INC_ATOMIC(net, invalid);
1141 ret = NF_ACCEPT;
1142 goto out;
1143 }
1144
1145 if (IS_ERR(ct)) {
1146 /* Too stressed to deal. */
1147 NF_CT_STAT_INC_ATOMIC(net, drop);
1148 ret = NF_DROP;
1149 goto out;
1150 }
1151
1152 NF_CT_ASSERT(skb->nfct);
1153
1154 /* Decide what timeout policy we want to apply to this flow. */
1155 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1156
1157 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1158 if (ret <= 0) {
1159 /* Invalid: inverse of the return code tells
1160 * the netfilter core what to do */
1161 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1162 nf_conntrack_put(skb->nfct);
1163 skb->nfct = NULL;
1164 NF_CT_STAT_INC_ATOMIC(net, invalid);
1165 if (ret == -NF_DROP)
1166 NF_CT_STAT_INC_ATOMIC(net, drop);
1167 ret = -ret;
1168 goto out;
1169 }
1170
1171 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1172 nf_conntrack_event_cache(IPCT_REPLY, ct);
1173out:
1174 if (tmpl) {
1175 /* Special case: we have to repeat this hook, assign the
1176 * template again to this packet. We assume that this packet
1177 * has no conntrack assigned. This is used by nf_ct_tcp. */
1178 if (ret == NF_REPEAT)
1179 skb->nfct = (struct nf_conntrack *)tmpl;
1180 else
1181 nf_ct_put(tmpl);
1182 }
1183
1184 return ret;
1185}
1186EXPORT_SYMBOL_GPL(nf_conntrack_in);
1187
1188bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1189 const struct nf_conntrack_tuple *orig)
1190{
1191 bool ret;
1192
1193 rcu_read_lock();
1194 ret = nf_ct_invert_tuple(inverse, orig,
1195 __nf_ct_l3proto_find(orig->src.l3num),
1196 __nf_ct_l4proto_find(orig->src.l3num,
1197 orig->dst.protonum));
1198 rcu_read_unlock();
1199 return ret;
1200}
1201EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1202
1203/* Alter reply tuple (maybe alter helper). This is for NAT, and is
1204 implicitly racy: see __nf_conntrack_confirm */
1205void nf_conntrack_alter_reply(struct nf_conn *ct,
1206 const struct nf_conntrack_tuple *newreply)
1207{
1208 struct nf_conn_help *help = nfct_help(ct);
1209
1210 /* Should be unconfirmed, so not in hash table yet */
1211 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1212
1213 pr_debug("Altering reply tuple of %p to ", ct);
1214 nf_ct_dump_tuple(newreply);
1215
1216 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1217 if (ct->master || (help && !hlist_empty(&help->expectations)))
1218 return;
1219
1220 rcu_read_lock();
1221 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1222 rcu_read_unlock();
1223}
1224EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1225
1226/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1227void __nf_ct_refresh_acct(struct nf_conn *ct,
1228 enum ip_conntrack_info ctinfo,
1229 const struct sk_buff *skb,
1230 unsigned long extra_jiffies,
1231 int do_acct)
1232{
1233 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1234 NF_CT_ASSERT(skb);
1235
1236 /* Only update if this is not a fixed timeout */
1237 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1238 goto acct;
1239
1240 /* If not in hash table, timer will not be active yet */
1241 if (!nf_ct_is_confirmed(ct)) {
1242 ct->timeout.expires = extra_jiffies;
1243 } else {
1244 unsigned long newtime = jiffies + extra_jiffies;
1245
1246 /* Only update the timeout if the new timeout is at least
1247 HZ jiffies from the old timeout. Need del_timer for race
1248 avoidance (may already be dying). */
1249 if (newtime - ct->timeout.expires >= HZ)
1250 mod_timer_pending(&ct->timeout, newtime);
1251 }
1252
1253acct:
1254 if (do_acct) {
1255 struct nf_conn_acct *acct;
1256
1257 acct = nf_conn_acct_find(ct);
1258 if (acct) {
1259 struct nf_conn_counter *counter = acct->counter;
1260
1261 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1262 atomic64_add(skb->len, &counter[CTINFO2DIR(ctinfo)].bytes);
1263 }
1264 }
1265}
1266EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1267
1268bool __nf_ct_kill_acct(struct nf_conn *ct,
1269 enum ip_conntrack_info ctinfo,
1270 const struct sk_buff *skb,
1271 int do_acct)
1272{
1273 if (do_acct) {
1274 struct nf_conn_acct *acct;
1275
1276 acct = nf_conn_acct_find(ct);
1277 if (acct) {
1278 struct nf_conn_counter *counter = acct->counter;
1279
1280 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1281 atomic64_add(skb->len - skb_network_offset(skb),
1282 &counter[CTINFO2DIR(ctinfo)].bytes);
1283 }
1284 }
1285
1286 if (del_timer(&ct->timeout)) {
1287 ct->timeout.function((unsigned long)ct);
1288 return true;
1289 }
1290 return false;
1291}
1292EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1293
1294#ifdef CONFIG_NF_CONNTRACK_ZONES
1295static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1296 .len = sizeof(struct nf_conntrack_zone),
1297 .align = __alignof__(struct nf_conntrack_zone),
1298 .id = NF_CT_EXT_ZONE,
1299};
1300#endif
1301
1302#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1303
1304#include <linux/netfilter/nfnetlink.h>
1305#include <linux/netfilter/nfnetlink_conntrack.h>
1306#include <linux/mutex.h>
1307
1308/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1309 * in ip_conntrack_core, since we don't want the protocols to autoload
1310 * or depend on ctnetlink */
1311int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1312 const struct nf_conntrack_tuple *tuple)
1313{
1314 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1315 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1316 goto nla_put_failure;
1317 return 0;
1318
1319nla_put_failure:
1320 return -1;
1321}
1322EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1323
1324const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1325 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1326 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1327};
1328EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1329
1330int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1331 struct nf_conntrack_tuple *t)
1332{
1333 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1334 return -EINVAL;
1335
1336 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1337 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1338
1339 return 0;
1340}
1341EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1342
1343int nf_ct_port_nlattr_tuple_size(void)
1344{
1345 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1346}
1347EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1348#endif
1349
1350/* Used by ipt_REJECT and ip6t_REJECT. */
1351static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1352{
1353 struct nf_conn *ct;
1354 enum ip_conntrack_info ctinfo;
1355
1356 /* This ICMP is in reverse direction to the packet which caused it */
1357 ct = nf_ct_get(skb, &ctinfo);
1358 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1359 ctinfo = IP_CT_RELATED_REPLY;
1360 else
1361 ctinfo = IP_CT_RELATED;
1362
1363 /* Attach to new skbuff, and increment count */
1364 nskb->nfct = &ct->ct_general;
1365 nskb->nfctinfo = ctinfo;
1366 nf_conntrack_get(nskb->nfct);
1367}
1368
1369/* Bring out ya dead! */
1370static struct nf_conn *
1371get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1372 void *data, unsigned int *bucket)
1373{
1374 struct nf_conntrack_tuple_hash *h;
1375 struct nf_conn *ct;
1376 struct hlist_nulls_node *n;
1377 int cpu;
1378 spinlock_t *lockp;
1379
1380 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1381 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1382 local_bh_disable();
1383 nf_conntrack_lock(lockp);
1384 if (*bucket < net->ct.htable_size) {
1385 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1386 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1387 continue;
1388 ct = nf_ct_tuplehash_to_ctrack(h);
1389 if (iter(ct, data))
1390 goto found;
1391 }
1392 }
1393 spin_unlock(lockp);
1394 local_bh_enable();
1395 cond_resched();
1396 }
1397
1398 for_each_possible_cpu(cpu) {
1399 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1400
1401 spin_lock_bh(&pcpu->lock);
1402 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1403 ct = nf_ct_tuplehash_to_ctrack(h);
1404 if (iter(ct, data))
1405 set_bit(IPS_DYING_BIT, &ct->status);
1406 }
1407 spin_unlock_bh(&pcpu->lock);
1408 cond_resched();
1409 }
1410 return NULL;
1411found:
1412 atomic_inc(&ct->ct_general.use);
1413 spin_unlock(lockp);
1414 local_bh_enable();
1415 return ct;
1416}
1417
1418void nf_ct_iterate_cleanup(struct net *net,
1419 int (*iter)(struct nf_conn *i, void *data),
1420 void *data, u32 portid, int report)
1421{
1422 struct nf_conn *ct;
1423 unsigned int bucket = 0;
1424
1425 might_sleep();
1426
1427 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1428 /* Time to push up daises... */
1429 if (del_timer(&ct->timeout))
1430 nf_ct_delete(ct, portid, report);
1431
1432 /* ... else the timer will get him soon. */
1433
1434 nf_ct_put(ct);
1435 cond_resched();
1436 }
1437}
1438EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1439
1440static int kill_all(struct nf_conn *i, void *data)
1441{
1442 return 1;
1443}
1444
1445void nf_ct_free_hashtable(void *hash, unsigned int size)
1446{
1447 if (is_vmalloc_addr(hash))
1448 vfree(hash);
1449 else
1450 free_pages((unsigned long)hash,
1451 get_order(sizeof(struct hlist_head) * size));
1452}
1453EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1454
1455static int untrack_refs(void)
1456{
1457 int cnt = 0, cpu;
1458
1459 for_each_possible_cpu(cpu) {
1460 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1461
1462 cnt += atomic_read(&ct->ct_general.use) - 1;
1463 }
1464 return cnt;
1465}
1466
1467void nf_conntrack_cleanup_start(void)
1468{
1469 RCU_INIT_POINTER(ip_ct_attach, NULL);
1470}
1471
1472void nf_conntrack_cleanup_end(void)
1473{
1474 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1475 while (untrack_refs() > 0)
1476 schedule();
1477
1478#ifdef CONFIG_NF_CONNTRACK_ZONES
1479 nf_ct_extend_unregister(&nf_ct_zone_extend);
1480#endif
1481 nf_conntrack_proto_fini();
1482 nf_conntrack_seqadj_fini();
1483 nf_conntrack_labels_fini();
1484 nf_conntrack_helper_fini();
1485 nf_conntrack_timeout_fini();
1486 nf_conntrack_ecache_fini();
1487 nf_conntrack_tstamp_fini();
1488 nf_conntrack_acct_fini();
1489 nf_conntrack_expect_fini();
1490}
1491
1492/*
1493 * Mishearing the voices in his head, our hero wonders how he's
1494 * supposed to kill the mall.
1495 */
1496void nf_conntrack_cleanup_net(struct net *net)
1497{
1498 LIST_HEAD(single);
1499
1500 list_add(&net->exit_list, &single);
1501 nf_conntrack_cleanup_net_list(&single);
1502}
1503
1504void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1505{
1506 int busy;
1507 struct net *net;
1508
1509 /*
1510 * This makes sure all current packets have passed through
1511 * netfilter framework. Roll on, two-stage module
1512 * delete...
1513 */
1514 synchronize_net();
1515i_see_dead_people:
1516 busy = 0;
1517 list_for_each_entry(net, net_exit_list, exit_list) {
1518 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1519 if (atomic_read(&net->ct.count) != 0)
1520 busy = 1;
1521 }
1522 if (busy) {
1523 schedule();
1524 goto i_see_dead_people;
1525 }
1526
1527 list_for_each_entry(net, net_exit_list, exit_list) {
1528 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1529 nf_conntrack_proto_pernet_fini(net);
1530 nf_conntrack_helper_pernet_fini(net);
1531 nf_conntrack_ecache_pernet_fini(net);
1532 nf_conntrack_tstamp_pernet_fini(net);
1533 nf_conntrack_acct_pernet_fini(net);
1534 nf_conntrack_expect_pernet_fini(net);
1535 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1536 kfree(net->ct.slabname);
1537 free_percpu(net->ct.stat);
1538 free_percpu(net->ct.pcpu_lists);
1539 }
1540}
1541
1542void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1543{
1544 struct hlist_nulls_head *hash;
1545 unsigned int nr_slots, i;
1546 size_t sz;
1547
1548 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1549 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1550 sz = nr_slots * sizeof(struct hlist_nulls_head);
1551 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1552 get_order(sz));
1553 if (!hash)
1554 hash = vzalloc(sz);
1555
1556 if (hash && nulls)
1557 for (i = 0; i < nr_slots; i++)
1558 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1559
1560 return hash;
1561}
1562EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1563
1564int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1565{
1566 int i, bucket, rc;
1567 unsigned int hashsize, old_size;
1568 struct hlist_nulls_head *hash, *old_hash;
1569 struct nf_conntrack_tuple_hash *h;
1570 struct nf_conn *ct;
1571
1572 if (current->nsproxy->net_ns != &init_net)
1573 return -EOPNOTSUPP;
1574
1575 /* On boot, we can set this without any fancy locking. */
1576 if (!nf_conntrack_htable_size)
1577 return param_set_uint(val, kp);
1578
1579 rc = kstrtouint(val, 0, &hashsize);
1580 if (rc)
1581 return rc;
1582 if (!hashsize)
1583 return -EINVAL;
1584
1585 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1586 if (!hash)
1587 return -ENOMEM;
1588
1589 local_bh_disable();
1590 nf_conntrack_all_lock();
1591 write_seqcount_begin(&nf_conntrack_generation);
1592
1593 /* Lookups in the old hash might happen in parallel, which means we
1594 * might get false negatives during connection lookup. New connections
1595 * created because of a false negative won't make it into the hash
1596 * though since that required taking the locks.
1597 */
1598
1599 for (i = 0; i < init_net.ct.htable_size; i++) {
1600 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1601 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1602 struct nf_conntrack_tuple_hash, hnnode);
1603 ct = nf_ct_tuplehash_to_ctrack(h);
1604 hlist_nulls_del_rcu(&h->hnnode);
1605 bucket = __hash_conntrack(&h->tuple, hashsize);
1606 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1607 }
1608 }
1609 old_size = init_net.ct.htable_size;
1610 old_hash = init_net.ct.hash;
1611
1612 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1613 init_net.ct.hash = hash;
1614
1615 write_seqcount_end(&nf_conntrack_generation);
1616 nf_conntrack_all_unlock();
1617 local_bh_enable();
1618
1619 nf_ct_free_hashtable(old_hash, old_size);
1620 return 0;
1621}
1622EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1623
1624module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1625 &nf_conntrack_htable_size, 0600);
1626
1627void nf_ct_untracked_status_or(unsigned long bits)
1628{
1629 int cpu;
1630
1631 for_each_possible_cpu(cpu)
1632 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1633}
1634EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1635
1636int nf_conntrack_init_start(void)
1637{
1638 int max_factor = 8;
1639 int i, ret, cpu;
1640
1641 seqcount_init(&nf_conntrack_generation);
1642
1643 for (i = 0; i < CONNTRACK_LOCKS; i++)
1644 spin_lock_init(&nf_conntrack_locks[i]);
1645
1646 if (!nf_conntrack_htable_size) {
1647 /* Idea from tcp.c: use 1/16384 of memory.
1648 * On i386: 32MB machine has 512 buckets.
1649 * >= 1GB machines have 16384 buckets.
1650 * >= 4GB machines have 65536 buckets.
1651 */
1652 nf_conntrack_htable_size
1653 = (((totalram_pages << PAGE_SHIFT) / 16384)
1654 / sizeof(struct hlist_head));
1655 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1656 nf_conntrack_htable_size = 65536;
1657 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1658 nf_conntrack_htable_size = 16384;
1659 if (nf_conntrack_htable_size < 32)
1660 nf_conntrack_htable_size = 32;
1661
1662 /* Use a max. factor of four by default to get the same max as
1663 * with the old struct list_heads. When a table size is given
1664 * we use the old value of 8 to avoid reducing the max.
1665 * entries. */
1666 max_factor = 4;
1667 }
1668 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1669
1670 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1671 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1672 nf_conntrack_max);
1673
1674 ret = nf_conntrack_expect_init();
1675 if (ret < 0)
1676 goto err_expect;
1677
1678 ret = nf_conntrack_acct_init();
1679 if (ret < 0)
1680 goto err_acct;
1681
1682 ret = nf_conntrack_tstamp_init();
1683 if (ret < 0)
1684 goto err_tstamp;
1685
1686 ret = nf_conntrack_ecache_init();
1687 if (ret < 0)
1688 goto err_ecache;
1689
1690 ret = nf_conntrack_timeout_init();
1691 if (ret < 0)
1692 goto err_timeout;
1693
1694 ret = nf_conntrack_helper_init();
1695 if (ret < 0)
1696 goto err_helper;
1697
1698 ret = nf_conntrack_labels_init();
1699 if (ret < 0)
1700 goto err_labels;
1701
1702 ret = nf_conntrack_seqadj_init();
1703 if (ret < 0)
1704 goto err_seqadj;
1705
1706#ifdef CONFIG_NF_CONNTRACK_ZONES
1707 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1708 if (ret < 0)
1709 goto err_extend;
1710#endif
1711 ret = nf_conntrack_proto_init();
1712 if (ret < 0)
1713 goto err_proto;
1714
1715 /* Set up fake conntrack: to never be deleted, not in any hashes */
1716 for_each_possible_cpu(cpu) {
1717 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1718 write_pnet(&ct->ct_net, &init_net);
1719 atomic_set(&ct->ct_general.use, 1);
1720 }
1721 /* - and look it like as a confirmed connection */
1722 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1723 return 0;
1724
1725err_proto:
1726#ifdef CONFIG_NF_CONNTRACK_ZONES
1727 nf_ct_extend_unregister(&nf_ct_zone_extend);
1728err_extend:
1729#endif
1730 nf_conntrack_seqadj_fini();
1731err_seqadj:
1732 nf_conntrack_labels_fini();
1733err_labels:
1734 nf_conntrack_helper_fini();
1735err_helper:
1736 nf_conntrack_timeout_fini();
1737err_timeout:
1738 nf_conntrack_ecache_fini();
1739err_ecache:
1740 nf_conntrack_tstamp_fini();
1741err_tstamp:
1742 nf_conntrack_acct_fini();
1743err_acct:
1744 nf_conntrack_expect_fini();
1745err_expect:
1746 return ret;
1747}
1748
1749void nf_conntrack_init_end(void)
1750{
1751 /* For use by REJECT target */
1752 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1753 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1754}
1755
1756/*
1757 * We need to use special "null" values, not used in hash table
1758 */
1759#define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1760#define DYING_NULLS_VAL ((1<<30)+1)
1761#define TEMPLATE_NULLS_VAL ((1<<30)+2)
1762
1763int nf_conntrack_init_net(struct net *net)
1764{
1765 int ret = -ENOMEM;
1766 int cpu;
1767
1768 atomic_set(&net->ct.count, 0);
1769
1770 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1771 if (!net->ct.pcpu_lists)
1772 goto err_stat;
1773
1774 for_each_possible_cpu(cpu) {
1775 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1776
1777 spin_lock_init(&pcpu->lock);
1778 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1779 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1780 }
1781
1782 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1783 if (!net->ct.stat)
1784 goto err_pcpu_lists;
1785
1786 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1787 if (!net->ct.slabname)
1788 goto err_slabname;
1789
1790 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1791 sizeof(struct nf_conn), 0,
1792 SLAB_DESTROY_BY_RCU, NULL);
1793 if (!net->ct.nf_conntrack_cachep) {
1794 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1795 goto err_cache;
1796 }
1797
1798 net->ct.htable_size = nf_conntrack_htable_size;
1799 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1800 if (!net->ct.hash) {
1801 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1802 goto err_hash;
1803 }
1804 ret = nf_conntrack_expect_pernet_init(net);
1805 if (ret < 0)
1806 goto err_expect;
1807 ret = nf_conntrack_acct_pernet_init(net);
1808 if (ret < 0)
1809 goto err_acct;
1810 ret = nf_conntrack_tstamp_pernet_init(net);
1811 if (ret < 0)
1812 goto err_tstamp;
1813 ret = nf_conntrack_ecache_pernet_init(net);
1814 if (ret < 0)
1815 goto err_ecache;
1816 ret = nf_conntrack_helper_pernet_init(net);
1817 if (ret < 0)
1818 goto err_helper;
1819 ret = nf_conntrack_proto_pernet_init(net);
1820 if (ret < 0)
1821 goto err_proto;
1822 return 0;
1823
1824err_proto:
1825 nf_conntrack_helper_pernet_fini(net);
1826err_helper:
1827 nf_conntrack_ecache_pernet_fini(net);
1828err_ecache:
1829 nf_conntrack_tstamp_pernet_fini(net);
1830err_tstamp:
1831 nf_conntrack_acct_pernet_fini(net);
1832err_acct:
1833 nf_conntrack_expect_pernet_fini(net);
1834err_expect:
1835 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1836err_hash:
1837 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1838err_cache:
1839 kfree(net->ct.slabname);
1840err_slabname:
1841 free_percpu(net->ct.stat);
1842err_pcpu_lists:
1843 free_percpu(net->ct.pcpu_lists);
1844err_stat:
1845 return ret;
1846}