]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - net/socket.c
[NET]: Support multiple network namespaces with netlink
[mirror_ubuntu-zesty-kernel.git] / net / socket.c
... / ...
CommitLineData
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/rcupdate.h>
67#include <linux/netdevice.h>
68#include <linux/proc_fs.h>
69#include <linux/seq_file.h>
70#include <linux/mutex.h>
71#include <linux/wanrouter.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/init.h>
76#include <linux/poll.h>
77#include <linux/cache.h>
78#include <linux/module.h>
79#include <linux/highmem.h>
80#include <linux/mount.h>
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/compat.h>
84#include <linux/kmod.h>
85#include <linux/audit.h>
86#include <linux/wireless.h>
87#include <linux/nsproxy.h>
88
89#include <asm/uaccess.h>
90#include <asm/unistd.h>
91
92#include <net/compat.h>
93
94#include <net/sock.h>
95#include <linux/netfilter.h>
96
97static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
99 unsigned long nr_segs, loff_t pos);
100static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
101 unsigned long nr_segs, loff_t pos);
102static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103
104static int sock_close(struct inode *inode, struct file *file);
105static unsigned int sock_poll(struct file *file,
106 struct poll_table_struct *wait);
107static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108#ifdef CONFIG_COMPAT
109static long compat_sock_ioctl(struct file *file,
110 unsigned int cmd, unsigned long arg);
111#endif
112static int sock_fasync(int fd, struct file *filp, int on);
113static ssize_t sock_sendpage(struct file *file, struct page *page,
114 int offset, size_t size, loff_t *ppos, int more);
115
116/*
117 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
118 * in the operation structures but are done directly via the socketcall() multiplexor.
119 */
120
121static const struct file_operations socket_file_ops = {
122 .owner = THIS_MODULE,
123 .llseek = no_llseek,
124 .aio_read = sock_aio_read,
125 .aio_write = sock_aio_write,
126 .poll = sock_poll,
127 .unlocked_ioctl = sock_ioctl,
128#ifdef CONFIG_COMPAT
129 .compat_ioctl = compat_sock_ioctl,
130#endif
131 .mmap = sock_mmap,
132 .open = sock_no_open, /* special open code to disallow open via /proc */
133 .release = sock_close,
134 .fasync = sock_fasync,
135 .sendpage = sock_sendpage,
136 .splice_write = generic_splice_sendpage,
137};
138
139/*
140 * The protocol list. Each protocol is registered in here.
141 */
142
143static DEFINE_SPINLOCK(net_family_lock);
144static const struct net_proto_family *net_families[NPROTO] __read_mostly;
145
146/*
147 * Statistics counters of the socket lists
148 */
149
150static DEFINE_PER_CPU(int, sockets_in_use) = 0;
151
152/*
153 * Support routines.
154 * Move socket addresses back and forth across the kernel/user
155 * divide and look after the messy bits.
156 */
157
158#define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
159 16 for IP, 16 for IPX,
160 24 for IPv6,
161 about 80 for AX.25
162 must be at least one bigger than
163 the AF_UNIX size (see net/unix/af_unix.c
164 :unix_mkname()).
165 */
166
167/**
168 * move_addr_to_kernel - copy a socket address into kernel space
169 * @uaddr: Address in user space
170 * @kaddr: Address in kernel space
171 * @ulen: Length in user space
172 *
173 * The address is copied into kernel space. If the provided address is
174 * too long an error code of -EINVAL is returned. If the copy gives
175 * invalid addresses -EFAULT is returned. On a success 0 is returned.
176 */
177
178int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179{
180 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
181 return -EINVAL;
182 if (ulen == 0)
183 return 0;
184 if (copy_from_user(kaddr, uaddr, ulen))
185 return -EFAULT;
186 return audit_sockaddr(ulen, kaddr);
187}
188
189/**
190 * move_addr_to_user - copy an address to user space
191 * @kaddr: kernel space address
192 * @klen: length of address in kernel
193 * @uaddr: user space address
194 * @ulen: pointer to user length field
195 *
196 * The value pointed to by ulen on entry is the buffer length available.
197 * This is overwritten with the buffer space used. -EINVAL is returned
198 * if an overlong buffer is specified or a negative buffer size. -EFAULT
199 * is returned if either the buffer or the length field are not
200 * accessible.
201 * After copying the data up to the limit the user specifies, the true
202 * length of the data is written over the length limit the user
203 * specified. Zero is returned for a success.
204 */
205
206int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
207 int __user *ulen)
208{
209 int err;
210 int len;
211
212 err = get_user(len, ulen);
213 if (err)
214 return err;
215 if (len > klen)
216 len = klen;
217 if (len < 0 || len > MAX_SOCK_ADDR)
218 return -EINVAL;
219 if (len) {
220 if (audit_sockaddr(klen, kaddr))
221 return -ENOMEM;
222 if (copy_to_user(uaddr, kaddr, len))
223 return -EFAULT;
224 }
225 /*
226 * "fromlen shall refer to the value before truncation.."
227 * 1003.1g
228 */
229 return __put_user(klen, ulen);
230}
231
232#define SOCKFS_MAGIC 0x534F434B
233
234static struct kmem_cache *sock_inode_cachep __read_mostly;
235
236static struct inode *sock_alloc_inode(struct super_block *sb)
237{
238 struct socket_alloc *ei;
239
240 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
241 if (!ei)
242 return NULL;
243 init_waitqueue_head(&ei->socket.wait);
244
245 ei->socket.fasync_list = NULL;
246 ei->socket.state = SS_UNCONNECTED;
247 ei->socket.flags = 0;
248 ei->socket.ops = NULL;
249 ei->socket.sk = NULL;
250 ei->socket.file = NULL;
251
252 return &ei->vfs_inode;
253}
254
255static void sock_destroy_inode(struct inode *inode)
256{
257 kmem_cache_free(sock_inode_cachep,
258 container_of(inode, struct socket_alloc, vfs_inode));
259}
260
261static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
262{
263 struct socket_alloc *ei = (struct socket_alloc *)foo;
264
265 inode_init_once(&ei->vfs_inode);
266}
267
268static int init_inodecache(void)
269{
270 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
271 sizeof(struct socket_alloc),
272 0,
273 (SLAB_HWCACHE_ALIGN |
274 SLAB_RECLAIM_ACCOUNT |
275 SLAB_MEM_SPREAD),
276 init_once);
277 if (sock_inode_cachep == NULL)
278 return -ENOMEM;
279 return 0;
280}
281
282static struct super_operations sockfs_ops = {
283 .alloc_inode = sock_alloc_inode,
284 .destroy_inode =sock_destroy_inode,
285 .statfs = simple_statfs,
286};
287
288static int sockfs_get_sb(struct file_system_type *fs_type,
289 int flags, const char *dev_name, void *data,
290 struct vfsmount *mnt)
291{
292 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
293 mnt);
294}
295
296static struct vfsmount *sock_mnt __read_mostly;
297
298static struct file_system_type sock_fs_type = {
299 .name = "sockfs",
300 .get_sb = sockfs_get_sb,
301 .kill_sb = kill_anon_super,
302};
303
304static int sockfs_delete_dentry(struct dentry *dentry)
305{
306 /*
307 * At creation time, we pretended this dentry was hashed
308 * (by clearing DCACHE_UNHASHED bit in d_flags)
309 * At delete time, we restore the truth : not hashed.
310 * (so that dput() can proceed correctly)
311 */
312 dentry->d_flags |= DCACHE_UNHASHED;
313 return 0;
314}
315
316/*
317 * sockfs_dname() is called from d_path().
318 */
319static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
320{
321 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
322 dentry->d_inode->i_ino);
323}
324
325static struct dentry_operations sockfs_dentry_operations = {
326 .d_delete = sockfs_delete_dentry,
327 .d_dname = sockfs_dname,
328};
329
330/*
331 * Obtains the first available file descriptor and sets it up for use.
332 *
333 * These functions create file structures and maps them to fd space
334 * of the current process. On success it returns file descriptor
335 * and file struct implicitly stored in sock->file.
336 * Note that another thread may close file descriptor before we return
337 * from this function. We use the fact that now we do not refer
338 * to socket after mapping. If one day we will need it, this
339 * function will increment ref. count on file by 1.
340 *
341 * In any case returned fd MAY BE not valid!
342 * This race condition is unavoidable
343 * with shared fd spaces, we cannot solve it inside kernel,
344 * but we take care of internal coherence yet.
345 */
346
347static int sock_alloc_fd(struct file **filep)
348{
349 int fd;
350
351 fd = get_unused_fd();
352 if (likely(fd >= 0)) {
353 struct file *file = get_empty_filp();
354
355 *filep = file;
356 if (unlikely(!file)) {
357 put_unused_fd(fd);
358 return -ENFILE;
359 }
360 } else
361 *filep = NULL;
362 return fd;
363}
364
365static int sock_attach_fd(struct socket *sock, struct file *file)
366{
367 struct qstr name = { .name = "" };
368
369 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
370 if (unlikely(!file->f_path.dentry))
371 return -ENOMEM;
372
373 file->f_path.dentry->d_op = &sockfs_dentry_operations;
374 /*
375 * We dont want to push this dentry into global dentry hash table.
376 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
377 * This permits a working /proc/$pid/fd/XXX on sockets
378 */
379 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
380 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
381 file->f_path.mnt = mntget(sock_mnt);
382 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
383
384 sock->file = file;
385 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
386 file->f_mode = FMODE_READ | FMODE_WRITE;
387 file->f_flags = O_RDWR;
388 file->f_pos = 0;
389 file->private_data = sock;
390
391 return 0;
392}
393
394int sock_map_fd(struct socket *sock)
395{
396 struct file *newfile;
397 int fd = sock_alloc_fd(&newfile);
398
399 if (likely(fd >= 0)) {
400 int err = sock_attach_fd(sock, newfile);
401
402 if (unlikely(err < 0)) {
403 put_filp(newfile);
404 put_unused_fd(fd);
405 return err;
406 }
407 fd_install(fd, newfile);
408 }
409 return fd;
410}
411
412static struct socket *sock_from_file(struct file *file, int *err)
413{
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419}
420
421/**
422 * sockfd_lookup - Go from a file number to its socket slot
423 * @fd: file handle
424 * @err: pointer to an error code return
425 *
426 * The file handle passed in is locked and the socket it is bound
427 * too is returned. If an error occurs the err pointer is overwritten
428 * with a negative errno code and NULL is returned. The function checks
429 * for both invalid handles and passing a handle which is not a socket.
430 *
431 * On a success the socket object pointer is returned.
432 */
433
434struct socket *sockfd_lookup(int fd, int *err)
435{
436 struct file *file;
437 struct socket *sock;
438
439 file = fget(fd);
440 if (!file) {
441 *err = -EBADF;
442 return NULL;
443 }
444
445 sock = sock_from_file(file, err);
446 if (!sock)
447 fput(file);
448 return sock;
449}
450
451static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452{
453 struct file *file;
454 struct socket *sock;
455
456 *err = -EBADF;
457 file = fget_light(fd, fput_needed);
458 if (file) {
459 sock = sock_from_file(file, err);
460 if (sock)
461 return sock;
462 fput_light(file, *fput_needed);
463 }
464 return NULL;
465}
466
467/**
468 * sock_alloc - allocate a socket
469 *
470 * Allocate a new inode and socket object. The two are bound together
471 * and initialised. The socket is then returned. If we are out of inodes
472 * NULL is returned.
473 */
474
475static struct socket *sock_alloc(void)
476{
477 struct inode *inode;
478 struct socket *sock;
479
480 inode = new_inode(sock_mnt->mnt_sb);
481 if (!inode)
482 return NULL;
483
484 sock = SOCKET_I(inode);
485
486 inode->i_mode = S_IFSOCK | S_IRWXUGO;
487 inode->i_uid = current->fsuid;
488 inode->i_gid = current->fsgid;
489
490 get_cpu_var(sockets_in_use)++;
491 put_cpu_var(sockets_in_use);
492 return sock;
493}
494
495/*
496 * In theory you can't get an open on this inode, but /proc provides
497 * a back door. Remember to keep it shut otherwise you'll let the
498 * creepy crawlies in.
499 */
500
501static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
502{
503 return -ENXIO;
504}
505
506const struct file_operations bad_sock_fops = {
507 .owner = THIS_MODULE,
508 .open = sock_no_open,
509};
510
511/**
512 * sock_release - close a socket
513 * @sock: socket to close
514 *
515 * The socket is released from the protocol stack if it has a release
516 * callback, and the inode is then released if the socket is bound to
517 * an inode not a file.
518 */
519
520void sock_release(struct socket *sock)
521{
522 if (sock->ops) {
523 struct module *owner = sock->ops->owner;
524
525 sock->ops->release(sock);
526 sock->ops = NULL;
527 module_put(owner);
528 }
529
530 if (sock->fasync_list)
531 printk(KERN_ERR "sock_release: fasync list not empty!\n");
532
533 get_cpu_var(sockets_in_use)--;
534 put_cpu_var(sockets_in_use);
535 if (!sock->file) {
536 iput(SOCK_INODE(sock));
537 return;
538 }
539 sock->file = NULL;
540}
541
542static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
543 struct msghdr *msg, size_t size)
544{
545 struct sock_iocb *si = kiocb_to_siocb(iocb);
546 int err;
547
548 si->sock = sock;
549 si->scm = NULL;
550 si->msg = msg;
551 si->size = size;
552
553 err = security_socket_sendmsg(sock, msg, size);
554 if (err)
555 return err;
556
557 return sock->ops->sendmsg(iocb, sock, msg, size);
558}
559
560int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
561{
562 struct kiocb iocb;
563 struct sock_iocb siocb;
564 int ret;
565
566 init_sync_kiocb(&iocb, NULL);
567 iocb.private = &siocb;
568 ret = __sock_sendmsg(&iocb, sock, msg, size);
569 if (-EIOCBQUEUED == ret)
570 ret = wait_on_sync_kiocb(&iocb);
571 return ret;
572}
573
574int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
575 struct kvec *vec, size_t num, size_t size)
576{
577 mm_segment_t oldfs = get_fs();
578 int result;
579
580 set_fs(KERNEL_DS);
581 /*
582 * the following is safe, since for compiler definitions of kvec and
583 * iovec are identical, yielding the same in-core layout and alignment
584 */
585 msg->msg_iov = (struct iovec *)vec;
586 msg->msg_iovlen = num;
587 result = sock_sendmsg(sock, msg, size);
588 set_fs(oldfs);
589 return result;
590}
591
592/*
593 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
594 */
595void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
596 struct sk_buff *skb)
597{
598 ktime_t kt = skb->tstamp;
599
600 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
601 struct timeval tv;
602 /* Race occurred between timestamp enabling and packet
603 receiving. Fill in the current time for now. */
604 if (kt.tv64 == 0)
605 kt = ktime_get_real();
606 skb->tstamp = kt;
607 tv = ktime_to_timeval(kt);
608 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
609 } else {
610 struct timespec ts;
611 /* Race occurred between timestamp enabling and packet
612 receiving. Fill in the current time for now. */
613 if (kt.tv64 == 0)
614 kt = ktime_get_real();
615 skb->tstamp = kt;
616 ts = ktime_to_timespec(kt);
617 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
618 }
619}
620
621EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
622
623static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
624 struct msghdr *msg, size_t size, int flags)
625{
626 int err;
627 struct sock_iocb *si = kiocb_to_siocb(iocb);
628
629 si->sock = sock;
630 si->scm = NULL;
631 si->msg = msg;
632 si->size = size;
633 si->flags = flags;
634
635 err = security_socket_recvmsg(sock, msg, size, flags);
636 if (err)
637 return err;
638
639 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
640}
641
642int sock_recvmsg(struct socket *sock, struct msghdr *msg,
643 size_t size, int flags)
644{
645 struct kiocb iocb;
646 struct sock_iocb siocb;
647 int ret;
648
649 init_sync_kiocb(&iocb, NULL);
650 iocb.private = &siocb;
651 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
652 if (-EIOCBQUEUED == ret)
653 ret = wait_on_sync_kiocb(&iocb);
654 return ret;
655}
656
657int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
658 struct kvec *vec, size_t num, size_t size, int flags)
659{
660 mm_segment_t oldfs = get_fs();
661 int result;
662
663 set_fs(KERNEL_DS);
664 /*
665 * the following is safe, since for compiler definitions of kvec and
666 * iovec are identical, yielding the same in-core layout and alignment
667 */
668 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
669 result = sock_recvmsg(sock, msg, size, flags);
670 set_fs(oldfs);
671 return result;
672}
673
674static void sock_aio_dtor(struct kiocb *iocb)
675{
676 kfree(iocb->private);
677}
678
679static ssize_t sock_sendpage(struct file *file, struct page *page,
680 int offset, size_t size, loff_t *ppos, int more)
681{
682 struct socket *sock;
683 int flags;
684
685 sock = file->private_data;
686
687 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
688 if (more)
689 flags |= MSG_MORE;
690
691 return sock->ops->sendpage(sock, page, offset, size, flags);
692}
693
694static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
695 struct sock_iocb *siocb)
696{
697 if (!is_sync_kiocb(iocb)) {
698 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
699 if (!siocb)
700 return NULL;
701 iocb->ki_dtor = sock_aio_dtor;
702 }
703
704 siocb->kiocb = iocb;
705 iocb->private = siocb;
706 return siocb;
707}
708
709static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
710 struct file *file, const struct iovec *iov,
711 unsigned long nr_segs)
712{
713 struct socket *sock = file->private_data;
714 size_t size = 0;
715 int i;
716
717 for (i = 0; i < nr_segs; i++)
718 size += iov[i].iov_len;
719
720 msg->msg_name = NULL;
721 msg->msg_namelen = 0;
722 msg->msg_control = NULL;
723 msg->msg_controllen = 0;
724 msg->msg_iov = (struct iovec *)iov;
725 msg->msg_iovlen = nr_segs;
726 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
727
728 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
729}
730
731static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
732 unsigned long nr_segs, loff_t pos)
733{
734 struct sock_iocb siocb, *x;
735
736 if (pos != 0)
737 return -ESPIPE;
738
739 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
740 return 0;
741
742
743 x = alloc_sock_iocb(iocb, &siocb);
744 if (!x)
745 return -ENOMEM;
746 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
747}
748
749static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
750 struct file *file, const struct iovec *iov,
751 unsigned long nr_segs)
752{
753 struct socket *sock = file->private_data;
754 size_t size = 0;
755 int i;
756
757 for (i = 0; i < nr_segs; i++)
758 size += iov[i].iov_len;
759
760 msg->msg_name = NULL;
761 msg->msg_namelen = 0;
762 msg->msg_control = NULL;
763 msg->msg_controllen = 0;
764 msg->msg_iov = (struct iovec *)iov;
765 msg->msg_iovlen = nr_segs;
766 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
767 if (sock->type == SOCK_SEQPACKET)
768 msg->msg_flags |= MSG_EOR;
769
770 return __sock_sendmsg(iocb, sock, msg, size);
771}
772
773static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
774 unsigned long nr_segs, loff_t pos)
775{
776 struct sock_iocb siocb, *x;
777
778 if (pos != 0)
779 return -ESPIPE;
780
781 x = alloc_sock_iocb(iocb, &siocb);
782 if (!x)
783 return -ENOMEM;
784
785 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
786}
787
788/*
789 * Atomic setting of ioctl hooks to avoid race
790 * with module unload.
791 */
792
793static DEFINE_MUTEX(br_ioctl_mutex);
794static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
795
796void brioctl_set(int (*hook) (unsigned int, void __user *))
797{
798 mutex_lock(&br_ioctl_mutex);
799 br_ioctl_hook = hook;
800 mutex_unlock(&br_ioctl_mutex);
801}
802
803EXPORT_SYMBOL(brioctl_set);
804
805static DEFINE_MUTEX(vlan_ioctl_mutex);
806static int (*vlan_ioctl_hook) (void __user *arg);
807
808void vlan_ioctl_set(int (*hook) (void __user *))
809{
810 mutex_lock(&vlan_ioctl_mutex);
811 vlan_ioctl_hook = hook;
812 mutex_unlock(&vlan_ioctl_mutex);
813}
814
815EXPORT_SYMBOL(vlan_ioctl_set);
816
817static DEFINE_MUTEX(dlci_ioctl_mutex);
818static int (*dlci_ioctl_hook) (unsigned int, void __user *);
819
820void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
821{
822 mutex_lock(&dlci_ioctl_mutex);
823 dlci_ioctl_hook = hook;
824 mutex_unlock(&dlci_ioctl_mutex);
825}
826
827EXPORT_SYMBOL(dlci_ioctl_set);
828
829/*
830 * With an ioctl, arg may well be a user mode pointer, but we don't know
831 * what to do with it - that's up to the protocol still.
832 */
833
834static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
835{
836 struct socket *sock;
837 void __user *argp = (void __user *)arg;
838 int pid, err;
839
840 sock = file->private_data;
841 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
842 err = dev_ioctl(cmd, argp);
843 } else
844#ifdef CONFIG_WIRELESS_EXT
845 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
846 err = dev_ioctl(cmd, argp);
847 } else
848#endif /* CONFIG_WIRELESS_EXT */
849 switch (cmd) {
850 case FIOSETOWN:
851 case SIOCSPGRP:
852 err = -EFAULT;
853 if (get_user(pid, (int __user *)argp))
854 break;
855 err = f_setown(sock->file, pid, 1);
856 break;
857 case FIOGETOWN:
858 case SIOCGPGRP:
859 err = put_user(f_getown(sock->file),
860 (int __user *)argp);
861 break;
862 case SIOCGIFBR:
863 case SIOCSIFBR:
864 case SIOCBRADDBR:
865 case SIOCBRDELBR:
866 err = -ENOPKG;
867 if (!br_ioctl_hook)
868 request_module("bridge");
869
870 mutex_lock(&br_ioctl_mutex);
871 if (br_ioctl_hook)
872 err = br_ioctl_hook(cmd, argp);
873 mutex_unlock(&br_ioctl_mutex);
874 break;
875 case SIOCGIFVLAN:
876 case SIOCSIFVLAN:
877 err = -ENOPKG;
878 if (!vlan_ioctl_hook)
879 request_module("8021q");
880
881 mutex_lock(&vlan_ioctl_mutex);
882 if (vlan_ioctl_hook)
883 err = vlan_ioctl_hook(argp);
884 mutex_unlock(&vlan_ioctl_mutex);
885 break;
886 case SIOCADDDLCI:
887 case SIOCDELDLCI:
888 err = -ENOPKG;
889 if (!dlci_ioctl_hook)
890 request_module("dlci");
891
892 if (dlci_ioctl_hook) {
893 mutex_lock(&dlci_ioctl_mutex);
894 err = dlci_ioctl_hook(cmd, argp);
895 mutex_unlock(&dlci_ioctl_mutex);
896 }
897 break;
898 default:
899 err = sock->ops->ioctl(sock, cmd, arg);
900
901 /*
902 * If this ioctl is unknown try to hand it down
903 * to the NIC driver.
904 */
905 if (err == -ENOIOCTLCMD)
906 err = dev_ioctl(cmd, argp);
907 break;
908 }
909 return err;
910}
911
912int sock_create_lite(int family, int type, int protocol, struct socket **res)
913{
914 int err;
915 struct socket *sock = NULL;
916
917 err = security_socket_create(family, type, protocol, 1);
918 if (err)
919 goto out;
920
921 sock = sock_alloc();
922 if (!sock) {
923 err = -ENOMEM;
924 goto out;
925 }
926
927 sock->type = type;
928 err = security_socket_post_create(sock, family, type, protocol, 1);
929 if (err)
930 goto out_release;
931
932out:
933 *res = sock;
934 return err;
935out_release:
936 sock_release(sock);
937 sock = NULL;
938 goto out;
939}
940
941/* No kernel lock held - perfect */
942static unsigned int sock_poll(struct file *file, poll_table *wait)
943{
944 struct socket *sock;
945
946 /*
947 * We can't return errors to poll, so it's either yes or no.
948 */
949 sock = file->private_data;
950 return sock->ops->poll(file, sock, wait);
951}
952
953static int sock_mmap(struct file *file, struct vm_area_struct *vma)
954{
955 struct socket *sock = file->private_data;
956
957 return sock->ops->mmap(file, sock, vma);
958}
959
960static int sock_close(struct inode *inode, struct file *filp)
961{
962 /*
963 * It was possible the inode is NULL we were
964 * closing an unfinished socket.
965 */
966
967 if (!inode) {
968 printk(KERN_DEBUG "sock_close: NULL inode\n");
969 return 0;
970 }
971 sock_fasync(-1, filp, 0);
972 sock_release(SOCKET_I(inode));
973 return 0;
974}
975
976/*
977 * Update the socket async list
978 *
979 * Fasync_list locking strategy.
980 *
981 * 1. fasync_list is modified only under process context socket lock
982 * i.e. under semaphore.
983 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
984 * or under socket lock.
985 * 3. fasync_list can be used from softirq context, so that
986 * modification under socket lock have to be enhanced with
987 * write_lock_bh(&sk->sk_callback_lock).
988 * --ANK (990710)
989 */
990
991static int sock_fasync(int fd, struct file *filp, int on)
992{
993 struct fasync_struct *fa, *fna = NULL, **prev;
994 struct socket *sock;
995 struct sock *sk;
996
997 if (on) {
998 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
999 if (fna == NULL)
1000 return -ENOMEM;
1001 }
1002
1003 sock = filp->private_data;
1004
1005 sk = sock->sk;
1006 if (sk == NULL) {
1007 kfree(fna);
1008 return -EINVAL;
1009 }
1010
1011 lock_sock(sk);
1012
1013 prev = &(sock->fasync_list);
1014
1015 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1016 if (fa->fa_file == filp)
1017 break;
1018
1019 if (on) {
1020 if (fa != NULL) {
1021 write_lock_bh(&sk->sk_callback_lock);
1022 fa->fa_fd = fd;
1023 write_unlock_bh(&sk->sk_callback_lock);
1024
1025 kfree(fna);
1026 goto out;
1027 }
1028 fna->fa_file = filp;
1029 fna->fa_fd = fd;
1030 fna->magic = FASYNC_MAGIC;
1031 fna->fa_next = sock->fasync_list;
1032 write_lock_bh(&sk->sk_callback_lock);
1033 sock->fasync_list = fna;
1034 write_unlock_bh(&sk->sk_callback_lock);
1035 } else {
1036 if (fa != NULL) {
1037 write_lock_bh(&sk->sk_callback_lock);
1038 *prev = fa->fa_next;
1039 write_unlock_bh(&sk->sk_callback_lock);
1040 kfree(fa);
1041 }
1042 }
1043
1044out:
1045 release_sock(sock->sk);
1046 return 0;
1047}
1048
1049/* This function may be called only under socket lock or callback_lock */
1050
1051int sock_wake_async(struct socket *sock, int how, int band)
1052{
1053 if (!sock || !sock->fasync_list)
1054 return -1;
1055 switch (how) {
1056 case 1:
1057
1058 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1059 break;
1060 goto call_kill;
1061 case 2:
1062 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1063 break;
1064 /* fall through */
1065 case 0:
1066call_kill:
1067 __kill_fasync(sock->fasync_list, SIGIO, band);
1068 break;
1069 case 3:
1070 __kill_fasync(sock->fasync_list, SIGURG, band);
1071 }
1072 return 0;
1073}
1074
1075static int __sock_create(struct net *net, int family, int type, int protocol,
1076 struct socket **res, int kern)
1077{
1078 int err;
1079 struct socket *sock;
1080 const struct net_proto_family *pf;
1081
1082 /*
1083 * Check protocol is in range
1084 */
1085 if (family < 0 || family >= NPROTO)
1086 return -EAFNOSUPPORT;
1087 if (type < 0 || type >= SOCK_MAX)
1088 return -EINVAL;
1089
1090 /* Compatibility.
1091
1092 This uglymoron is moved from INET layer to here to avoid
1093 deadlock in module load.
1094 */
1095 if (family == PF_INET && type == SOCK_PACKET) {
1096 static int warned;
1097 if (!warned) {
1098 warned = 1;
1099 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1100 current->comm);
1101 }
1102 family = PF_PACKET;
1103 }
1104
1105 err = security_socket_create(family, type, protocol, kern);
1106 if (err)
1107 return err;
1108
1109 /*
1110 * Allocate the socket and allow the family to set things up. if
1111 * the protocol is 0, the family is instructed to select an appropriate
1112 * default.
1113 */
1114 sock = sock_alloc();
1115 if (!sock) {
1116 if (net_ratelimit())
1117 printk(KERN_WARNING "socket: no more sockets\n");
1118 return -ENFILE; /* Not exactly a match, but its the
1119 closest posix thing */
1120 }
1121
1122 sock->type = type;
1123
1124#if defined(CONFIG_KMOD)
1125 /* Attempt to load a protocol module if the find failed.
1126 *
1127 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1128 * requested real, full-featured networking support upon configuration.
1129 * Otherwise module support will break!
1130 */
1131 if (net_families[family] == NULL)
1132 request_module("net-pf-%d", family);
1133#endif
1134
1135 rcu_read_lock();
1136 pf = rcu_dereference(net_families[family]);
1137 err = -EAFNOSUPPORT;
1138 if (!pf)
1139 goto out_release;
1140
1141 /*
1142 * We will call the ->create function, that possibly is in a loadable
1143 * module, so we have to bump that loadable module refcnt first.
1144 */
1145 if (!try_module_get(pf->owner))
1146 goto out_release;
1147
1148 /* Now protected by module ref count */
1149 rcu_read_unlock();
1150
1151 err = pf->create(net, sock, protocol);
1152 if (err < 0)
1153 goto out_module_put;
1154
1155 /*
1156 * Now to bump the refcnt of the [loadable] module that owns this
1157 * socket at sock_release time we decrement its refcnt.
1158 */
1159 if (!try_module_get(sock->ops->owner))
1160 goto out_module_busy;
1161
1162 /*
1163 * Now that we're done with the ->create function, the [loadable]
1164 * module can have its refcnt decremented
1165 */
1166 module_put(pf->owner);
1167 err = security_socket_post_create(sock, family, type, protocol, kern);
1168 if (err)
1169 goto out_sock_release;
1170 *res = sock;
1171
1172 return 0;
1173
1174out_module_busy:
1175 err = -EAFNOSUPPORT;
1176out_module_put:
1177 sock->ops = NULL;
1178 module_put(pf->owner);
1179out_sock_release:
1180 sock_release(sock);
1181 return err;
1182
1183out_release:
1184 rcu_read_unlock();
1185 goto out_sock_release;
1186}
1187
1188int sock_create(int family, int type, int protocol, struct socket **res)
1189{
1190 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1191}
1192
1193int sock_create_kern(int family, int type, int protocol, struct socket **res)
1194{
1195 return __sock_create(&init_net, family, type, protocol, res, 1);
1196}
1197
1198asmlinkage long sys_socket(int family, int type, int protocol)
1199{
1200 int retval;
1201 struct socket *sock;
1202
1203 retval = sock_create(family, type, protocol, &sock);
1204 if (retval < 0)
1205 goto out;
1206
1207 retval = sock_map_fd(sock);
1208 if (retval < 0)
1209 goto out_release;
1210
1211out:
1212 /* It may be already another descriptor 8) Not kernel problem. */
1213 return retval;
1214
1215out_release:
1216 sock_release(sock);
1217 return retval;
1218}
1219
1220/*
1221 * Create a pair of connected sockets.
1222 */
1223
1224asmlinkage long sys_socketpair(int family, int type, int protocol,
1225 int __user *usockvec)
1226{
1227 struct socket *sock1, *sock2;
1228 int fd1, fd2, err;
1229 struct file *newfile1, *newfile2;
1230
1231 /*
1232 * Obtain the first socket and check if the underlying protocol
1233 * supports the socketpair call.
1234 */
1235
1236 err = sock_create(family, type, protocol, &sock1);
1237 if (err < 0)
1238 goto out;
1239
1240 err = sock_create(family, type, protocol, &sock2);
1241 if (err < 0)
1242 goto out_release_1;
1243
1244 err = sock1->ops->socketpair(sock1, sock2);
1245 if (err < 0)
1246 goto out_release_both;
1247
1248 fd1 = sock_alloc_fd(&newfile1);
1249 if (unlikely(fd1 < 0))
1250 goto out_release_both;
1251
1252 fd2 = sock_alloc_fd(&newfile2);
1253 if (unlikely(fd2 < 0)) {
1254 put_filp(newfile1);
1255 put_unused_fd(fd1);
1256 goto out_release_both;
1257 }
1258
1259 err = sock_attach_fd(sock1, newfile1);
1260 if (unlikely(err < 0)) {
1261 goto out_fd2;
1262 }
1263
1264 err = sock_attach_fd(sock2, newfile2);
1265 if (unlikely(err < 0)) {
1266 fput(newfile1);
1267 goto out_fd1;
1268 }
1269
1270 err = audit_fd_pair(fd1, fd2);
1271 if (err < 0) {
1272 fput(newfile1);
1273 fput(newfile2);
1274 goto out_fd;
1275 }
1276
1277 fd_install(fd1, newfile1);
1278 fd_install(fd2, newfile2);
1279 /* fd1 and fd2 may be already another descriptors.
1280 * Not kernel problem.
1281 */
1282
1283 err = put_user(fd1, &usockvec[0]);
1284 if (!err)
1285 err = put_user(fd2, &usockvec[1]);
1286 if (!err)
1287 return 0;
1288
1289 sys_close(fd2);
1290 sys_close(fd1);
1291 return err;
1292
1293out_release_both:
1294 sock_release(sock2);
1295out_release_1:
1296 sock_release(sock1);
1297out:
1298 return err;
1299
1300out_fd2:
1301 put_filp(newfile1);
1302 sock_release(sock1);
1303out_fd1:
1304 put_filp(newfile2);
1305 sock_release(sock2);
1306out_fd:
1307 put_unused_fd(fd1);
1308 put_unused_fd(fd2);
1309 goto out;
1310}
1311
1312/*
1313 * Bind a name to a socket. Nothing much to do here since it's
1314 * the protocol's responsibility to handle the local address.
1315 *
1316 * We move the socket address to kernel space before we call
1317 * the protocol layer (having also checked the address is ok).
1318 */
1319
1320asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1321{
1322 struct socket *sock;
1323 char address[MAX_SOCK_ADDR];
1324 int err, fput_needed;
1325
1326 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1327 if (sock) {
1328 err = move_addr_to_kernel(umyaddr, addrlen, address);
1329 if (err >= 0) {
1330 err = security_socket_bind(sock,
1331 (struct sockaddr *)address,
1332 addrlen);
1333 if (!err)
1334 err = sock->ops->bind(sock,
1335 (struct sockaddr *)
1336 address, addrlen);
1337 }
1338 fput_light(sock->file, fput_needed);
1339 }
1340 return err;
1341}
1342
1343/*
1344 * Perform a listen. Basically, we allow the protocol to do anything
1345 * necessary for a listen, and if that works, we mark the socket as
1346 * ready for listening.
1347 */
1348
1349int sysctl_somaxconn __read_mostly = SOMAXCONN;
1350
1351asmlinkage long sys_listen(int fd, int backlog)
1352{
1353 struct socket *sock;
1354 int err, fput_needed;
1355
1356 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1357 if (sock) {
1358 if ((unsigned)backlog > sysctl_somaxconn)
1359 backlog = sysctl_somaxconn;
1360
1361 err = security_socket_listen(sock, backlog);
1362 if (!err)
1363 err = sock->ops->listen(sock, backlog);
1364
1365 fput_light(sock->file, fput_needed);
1366 }
1367 return err;
1368}
1369
1370/*
1371 * For accept, we attempt to create a new socket, set up the link
1372 * with the client, wake up the client, then return the new
1373 * connected fd. We collect the address of the connector in kernel
1374 * space and move it to user at the very end. This is unclean because
1375 * we open the socket then return an error.
1376 *
1377 * 1003.1g adds the ability to recvmsg() to query connection pending
1378 * status to recvmsg. We need to add that support in a way thats
1379 * clean when we restucture accept also.
1380 */
1381
1382asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1383 int __user *upeer_addrlen)
1384{
1385 struct socket *sock, *newsock;
1386 struct file *newfile;
1387 int err, len, newfd, fput_needed;
1388 char address[MAX_SOCK_ADDR];
1389
1390 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1391 if (!sock)
1392 goto out;
1393
1394 err = -ENFILE;
1395 if (!(newsock = sock_alloc()))
1396 goto out_put;
1397
1398 newsock->type = sock->type;
1399 newsock->ops = sock->ops;
1400
1401 /*
1402 * We don't need try_module_get here, as the listening socket (sock)
1403 * has the protocol module (sock->ops->owner) held.
1404 */
1405 __module_get(newsock->ops->owner);
1406
1407 newfd = sock_alloc_fd(&newfile);
1408 if (unlikely(newfd < 0)) {
1409 err = newfd;
1410 sock_release(newsock);
1411 goto out_put;
1412 }
1413
1414 err = sock_attach_fd(newsock, newfile);
1415 if (err < 0)
1416 goto out_fd_simple;
1417
1418 err = security_socket_accept(sock, newsock);
1419 if (err)
1420 goto out_fd;
1421
1422 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1423 if (err < 0)
1424 goto out_fd;
1425
1426 if (upeer_sockaddr) {
1427 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1428 &len, 2) < 0) {
1429 err = -ECONNABORTED;
1430 goto out_fd;
1431 }
1432 err = move_addr_to_user(address, len, upeer_sockaddr,
1433 upeer_addrlen);
1434 if (err < 0)
1435 goto out_fd;
1436 }
1437
1438 /* File flags are not inherited via accept() unlike another OSes. */
1439
1440 fd_install(newfd, newfile);
1441 err = newfd;
1442
1443 security_socket_post_accept(sock, newsock);
1444
1445out_put:
1446 fput_light(sock->file, fput_needed);
1447out:
1448 return err;
1449out_fd_simple:
1450 sock_release(newsock);
1451 put_filp(newfile);
1452 put_unused_fd(newfd);
1453 goto out_put;
1454out_fd:
1455 fput(newfile);
1456 put_unused_fd(newfd);
1457 goto out_put;
1458}
1459
1460/*
1461 * Attempt to connect to a socket with the server address. The address
1462 * is in user space so we verify it is OK and move it to kernel space.
1463 *
1464 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1465 * break bindings
1466 *
1467 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1468 * other SEQPACKET protocols that take time to connect() as it doesn't
1469 * include the -EINPROGRESS status for such sockets.
1470 */
1471
1472asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1473 int addrlen)
1474{
1475 struct socket *sock;
1476 char address[MAX_SOCK_ADDR];
1477 int err, fput_needed;
1478
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (!sock)
1481 goto out;
1482 err = move_addr_to_kernel(uservaddr, addrlen, address);
1483 if (err < 0)
1484 goto out_put;
1485
1486 err =
1487 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1488 if (err)
1489 goto out_put;
1490
1491 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1492 sock->file->f_flags);
1493out_put:
1494 fput_light(sock->file, fput_needed);
1495out:
1496 return err;
1497}
1498
1499/*
1500 * Get the local address ('name') of a socket object. Move the obtained
1501 * name to user space.
1502 */
1503
1504asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1505 int __user *usockaddr_len)
1506{
1507 struct socket *sock;
1508 char address[MAX_SOCK_ADDR];
1509 int len, err, fput_needed;
1510
1511 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1512 if (!sock)
1513 goto out;
1514
1515 err = security_socket_getsockname(sock);
1516 if (err)
1517 goto out_put;
1518
1519 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1520 if (err)
1521 goto out_put;
1522 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1523
1524out_put:
1525 fput_light(sock->file, fput_needed);
1526out:
1527 return err;
1528}
1529
1530/*
1531 * Get the remote address ('name') of a socket object. Move the obtained
1532 * name to user space.
1533 */
1534
1535asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1536 int __user *usockaddr_len)
1537{
1538 struct socket *sock;
1539 char address[MAX_SOCK_ADDR];
1540 int len, err, fput_needed;
1541
1542 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1543 if (sock != NULL) {
1544 err = security_socket_getpeername(sock);
1545 if (err) {
1546 fput_light(sock->file, fput_needed);
1547 return err;
1548 }
1549
1550 err =
1551 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1552 1);
1553 if (!err)
1554 err = move_addr_to_user(address, len, usockaddr,
1555 usockaddr_len);
1556 fput_light(sock->file, fput_needed);
1557 }
1558 return err;
1559}
1560
1561/*
1562 * Send a datagram to a given address. We move the address into kernel
1563 * space and check the user space data area is readable before invoking
1564 * the protocol.
1565 */
1566
1567asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1568 unsigned flags, struct sockaddr __user *addr,
1569 int addr_len)
1570{
1571 struct socket *sock;
1572 char address[MAX_SOCK_ADDR];
1573 int err;
1574 struct msghdr msg;
1575 struct iovec iov;
1576 int fput_needed;
1577 struct file *sock_file;
1578
1579 sock_file = fget_light(fd, &fput_needed);
1580 err = -EBADF;
1581 if (!sock_file)
1582 goto out;
1583
1584 sock = sock_from_file(sock_file, &err);
1585 if (!sock)
1586 goto out_put;
1587 iov.iov_base = buff;
1588 iov.iov_len = len;
1589 msg.msg_name = NULL;
1590 msg.msg_iov = &iov;
1591 msg.msg_iovlen = 1;
1592 msg.msg_control = NULL;
1593 msg.msg_controllen = 0;
1594 msg.msg_namelen = 0;
1595 if (addr) {
1596 err = move_addr_to_kernel(addr, addr_len, address);
1597 if (err < 0)
1598 goto out_put;
1599 msg.msg_name = address;
1600 msg.msg_namelen = addr_len;
1601 }
1602 if (sock->file->f_flags & O_NONBLOCK)
1603 flags |= MSG_DONTWAIT;
1604 msg.msg_flags = flags;
1605 err = sock_sendmsg(sock, &msg, len);
1606
1607out_put:
1608 fput_light(sock_file, fput_needed);
1609out:
1610 return err;
1611}
1612
1613/*
1614 * Send a datagram down a socket.
1615 */
1616
1617asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1618{
1619 return sys_sendto(fd, buff, len, flags, NULL, 0);
1620}
1621
1622/*
1623 * Receive a frame from the socket and optionally record the address of the
1624 * sender. We verify the buffers are writable and if needed move the
1625 * sender address from kernel to user space.
1626 */
1627
1628asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1629 unsigned flags, struct sockaddr __user *addr,
1630 int __user *addr_len)
1631{
1632 struct socket *sock;
1633 struct iovec iov;
1634 struct msghdr msg;
1635 char address[MAX_SOCK_ADDR];
1636 int err, err2;
1637 struct file *sock_file;
1638 int fput_needed;
1639
1640 sock_file = fget_light(fd, &fput_needed);
1641 err = -EBADF;
1642 if (!sock_file)
1643 goto out;
1644
1645 sock = sock_from_file(sock_file, &err);
1646 if (!sock)
1647 goto out_put;
1648
1649 msg.msg_control = NULL;
1650 msg.msg_controllen = 0;
1651 msg.msg_iovlen = 1;
1652 msg.msg_iov = &iov;
1653 iov.iov_len = size;
1654 iov.iov_base = ubuf;
1655 msg.msg_name = address;
1656 msg.msg_namelen = MAX_SOCK_ADDR;
1657 if (sock->file->f_flags & O_NONBLOCK)
1658 flags |= MSG_DONTWAIT;
1659 err = sock_recvmsg(sock, &msg, size, flags);
1660
1661 if (err >= 0 && addr != NULL) {
1662 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1663 if (err2 < 0)
1664 err = err2;
1665 }
1666out_put:
1667 fput_light(sock_file, fput_needed);
1668out:
1669 return err;
1670}
1671
1672/*
1673 * Receive a datagram from a socket.
1674 */
1675
1676asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1677 unsigned flags)
1678{
1679 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1680}
1681
1682/*
1683 * Set a socket option. Because we don't know the option lengths we have
1684 * to pass the user mode parameter for the protocols to sort out.
1685 */
1686
1687asmlinkage long sys_setsockopt(int fd, int level, int optname,
1688 char __user *optval, int optlen)
1689{
1690 int err, fput_needed;
1691 struct socket *sock;
1692
1693 if (optlen < 0)
1694 return -EINVAL;
1695
1696 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1697 if (sock != NULL) {
1698 err = security_socket_setsockopt(sock, level, optname);
1699 if (err)
1700 goto out_put;
1701
1702 if (level == SOL_SOCKET)
1703 err =
1704 sock_setsockopt(sock, level, optname, optval,
1705 optlen);
1706 else
1707 err =
1708 sock->ops->setsockopt(sock, level, optname, optval,
1709 optlen);
1710out_put:
1711 fput_light(sock->file, fput_needed);
1712 }
1713 return err;
1714}
1715
1716/*
1717 * Get a socket option. Because we don't know the option lengths we have
1718 * to pass a user mode parameter for the protocols to sort out.
1719 */
1720
1721asmlinkage long sys_getsockopt(int fd, int level, int optname,
1722 char __user *optval, int __user *optlen)
1723{
1724 int err, fput_needed;
1725 struct socket *sock;
1726
1727 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 if (sock != NULL) {
1729 err = security_socket_getsockopt(sock, level, optname);
1730 if (err)
1731 goto out_put;
1732
1733 if (level == SOL_SOCKET)
1734 err =
1735 sock_getsockopt(sock, level, optname, optval,
1736 optlen);
1737 else
1738 err =
1739 sock->ops->getsockopt(sock, level, optname, optval,
1740 optlen);
1741out_put:
1742 fput_light(sock->file, fput_needed);
1743 }
1744 return err;
1745}
1746
1747/*
1748 * Shutdown a socket.
1749 */
1750
1751asmlinkage long sys_shutdown(int fd, int how)
1752{
1753 int err, fput_needed;
1754 struct socket *sock;
1755
1756 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1757 if (sock != NULL) {
1758 err = security_socket_shutdown(sock, how);
1759 if (!err)
1760 err = sock->ops->shutdown(sock, how);
1761 fput_light(sock->file, fput_needed);
1762 }
1763 return err;
1764}
1765
1766/* A couple of helpful macros for getting the address of the 32/64 bit
1767 * fields which are the same type (int / unsigned) on our platforms.
1768 */
1769#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1770#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1771#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1772
1773/*
1774 * BSD sendmsg interface
1775 */
1776
1777asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1778{
1779 struct compat_msghdr __user *msg_compat =
1780 (struct compat_msghdr __user *)msg;
1781 struct socket *sock;
1782 char address[MAX_SOCK_ADDR];
1783 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1784 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1785 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1786 /* 20 is size of ipv6_pktinfo */
1787 unsigned char *ctl_buf = ctl;
1788 struct msghdr msg_sys;
1789 int err, ctl_len, iov_size, total_len;
1790 int fput_needed;
1791
1792 err = -EFAULT;
1793 if (MSG_CMSG_COMPAT & flags) {
1794 if (get_compat_msghdr(&msg_sys, msg_compat))
1795 return -EFAULT;
1796 }
1797 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1798 return -EFAULT;
1799
1800 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1801 if (!sock)
1802 goto out;
1803
1804 /* do not move before msg_sys is valid */
1805 err = -EMSGSIZE;
1806 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1807 goto out_put;
1808
1809 /* Check whether to allocate the iovec area */
1810 err = -ENOMEM;
1811 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1812 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1813 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1814 if (!iov)
1815 goto out_put;
1816 }
1817
1818 /* This will also move the address data into kernel space */
1819 if (MSG_CMSG_COMPAT & flags) {
1820 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1821 } else
1822 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1823 if (err < 0)
1824 goto out_freeiov;
1825 total_len = err;
1826
1827 err = -ENOBUFS;
1828
1829 if (msg_sys.msg_controllen > INT_MAX)
1830 goto out_freeiov;
1831 ctl_len = msg_sys.msg_controllen;
1832 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1833 err =
1834 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1835 sizeof(ctl));
1836 if (err)
1837 goto out_freeiov;
1838 ctl_buf = msg_sys.msg_control;
1839 ctl_len = msg_sys.msg_controllen;
1840 } else if (ctl_len) {
1841 if (ctl_len > sizeof(ctl)) {
1842 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1843 if (ctl_buf == NULL)
1844 goto out_freeiov;
1845 }
1846 err = -EFAULT;
1847 /*
1848 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1849 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1850 * checking falls down on this.
1851 */
1852 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1853 ctl_len))
1854 goto out_freectl;
1855 msg_sys.msg_control = ctl_buf;
1856 }
1857 msg_sys.msg_flags = flags;
1858
1859 if (sock->file->f_flags & O_NONBLOCK)
1860 msg_sys.msg_flags |= MSG_DONTWAIT;
1861 err = sock_sendmsg(sock, &msg_sys, total_len);
1862
1863out_freectl:
1864 if (ctl_buf != ctl)
1865 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1866out_freeiov:
1867 if (iov != iovstack)
1868 sock_kfree_s(sock->sk, iov, iov_size);
1869out_put:
1870 fput_light(sock->file, fput_needed);
1871out:
1872 return err;
1873}
1874
1875/*
1876 * BSD recvmsg interface
1877 */
1878
1879asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1880 unsigned int flags)
1881{
1882 struct compat_msghdr __user *msg_compat =
1883 (struct compat_msghdr __user *)msg;
1884 struct socket *sock;
1885 struct iovec iovstack[UIO_FASTIOV];
1886 struct iovec *iov = iovstack;
1887 struct msghdr msg_sys;
1888 unsigned long cmsg_ptr;
1889 int err, iov_size, total_len, len;
1890 int fput_needed;
1891
1892 /* kernel mode address */
1893 char addr[MAX_SOCK_ADDR];
1894
1895 /* user mode address pointers */
1896 struct sockaddr __user *uaddr;
1897 int __user *uaddr_len;
1898
1899 if (MSG_CMSG_COMPAT & flags) {
1900 if (get_compat_msghdr(&msg_sys, msg_compat))
1901 return -EFAULT;
1902 }
1903 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1904 return -EFAULT;
1905
1906 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1907 if (!sock)
1908 goto out;
1909
1910 err = -EMSGSIZE;
1911 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1912 goto out_put;
1913
1914 /* Check whether to allocate the iovec area */
1915 err = -ENOMEM;
1916 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1917 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1918 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1919 if (!iov)
1920 goto out_put;
1921 }
1922
1923 /*
1924 * Save the user-mode address (verify_iovec will change the
1925 * kernel msghdr to use the kernel address space)
1926 */
1927
1928 uaddr = (void __user *)msg_sys.msg_name;
1929 uaddr_len = COMPAT_NAMELEN(msg);
1930 if (MSG_CMSG_COMPAT & flags) {
1931 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1932 } else
1933 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1934 if (err < 0)
1935 goto out_freeiov;
1936 total_len = err;
1937
1938 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1939 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1940
1941 if (sock->file->f_flags & O_NONBLOCK)
1942 flags |= MSG_DONTWAIT;
1943 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1944 if (err < 0)
1945 goto out_freeiov;
1946 len = err;
1947
1948 if (uaddr != NULL) {
1949 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1950 uaddr_len);
1951 if (err < 0)
1952 goto out_freeiov;
1953 }
1954 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1955 COMPAT_FLAGS(msg));
1956 if (err)
1957 goto out_freeiov;
1958 if (MSG_CMSG_COMPAT & flags)
1959 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1960 &msg_compat->msg_controllen);
1961 else
1962 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1963 &msg->msg_controllen);
1964 if (err)
1965 goto out_freeiov;
1966 err = len;
1967
1968out_freeiov:
1969 if (iov != iovstack)
1970 sock_kfree_s(sock->sk, iov, iov_size);
1971out_put:
1972 fput_light(sock->file, fput_needed);
1973out:
1974 return err;
1975}
1976
1977#ifdef __ARCH_WANT_SYS_SOCKETCALL
1978
1979/* Argument list sizes for sys_socketcall */
1980#define AL(x) ((x) * sizeof(unsigned long))
1981static const unsigned char nargs[18]={
1982 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1983 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1984 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1985};
1986
1987#undef AL
1988
1989/*
1990 * System call vectors.
1991 *
1992 * Argument checking cleaned up. Saved 20% in size.
1993 * This function doesn't need to set the kernel lock because
1994 * it is set by the callees.
1995 */
1996
1997asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1998{
1999 unsigned long a[6];
2000 unsigned long a0, a1;
2001 int err;
2002
2003 if (call < 1 || call > SYS_RECVMSG)
2004 return -EINVAL;
2005
2006 /* copy_from_user should be SMP safe. */
2007 if (copy_from_user(a, args, nargs[call]))
2008 return -EFAULT;
2009
2010 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2011 if (err)
2012 return err;
2013
2014 a0 = a[0];
2015 a1 = a[1];
2016
2017 switch (call) {
2018 case SYS_SOCKET:
2019 err = sys_socket(a0, a1, a[2]);
2020 break;
2021 case SYS_BIND:
2022 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2023 break;
2024 case SYS_CONNECT:
2025 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2026 break;
2027 case SYS_LISTEN:
2028 err = sys_listen(a0, a1);
2029 break;
2030 case SYS_ACCEPT:
2031 err =
2032 sys_accept(a0, (struct sockaddr __user *)a1,
2033 (int __user *)a[2]);
2034 break;
2035 case SYS_GETSOCKNAME:
2036 err =
2037 sys_getsockname(a0, (struct sockaddr __user *)a1,
2038 (int __user *)a[2]);
2039 break;
2040 case SYS_GETPEERNAME:
2041 err =
2042 sys_getpeername(a0, (struct sockaddr __user *)a1,
2043 (int __user *)a[2]);
2044 break;
2045 case SYS_SOCKETPAIR:
2046 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2047 break;
2048 case SYS_SEND:
2049 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2050 break;
2051 case SYS_SENDTO:
2052 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2053 (struct sockaddr __user *)a[4], a[5]);
2054 break;
2055 case SYS_RECV:
2056 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2057 break;
2058 case SYS_RECVFROM:
2059 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2060 (struct sockaddr __user *)a[4],
2061 (int __user *)a[5]);
2062 break;
2063 case SYS_SHUTDOWN:
2064 err = sys_shutdown(a0, a1);
2065 break;
2066 case SYS_SETSOCKOPT:
2067 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2068 break;
2069 case SYS_GETSOCKOPT:
2070 err =
2071 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2072 (int __user *)a[4]);
2073 break;
2074 case SYS_SENDMSG:
2075 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2076 break;
2077 case SYS_RECVMSG:
2078 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2079 break;
2080 default:
2081 err = -EINVAL;
2082 break;
2083 }
2084 return err;
2085}
2086
2087#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2088
2089/**
2090 * sock_register - add a socket protocol handler
2091 * @ops: description of protocol
2092 *
2093 * This function is called by a protocol handler that wants to
2094 * advertise its address family, and have it linked into the
2095 * socket interface. The value ops->family coresponds to the
2096 * socket system call protocol family.
2097 */
2098int sock_register(const struct net_proto_family *ops)
2099{
2100 int err;
2101
2102 if (ops->family >= NPROTO) {
2103 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2104 NPROTO);
2105 return -ENOBUFS;
2106 }
2107
2108 spin_lock(&net_family_lock);
2109 if (net_families[ops->family])
2110 err = -EEXIST;
2111 else {
2112 net_families[ops->family] = ops;
2113 err = 0;
2114 }
2115 spin_unlock(&net_family_lock);
2116
2117 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2118 return err;
2119}
2120
2121/**
2122 * sock_unregister - remove a protocol handler
2123 * @family: protocol family to remove
2124 *
2125 * This function is called by a protocol handler that wants to
2126 * remove its address family, and have it unlinked from the
2127 * new socket creation.
2128 *
2129 * If protocol handler is a module, then it can use module reference
2130 * counts to protect against new references. If protocol handler is not
2131 * a module then it needs to provide its own protection in
2132 * the ops->create routine.
2133 */
2134void sock_unregister(int family)
2135{
2136 BUG_ON(family < 0 || family >= NPROTO);
2137
2138 spin_lock(&net_family_lock);
2139 net_families[family] = NULL;
2140 spin_unlock(&net_family_lock);
2141
2142 synchronize_rcu();
2143
2144 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2145}
2146
2147static int __init sock_init(void)
2148{
2149 /*
2150 * Initialize sock SLAB cache.
2151 */
2152
2153 sk_init();
2154
2155 /*
2156 * Initialize skbuff SLAB cache
2157 */
2158 skb_init();
2159
2160 /*
2161 * Initialize the protocols module.
2162 */
2163
2164 init_inodecache();
2165 register_filesystem(&sock_fs_type);
2166 sock_mnt = kern_mount(&sock_fs_type);
2167
2168 /* The real protocol initialization is performed in later initcalls.
2169 */
2170
2171#ifdef CONFIG_NETFILTER
2172 netfilter_init();
2173#endif
2174
2175 return 0;
2176}
2177
2178core_initcall(sock_init); /* early initcall */
2179
2180#ifdef CONFIG_PROC_FS
2181void socket_seq_show(struct seq_file *seq)
2182{
2183 int cpu;
2184 int counter = 0;
2185
2186 for_each_possible_cpu(cpu)
2187 counter += per_cpu(sockets_in_use, cpu);
2188
2189 /* It can be negative, by the way. 8) */
2190 if (counter < 0)
2191 counter = 0;
2192
2193 seq_printf(seq, "sockets: used %d\n", counter);
2194}
2195#endif /* CONFIG_PROC_FS */
2196
2197#ifdef CONFIG_COMPAT
2198static long compat_sock_ioctl(struct file *file, unsigned cmd,
2199 unsigned long arg)
2200{
2201 struct socket *sock = file->private_data;
2202 int ret = -ENOIOCTLCMD;
2203
2204 if (sock->ops->compat_ioctl)
2205 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2206
2207 return ret;
2208}
2209#endif
2210
2211int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2212{
2213 return sock->ops->bind(sock, addr, addrlen);
2214}
2215
2216int kernel_listen(struct socket *sock, int backlog)
2217{
2218 return sock->ops->listen(sock, backlog);
2219}
2220
2221int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2222{
2223 struct sock *sk = sock->sk;
2224 int err;
2225
2226 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2227 newsock);
2228 if (err < 0)
2229 goto done;
2230
2231 err = sock->ops->accept(sock, *newsock, flags);
2232 if (err < 0) {
2233 sock_release(*newsock);
2234 goto done;
2235 }
2236
2237 (*newsock)->ops = sock->ops;
2238
2239done:
2240 return err;
2241}
2242
2243int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2244 int flags)
2245{
2246 return sock->ops->connect(sock, addr, addrlen, flags);
2247}
2248
2249int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2250 int *addrlen)
2251{
2252 return sock->ops->getname(sock, addr, addrlen, 0);
2253}
2254
2255int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2256 int *addrlen)
2257{
2258 return sock->ops->getname(sock, addr, addrlen, 1);
2259}
2260
2261int kernel_getsockopt(struct socket *sock, int level, int optname,
2262 char *optval, int *optlen)
2263{
2264 mm_segment_t oldfs = get_fs();
2265 int err;
2266
2267 set_fs(KERNEL_DS);
2268 if (level == SOL_SOCKET)
2269 err = sock_getsockopt(sock, level, optname, optval, optlen);
2270 else
2271 err = sock->ops->getsockopt(sock, level, optname, optval,
2272 optlen);
2273 set_fs(oldfs);
2274 return err;
2275}
2276
2277int kernel_setsockopt(struct socket *sock, int level, int optname,
2278 char *optval, int optlen)
2279{
2280 mm_segment_t oldfs = get_fs();
2281 int err;
2282
2283 set_fs(KERNEL_DS);
2284 if (level == SOL_SOCKET)
2285 err = sock_setsockopt(sock, level, optname, optval, optlen);
2286 else
2287 err = sock->ops->setsockopt(sock, level, optname, optval,
2288 optlen);
2289 set_fs(oldfs);
2290 return err;
2291}
2292
2293int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2294 size_t size, int flags)
2295{
2296 if (sock->ops->sendpage)
2297 return sock->ops->sendpage(sock, page, offset, size, flags);
2298
2299 return sock_no_sendpage(sock, page, offset, size, flags);
2300}
2301
2302int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2303{
2304 mm_segment_t oldfs = get_fs();
2305 int err;
2306
2307 set_fs(KERNEL_DS);
2308 err = sock->ops->ioctl(sock, cmd, arg);
2309 set_fs(oldfs);
2310
2311 return err;
2312}
2313
2314/* ABI emulation layers need these two */
2315EXPORT_SYMBOL(move_addr_to_kernel);
2316EXPORT_SYMBOL(move_addr_to_user);
2317EXPORT_SYMBOL(sock_create);
2318EXPORT_SYMBOL(sock_create_kern);
2319EXPORT_SYMBOL(sock_create_lite);
2320EXPORT_SYMBOL(sock_map_fd);
2321EXPORT_SYMBOL(sock_recvmsg);
2322EXPORT_SYMBOL(sock_register);
2323EXPORT_SYMBOL(sock_release);
2324EXPORT_SYMBOL(sock_sendmsg);
2325EXPORT_SYMBOL(sock_unregister);
2326EXPORT_SYMBOL(sock_wake_async);
2327EXPORT_SYMBOL(sockfd_lookup);
2328EXPORT_SYMBOL(kernel_sendmsg);
2329EXPORT_SYMBOL(kernel_recvmsg);
2330EXPORT_SYMBOL(kernel_bind);
2331EXPORT_SYMBOL(kernel_listen);
2332EXPORT_SYMBOL(kernel_accept);
2333EXPORT_SYMBOL(kernel_connect);
2334EXPORT_SYMBOL(kernel_getsockname);
2335EXPORT_SYMBOL(kernel_getpeername);
2336EXPORT_SYMBOL(kernel_getsockopt);
2337EXPORT_SYMBOL(kernel_setsockopt);
2338EXPORT_SYMBOL(kernel_sendpage);
2339EXPORT_SYMBOL(kernel_sock_ioctl);