]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - net/netfilter/nf_conntrack_core.c
netfilter: nf_ct_labels: move initialization out of pernet_operations
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_conntrack_core.c
... / ...
CommitLineData
1/* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5/* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/types.h>
15#include <linux/netfilter.h>
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/skbuff.h>
19#include <linux/proc_fs.h>
20#include <linux/vmalloc.h>
21#include <linux/stddef.h>
22#include <linux/slab.h>
23#include <linux/random.h>
24#include <linux/jhash.h>
25#include <linux/err.h>
26#include <linux/percpu.h>
27#include <linux/moduleparam.h>
28#include <linux/notifier.h>
29#include <linux/kernel.h>
30#include <linux/netdevice.h>
31#include <linux/socket.h>
32#include <linux/mm.h>
33#include <linux/nsproxy.h>
34#include <linux/rculist_nulls.h>
35
36#include <net/netfilter/nf_conntrack.h>
37#include <net/netfilter/nf_conntrack_l3proto.h>
38#include <net/netfilter/nf_conntrack_l4proto.h>
39#include <net/netfilter/nf_conntrack_expect.h>
40#include <net/netfilter/nf_conntrack_helper.h>
41#include <net/netfilter/nf_conntrack_core.h>
42#include <net/netfilter/nf_conntrack_extend.h>
43#include <net/netfilter/nf_conntrack_acct.h>
44#include <net/netfilter/nf_conntrack_ecache.h>
45#include <net/netfilter/nf_conntrack_zones.h>
46#include <net/netfilter/nf_conntrack_timestamp.h>
47#include <net/netfilter/nf_conntrack_timeout.h>
48#include <net/netfilter/nf_conntrack_labels.h>
49#include <net/netfilter/nf_nat.h>
50#include <net/netfilter/nf_nat_core.h>
51
52#define NF_CONNTRACK_VERSION "0.5.0"
53
54int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
55 enum nf_nat_manip_type manip,
56 const struct nlattr *attr) __read_mostly;
57EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
58
59int (*nf_nat_seq_adjust_hook)(struct sk_buff *skb,
60 struct nf_conn *ct,
61 enum ip_conntrack_info ctinfo,
62 unsigned int protoff);
63EXPORT_SYMBOL_GPL(nf_nat_seq_adjust_hook);
64
65DEFINE_SPINLOCK(nf_conntrack_lock);
66EXPORT_SYMBOL_GPL(nf_conntrack_lock);
67
68unsigned int nf_conntrack_htable_size __read_mostly;
69EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
70
71unsigned int nf_conntrack_max __read_mostly;
72EXPORT_SYMBOL_GPL(nf_conntrack_max);
73
74DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
75EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
76
77unsigned int nf_conntrack_hash_rnd __read_mostly;
78EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
79
80static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
81{
82 unsigned int n;
83
84 /* The direction must be ignored, so we hash everything up to the
85 * destination ports (which is a multiple of 4) and treat the last
86 * three bytes manually.
87 */
88 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
89 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
90 (((__force __u16)tuple->dst.u.all << 16) |
91 tuple->dst.protonum));
92}
93
94static u32 __hash_bucket(u32 hash, unsigned int size)
95{
96 return ((u64)hash * size) >> 32;
97}
98
99static u32 hash_bucket(u32 hash, const struct net *net)
100{
101 return __hash_bucket(hash, net->ct.htable_size);
102}
103
104static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
105 u16 zone, unsigned int size)
106{
107 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
108}
109
110static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
111 const struct nf_conntrack_tuple *tuple)
112{
113 return __hash_conntrack(tuple, zone, net->ct.htable_size);
114}
115
116bool
117nf_ct_get_tuple(const struct sk_buff *skb,
118 unsigned int nhoff,
119 unsigned int dataoff,
120 u_int16_t l3num,
121 u_int8_t protonum,
122 struct nf_conntrack_tuple *tuple,
123 const struct nf_conntrack_l3proto *l3proto,
124 const struct nf_conntrack_l4proto *l4proto)
125{
126 memset(tuple, 0, sizeof(*tuple));
127
128 tuple->src.l3num = l3num;
129 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
130 return false;
131
132 tuple->dst.protonum = protonum;
133 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
134
135 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
136}
137EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
138
139bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
140 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
141{
142 struct nf_conntrack_l3proto *l3proto;
143 struct nf_conntrack_l4proto *l4proto;
144 unsigned int protoff;
145 u_int8_t protonum;
146 int ret;
147
148 rcu_read_lock();
149
150 l3proto = __nf_ct_l3proto_find(l3num);
151 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
152 if (ret != NF_ACCEPT) {
153 rcu_read_unlock();
154 return false;
155 }
156
157 l4proto = __nf_ct_l4proto_find(l3num, protonum);
158
159 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
160 l3proto, l4proto);
161
162 rcu_read_unlock();
163 return ret;
164}
165EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
166
167bool
168nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
169 const struct nf_conntrack_tuple *orig,
170 const struct nf_conntrack_l3proto *l3proto,
171 const struct nf_conntrack_l4proto *l4proto)
172{
173 memset(inverse, 0, sizeof(*inverse));
174
175 inverse->src.l3num = orig->src.l3num;
176 if (l3proto->invert_tuple(inverse, orig) == 0)
177 return false;
178
179 inverse->dst.dir = !orig->dst.dir;
180
181 inverse->dst.protonum = orig->dst.protonum;
182 return l4proto->invert_tuple(inverse, orig);
183}
184EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
185
186static void
187clean_from_lists(struct nf_conn *ct)
188{
189 pr_debug("clean_from_lists(%p)\n", ct);
190 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
191 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
192
193 /* Destroy all pending expectations */
194 nf_ct_remove_expectations(ct);
195}
196
197static void
198destroy_conntrack(struct nf_conntrack *nfct)
199{
200 struct nf_conn *ct = (struct nf_conn *)nfct;
201 struct net *net = nf_ct_net(ct);
202 struct nf_conntrack_l4proto *l4proto;
203
204 pr_debug("destroy_conntrack(%p)\n", ct);
205 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
206 NF_CT_ASSERT(!timer_pending(&ct->timeout));
207
208 /* To make sure we don't get any weird locking issues here:
209 * destroy_conntrack() MUST NOT be called with a write lock
210 * to nf_conntrack_lock!!! -HW */
211 rcu_read_lock();
212 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
213 if (l4proto && l4proto->destroy)
214 l4proto->destroy(ct);
215
216 rcu_read_unlock();
217
218 spin_lock_bh(&nf_conntrack_lock);
219 /* Expectations will have been removed in clean_from_lists,
220 * except TFTP can create an expectation on the first packet,
221 * before connection is in the list, so we need to clean here,
222 * too. */
223 nf_ct_remove_expectations(ct);
224
225 /* We overload first tuple to link into unconfirmed or dying list.*/
226 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
227 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
228
229 NF_CT_STAT_INC(net, delete);
230 spin_unlock_bh(&nf_conntrack_lock);
231
232 if (ct->master)
233 nf_ct_put(ct->master);
234
235 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
236 nf_conntrack_free(ct);
237}
238
239void nf_ct_delete_from_lists(struct nf_conn *ct)
240{
241 struct net *net = nf_ct_net(ct);
242
243 nf_ct_helper_destroy(ct);
244 spin_lock_bh(&nf_conntrack_lock);
245 /* Inside lock so preempt is disabled on module removal path.
246 * Otherwise we can get spurious warnings. */
247 NF_CT_STAT_INC(net, delete_list);
248 clean_from_lists(ct);
249 /* add this conntrack to the dying list */
250 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
251 &net->ct.dying);
252 spin_unlock_bh(&nf_conntrack_lock);
253}
254EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
255
256static void death_by_event(unsigned long ul_conntrack)
257{
258 struct nf_conn *ct = (void *)ul_conntrack;
259 struct net *net = nf_ct_net(ct);
260 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
261
262 BUG_ON(ecache == NULL);
263
264 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
265 /* bad luck, let's retry again */
266 ecache->timeout.expires = jiffies +
267 (random32() % net->ct.sysctl_events_retry_timeout);
268 add_timer(&ecache->timeout);
269 return;
270 }
271 /* we've got the event delivered, now it's dying */
272 set_bit(IPS_DYING_BIT, &ct->status);
273 nf_ct_put(ct);
274}
275
276void nf_ct_dying_timeout(struct nf_conn *ct)
277{
278 struct net *net = nf_ct_net(ct);
279 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
280
281 BUG_ON(ecache == NULL);
282
283 /* set a new timer to retry event delivery */
284 setup_timer(&ecache->timeout, death_by_event, (unsigned long)ct);
285 ecache->timeout.expires = jiffies +
286 (random32() % net->ct.sysctl_events_retry_timeout);
287 add_timer(&ecache->timeout);
288}
289EXPORT_SYMBOL_GPL(nf_ct_dying_timeout);
290
291static void death_by_timeout(unsigned long ul_conntrack)
292{
293 struct nf_conn *ct = (void *)ul_conntrack;
294 struct nf_conn_tstamp *tstamp;
295
296 tstamp = nf_conn_tstamp_find(ct);
297 if (tstamp && tstamp->stop == 0)
298 tstamp->stop = ktime_to_ns(ktime_get_real());
299
300 if (!test_bit(IPS_DYING_BIT, &ct->status) &&
301 unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
302 /* destroy event was not delivered */
303 nf_ct_delete_from_lists(ct);
304 nf_ct_dying_timeout(ct);
305 return;
306 }
307 set_bit(IPS_DYING_BIT, &ct->status);
308 nf_ct_delete_from_lists(ct);
309 nf_ct_put(ct);
310}
311
312/*
313 * Warning :
314 * - Caller must take a reference on returned object
315 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
316 * OR
317 * - Caller must lock nf_conntrack_lock before calling this function
318 */
319static struct nf_conntrack_tuple_hash *
320____nf_conntrack_find(struct net *net, u16 zone,
321 const struct nf_conntrack_tuple *tuple, u32 hash)
322{
323 struct nf_conntrack_tuple_hash *h;
324 struct hlist_nulls_node *n;
325 unsigned int bucket = hash_bucket(hash, net);
326
327 /* Disable BHs the entire time since we normally need to disable them
328 * at least once for the stats anyway.
329 */
330 local_bh_disable();
331begin:
332 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
333 if (nf_ct_tuple_equal(tuple, &h->tuple) &&
334 nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
335 NF_CT_STAT_INC(net, found);
336 local_bh_enable();
337 return h;
338 }
339 NF_CT_STAT_INC(net, searched);
340 }
341 /*
342 * if the nulls value we got at the end of this lookup is
343 * not the expected one, we must restart lookup.
344 * We probably met an item that was moved to another chain.
345 */
346 if (get_nulls_value(n) != bucket) {
347 NF_CT_STAT_INC(net, search_restart);
348 goto begin;
349 }
350 local_bh_enable();
351
352 return NULL;
353}
354
355struct nf_conntrack_tuple_hash *
356__nf_conntrack_find(struct net *net, u16 zone,
357 const struct nf_conntrack_tuple *tuple)
358{
359 return ____nf_conntrack_find(net, zone, tuple,
360 hash_conntrack_raw(tuple, zone));
361}
362EXPORT_SYMBOL_GPL(__nf_conntrack_find);
363
364/* Find a connection corresponding to a tuple. */
365static struct nf_conntrack_tuple_hash *
366__nf_conntrack_find_get(struct net *net, u16 zone,
367 const struct nf_conntrack_tuple *tuple, u32 hash)
368{
369 struct nf_conntrack_tuple_hash *h;
370 struct nf_conn *ct;
371
372 rcu_read_lock();
373begin:
374 h = ____nf_conntrack_find(net, zone, tuple, hash);
375 if (h) {
376 ct = nf_ct_tuplehash_to_ctrack(h);
377 if (unlikely(nf_ct_is_dying(ct) ||
378 !atomic_inc_not_zero(&ct->ct_general.use)))
379 h = NULL;
380 else {
381 if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
382 nf_ct_zone(ct) != zone)) {
383 nf_ct_put(ct);
384 goto begin;
385 }
386 }
387 }
388 rcu_read_unlock();
389
390 return h;
391}
392
393struct nf_conntrack_tuple_hash *
394nf_conntrack_find_get(struct net *net, u16 zone,
395 const struct nf_conntrack_tuple *tuple)
396{
397 return __nf_conntrack_find_get(net, zone, tuple,
398 hash_conntrack_raw(tuple, zone));
399}
400EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
401
402static void __nf_conntrack_hash_insert(struct nf_conn *ct,
403 unsigned int hash,
404 unsigned int repl_hash)
405{
406 struct net *net = nf_ct_net(ct);
407
408 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
409 &net->ct.hash[hash]);
410 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
411 &net->ct.hash[repl_hash]);
412}
413
414int
415nf_conntrack_hash_check_insert(struct nf_conn *ct)
416{
417 struct net *net = nf_ct_net(ct);
418 unsigned int hash, repl_hash;
419 struct nf_conntrack_tuple_hash *h;
420 struct hlist_nulls_node *n;
421 u16 zone;
422
423 zone = nf_ct_zone(ct);
424 hash = hash_conntrack(net, zone,
425 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
426 repl_hash = hash_conntrack(net, zone,
427 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
428
429 spin_lock_bh(&nf_conntrack_lock);
430
431 /* See if there's one in the list already, including reverse */
432 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
433 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
434 &h->tuple) &&
435 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
436 goto out;
437 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
438 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
439 &h->tuple) &&
440 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
441 goto out;
442
443 add_timer(&ct->timeout);
444 nf_conntrack_get(&ct->ct_general);
445 __nf_conntrack_hash_insert(ct, hash, repl_hash);
446 NF_CT_STAT_INC(net, insert);
447 spin_unlock_bh(&nf_conntrack_lock);
448
449 return 0;
450
451out:
452 NF_CT_STAT_INC(net, insert_failed);
453 spin_unlock_bh(&nf_conntrack_lock);
454 return -EEXIST;
455}
456EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
457
458/* Confirm a connection given skb; places it in hash table */
459int
460__nf_conntrack_confirm(struct sk_buff *skb)
461{
462 unsigned int hash, repl_hash;
463 struct nf_conntrack_tuple_hash *h;
464 struct nf_conn *ct;
465 struct nf_conn_help *help;
466 struct nf_conn_tstamp *tstamp;
467 struct hlist_nulls_node *n;
468 enum ip_conntrack_info ctinfo;
469 struct net *net;
470 u16 zone;
471
472 ct = nf_ct_get(skb, &ctinfo);
473 net = nf_ct_net(ct);
474
475 /* ipt_REJECT uses nf_conntrack_attach to attach related
476 ICMP/TCP RST packets in other direction. Actual packet
477 which created connection will be IP_CT_NEW or for an
478 expected connection, IP_CT_RELATED. */
479 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
480 return NF_ACCEPT;
481
482 zone = nf_ct_zone(ct);
483 /* reuse the hash saved before */
484 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
485 hash = hash_bucket(hash, net);
486 repl_hash = hash_conntrack(net, zone,
487 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
488
489 /* We're not in hash table, and we refuse to set up related
490 connections for unconfirmed conns. But packet copies and
491 REJECT will give spurious warnings here. */
492 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
493
494 /* No external references means no one else could have
495 confirmed us. */
496 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
497 pr_debug("Confirming conntrack %p\n", ct);
498
499 spin_lock_bh(&nf_conntrack_lock);
500
501 /* We have to check the DYING flag inside the lock to prevent
502 a race against nf_ct_get_next_corpse() possibly called from
503 user context, else we insert an already 'dead' hash, blocking
504 further use of that particular connection -JM */
505
506 if (unlikely(nf_ct_is_dying(ct))) {
507 spin_unlock_bh(&nf_conntrack_lock);
508 return NF_ACCEPT;
509 }
510
511 /* See if there's one in the list already, including reverse:
512 NAT could have grabbed it without realizing, since we're
513 not in the hash. If there is, we lost race. */
514 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
515 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
516 &h->tuple) &&
517 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
518 goto out;
519 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
520 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
521 &h->tuple) &&
522 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
523 goto out;
524
525 /* Remove from unconfirmed list */
526 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
527
528 /* Timer relative to confirmation time, not original
529 setting time, otherwise we'd get timer wrap in
530 weird delay cases. */
531 ct->timeout.expires += jiffies;
532 add_timer(&ct->timeout);
533 atomic_inc(&ct->ct_general.use);
534 ct->status |= IPS_CONFIRMED;
535
536 /* set conntrack timestamp, if enabled. */
537 tstamp = nf_conn_tstamp_find(ct);
538 if (tstamp) {
539 if (skb->tstamp.tv64 == 0)
540 __net_timestamp(skb);
541
542 tstamp->start = ktime_to_ns(skb->tstamp);
543 }
544 /* Since the lookup is lockless, hash insertion must be done after
545 * starting the timer and setting the CONFIRMED bit. The RCU barriers
546 * guarantee that no other CPU can find the conntrack before the above
547 * stores are visible.
548 */
549 __nf_conntrack_hash_insert(ct, hash, repl_hash);
550 NF_CT_STAT_INC(net, insert);
551 spin_unlock_bh(&nf_conntrack_lock);
552
553 help = nfct_help(ct);
554 if (help && help->helper)
555 nf_conntrack_event_cache(IPCT_HELPER, ct);
556
557 nf_conntrack_event_cache(master_ct(ct) ?
558 IPCT_RELATED : IPCT_NEW, ct);
559 return NF_ACCEPT;
560
561out:
562 NF_CT_STAT_INC(net, insert_failed);
563 spin_unlock_bh(&nf_conntrack_lock);
564 return NF_DROP;
565}
566EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
567
568/* Returns true if a connection correspondings to the tuple (required
569 for NAT). */
570int
571nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
572 const struct nf_conn *ignored_conntrack)
573{
574 struct net *net = nf_ct_net(ignored_conntrack);
575 struct nf_conntrack_tuple_hash *h;
576 struct hlist_nulls_node *n;
577 struct nf_conn *ct;
578 u16 zone = nf_ct_zone(ignored_conntrack);
579 unsigned int hash = hash_conntrack(net, zone, tuple);
580
581 /* Disable BHs the entire time since we need to disable them at
582 * least once for the stats anyway.
583 */
584 rcu_read_lock_bh();
585 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
586 ct = nf_ct_tuplehash_to_ctrack(h);
587 if (ct != ignored_conntrack &&
588 nf_ct_tuple_equal(tuple, &h->tuple) &&
589 nf_ct_zone(ct) == zone) {
590 NF_CT_STAT_INC(net, found);
591 rcu_read_unlock_bh();
592 return 1;
593 }
594 NF_CT_STAT_INC(net, searched);
595 }
596 rcu_read_unlock_bh();
597
598 return 0;
599}
600EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
601
602#define NF_CT_EVICTION_RANGE 8
603
604/* There's a small race here where we may free a just-assured
605 connection. Too bad: we're in trouble anyway. */
606static noinline int early_drop(struct net *net, unsigned int hash)
607{
608 /* Use oldest entry, which is roughly LRU */
609 struct nf_conntrack_tuple_hash *h;
610 struct nf_conn *ct = NULL, *tmp;
611 struct hlist_nulls_node *n;
612 unsigned int i, cnt = 0;
613 int dropped = 0;
614
615 rcu_read_lock();
616 for (i = 0; i < net->ct.htable_size; i++) {
617 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
618 hnnode) {
619 tmp = nf_ct_tuplehash_to_ctrack(h);
620 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
621 ct = tmp;
622 cnt++;
623 }
624
625 if (ct != NULL) {
626 if (likely(!nf_ct_is_dying(ct) &&
627 atomic_inc_not_zero(&ct->ct_general.use)))
628 break;
629 else
630 ct = NULL;
631 }
632
633 if (cnt >= NF_CT_EVICTION_RANGE)
634 break;
635
636 hash = (hash + 1) % net->ct.htable_size;
637 }
638 rcu_read_unlock();
639
640 if (!ct)
641 return dropped;
642
643 if (del_timer(&ct->timeout)) {
644 death_by_timeout((unsigned long)ct);
645 /* Check if we indeed killed this entry. Reliable event
646 delivery may have inserted it into the dying list. */
647 if (test_bit(IPS_DYING_BIT, &ct->status)) {
648 dropped = 1;
649 NF_CT_STAT_INC_ATOMIC(net, early_drop);
650 }
651 }
652 nf_ct_put(ct);
653 return dropped;
654}
655
656void init_nf_conntrack_hash_rnd(void)
657{
658 unsigned int rand;
659
660 /*
661 * Why not initialize nf_conntrack_rnd in a "init()" function ?
662 * Because there isn't enough entropy when system initializing,
663 * and we initialize it as late as possible.
664 */
665 do {
666 get_random_bytes(&rand, sizeof(rand));
667 } while (!rand);
668 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
669}
670
671static struct nf_conn *
672__nf_conntrack_alloc(struct net *net, u16 zone,
673 const struct nf_conntrack_tuple *orig,
674 const struct nf_conntrack_tuple *repl,
675 gfp_t gfp, u32 hash)
676{
677 struct nf_conn *ct;
678
679 if (unlikely(!nf_conntrack_hash_rnd)) {
680 init_nf_conntrack_hash_rnd();
681 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
682 hash = hash_conntrack_raw(orig, zone);
683 }
684
685 /* We don't want any race condition at early drop stage */
686 atomic_inc(&net->ct.count);
687
688 if (nf_conntrack_max &&
689 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
690 if (!early_drop(net, hash_bucket(hash, net))) {
691 atomic_dec(&net->ct.count);
692 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
693 return ERR_PTR(-ENOMEM);
694 }
695 }
696
697 /*
698 * Do not use kmem_cache_zalloc(), as this cache uses
699 * SLAB_DESTROY_BY_RCU.
700 */
701 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
702 if (ct == NULL) {
703 atomic_dec(&net->ct.count);
704 return ERR_PTR(-ENOMEM);
705 }
706 /*
707 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
708 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
709 */
710 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
711 offsetof(struct nf_conn, proto) -
712 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
713 spin_lock_init(&ct->lock);
714 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
715 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
716 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
717 /* save hash for reusing when confirming */
718 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
719 /* Don't set timer yet: wait for confirmation */
720 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
721 write_pnet(&ct->ct_net, net);
722#ifdef CONFIG_NF_CONNTRACK_ZONES
723 if (zone) {
724 struct nf_conntrack_zone *nf_ct_zone;
725
726 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
727 if (!nf_ct_zone)
728 goto out_free;
729 nf_ct_zone->id = zone;
730 }
731#endif
732 /*
733 * changes to lookup keys must be done before setting refcnt to 1
734 */
735 smp_wmb();
736 atomic_set(&ct->ct_general.use, 1);
737 return ct;
738
739#ifdef CONFIG_NF_CONNTRACK_ZONES
740out_free:
741 atomic_dec(&net->ct.count);
742 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
743 return ERR_PTR(-ENOMEM);
744#endif
745}
746
747struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
748 const struct nf_conntrack_tuple *orig,
749 const struct nf_conntrack_tuple *repl,
750 gfp_t gfp)
751{
752 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
753}
754EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
755
756void nf_conntrack_free(struct nf_conn *ct)
757{
758 struct net *net = nf_ct_net(ct);
759
760 nf_ct_ext_destroy(ct);
761 atomic_dec(&net->ct.count);
762 nf_ct_ext_free(ct);
763 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
764}
765EXPORT_SYMBOL_GPL(nf_conntrack_free);
766
767
768/* Allocate a new conntrack: we return -ENOMEM if classification
769 failed due to stress. Otherwise it really is unclassifiable. */
770static struct nf_conntrack_tuple_hash *
771init_conntrack(struct net *net, struct nf_conn *tmpl,
772 const struct nf_conntrack_tuple *tuple,
773 struct nf_conntrack_l3proto *l3proto,
774 struct nf_conntrack_l4proto *l4proto,
775 struct sk_buff *skb,
776 unsigned int dataoff, u32 hash)
777{
778 struct nf_conn *ct;
779 struct nf_conn_help *help;
780 struct nf_conntrack_tuple repl_tuple;
781 struct nf_conntrack_ecache *ecache;
782 struct nf_conntrack_expect *exp;
783 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
784 struct nf_conn_timeout *timeout_ext;
785 unsigned int *timeouts;
786
787 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
788 pr_debug("Can't invert tuple.\n");
789 return NULL;
790 }
791
792 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
793 hash);
794 if (IS_ERR(ct))
795 return (struct nf_conntrack_tuple_hash *)ct;
796
797 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
798 if (timeout_ext)
799 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
800 else
801 timeouts = l4proto->get_timeouts(net);
802
803 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
804 nf_conntrack_free(ct);
805 pr_debug("init conntrack: can't track with proto module\n");
806 return NULL;
807 }
808
809 if (timeout_ext)
810 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
811
812 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
813 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
814 nf_ct_labels_ext_add(ct);
815
816 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
817 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
818 ecache ? ecache->expmask : 0,
819 GFP_ATOMIC);
820
821 spin_lock_bh(&nf_conntrack_lock);
822 exp = nf_ct_find_expectation(net, zone, tuple);
823 if (exp) {
824 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
825 ct, exp);
826 /* Welcome, Mr. Bond. We've been expecting you... */
827 __set_bit(IPS_EXPECTED_BIT, &ct->status);
828 ct->master = exp->master;
829 if (exp->helper) {
830 help = nf_ct_helper_ext_add(ct, exp->helper,
831 GFP_ATOMIC);
832 if (help)
833 rcu_assign_pointer(help->helper, exp->helper);
834 }
835
836#ifdef CONFIG_NF_CONNTRACK_MARK
837 ct->mark = exp->master->mark;
838#endif
839#ifdef CONFIG_NF_CONNTRACK_SECMARK
840 ct->secmark = exp->master->secmark;
841#endif
842 nf_conntrack_get(&ct->master->ct_general);
843 NF_CT_STAT_INC(net, expect_new);
844 } else {
845 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
846 NF_CT_STAT_INC(net, new);
847 }
848
849 /* Overload tuple linked list to put us in unconfirmed list. */
850 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
851 &net->ct.unconfirmed);
852
853 spin_unlock_bh(&nf_conntrack_lock);
854
855 if (exp) {
856 if (exp->expectfn)
857 exp->expectfn(ct, exp);
858 nf_ct_expect_put(exp);
859 }
860
861 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
862}
863
864/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
865static inline struct nf_conn *
866resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
867 struct sk_buff *skb,
868 unsigned int dataoff,
869 u_int16_t l3num,
870 u_int8_t protonum,
871 struct nf_conntrack_l3proto *l3proto,
872 struct nf_conntrack_l4proto *l4proto,
873 int *set_reply,
874 enum ip_conntrack_info *ctinfo)
875{
876 struct nf_conntrack_tuple tuple;
877 struct nf_conntrack_tuple_hash *h;
878 struct nf_conn *ct;
879 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
880 u32 hash;
881
882 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
883 dataoff, l3num, protonum, &tuple, l3proto,
884 l4proto)) {
885 pr_debug("resolve_normal_ct: Can't get tuple\n");
886 return NULL;
887 }
888
889 /* look for tuple match */
890 hash = hash_conntrack_raw(&tuple, zone);
891 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
892 if (!h) {
893 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
894 skb, dataoff, hash);
895 if (!h)
896 return NULL;
897 if (IS_ERR(h))
898 return (void *)h;
899 }
900 ct = nf_ct_tuplehash_to_ctrack(h);
901
902 /* It exists; we have (non-exclusive) reference. */
903 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
904 *ctinfo = IP_CT_ESTABLISHED_REPLY;
905 /* Please set reply bit if this packet OK */
906 *set_reply = 1;
907 } else {
908 /* Once we've had two way comms, always ESTABLISHED. */
909 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
910 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
911 *ctinfo = IP_CT_ESTABLISHED;
912 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
913 pr_debug("nf_conntrack_in: related packet for %p\n",
914 ct);
915 *ctinfo = IP_CT_RELATED;
916 } else {
917 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
918 *ctinfo = IP_CT_NEW;
919 }
920 *set_reply = 0;
921 }
922 skb->nfct = &ct->ct_general;
923 skb->nfctinfo = *ctinfo;
924 return ct;
925}
926
927unsigned int
928nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
929 struct sk_buff *skb)
930{
931 struct nf_conn *ct, *tmpl = NULL;
932 enum ip_conntrack_info ctinfo;
933 struct nf_conntrack_l3proto *l3proto;
934 struct nf_conntrack_l4proto *l4proto;
935 unsigned int *timeouts;
936 unsigned int dataoff;
937 u_int8_t protonum;
938 int set_reply = 0;
939 int ret;
940
941 if (skb->nfct) {
942 /* Previously seen (loopback or untracked)? Ignore. */
943 tmpl = (struct nf_conn *)skb->nfct;
944 if (!nf_ct_is_template(tmpl)) {
945 NF_CT_STAT_INC_ATOMIC(net, ignore);
946 return NF_ACCEPT;
947 }
948 skb->nfct = NULL;
949 }
950
951 /* rcu_read_lock()ed by nf_hook_slow */
952 l3proto = __nf_ct_l3proto_find(pf);
953 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
954 &dataoff, &protonum);
955 if (ret <= 0) {
956 pr_debug("not prepared to track yet or error occurred\n");
957 NF_CT_STAT_INC_ATOMIC(net, error);
958 NF_CT_STAT_INC_ATOMIC(net, invalid);
959 ret = -ret;
960 goto out;
961 }
962
963 l4proto = __nf_ct_l4proto_find(pf, protonum);
964
965 /* It may be an special packet, error, unclean...
966 * inverse of the return code tells to the netfilter
967 * core what to do with the packet. */
968 if (l4proto->error != NULL) {
969 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
970 pf, hooknum);
971 if (ret <= 0) {
972 NF_CT_STAT_INC_ATOMIC(net, error);
973 NF_CT_STAT_INC_ATOMIC(net, invalid);
974 ret = -ret;
975 goto out;
976 }
977 /* ICMP[v6] protocol trackers may assign one conntrack. */
978 if (skb->nfct)
979 goto out;
980 }
981
982 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
983 l3proto, l4proto, &set_reply, &ctinfo);
984 if (!ct) {
985 /* Not valid part of a connection */
986 NF_CT_STAT_INC_ATOMIC(net, invalid);
987 ret = NF_ACCEPT;
988 goto out;
989 }
990
991 if (IS_ERR(ct)) {
992 /* Too stressed to deal. */
993 NF_CT_STAT_INC_ATOMIC(net, drop);
994 ret = NF_DROP;
995 goto out;
996 }
997
998 NF_CT_ASSERT(skb->nfct);
999
1000 /* Decide what timeout policy we want to apply to this flow. */
1001 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1002
1003 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1004 if (ret <= 0) {
1005 /* Invalid: inverse of the return code tells
1006 * the netfilter core what to do */
1007 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1008 nf_conntrack_put(skb->nfct);
1009 skb->nfct = NULL;
1010 NF_CT_STAT_INC_ATOMIC(net, invalid);
1011 if (ret == -NF_DROP)
1012 NF_CT_STAT_INC_ATOMIC(net, drop);
1013 ret = -ret;
1014 goto out;
1015 }
1016
1017 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1018 nf_conntrack_event_cache(IPCT_REPLY, ct);
1019out:
1020 if (tmpl) {
1021 /* Special case: we have to repeat this hook, assign the
1022 * template again to this packet. We assume that this packet
1023 * has no conntrack assigned. This is used by nf_ct_tcp. */
1024 if (ret == NF_REPEAT)
1025 skb->nfct = (struct nf_conntrack *)tmpl;
1026 else
1027 nf_ct_put(tmpl);
1028 }
1029
1030 return ret;
1031}
1032EXPORT_SYMBOL_GPL(nf_conntrack_in);
1033
1034bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1035 const struct nf_conntrack_tuple *orig)
1036{
1037 bool ret;
1038
1039 rcu_read_lock();
1040 ret = nf_ct_invert_tuple(inverse, orig,
1041 __nf_ct_l3proto_find(orig->src.l3num),
1042 __nf_ct_l4proto_find(orig->src.l3num,
1043 orig->dst.protonum));
1044 rcu_read_unlock();
1045 return ret;
1046}
1047EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1048
1049/* Alter reply tuple (maybe alter helper). This is for NAT, and is
1050 implicitly racy: see __nf_conntrack_confirm */
1051void nf_conntrack_alter_reply(struct nf_conn *ct,
1052 const struct nf_conntrack_tuple *newreply)
1053{
1054 struct nf_conn_help *help = nfct_help(ct);
1055
1056 /* Should be unconfirmed, so not in hash table yet */
1057 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1058
1059 pr_debug("Altering reply tuple of %p to ", ct);
1060 nf_ct_dump_tuple(newreply);
1061
1062 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1063 if (ct->master || (help && !hlist_empty(&help->expectations)))
1064 return;
1065
1066 rcu_read_lock();
1067 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1068 rcu_read_unlock();
1069}
1070EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1071
1072/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1073void __nf_ct_refresh_acct(struct nf_conn *ct,
1074 enum ip_conntrack_info ctinfo,
1075 const struct sk_buff *skb,
1076 unsigned long extra_jiffies,
1077 int do_acct)
1078{
1079 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1080 NF_CT_ASSERT(skb);
1081
1082 /* Only update if this is not a fixed timeout */
1083 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1084 goto acct;
1085
1086 /* If not in hash table, timer will not be active yet */
1087 if (!nf_ct_is_confirmed(ct)) {
1088 ct->timeout.expires = extra_jiffies;
1089 } else {
1090 unsigned long newtime = jiffies + extra_jiffies;
1091
1092 /* Only update the timeout if the new timeout is at least
1093 HZ jiffies from the old timeout. Need del_timer for race
1094 avoidance (may already be dying). */
1095 if (newtime - ct->timeout.expires >= HZ)
1096 mod_timer_pending(&ct->timeout, newtime);
1097 }
1098
1099acct:
1100 if (do_acct) {
1101 struct nf_conn_counter *acct;
1102
1103 acct = nf_conn_acct_find(ct);
1104 if (acct) {
1105 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1106 atomic64_add(skb->len, &acct[CTINFO2DIR(ctinfo)].bytes);
1107 }
1108 }
1109}
1110EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1111
1112bool __nf_ct_kill_acct(struct nf_conn *ct,
1113 enum ip_conntrack_info ctinfo,
1114 const struct sk_buff *skb,
1115 int do_acct)
1116{
1117 if (do_acct) {
1118 struct nf_conn_counter *acct;
1119
1120 acct = nf_conn_acct_find(ct);
1121 if (acct) {
1122 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1123 atomic64_add(skb->len - skb_network_offset(skb),
1124 &acct[CTINFO2DIR(ctinfo)].bytes);
1125 }
1126 }
1127
1128 if (del_timer(&ct->timeout)) {
1129 ct->timeout.function((unsigned long)ct);
1130 return true;
1131 }
1132 return false;
1133}
1134EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1135
1136#ifdef CONFIG_NF_CONNTRACK_ZONES
1137static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1138 .len = sizeof(struct nf_conntrack_zone),
1139 .align = __alignof__(struct nf_conntrack_zone),
1140 .id = NF_CT_EXT_ZONE,
1141};
1142#endif
1143
1144#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1145
1146#include <linux/netfilter/nfnetlink.h>
1147#include <linux/netfilter/nfnetlink_conntrack.h>
1148#include <linux/mutex.h>
1149
1150/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1151 * in ip_conntrack_core, since we don't want the protocols to autoload
1152 * or depend on ctnetlink */
1153int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1154 const struct nf_conntrack_tuple *tuple)
1155{
1156 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1157 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1158 goto nla_put_failure;
1159 return 0;
1160
1161nla_put_failure:
1162 return -1;
1163}
1164EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1165
1166const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1167 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1168 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1169};
1170EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1171
1172int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1173 struct nf_conntrack_tuple *t)
1174{
1175 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1176 return -EINVAL;
1177
1178 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1179 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1180
1181 return 0;
1182}
1183EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1184
1185int nf_ct_port_nlattr_tuple_size(void)
1186{
1187 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1188}
1189EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1190#endif
1191
1192/* Used by ipt_REJECT and ip6t_REJECT. */
1193static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1194{
1195 struct nf_conn *ct;
1196 enum ip_conntrack_info ctinfo;
1197
1198 /* This ICMP is in reverse direction to the packet which caused it */
1199 ct = nf_ct_get(skb, &ctinfo);
1200 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1201 ctinfo = IP_CT_RELATED_REPLY;
1202 else
1203 ctinfo = IP_CT_RELATED;
1204
1205 /* Attach to new skbuff, and increment count */
1206 nskb->nfct = &ct->ct_general;
1207 nskb->nfctinfo = ctinfo;
1208 nf_conntrack_get(nskb->nfct);
1209}
1210
1211/* Bring out ya dead! */
1212static struct nf_conn *
1213get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1214 void *data, unsigned int *bucket)
1215{
1216 struct nf_conntrack_tuple_hash *h;
1217 struct nf_conn *ct;
1218 struct hlist_nulls_node *n;
1219
1220 spin_lock_bh(&nf_conntrack_lock);
1221 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1222 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1223 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1224 continue;
1225 ct = nf_ct_tuplehash_to_ctrack(h);
1226 if (iter(ct, data))
1227 goto found;
1228 }
1229 }
1230 hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1231 ct = nf_ct_tuplehash_to_ctrack(h);
1232 if (iter(ct, data))
1233 set_bit(IPS_DYING_BIT, &ct->status);
1234 }
1235 spin_unlock_bh(&nf_conntrack_lock);
1236 return NULL;
1237found:
1238 atomic_inc(&ct->ct_general.use);
1239 spin_unlock_bh(&nf_conntrack_lock);
1240 return ct;
1241}
1242
1243void nf_ct_iterate_cleanup(struct net *net,
1244 int (*iter)(struct nf_conn *i, void *data),
1245 void *data)
1246{
1247 struct nf_conn *ct;
1248 unsigned int bucket = 0;
1249
1250 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1251 /* Time to push up daises... */
1252 if (del_timer(&ct->timeout))
1253 death_by_timeout((unsigned long)ct);
1254 /* ... else the timer will get him soon. */
1255
1256 nf_ct_put(ct);
1257 }
1258}
1259EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1260
1261struct __nf_ct_flush_report {
1262 u32 pid;
1263 int report;
1264};
1265
1266static int kill_report(struct nf_conn *i, void *data)
1267{
1268 struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
1269 struct nf_conn_tstamp *tstamp;
1270
1271 tstamp = nf_conn_tstamp_find(i);
1272 if (tstamp && tstamp->stop == 0)
1273 tstamp->stop = ktime_to_ns(ktime_get_real());
1274
1275 /* If we fail to deliver the event, death_by_timeout() will retry */
1276 if (nf_conntrack_event_report(IPCT_DESTROY, i,
1277 fr->pid, fr->report) < 0)
1278 return 1;
1279
1280 /* Avoid the delivery of the destroy event in death_by_timeout(). */
1281 set_bit(IPS_DYING_BIT, &i->status);
1282 return 1;
1283}
1284
1285static int kill_all(struct nf_conn *i, void *data)
1286{
1287 return 1;
1288}
1289
1290void nf_ct_free_hashtable(void *hash, unsigned int size)
1291{
1292 if (is_vmalloc_addr(hash))
1293 vfree(hash);
1294 else
1295 free_pages((unsigned long)hash,
1296 get_order(sizeof(struct hlist_head) * size));
1297}
1298EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1299
1300void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
1301{
1302 struct __nf_ct_flush_report fr = {
1303 .pid = pid,
1304 .report = report,
1305 };
1306 nf_ct_iterate_cleanup(net, kill_report, &fr);
1307}
1308EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1309
1310static void nf_ct_release_dying_list(struct net *net)
1311{
1312 struct nf_conntrack_tuple_hash *h;
1313 struct nf_conn *ct;
1314 struct hlist_nulls_node *n;
1315
1316 spin_lock_bh(&nf_conntrack_lock);
1317 hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1318 ct = nf_ct_tuplehash_to_ctrack(h);
1319 /* never fails to remove them, no listeners at this point */
1320 nf_ct_kill(ct);
1321 }
1322 spin_unlock_bh(&nf_conntrack_lock);
1323}
1324
1325static int untrack_refs(void)
1326{
1327 int cnt = 0, cpu;
1328
1329 for_each_possible_cpu(cpu) {
1330 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1331
1332 cnt += atomic_read(&ct->ct_general.use) - 1;
1333 }
1334 return cnt;
1335}
1336
1337void nf_conntrack_cleanup_start(void)
1338{
1339 RCU_INIT_POINTER(ip_ct_attach, NULL);
1340}
1341
1342void nf_conntrack_cleanup_end(void)
1343{
1344 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1345 while (untrack_refs() > 0)
1346 schedule();
1347
1348#ifdef CONFIG_NF_CONNTRACK_ZONES
1349 nf_ct_extend_unregister(&nf_ct_zone_extend);
1350#endif
1351 nf_conntrack_labels_fini();
1352 nf_conntrack_helper_fini();
1353 nf_conntrack_timeout_fini();
1354 nf_conntrack_ecache_fini();
1355 nf_conntrack_tstamp_fini();
1356 nf_conntrack_acct_fini();
1357 nf_conntrack_expect_fini();
1358}
1359
1360/*
1361 * Mishearing the voices in his head, our hero wonders how he's
1362 * supposed to kill the mall.
1363 */
1364void nf_conntrack_cleanup_net(struct net *net)
1365{
1366 /*
1367 * This makes sure all current packets have passed through
1368 * netfilter framework. Roll on, two-stage module
1369 * delete...
1370 */
1371 synchronize_net();
1372 i_see_dead_people:
1373 nf_ct_iterate_cleanup(net, kill_all, NULL);
1374 nf_ct_release_dying_list(net);
1375 if (atomic_read(&net->ct.count) != 0) {
1376 schedule();
1377 goto i_see_dead_people;
1378 }
1379
1380 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1381 nf_conntrack_proto_fini(net);
1382 nf_conntrack_helper_pernet_fini(net);
1383 nf_conntrack_ecache_pernet_fini(net);
1384 nf_conntrack_tstamp_pernet_fini(net);
1385 nf_conntrack_acct_pernet_fini(net);
1386 nf_conntrack_expect_pernet_fini(net);
1387 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1388 kfree(net->ct.slabname);
1389 free_percpu(net->ct.stat);
1390}
1391
1392void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1393{
1394 struct hlist_nulls_head *hash;
1395 unsigned int nr_slots, i;
1396 size_t sz;
1397
1398 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1399 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1400 sz = nr_slots * sizeof(struct hlist_nulls_head);
1401 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1402 get_order(sz));
1403 if (!hash) {
1404 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1405 hash = vzalloc(sz);
1406 }
1407
1408 if (hash && nulls)
1409 for (i = 0; i < nr_slots; i++)
1410 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1411
1412 return hash;
1413}
1414EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1415
1416int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1417{
1418 int i, bucket, rc;
1419 unsigned int hashsize, old_size;
1420 struct hlist_nulls_head *hash, *old_hash;
1421 struct nf_conntrack_tuple_hash *h;
1422 struct nf_conn *ct;
1423
1424 if (current->nsproxy->net_ns != &init_net)
1425 return -EOPNOTSUPP;
1426
1427 /* On boot, we can set this without any fancy locking. */
1428 if (!nf_conntrack_htable_size)
1429 return param_set_uint(val, kp);
1430
1431 rc = kstrtouint(val, 0, &hashsize);
1432 if (rc)
1433 return rc;
1434 if (!hashsize)
1435 return -EINVAL;
1436
1437 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1438 if (!hash)
1439 return -ENOMEM;
1440
1441 /* Lookups in the old hash might happen in parallel, which means we
1442 * might get false negatives during connection lookup. New connections
1443 * created because of a false negative won't make it into the hash
1444 * though since that required taking the lock.
1445 */
1446 spin_lock_bh(&nf_conntrack_lock);
1447 for (i = 0; i < init_net.ct.htable_size; i++) {
1448 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1449 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1450 struct nf_conntrack_tuple_hash, hnnode);
1451 ct = nf_ct_tuplehash_to_ctrack(h);
1452 hlist_nulls_del_rcu(&h->hnnode);
1453 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1454 hashsize);
1455 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1456 }
1457 }
1458 old_size = init_net.ct.htable_size;
1459 old_hash = init_net.ct.hash;
1460
1461 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1462 init_net.ct.hash = hash;
1463 spin_unlock_bh(&nf_conntrack_lock);
1464
1465 nf_ct_free_hashtable(old_hash, old_size);
1466 return 0;
1467}
1468EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1469
1470module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1471 &nf_conntrack_htable_size, 0600);
1472
1473void nf_ct_untracked_status_or(unsigned long bits)
1474{
1475 int cpu;
1476
1477 for_each_possible_cpu(cpu)
1478 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1479}
1480EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1481
1482int nf_conntrack_init_start(void)
1483{
1484 int max_factor = 8;
1485 int ret, cpu;
1486
1487 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1488 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1489 if (!nf_conntrack_htable_size) {
1490 nf_conntrack_htable_size
1491 = (((totalram_pages << PAGE_SHIFT) / 16384)
1492 / sizeof(struct hlist_head));
1493 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1494 nf_conntrack_htable_size = 16384;
1495 if (nf_conntrack_htable_size < 32)
1496 nf_conntrack_htable_size = 32;
1497
1498 /* Use a max. factor of four by default to get the same max as
1499 * with the old struct list_heads. When a table size is given
1500 * we use the old value of 8 to avoid reducing the max.
1501 * entries. */
1502 max_factor = 4;
1503 }
1504 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1505
1506 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1507 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1508 nf_conntrack_max);
1509
1510 ret = nf_conntrack_expect_init();
1511 if (ret < 0)
1512 goto err_expect;
1513
1514 ret = nf_conntrack_acct_init();
1515 if (ret < 0)
1516 goto err_acct;
1517
1518 ret = nf_conntrack_tstamp_init();
1519 if (ret < 0)
1520 goto err_tstamp;
1521
1522 ret = nf_conntrack_ecache_init();
1523 if (ret < 0)
1524 goto err_ecache;
1525
1526 ret = nf_conntrack_timeout_init();
1527 if (ret < 0)
1528 goto err_timeout;
1529
1530 ret = nf_conntrack_helper_init();
1531 if (ret < 0)
1532 goto err_helper;
1533
1534 ret = nf_conntrack_labels_init();
1535 if (ret < 0)
1536 goto err_labels;
1537
1538#ifdef CONFIG_NF_CONNTRACK_ZONES
1539 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1540 if (ret < 0)
1541 goto err_extend;
1542#endif
1543 /* Set up fake conntrack: to never be deleted, not in any hashes */
1544 for_each_possible_cpu(cpu) {
1545 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1546 write_pnet(&ct->ct_net, &init_net);
1547 atomic_set(&ct->ct_general.use, 1);
1548 }
1549 /* - and look it like as a confirmed connection */
1550 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1551 return 0;
1552
1553#ifdef CONFIG_NF_CONNTRACK_ZONES
1554err_extend:
1555 nf_conntrack_labels_fini();
1556#endif
1557err_labels:
1558 nf_conntrack_helper_fini();
1559err_helper:
1560 nf_conntrack_timeout_fini();
1561err_timeout:
1562 nf_conntrack_ecache_fini();
1563err_ecache:
1564 nf_conntrack_tstamp_fini();
1565err_tstamp:
1566 nf_conntrack_acct_fini();
1567err_acct:
1568 nf_conntrack_expect_fini();
1569err_expect:
1570 return ret;
1571}
1572
1573void nf_conntrack_init_end(void)
1574{
1575 /* For use by REJECT target */
1576 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1577 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1578
1579 /* Howto get NAT offsets */
1580 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
1581}
1582
1583/*
1584 * We need to use special "null" values, not used in hash table
1585 */
1586#define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1587#define DYING_NULLS_VAL ((1<<30)+1)
1588#define TEMPLATE_NULLS_VAL ((1<<30)+2)
1589
1590int nf_conntrack_init_net(struct net *net)
1591{
1592 int ret;
1593
1594 atomic_set(&net->ct.count, 0);
1595 INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1596 INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1597 INIT_HLIST_NULLS_HEAD(&net->ct.tmpl, TEMPLATE_NULLS_VAL);
1598 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1599 if (!net->ct.stat) {
1600 ret = -ENOMEM;
1601 goto err_stat;
1602 }
1603
1604 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1605 if (!net->ct.slabname) {
1606 ret = -ENOMEM;
1607 goto err_slabname;
1608 }
1609
1610 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1611 sizeof(struct nf_conn), 0,
1612 SLAB_DESTROY_BY_RCU, NULL);
1613 if (!net->ct.nf_conntrack_cachep) {
1614 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1615 ret = -ENOMEM;
1616 goto err_cache;
1617 }
1618
1619 net->ct.htable_size = nf_conntrack_htable_size;
1620 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1621 if (!net->ct.hash) {
1622 ret = -ENOMEM;
1623 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1624 goto err_hash;
1625 }
1626 ret = nf_conntrack_expect_pernet_init(net);
1627 if (ret < 0)
1628 goto err_expect;
1629 ret = nf_conntrack_acct_pernet_init(net);
1630 if (ret < 0)
1631 goto err_acct;
1632 ret = nf_conntrack_tstamp_pernet_init(net);
1633 if (ret < 0)
1634 goto err_tstamp;
1635 ret = nf_conntrack_ecache_pernet_init(net);
1636 if (ret < 0)
1637 goto err_ecache;
1638 ret = nf_conntrack_helper_pernet_init(net);
1639 if (ret < 0)
1640 goto err_helper;
1641 ret = nf_conntrack_proto_init(net);
1642 if (ret < 0)
1643 goto err_proto;
1644 return 0;
1645
1646err_proto:
1647 nf_conntrack_helper_pernet_fini(net);
1648err_helper:
1649 nf_conntrack_ecache_pernet_fini(net);
1650err_ecache:
1651 nf_conntrack_tstamp_pernet_fini(net);
1652err_tstamp:
1653 nf_conntrack_acct_pernet_fini(net);
1654err_acct:
1655 nf_conntrack_expect_pernet_fini(net);
1656err_expect:
1657 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1658err_hash:
1659 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1660err_cache:
1661 kfree(net->ct.slabname);
1662err_slabname:
1663 free_percpu(net->ct.stat);
1664err_stat:
1665 return ret;
1666}
1667
1668s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1669 enum ip_conntrack_dir dir,
1670 u32 seq);
1671EXPORT_SYMBOL_GPL(nf_ct_nat_offset);