]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - net/socket.c
time: add missing implementation for timespec64_add_safe()
[mirror_ubuntu-artful-kernel.git] / net / socket.c
... / ...
CommitLineData
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <asm/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110
111#ifdef CONFIG_NET_RX_BUSY_POLL
112unsigned int sysctl_net_busy_read __read_mostly;
113unsigned int sysctl_net_busy_poll __read_mostly;
114#endif
115
116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120static int sock_close(struct inode *inode, struct file *file);
121static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124#ifdef CONFIG_COMPAT
125static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127#endif
128static int sock_fasync(int fd, struct file *filp, int on);
129static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135/*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147#ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149#endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156};
157
158/*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162static DEFINE_SPINLOCK(net_family_lock);
163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165/*
166 * Statistics counters of the socket lists
167 */
168
169static DEFINE_PER_CPU(int, sockets_in_use);
170
171/*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177/**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189{
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197}
198
199/**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218{
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241}
242
243static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245static struct inode *sock_alloc_inode(struct super_block *sb)
246{
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270}
271
272static void sock_destroy_inode(struct inode *inode)
273{
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281}
282
283static void init_once(void *foo)
284{
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288}
289
290static int init_inodecache(void)
291{
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302}
303
304static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308};
309
310/*
311 * sockfs_dname() is called from d_path().
312 */
313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314{
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317}
318
319static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321};
322
323static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
325{
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
328}
329
330static struct vfsmount *sock_mnt __read_mostly;
331
332static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
336};
337
338/*
339 * Obtains the first available file descriptor and sets it up for use.
340 *
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
348 *
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
353 */
354
355struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356{
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
360
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
367 }
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
372
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (IS_ERR(file)) {
378 /* drop dentry, keep inode */
379 ihold(d_inode(path.dentry));
380 path_put(&path);
381 return file;
382 }
383
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->private_data = sock;
387 return file;
388}
389EXPORT_SYMBOL(sock_alloc_file);
390
391static int sock_map_fd(struct socket *sock, int flags)
392{
393 struct file *newfile;
394 int fd = get_unused_fd_flags(flags);
395 if (unlikely(fd < 0))
396 return fd;
397
398 newfile = sock_alloc_file(sock, flags, NULL);
399 if (likely(!IS_ERR(newfile))) {
400 fd_install(fd, newfile);
401 return fd;
402 }
403
404 put_unused_fd(fd);
405 return PTR_ERR(newfile);
406}
407
408struct socket *sock_from_file(struct file *file, int *err)
409{
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
412
413 *err = -ENOTSOCK;
414 return NULL;
415}
416EXPORT_SYMBOL(sock_from_file);
417
418/**
419 * sockfd_lookup - Go from a file number to its socket slot
420 * @fd: file handle
421 * @err: pointer to an error code return
422 *
423 * The file handle passed in is locked and the socket it is bound
424 * too is returned. If an error occurs the err pointer is overwritten
425 * with a negative errno code and NULL is returned. The function checks
426 * for both invalid handles and passing a handle which is not a socket.
427 *
428 * On a success the socket object pointer is returned.
429 */
430
431struct socket *sockfd_lookup(int fd, int *err)
432{
433 struct file *file;
434 struct socket *sock;
435
436 file = fget(fd);
437 if (!file) {
438 *err = -EBADF;
439 return NULL;
440 }
441
442 sock = sock_from_file(file, err);
443 if (!sock)
444 fput(file);
445 return sock;
446}
447EXPORT_SYMBOL(sockfd_lookup);
448
449static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450{
451 struct fd f = fdget(fd);
452 struct socket *sock;
453
454 *err = -EBADF;
455 if (f.file) {
456 sock = sock_from_file(f.file, err);
457 if (likely(sock)) {
458 *fput_needed = f.flags;
459 return sock;
460 }
461 fdput(f);
462 }
463 return NULL;
464}
465
466#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469static ssize_t sockfs_getxattr(struct dentry *dentry, struct inode *inode,
470 const char *name, void *value, size_t size)
471{
472 const char *proto_name;
473 size_t proto_size;
474 int error;
475
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
480
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
485
486 strncpy(value, proto_name, proto_size + 1);
487 }
488 error = proto_size + 1;
489 }
490
491out:
492 return error;
493}
494
495static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
497{
498 ssize_t len;
499 ssize_t used = 0;
500
501 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
509 }
510
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
518 }
519
520 return used;
521}
522
523static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
526};
527
528/**
529 * sock_alloc - allocate a socket
530 *
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
534 */
535
536struct socket *sock_alloc(void)
537{
538 struct inode *inode;
539 struct socket *sock;
540
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
544
545 sock = SOCKET_I(inode);
546
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
553
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
556}
557EXPORT_SYMBOL(sock_alloc);
558
559/**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568void sock_release(struct socket *sock)
569{
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 this_cpu_sub(sockets_in_use, 1);
582 if (!sock->file) {
583 iput(SOCK_INODE(sock));
584 return;
585 }
586 sock->file = NULL;
587}
588EXPORT_SYMBOL(sock_release);
589
590void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
591{
592 u8 flags = *tx_flags;
593
594 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
595 flags |= SKBTX_HW_TSTAMP;
596
597 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
598 flags |= SKBTX_SW_TSTAMP;
599
600 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
601 flags |= SKBTX_SCHED_TSTAMP;
602
603 *tx_flags = flags;
604}
605EXPORT_SYMBOL(__sock_tx_timestamp);
606
607static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
608{
609 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
610 BUG_ON(ret == -EIOCBQUEUED);
611 return ret;
612}
613
614int sock_sendmsg(struct socket *sock, struct msghdr *msg)
615{
616 int err = security_socket_sendmsg(sock, msg,
617 msg_data_left(msg));
618
619 return err ?: sock_sendmsg_nosec(sock, msg);
620}
621EXPORT_SYMBOL(sock_sendmsg);
622
623int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
624 struct kvec *vec, size_t num, size_t size)
625{
626 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
627 return sock_sendmsg(sock, msg);
628}
629EXPORT_SYMBOL(kernel_sendmsg);
630
631/*
632 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
633 */
634void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
635 struct sk_buff *skb)
636{
637 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
638 struct scm_timestamping tss;
639 int empty = 1;
640 struct skb_shared_hwtstamps *shhwtstamps =
641 skb_hwtstamps(skb);
642
643 /* Race occurred between timestamp enabling and packet
644 receiving. Fill in the current time for now. */
645 if (need_software_tstamp && skb->tstamp.tv64 == 0)
646 __net_timestamp(skb);
647
648 if (need_software_tstamp) {
649 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
650 struct timeval tv;
651 skb_get_timestamp(skb, &tv);
652 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
653 sizeof(tv), &tv);
654 } else {
655 struct timespec ts;
656 skb_get_timestampns(skb, &ts);
657 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
658 sizeof(ts), &ts);
659 }
660 }
661
662 memset(&tss, 0, sizeof(tss));
663 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
664 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
665 empty = 0;
666 if (shhwtstamps &&
667 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
668 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
669 empty = 0;
670 if (!empty)
671 put_cmsg(msg, SOL_SOCKET,
672 SCM_TIMESTAMPING, sizeof(tss), &tss);
673}
674EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
675
676void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
677 struct sk_buff *skb)
678{
679 int ack;
680
681 if (!sock_flag(sk, SOCK_WIFI_STATUS))
682 return;
683 if (!skb->wifi_acked_valid)
684 return;
685
686 ack = skb->wifi_acked;
687
688 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
689}
690EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
691
692static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
693 struct sk_buff *skb)
694{
695 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
696 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
697 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
698}
699
700void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
701 struct sk_buff *skb)
702{
703 sock_recv_timestamp(msg, sk, skb);
704 sock_recv_drops(msg, sk, skb);
705}
706EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
707
708static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
709 int flags)
710{
711 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
712}
713
714int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
715{
716 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
717
718 return err ?: sock_recvmsg_nosec(sock, msg, flags);
719}
720EXPORT_SYMBOL(sock_recvmsg);
721
722/**
723 * kernel_recvmsg - Receive a message from a socket (kernel space)
724 * @sock: The socket to receive the message from
725 * @msg: Received message
726 * @vec: Input s/g array for message data
727 * @num: Size of input s/g array
728 * @size: Number of bytes to read
729 * @flags: Message flags (MSG_DONTWAIT, etc...)
730 *
731 * On return the msg structure contains the scatter/gather array passed in the
732 * vec argument. The array is modified so that it consists of the unfilled
733 * portion of the original array.
734 *
735 * The returned value is the total number of bytes received, or an error.
736 */
737int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
738 struct kvec *vec, size_t num, size_t size, int flags)
739{
740 mm_segment_t oldfs = get_fs();
741 int result;
742
743 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
744 set_fs(KERNEL_DS);
745 result = sock_recvmsg(sock, msg, flags);
746 set_fs(oldfs);
747 return result;
748}
749EXPORT_SYMBOL(kernel_recvmsg);
750
751static ssize_t sock_sendpage(struct file *file, struct page *page,
752 int offset, size_t size, loff_t *ppos, int more)
753{
754 struct socket *sock;
755 int flags;
756
757 sock = file->private_data;
758
759 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
760 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
761 flags |= more;
762
763 return kernel_sendpage(sock, page, offset, size, flags);
764}
765
766static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
767 struct pipe_inode_info *pipe, size_t len,
768 unsigned int flags)
769{
770 struct socket *sock = file->private_data;
771
772 if (unlikely(!sock->ops->splice_read))
773 return -EINVAL;
774
775 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
776}
777
778static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
779{
780 struct file *file = iocb->ki_filp;
781 struct socket *sock = file->private_data;
782 struct msghdr msg = {.msg_iter = *to,
783 .msg_iocb = iocb};
784 ssize_t res;
785
786 if (file->f_flags & O_NONBLOCK)
787 msg.msg_flags = MSG_DONTWAIT;
788
789 if (iocb->ki_pos != 0)
790 return -ESPIPE;
791
792 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
793 return 0;
794
795 res = sock_recvmsg(sock, &msg, msg.msg_flags);
796 *to = msg.msg_iter;
797 return res;
798}
799
800static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
801{
802 struct file *file = iocb->ki_filp;
803 struct socket *sock = file->private_data;
804 struct msghdr msg = {.msg_iter = *from,
805 .msg_iocb = iocb};
806 ssize_t res;
807
808 if (iocb->ki_pos != 0)
809 return -ESPIPE;
810
811 if (file->f_flags & O_NONBLOCK)
812 msg.msg_flags = MSG_DONTWAIT;
813
814 if (sock->type == SOCK_SEQPACKET)
815 msg.msg_flags |= MSG_EOR;
816
817 res = sock_sendmsg(sock, &msg);
818 *from = msg.msg_iter;
819 return res;
820}
821
822/*
823 * Atomic setting of ioctl hooks to avoid race
824 * with module unload.
825 */
826
827static DEFINE_MUTEX(br_ioctl_mutex);
828static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
829
830void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
831{
832 mutex_lock(&br_ioctl_mutex);
833 br_ioctl_hook = hook;
834 mutex_unlock(&br_ioctl_mutex);
835}
836EXPORT_SYMBOL(brioctl_set);
837
838static DEFINE_MUTEX(vlan_ioctl_mutex);
839static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
840
841void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
842{
843 mutex_lock(&vlan_ioctl_mutex);
844 vlan_ioctl_hook = hook;
845 mutex_unlock(&vlan_ioctl_mutex);
846}
847EXPORT_SYMBOL(vlan_ioctl_set);
848
849static DEFINE_MUTEX(dlci_ioctl_mutex);
850static int (*dlci_ioctl_hook) (unsigned int, void __user *);
851
852void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
853{
854 mutex_lock(&dlci_ioctl_mutex);
855 dlci_ioctl_hook = hook;
856 mutex_unlock(&dlci_ioctl_mutex);
857}
858EXPORT_SYMBOL(dlci_ioctl_set);
859
860static long sock_do_ioctl(struct net *net, struct socket *sock,
861 unsigned int cmd, unsigned long arg)
862{
863 int err;
864 void __user *argp = (void __user *)arg;
865
866 err = sock->ops->ioctl(sock, cmd, arg);
867
868 /*
869 * If this ioctl is unknown try to hand it down
870 * to the NIC driver.
871 */
872 if (err == -ENOIOCTLCMD)
873 err = dev_ioctl(net, cmd, argp);
874
875 return err;
876}
877
878/*
879 * With an ioctl, arg may well be a user mode pointer, but we don't know
880 * what to do with it - that's up to the protocol still.
881 */
882
883static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
884{
885 struct socket *sock;
886 struct sock *sk;
887 void __user *argp = (void __user *)arg;
888 int pid, err;
889 struct net *net;
890
891 sock = file->private_data;
892 sk = sock->sk;
893 net = sock_net(sk);
894 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
895 err = dev_ioctl(net, cmd, argp);
896 } else
897#ifdef CONFIG_WEXT_CORE
898 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
899 err = dev_ioctl(net, cmd, argp);
900 } else
901#endif
902 switch (cmd) {
903 case FIOSETOWN:
904 case SIOCSPGRP:
905 err = -EFAULT;
906 if (get_user(pid, (int __user *)argp))
907 break;
908 f_setown(sock->file, pid, 1);
909 err = 0;
910 break;
911 case FIOGETOWN:
912 case SIOCGPGRP:
913 err = put_user(f_getown(sock->file),
914 (int __user *)argp);
915 break;
916 case SIOCGIFBR:
917 case SIOCSIFBR:
918 case SIOCBRADDBR:
919 case SIOCBRDELBR:
920 err = -ENOPKG;
921 if (!br_ioctl_hook)
922 request_module("bridge");
923
924 mutex_lock(&br_ioctl_mutex);
925 if (br_ioctl_hook)
926 err = br_ioctl_hook(net, cmd, argp);
927 mutex_unlock(&br_ioctl_mutex);
928 break;
929 case SIOCGIFVLAN:
930 case SIOCSIFVLAN:
931 err = -ENOPKG;
932 if (!vlan_ioctl_hook)
933 request_module("8021q");
934
935 mutex_lock(&vlan_ioctl_mutex);
936 if (vlan_ioctl_hook)
937 err = vlan_ioctl_hook(net, argp);
938 mutex_unlock(&vlan_ioctl_mutex);
939 break;
940 case SIOCADDDLCI:
941 case SIOCDELDLCI:
942 err = -ENOPKG;
943 if (!dlci_ioctl_hook)
944 request_module("dlci");
945
946 mutex_lock(&dlci_ioctl_mutex);
947 if (dlci_ioctl_hook)
948 err = dlci_ioctl_hook(cmd, argp);
949 mutex_unlock(&dlci_ioctl_mutex);
950 break;
951 default:
952 err = sock_do_ioctl(net, sock, cmd, arg);
953 break;
954 }
955 return err;
956}
957
958int sock_create_lite(int family, int type, int protocol, struct socket **res)
959{
960 int err;
961 struct socket *sock = NULL;
962
963 err = security_socket_create(family, type, protocol, 1);
964 if (err)
965 goto out;
966
967 sock = sock_alloc();
968 if (!sock) {
969 err = -ENOMEM;
970 goto out;
971 }
972
973 sock->type = type;
974 err = security_socket_post_create(sock, family, type, protocol, 1);
975 if (err)
976 goto out_release;
977
978out:
979 *res = sock;
980 return err;
981out_release:
982 sock_release(sock);
983 sock = NULL;
984 goto out;
985}
986EXPORT_SYMBOL(sock_create_lite);
987
988/* No kernel lock held - perfect */
989static unsigned int sock_poll(struct file *file, poll_table *wait)
990{
991 unsigned int busy_flag = 0;
992 struct socket *sock;
993
994 /*
995 * We can't return errors to poll, so it's either yes or no.
996 */
997 sock = file->private_data;
998
999 if (sk_can_busy_loop(sock->sk)) {
1000 /* this socket can poll_ll so tell the system call */
1001 busy_flag = POLL_BUSY_LOOP;
1002
1003 /* once, only if requested by syscall */
1004 if (wait && (wait->_key & POLL_BUSY_LOOP))
1005 sk_busy_loop(sock->sk, 1);
1006 }
1007
1008 return busy_flag | sock->ops->poll(file, sock, wait);
1009}
1010
1011static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1012{
1013 struct socket *sock = file->private_data;
1014
1015 return sock->ops->mmap(file, sock, vma);
1016}
1017
1018static int sock_close(struct inode *inode, struct file *filp)
1019{
1020 sock_release(SOCKET_I(inode));
1021 return 0;
1022}
1023
1024/*
1025 * Update the socket async list
1026 *
1027 * Fasync_list locking strategy.
1028 *
1029 * 1. fasync_list is modified only under process context socket lock
1030 * i.e. under semaphore.
1031 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1032 * or under socket lock
1033 */
1034
1035static int sock_fasync(int fd, struct file *filp, int on)
1036{
1037 struct socket *sock = filp->private_data;
1038 struct sock *sk = sock->sk;
1039 struct socket_wq *wq;
1040
1041 if (sk == NULL)
1042 return -EINVAL;
1043
1044 lock_sock(sk);
1045 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1046 fasync_helper(fd, filp, on, &wq->fasync_list);
1047
1048 if (!wq->fasync_list)
1049 sock_reset_flag(sk, SOCK_FASYNC);
1050 else
1051 sock_set_flag(sk, SOCK_FASYNC);
1052
1053 release_sock(sk);
1054 return 0;
1055}
1056
1057/* This function may be called only under rcu_lock */
1058
1059int sock_wake_async(struct socket_wq *wq, int how, int band)
1060{
1061 if (!wq || !wq->fasync_list)
1062 return -1;
1063
1064 switch (how) {
1065 case SOCK_WAKE_WAITD:
1066 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1067 break;
1068 goto call_kill;
1069 case SOCK_WAKE_SPACE:
1070 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1071 break;
1072 /* fall through */
1073 case SOCK_WAKE_IO:
1074call_kill:
1075 kill_fasync(&wq->fasync_list, SIGIO, band);
1076 break;
1077 case SOCK_WAKE_URG:
1078 kill_fasync(&wq->fasync_list, SIGURG, band);
1079 }
1080
1081 return 0;
1082}
1083EXPORT_SYMBOL(sock_wake_async);
1084
1085int __sock_create(struct net *net, int family, int type, int protocol,
1086 struct socket **res, int kern)
1087{
1088 int err;
1089 struct socket *sock;
1090 const struct net_proto_family *pf;
1091
1092 /*
1093 * Check protocol is in range
1094 */
1095 if (family < 0 || family >= NPROTO)
1096 return -EAFNOSUPPORT;
1097 if (type < 0 || type >= SOCK_MAX)
1098 return -EINVAL;
1099
1100 /* Compatibility.
1101
1102 This uglymoron is moved from INET layer to here to avoid
1103 deadlock in module load.
1104 */
1105 if (family == PF_INET && type == SOCK_PACKET) {
1106 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1107 current->comm);
1108 family = PF_PACKET;
1109 }
1110
1111 err = security_socket_create(family, type, protocol, kern);
1112 if (err)
1113 return err;
1114
1115 /*
1116 * Allocate the socket and allow the family to set things up. if
1117 * the protocol is 0, the family is instructed to select an appropriate
1118 * default.
1119 */
1120 sock = sock_alloc();
1121 if (!sock) {
1122 net_warn_ratelimited("socket: no more sockets\n");
1123 return -ENFILE; /* Not exactly a match, but its the
1124 closest posix thing */
1125 }
1126
1127 sock->type = type;
1128
1129#ifdef CONFIG_MODULES
1130 /* Attempt to load a protocol module if the find failed.
1131 *
1132 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1133 * requested real, full-featured networking support upon configuration.
1134 * Otherwise module support will break!
1135 */
1136 if (rcu_access_pointer(net_families[family]) == NULL)
1137 request_module("net-pf-%d", family);
1138#endif
1139
1140 rcu_read_lock();
1141 pf = rcu_dereference(net_families[family]);
1142 err = -EAFNOSUPPORT;
1143 if (!pf)
1144 goto out_release;
1145
1146 /*
1147 * We will call the ->create function, that possibly is in a loadable
1148 * module, so we have to bump that loadable module refcnt first.
1149 */
1150 if (!try_module_get(pf->owner))
1151 goto out_release;
1152
1153 /* Now protected by module ref count */
1154 rcu_read_unlock();
1155
1156 err = pf->create(net, sock, protocol, kern);
1157 if (err < 0)
1158 goto out_module_put;
1159
1160 /*
1161 * Now to bump the refcnt of the [loadable] module that owns this
1162 * socket at sock_release time we decrement its refcnt.
1163 */
1164 if (!try_module_get(sock->ops->owner))
1165 goto out_module_busy;
1166
1167 /*
1168 * Now that we're done with the ->create function, the [loadable]
1169 * module can have its refcnt decremented
1170 */
1171 module_put(pf->owner);
1172 err = security_socket_post_create(sock, family, type, protocol, kern);
1173 if (err)
1174 goto out_sock_release;
1175 *res = sock;
1176
1177 return 0;
1178
1179out_module_busy:
1180 err = -EAFNOSUPPORT;
1181out_module_put:
1182 sock->ops = NULL;
1183 module_put(pf->owner);
1184out_sock_release:
1185 sock_release(sock);
1186 return err;
1187
1188out_release:
1189 rcu_read_unlock();
1190 goto out_sock_release;
1191}
1192EXPORT_SYMBOL(__sock_create);
1193
1194int sock_create(int family, int type, int protocol, struct socket **res)
1195{
1196 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1197}
1198EXPORT_SYMBOL(sock_create);
1199
1200int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1201{
1202 return __sock_create(net, family, type, protocol, res, 1);
1203}
1204EXPORT_SYMBOL(sock_create_kern);
1205
1206SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1207{
1208 int retval;
1209 struct socket *sock;
1210 int flags;
1211
1212 /* Check the SOCK_* constants for consistency. */
1213 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1214 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1215 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1216 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1217
1218 flags = type & ~SOCK_TYPE_MASK;
1219 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1220 return -EINVAL;
1221 type &= SOCK_TYPE_MASK;
1222
1223 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1224 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1225
1226 retval = sock_create(family, type, protocol, &sock);
1227 if (retval < 0)
1228 goto out;
1229
1230 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1231 if (retval < 0)
1232 goto out_release;
1233
1234out:
1235 /* It may be already another descriptor 8) Not kernel problem. */
1236 return retval;
1237
1238out_release:
1239 sock_release(sock);
1240 return retval;
1241}
1242
1243/*
1244 * Create a pair of connected sockets.
1245 */
1246
1247SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1248 int __user *, usockvec)
1249{
1250 struct socket *sock1, *sock2;
1251 int fd1, fd2, err;
1252 struct file *newfile1, *newfile2;
1253 int flags;
1254
1255 flags = type & ~SOCK_TYPE_MASK;
1256 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1257 return -EINVAL;
1258 type &= SOCK_TYPE_MASK;
1259
1260 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1261 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1262
1263 /*
1264 * Obtain the first socket and check if the underlying protocol
1265 * supports the socketpair call.
1266 */
1267
1268 err = sock_create(family, type, protocol, &sock1);
1269 if (err < 0)
1270 goto out;
1271
1272 err = sock_create(family, type, protocol, &sock2);
1273 if (err < 0)
1274 goto out_release_1;
1275
1276 err = sock1->ops->socketpair(sock1, sock2);
1277 if (err < 0)
1278 goto out_release_both;
1279
1280 fd1 = get_unused_fd_flags(flags);
1281 if (unlikely(fd1 < 0)) {
1282 err = fd1;
1283 goto out_release_both;
1284 }
1285
1286 fd2 = get_unused_fd_flags(flags);
1287 if (unlikely(fd2 < 0)) {
1288 err = fd2;
1289 goto out_put_unused_1;
1290 }
1291
1292 newfile1 = sock_alloc_file(sock1, flags, NULL);
1293 if (IS_ERR(newfile1)) {
1294 err = PTR_ERR(newfile1);
1295 goto out_put_unused_both;
1296 }
1297
1298 newfile2 = sock_alloc_file(sock2, flags, NULL);
1299 if (IS_ERR(newfile2)) {
1300 err = PTR_ERR(newfile2);
1301 goto out_fput_1;
1302 }
1303
1304 err = put_user(fd1, &usockvec[0]);
1305 if (err)
1306 goto out_fput_both;
1307
1308 err = put_user(fd2, &usockvec[1]);
1309 if (err)
1310 goto out_fput_both;
1311
1312 audit_fd_pair(fd1, fd2);
1313
1314 fd_install(fd1, newfile1);
1315 fd_install(fd2, newfile2);
1316 /* fd1 and fd2 may be already another descriptors.
1317 * Not kernel problem.
1318 */
1319
1320 return 0;
1321
1322out_fput_both:
1323 fput(newfile2);
1324 fput(newfile1);
1325 put_unused_fd(fd2);
1326 put_unused_fd(fd1);
1327 goto out;
1328
1329out_fput_1:
1330 fput(newfile1);
1331 put_unused_fd(fd2);
1332 put_unused_fd(fd1);
1333 sock_release(sock2);
1334 goto out;
1335
1336out_put_unused_both:
1337 put_unused_fd(fd2);
1338out_put_unused_1:
1339 put_unused_fd(fd1);
1340out_release_both:
1341 sock_release(sock2);
1342out_release_1:
1343 sock_release(sock1);
1344out:
1345 return err;
1346}
1347
1348/*
1349 * Bind a name to a socket. Nothing much to do here since it's
1350 * the protocol's responsibility to handle the local address.
1351 *
1352 * We move the socket address to kernel space before we call
1353 * the protocol layer (having also checked the address is ok).
1354 */
1355
1356SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1357{
1358 struct socket *sock;
1359 struct sockaddr_storage address;
1360 int err, fput_needed;
1361
1362 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1363 if (sock) {
1364 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1365 if (err >= 0) {
1366 err = security_socket_bind(sock,
1367 (struct sockaddr *)&address,
1368 addrlen);
1369 if (!err)
1370 err = sock->ops->bind(sock,
1371 (struct sockaddr *)
1372 &address, addrlen);
1373 }
1374 fput_light(sock->file, fput_needed);
1375 }
1376 return err;
1377}
1378
1379/*
1380 * Perform a listen. Basically, we allow the protocol to do anything
1381 * necessary for a listen, and if that works, we mark the socket as
1382 * ready for listening.
1383 */
1384
1385SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1386{
1387 struct socket *sock;
1388 int err, fput_needed;
1389 int somaxconn;
1390
1391 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1392 if (sock) {
1393 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1394 if ((unsigned int)backlog > somaxconn)
1395 backlog = somaxconn;
1396
1397 err = security_socket_listen(sock, backlog);
1398 if (!err)
1399 err = sock->ops->listen(sock, backlog);
1400
1401 fput_light(sock->file, fput_needed);
1402 }
1403 return err;
1404}
1405
1406/*
1407 * For accept, we attempt to create a new socket, set up the link
1408 * with the client, wake up the client, then return the new
1409 * connected fd. We collect the address of the connector in kernel
1410 * space and move it to user at the very end. This is unclean because
1411 * we open the socket then return an error.
1412 *
1413 * 1003.1g adds the ability to recvmsg() to query connection pending
1414 * status to recvmsg. We need to add that support in a way thats
1415 * clean when we restucture accept also.
1416 */
1417
1418SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1419 int __user *, upeer_addrlen, int, flags)
1420{
1421 struct socket *sock, *newsock;
1422 struct file *newfile;
1423 int err, len, newfd, fput_needed;
1424 struct sockaddr_storage address;
1425
1426 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1427 return -EINVAL;
1428
1429 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1430 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1431
1432 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433 if (!sock)
1434 goto out;
1435
1436 err = -ENFILE;
1437 newsock = sock_alloc();
1438 if (!newsock)
1439 goto out_put;
1440
1441 newsock->type = sock->type;
1442 newsock->ops = sock->ops;
1443
1444 /*
1445 * We don't need try_module_get here, as the listening socket (sock)
1446 * has the protocol module (sock->ops->owner) held.
1447 */
1448 __module_get(newsock->ops->owner);
1449
1450 newfd = get_unused_fd_flags(flags);
1451 if (unlikely(newfd < 0)) {
1452 err = newfd;
1453 sock_release(newsock);
1454 goto out_put;
1455 }
1456 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1457 if (IS_ERR(newfile)) {
1458 err = PTR_ERR(newfile);
1459 put_unused_fd(newfd);
1460 sock_release(newsock);
1461 goto out_put;
1462 }
1463
1464 err = security_socket_accept(sock, newsock);
1465 if (err)
1466 goto out_fd;
1467
1468 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1469 if (err < 0)
1470 goto out_fd;
1471
1472 if (upeer_sockaddr) {
1473 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1474 &len, 2) < 0) {
1475 err = -ECONNABORTED;
1476 goto out_fd;
1477 }
1478 err = move_addr_to_user(&address,
1479 len, upeer_sockaddr, upeer_addrlen);
1480 if (err < 0)
1481 goto out_fd;
1482 }
1483
1484 /* File flags are not inherited via accept() unlike another OSes. */
1485
1486 fd_install(newfd, newfile);
1487 err = newfd;
1488
1489out_put:
1490 fput_light(sock->file, fput_needed);
1491out:
1492 return err;
1493out_fd:
1494 fput(newfile);
1495 put_unused_fd(newfd);
1496 goto out_put;
1497}
1498
1499SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1500 int __user *, upeer_addrlen)
1501{
1502 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1503}
1504
1505/*
1506 * Attempt to connect to a socket with the server address. The address
1507 * is in user space so we verify it is OK and move it to kernel space.
1508 *
1509 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1510 * break bindings
1511 *
1512 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1513 * other SEQPACKET protocols that take time to connect() as it doesn't
1514 * include the -EINPROGRESS status for such sockets.
1515 */
1516
1517SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1518 int, addrlen)
1519{
1520 struct socket *sock;
1521 struct sockaddr_storage address;
1522 int err, fput_needed;
1523
1524 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 if (!sock)
1526 goto out;
1527 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1528 if (err < 0)
1529 goto out_put;
1530
1531 err =
1532 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1533 if (err)
1534 goto out_put;
1535
1536 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1537 sock->file->f_flags);
1538out_put:
1539 fput_light(sock->file, fput_needed);
1540out:
1541 return err;
1542}
1543
1544/*
1545 * Get the local address ('name') of a socket object. Move the obtained
1546 * name to user space.
1547 */
1548
1549SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1550 int __user *, usockaddr_len)
1551{
1552 struct socket *sock;
1553 struct sockaddr_storage address;
1554 int len, err, fput_needed;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (!sock)
1558 goto out;
1559
1560 err = security_socket_getsockname(sock);
1561 if (err)
1562 goto out_put;
1563
1564 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1565 if (err)
1566 goto out_put;
1567 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1568
1569out_put:
1570 fput_light(sock->file, fput_needed);
1571out:
1572 return err;
1573}
1574
1575/*
1576 * Get the remote address ('name') of a socket object. Move the obtained
1577 * name to user space.
1578 */
1579
1580SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1581 int __user *, usockaddr_len)
1582{
1583 struct socket *sock;
1584 struct sockaddr_storage address;
1585 int len, err, fput_needed;
1586
1587 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588 if (sock != NULL) {
1589 err = security_socket_getpeername(sock);
1590 if (err) {
1591 fput_light(sock->file, fput_needed);
1592 return err;
1593 }
1594
1595 err =
1596 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1597 1);
1598 if (!err)
1599 err = move_addr_to_user(&address, len, usockaddr,
1600 usockaddr_len);
1601 fput_light(sock->file, fput_needed);
1602 }
1603 return err;
1604}
1605
1606/*
1607 * Send a datagram to a given address. We move the address into kernel
1608 * space and check the user space data area is readable before invoking
1609 * the protocol.
1610 */
1611
1612SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1613 unsigned int, flags, struct sockaddr __user *, addr,
1614 int, addr_len)
1615{
1616 struct socket *sock;
1617 struct sockaddr_storage address;
1618 int err;
1619 struct msghdr msg;
1620 struct iovec iov;
1621 int fput_needed;
1622
1623 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1624 if (unlikely(err))
1625 return err;
1626 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627 if (!sock)
1628 goto out;
1629
1630 msg.msg_name = NULL;
1631 msg.msg_control = NULL;
1632 msg.msg_controllen = 0;
1633 msg.msg_namelen = 0;
1634 if (addr) {
1635 err = move_addr_to_kernel(addr, addr_len, &address);
1636 if (err < 0)
1637 goto out_put;
1638 msg.msg_name = (struct sockaddr *)&address;
1639 msg.msg_namelen = addr_len;
1640 }
1641 if (sock->file->f_flags & O_NONBLOCK)
1642 flags |= MSG_DONTWAIT;
1643 msg.msg_flags = flags;
1644 err = sock_sendmsg(sock, &msg);
1645
1646out_put:
1647 fput_light(sock->file, fput_needed);
1648out:
1649 return err;
1650}
1651
1652/*
1653 * Send a datagram down a socket.
1654 */
1655
1656SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1657 unsigned int, flags)
1658{
1659 return sys_sendto(fd, buff, len, flags, NULL, 0);
1660}
1661
1662/*
1663 * Receive a frame from the socket and optionally record the address of the
1664 * sender. We verify the buffers are writable and if needed move the
1665 * sender address from kernel to user space.
1666 */
1667
1668SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1669 unsigned int, flags, struct sockaddr __user *, addr,
1670 int __user *, addr_len)
1671{
1672 struct socket *sock;
1673 struct iovec iov;
1674 struct msghdr msg;
1675 struct sockaddr_storage address;
1676 int err, err2;
1677 int fput_needed;
1678
1679 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1680 if (unlikely(err))
1681 return err;
1682 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683 if (!sock)
1684 goto out;
1685
1686 msg.msg_control = NULL;
1687 msg.msg_controllen = 0;
1688 /* Save some cycles and don't copy the address if not needed */
1689 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1690 /* We assume all kernel code knows the size of sockaddr_storage */
1691 msg.msg_namelen = 0;
1692 msg.msg_iocb = NULL;
1693 if (sock->file->f_flags & O_NONBLOCK)
1694 flags |= MSG_DONTWAIT;
1695 err = sock_recvmsg(sock, &msg, flags);
1696
1697 if (err >= 0 && addr != NULL) {
1698 err2 = move_addr_to_user(&address,
1699 msg.msg_namelen, addr, addr_len);
1700 if (err2 < 0)
1701 err = err2;
1702 }
1703
1704 fput_light(sock->file, fput_needed);
1705out:
1706 return err;
1707}
1708
1709/*
1710 * Receive a datagram from a socket.
1711 */
1712
1713SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1714 unsigned int, flags)
1715{
1716 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1717}
1718
1719/*
1720 * Set a socket option. Because we don't know the option lengths we have
1721 * to pass the user mode parameter for the protocols to sort out.
1722 */
1723
1724SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1725 char __user *, optval, int, optlen)
1726{
1727 int err, fput_needed;
1728 struct socket *sock;
1729
1730 if (optlen < 0)
1731 return -EINVAL;
1732
1733 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 if (sock != NULL) {
1735 err = security_socket_setsockopt(sock, level, optname);
1736 if (err)
1737 goto out_put;
1738
1739 if (level == SOL_SOCKET)
1740 err =
1741 sock_setsockopt(sock, level, optname, optval,
1742 optlen);
1743 else
1744 err =
1745 sock->ops->setsockopt(sock, level, optname, optval,
1746 optlen);
1747out_put:
1748 fput_light(sock->file, fput_needed);
1749 }
1750 return err;
1751}
1752
1753/*
1754 * Get a socket option. Because we don't know the option lengths we have
1755 * to pass a user mode parameter for the protocols to sort out.
1756 */
1757
1758SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1759 char __user *, optval, int __user *, optlen)
1760{
1761 int err, fput_needed;
1762 struct socket *sock;
1763
1764 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 if (sock != NULL) {
1766 err = security_socket_getsockopt(sock, level, optname);
1767 if (err)
1768 goto out_put;
1769
1770 if (level == SOL_SOCKET)
1771 err =
1772 sock_getsockopt(sock, level, optname, optval,
1773 optlen);
1774 else
1775 err =
1776 sock->ops->getsockopt(sock, level, optname, optval,
1777 optlen);
1778out_put:
1779 fput_light(sock->file, fput_needed);
1780 }
1781 return err;
1782}
1783
1784/*
1785 * Shutdown a socket.
1786 */
1787
1788SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1789{
1790 int err, fput_needed;
1791 struct socket *sock;
1792
1793 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 if (sock != NULL) {
1795 err = security_socket_shutdown(sock, how);
1796 if (!err)
1797 err = sock->ops->shutdown(sock, how);
1798 fput_light(sock->file, fput_needed);
1799 }
1800 return err;
1801}
1802
1803/* A couple of helpful macros for getting the address of the 32/64 bit
1804 * fields which are the same type (int / unsigned) on our platforms.
1805 */
1806#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1807#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1808#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1809
1810struct used_address {
1811 struct sockaddr_storage name;
1812 unsigned int name_len;
1813};
1814
1815static int copy_msghdr_from_user(struct msghdr *kmsg,
1816 struct user_msghdr __user *umsg,
1817 struct sockaddr __user **save_addr,
1818 struct iovec **iov)
1819{
1820 struct sockaddr __user *uaddr;
1821 struct iovec __user *uiov;
1822 size_t nr_segs;
1823 ssize_t err;
1824
1825 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1826 __get_user(uaddr, &umsg->msg_name) ||
1827 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1828 __get_user(uiov, &umsg->msg_iov) ||
1829 __get_user(nr_segs, &umsg->msg_iovlen) ||
1830 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1831 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1832 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1833 return -EFAULT;
1834
1835 if (!uaddr)
1836 kmsg->msg_namelen = 0;
1837
1838 if (kmsg->msg_namelen < 0)
1839 return -EINVAL;
1840
1841 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1842 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1843
1844 if (save_addr)
1845 *save_addr = uaddr;
1846
1847 if (uaddr && kmsg->msg_namelen) {
1848 if (!save_addr) {
1849 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1850 kmsg->msg_name);
1851 if (err < 0)
1852 return err;
1853 }
1854 } else {
1855 kmsg->msg_name = NULL;
1856 kmsg->msg_namelen = 0;
1857 }
1858
1859 if (nr_segs > UIO_MAXIOV)
1860 return -EMSGSIZE;
1861
1862 kmsg->msg_iocb = NULL;
1863
1864 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1865 UIO_FASTIOV, iov, &kmsg->msg_iter);
1866}
1867
1868static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1869 struct msghdr *msg_sys, unsigned int flags,
1870 struct used_address *used_address,
1871 unsigned int allowed_msghdr_flags)
1872{
1873 struct compat_msghdr __user *msg_compat =
1874 (struct compat_msghdr __user *)msg;
1875 struct sockaddr_storage address;
1876 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1877 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1878 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1879 /* 20 is size of ipv6_pktinfo */
1880 unsigned char *ctl_buf = ctl;
1881 int ctl_len;
1882 ssize_t err;
1883
1884 msg_sys->msg_name = &address;
1885
1886 if (MSG_CMSG_COMPAT & flags)
1887 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1888 else
1889 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1890 if (err < 0)
1891 return err;
1892
1893 err = -ENOBUFS;
1894
1895 if (msg_sys->msg_controllen > INT_MAX)
1896 goto out_freeiov;
1897 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1898 ctl_len = msg_sys->msg_controllen;
1899 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1900 err =
1901 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1902 sizeof(ctl));
1903 if (err)
1904 goto out_freeiov;
1905 ctl_buf = msg_sys->msg_control;
1906 ctl_len = msg_sys->msg_controllen;
1907 } else if (ctl_len) {
1908 if (ctl_len > sizeof(ctl)) {
1909 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1910 if (ctl_buf == NULL)
1911 goto out_freeiov;
1912 }
1913 err = -EFAULT;
1914 /*
1915 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1916 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1917 * checking falls down on this.
1918 */
1919 if (copy_from_user(ctl_buf,
1920 (void __user __force *)msg_sys->msg_control,
1921 ctl_len))
1922 goto out_freectl;
1923 msg_sys->msg_control = ctl_buf;
1924 }
1925 msg_sys->msg_flags = flags;
1926
1927 if (sock->file->f_flags & O_NONBLOCK)
1928 msg_sys->msg_flags |= MSG_DONTWAIT;
1929 /*
1930 * If this is sendmmsg() and current destination address is same as
1931 * previously succeeded address, omit asking LSM's decision.
1932 * used_address->name_len is initialized to UINT_MAX so that the first
1933 * destination address never matches.
1934 */
1935 if (used_address && msg_sys->msg_name &&
1936 used_address->name_len == msg_sys->msg_namelen &&
1937 !memcmp(&used_address->name, msg_sys->msg_name,
1938 used_address->name_len)) {
1939 err = sock_sendmsg_nosec(sock, msg_sys);
1940 goto out_freectl;
1941 }
1942 err = sock_sendmsg(sock, msg_sys);
1943 /*
1944 * If this is sendmmsg() and sending to current destination address was
1945 * successful, remember it.
1946 */
1947 if (used_address && err >= 0) {
1948 used_address->name_len = msg_sys->msg_namelen;
1949 if (msg_sys->msg_name)
1950 memcpy(&used_address->name, msg_sys->msg_name,
1951 used_address->name_len);
1952 }
1953
1954out_freectl:
1955 if (ctl_buf != ctl)
1956 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957out_freeiov:
1958 kfree(iov);
1959 return err;
1960}
1961
1962/*
1963 * BSD sendmsg interface
1964 */
1965
1966long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1967{
1968 int fput_needed, err;
1969 struct msghdr msg_sys;
1970 struct socket *sock;
1971
1972 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 if (!sock)
1974 goto out;
1975
1976 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1977
1978 fput_light(sock->file, fput_needed);
1979out:
1980 return err;
1981}
1982
1983SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1984{
1985 if (flags & MSG_CMSG_COMPAT)
1986 return -EINVAL;
1987 return __sys_sendmsg(fd, msg, flags);
1988}
1989
1990/*
1991 * Linux sendmmsg interface
1992 */
1993
1994int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1995 unsigned int flags)
1996{
1997 int fput_needed, err, datagrams;
1998 struct socket *sock;
1999 struct mmsghdr __user *entry;
2000 struct compat_mmsghdr __user *compat_entry;
2001 struct msghdr msg_sys;
2002 struct used_address used_address;
2003 unsigned int oflags = flags;
2004
2005 if (vlen > UIO_MAXIOV)
2006 vlen = UIO_MAXIOV;
2007
2008 datagrams = 0;
2009
2010 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2011 if (!sock)
2012 return err;
2013
2014 used_address.name_len = UINT_MAX;
2015 entry = mmsg;
2016 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2017 err = 0;
2018 flags |= MSG_BATCH;
2019
2020 while (datagrams < vlen) {
2021 if (datagrams == vlen - 1)
2022 flags = oflags;
2023
2024 if (MSG_CMSG_COMPAT & flags) {
2025 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2026 &msg_sys, flags, &used_address, MSG_EOR);
2027 if (err < 0)
2028 break;
2029 err = __put_user(err, &compat_entry->msg_len);
2030 ++compat_entry;
2031 } else {
2032 err = ___sys_sendmsg(sock,
2033 (struct user_msghdr __user *)entry,
2034 &msg_sys, flags, &used_address, MSG_EOR);
2035 if (err < 0)
2036 break;
2037 err = put_user(err, &entry->msg_len);
2038 ++entry;
2039 }
2040
2041 if (err)
2042 break;
2043 ++datagrams;
2044 cond_resched();
2045 }
2046
2047 fput_light(sock->file, fput_needed);
2048
2049 /* We only return an error if no datagrams were able to be sent */
2050 if (datagrams != 0)
2051 return datagrams;
2052
2053 return err;
2054}
2055
2056SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2057 unsigned int, vlen, unsigned int, flags)
2058{
2059 if (flags & MSG_CMSG_COMPAT)
2060 return -EINVAL;
2061 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2062}
2063
2064static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2065 struct msghdr *msg_sys, unsigned int flags, int nosec)
2066{
2067 struct compat_msghdr __user *msg_compat =
2068 (struct compat_msghdr __user *)msg;
2069 struct iovec iovstack[UIO_FASTIOV];
2070 struct iovec *iov = iovstack;
2071 unsigned long cmsg_ptr;
2072 int len;
2073 ssize_t err;
2074
2075 /* kernel mode address */
2076 struct sockaddr_storage addr;
2077
2078 /* user mode address pointers */
2079 struct sockaddr __user *uaddr;
2080 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2081
2082 msg_sys->msg_name = &addr;
2083
2084 if (MSG_CMSG_COMPAT & flags)
2085 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2086 else
2087 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2088 if (err < 0)
2089 return err;
2090
2091 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2092 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2093
2094 /* We assume all kernel code knows the size of sockaddr_storage */
2095 msg_sys->msg_namelen = 0;
2096
2097 if (sock->file->f_flags & O_NONBLOCK)
2098 flags |= MSG_DONTWAIT;
2099 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2100 if (err < 0)
2101 goto out_freeiov;
2102 len = err;
2103
2104 if (uaddr != NULL) {
2105 err = move_addr_to_user(&addr,
2106 msg_sys->msg_namelen, uaddr,
2107 uaddr_len);
2108 if (err < 0)
2109 goto out_freeiov;
2110 }
2111 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2112 COMPAT_FLAGS(msg));
2113 if (err)
2114 goto out_freeiov;
2115 if (MSG_CMSG_COMPAT & flags)
2116 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2117 &msg_compat->msg_controllen);
2118 else
2119 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2120 &msg->msg_controllen);
2121 if (err)
2122 goto out_freeiov;
2123 err = len;
2124
2125out_freeiov:
2126 kfree(iov);
2127 return err;
2128}
2129
2130/*
2131 * BSD recvmsg interface
2132 */
2133
2134long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2135{
2136 int fput_needed, err;
2137 struct msghdr msg_sys;
2138 struct socket *sock;
2139
2140 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141 if (!sock)
2142 goto out;
2143
2144 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2145
2146 fput_light(sock->file, fput_needed);
2147out:
2148 return err;
2149}
2150
2151SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2152 unsigned int, flags)
2153{
2154 if (flags & MSG_CMSG_COMPAT)
2155 return -EINVAL;
2156 return __sys_recvmsg(fd, msg, flags);
2157}
2158
2159/*
2160 * Linux recvmmsg interface
2161 */
2162
2163int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2164 unsigned int flags, struct timespec *timeout)
2165{
2166 int fput_needed, err, datagrams;
2167 struct socket *sock;
2168 struct mmsghdr __user *entry;
2169 struct compat_mmsghdr __user *compat_entry;
2170 struct msghdr msg_sys;
2171 struct timespec end_time;
2172
2173 if (timeout &&
2174 poll_select_set_timeout(&end_time, timeout->tv_sec,
2175 timeout->tv_nsec))
2176 return -EINVAL;
2177
2178 datagrams = 0;
2179
2180 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2181 if (!sock)
2182 return err;
2183
2184 err = sock_error(sock->sk);
2185 if (err)
2186 goto out_put;
2187
2188 entry = mmsg;
2189 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2190
2191 while (datagrams < vlen) {
2192 /*
2193 * No need to ask LSM for more than the first datagram.
2194 */
2195 if (MSG_CMSG_COMPAT & flags) {
2196 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2197 &msg_sys, flags & ~MSG_WAITFORONE,
2198 datagrams);
2199 if (err < 0)
2200 break;
2201 err = __put_user(err, &compat_entry->msg_len);
2202 ++compat_entry;
2203 } else {
2204 err = ___sys_recvmsg(sock,
2205 (struct user_msghdr __user *)entry,
2206 &msg_sys, flags & ~MSG_WAITFORONE,
2207 datagrams);
2208 if (err < 0)
2209 break;
2210 err = put_user(err, &entry->msg_len);
2211 ++entry;
2212 }
2213
2214 if (err)
2215 break;
2216 ++datagrams;
2217
2218 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2219 if (flags & MSG_WAITFORONE)
2220 flags |= MSG_DONTWAIT;
2221
2222 if (timeout) {
2223 ktime_get_ts(timeout);
2224 *timeout = timespec_sub(end_time, *timeout);
2225 if (timeout->tv_sec < 0) {
2226 timeout->tv_sec = timeout->tv_nsec = 0;
2227 break;
2228 }
2229
2230 /* Timeout, return less than vlen datagrams */
2231 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2232 break;
2233 }
2234
2235 /* Out of band data, return right away */
2236 if (msg_sys.msg_flags & MSG_OOB)
2237 break;
2238 cond_resched();
2239 }
2240
2241 if (err == 0)
2242 goto out_put;
2243
2244 if (datagrams == 0) {
2245 datagrams = err;
2246 goto out_put;
2247 }
2248
2249 /*
2250 * We may return less entries than requested (vlen) if the
2251 * sock is non block and there aren't enough datagrams...
2252 */
2253 if (err != -EAGAIN) {
2254 /*
2255 * ... or if recvmsg returns an error after we
2256 * received some datagrams, where we record the
2257 * error to return on the next call or if the
2258 * app asks about it using getsockopt(SO_ERROR).
2259 */
2260 sock->sk->sk_err = -err;
2261 }
2262out_put:
2263 fput_light(sock->file, fput_needed);
2264
2265 return datagrams;
2266}
2267
2268SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2269 unsigned int, vlen, unsigned int, flags,
2270 struct timespec __user *, timeout)
2271{
2272 int datagrams;
2273 struct timespec timeout_sys;
2274
2275 if (flags & MSG_CMSG_COMPAT)
2276 return -EINVAL;
2277
2278 if (!timeout)
2279 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2280
2281 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2282 return -EFAULT;
2283
2284 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2285
2286 if (datagrams > 0 &&
2287 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2288 datagrams = -EFAULT;
2289
2290 return datagrams;
2291}
2292
2293#ifdef __ARCH_WANT_SYS_SOCKETCALL
2294/* Argument list sizes for sys_socketcall */
2295#define AL(x) ((x) * sizeof(unsigned long))
2296static const unsigned char nargs[21] = {
2297 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2298 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2299 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2300 AL(4), AL(5), AL(4)
2301};
2302
2303#undef AL
2304
2305/*
2306 * System call vectors.
2307 *
2308 * Argument checking cleaned up. Saved 20% in size.
2309 * This function doesn't need to set the kernel lock because
2310 * it is set by the callees.
2311 */
2312
2313SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2314{
2315 unsigned long a[AUDITSC_ARGS];
2316 unsigned long a0, a1;
2317 int err;
2318 unsigned int len;
2319
2320 if (call < 1 || call > SYS_SENDMMSG)
2321 return -EINVAL;
2322
2323 len = nargs[call];
2324 if (len > sizeof(a))
2325 return -EINVAL;
2326
2327 /* copy_from_user should be SMP safe. */
2328 if (copy_from_user(a, args, len))
2329 return -EFAULT;
2330
2331 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2332 if (err)
2333 return err;
2334
2335 a0 = a[0];
2336 a1 = a[1];
2337
2338 switch (call) {
2339 case SYS_SOCKET:
2340 err = sys_socket(a0, a1, a[2]);
2341 break;
2342 case SYS_BIND:
2343 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2344 break;
2345 case SYS_CONNECT:
2346 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2347 break;
2348 case SYS_LISTEN:
2349 err = sys_listen(a0, a1);
2350 break;
2351 case SYS_ACCEPT:
2352 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2353 (int __user *)a[2], 0);
2354 break;
2355 case SYS_GETSOCKNAME:
2356 err =
2357 sys_getsockname(a0, (struct sockaddr __user *)a1,
2358 (int __user *)a[2]);
2359 break;
2360 case SYS_GETPEERNAME:
2361 err =
2362 sys_getpeername(a0, (struct sockaddr __user *)a1,
2363 (int __user *)a[2]);
2364 break;
2365 case SYS_SOCKETPAIR:
2366 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2367 break;
2368 case SYS_SEND:
2369 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2370 break;
2371 case SYS_SENDTO:
2372 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2373 (struct sockaddr __user *)a[4], a[5]);
2374 break;
2375 case SYS_RECV:
2376 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2377 break;
2378 case SYS_RECVFROM:
2379 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2380 (struct sockaddr __user *)a[4],
2381 (int __user *)a[5]);
2382 break;
2383 case SYS_SHUTDOWN:
2384 err = sys_shutdown(a0, a1);
2385 break;
2386 case SYS_SETSOCKOPT:
2387 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2388 break;
2389 case SYS_GETSOCKOPT:
2390 err =
2391 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2392 (int __user *)a[4]);
2393 break;
2394 case SYS_SENDMSG:
2395 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2396 break;
2397 case SYS_SENDMMSG:
2398 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2399 break;
2400 case SYS_RECVMSG:
2401 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2402 break;
2403 case SYS_RECVMMSG:
2404 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2405 (struct timespec __user *)a[4]);
2406 break;
2407 case SYS_ACCEPT4:
2408 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2409 (int __user *)a[2], a[3]);
2410 break;
2411 default:
2412 err = -EINVAL;
2413 break;
2414 }
2415 return err;
2416}
2417
2418#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2419
2420/**
2421 * sock_register - add a socket protocol handler
2422 * @ops: description of protocol
2423 *
2424 * This function is called by a protocol handler that wants to
2425 * advertise its address family, and have it linked into the
2426 * socket interface. The value ops->family corresponds to the
2427 * socket system call protocol family.
2428 */
2429int sock_register(const struct net_proto_family *ops)
2430{
2431 int err;
2432
2433 if (ops->family >= NPROTO) {
2434 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2435 return -ENOBUFS;
2436 }
2437
2438 spin_lock(&net_family_lock);
2439 if (rcu_dereference_protected(net_families[ops->family],
2440 lockdep_is_held(&net_family_lock)))
2441 err = -EEXIST;
2442 else {
2443 rcu_assign_pointer(net_families[ops->family], ops);
2444 err = 0;
2445 }
2446 spin_unlock(&net_family_lock);
2447
2448 pr_info("NET: Registered protocol family %d\n", ops->family);
2449 return err;
2450}
2451EXPORT_SYMBOL(sock_register);
2452
2453/**
2454 * sock_unregister - remove a protocol handler
2455 * @family: protocol family to remove
2456 *
2457 * This function is called by a protocol handler that wants to
2458 * remove its address family, and have it unlinked from the
2459 * new socket creation.
2460 *
2461 * If protocol handler is a module, then it can use module reference
2462 * counts to protect against new references. If protocol handler is not
2463 * a module then it needs to provide its own protection in
2464 * the ops->create routine.
2465 */
2466void sock_unregister(int family)
2467{
2468 BUG_ON(family < 0 || family >= NPROTO);
2469
2470 spin_lock(&net_family_lock);
2471 RCU_INIT_POINTER(net_families[family], NULL);
2472 spin_unlock(&net_family_lock);
2473
2474 synchronize_rcu();
2475
2476 pr_info("NET: Unregistered protocol family %d\n", family);
2477}
2478EXPORT_SYMBOL(sock_unregister);
2479
2480static int __init sock_init(void)
2481{
2482 int err;
2483 /*
2484 * Initialize the network sysctl infrastructure.
2485 */
2486 err = net_sysctl_init();
2487 if (err)
2488 goto out;
2489
2490 /*
2491 * Initialize skbuff SLAB cache
2492 */
2493 skb_init();
2494
2495 /*
2496 * Initialize the protocols module.
2497 */
2498
2499 init_inodecache();
2500
2501 err = register_filesystem(&sock_fs_type);
2502 if (err)
2503 goto out_fs;
2504 sock_mnt = kern_mount(&sock_fs_type);
2505 if (IS_ERR(sock_mnt)) {
2506 err = PTR_ERR(sock_mnt);
2507 goto out_mount;
2508 }
2509
2510 /* The real protocol initialization is performed in later initcalls.
2511 */
2512
2513#ifdef CONFIG_NETFILTER
2514 err = netfilter_init();
2515 if (err)
2516 goto out;
2517#endif
2518
2519 ptp_classifier_init();
2520
2521out:
2522 return err;
2523
2524out_mount:
2525 unregister_filesystem(&sock_fs_type);
2526out_fs:
2527 goto out;
2528}
2529
2530core_initcall(sock_init); /* early initcall */
2531
2532#ifdef CONFIG_PROC_FS
2533void socket_seq_show(struct seq_file *seq)
2534{
2535 int cpu;
2536 int counter = 0;
2537
2538 for_each_possible_cpu(cpu)
2539 counter += per_cpu(sockets_in_use, cpu);
2540
2541 /* It can be negative, by the way. 8) */
2542 if (counter < 0)
2543 counter = 0;
2544
2545 seq_printf(seq, "sockets: used %d\n", counter);
2546}
2547#endif /* CONFIG_PROC_FS */
2548
2549#ifdef CONFIG_COMPAT
2550static int do_siocgstamp(struct net *net, struct socket *sock,
2551 unsigned int cmd, void __user *up)
2552{
2553 mm_segment_t old_fs = get_fs();
2554 struct timeval ktv;
2555 int err;
2556
2557 set_fs(KERNEL_DS);
2558 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2559 set_fs(old_fs);
2560 if (!err)
2561 err = compat_put_timeval(&ktv, up);
2562
2563 return err;
2564}
2565
2566static int do_siocgstampns(struct net *net, struct socket *sock,
2567 unsigned int cmd, void __user *up)
2568{
2569 mm_segment_t old_fs = get_fs();
2570 struct timespec kts;
2571 int err;
2572
2573 set_fs(KERNEL_DS);
2574 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2575 set_fs(old_fs);
2576 if (!err)
2577 err = compat_put_timespec(&kts, up);
2578
2579 return err;
2580}
2581
2582static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2583{
2584 struct ifreq __user *uifr;
2585 int err;
2586
2587 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2588 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2589 return -EFAULT;
2590
2591 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2592 if (err)
2593 return err;
2594
2595 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2596 return -EFAULT;
2597
2598 return 0;
2599}
2600
2601static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2602{
2603 struct compat_ifconf ifc32;
2604 struct ifconf ifc;
2605 struct ifconf __user *uifc;
2606 struct compat_ifreq __user *ifr32;
2607 struct ifreq __user *ifr;
2608 unsigned int i, j;
2609 int err;
2610
2611 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2612 return -EFAULT;
2613
2614 memset(&ifc, 0, sizeof(ifc));
2615 if (ifc32.ifcbuf == 0) {
2616 ifc32.ifc_len = 0;
2617 ifc.ifc_len = 0;
2618 ifc.ifc_req = NULL;
2619 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2620 } else {
2621 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2622 sizeof(struct ifreq);
2623 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2624 ifc.ifc_len = len;
2625 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2626 ifr32 = compat_ptr(ifc32.ifcbuf);
2627 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2628 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2629 return -EFAULT;
2630 ifr++;
2631 ifr32++;
2632 }
2633 }
2634 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2635 return -EFAULT;
2636
2637 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2638 if (err)
2639 return err;
2640
2641 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2642 return -EFAULT;
2643
2644 ifr = ifc.ifc_req;
2645 ifr32 = compat_ptr(ifc32.ifcbuf);
2646 for (i = 0, j = 0;
2647 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2648 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2649 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2650 return -EFAULT;
2651 ifr32++;
2652 ifr++;
2653 }
2654
2655 if (ifc32.ifcbuf == 0) {
2656 /* Translate from 64-bit structure multiple to
2657 * a 32-bit one.
2658 */
2659 i = ifc.ifc_len;
2660 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2661 ifc32.ifc_len = i;
2662 } else {
2663 ifc32.ifc_len = i;
2664 }
2665 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2666 return -EFAULT;
2667
2668 return 0;
2669}
2670
2671static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2672{
2673 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2674 bool convert_in = false, convert_out = false;
2675 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2676 struct ethtool_rxnfc __user *rxnfc;
2677 struct ifreq __user *ifr;
2678 u32 rule_cnt = 0, actual_rule_cnt;
2679 u32 ethcmd;
2680 u32 data;
2681 int ret;
2682
2683 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2684 return -EFAULT;
2685
2686 compat_rxnfc = compat_ptr(data);
2687
2688 if (get_user(ethcmd, &compat_rxnfc->cmd))
2689 return -EFAULT;
2690
2691 /* Most ethtool structures are defined without padding.
2692 * Unfortunately struct ethtool_rxnfc is an exception.
2693 */
2694 switch (ethcmd) {
2695 default:
2696 break;
2697 case ETHTOOL_GRXCLSRLALL:
2698 /* Buffer size is variable */
2699 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2700 return -EFAULT;
2701 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2702 return -ENOMEM;
2703 buf_size += rule_cnt * sizeof(u32);
2704 /* fall through */
2705 case ETHTOOL_GRXRINGS:
2706 case ETHTOOL_GRXCLSRLCNT:
2707 case ETHTOOL_GRXCLSRULE:
2708 case ETHTOOL_SRXCLSRLINS:
2709 convert_out = true;
2710 /* fall through */
2711 case ETHTOOL_SRXCLSRLDEL:
2712 buf_size += sizeof(struct ethtool_rxnfc);
2713 convert_in = true;
2714 break;
2715 }
2716
2717 ifr = compat_alloc_user_space(buf_size);
2718 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2719
2720 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2721 return -EFAULT;
2722
2723 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2724 &ifr->ifr_ifru.ifru_data))
2725 return -EFAULT;
2726
2727 if (convert_in) {
2728 /* We expect there to be holes between fs.m_ext and
2729 * fs.ring_cookie and at the end of fs, but nowhere else.
2730 */
2731 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2732 sizeof(compat_rxnfc->fs.m_ext) !=
2733 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2734 sizeof(rxnfc->fs.m_ext));
2735 BUILD_BUG_ON(
2736 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2737 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2738 offsetof(struct ethtool_rxnfc, fs.location) -
2739 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2740
2741 if (copy_in_user(rxnfc, compat_rxnfc,
2742 (void __user *)(&rxnfc->fs.m_ext + 1) -
2743 (void __user *)rxnfc) ||
2744 copy_in_user(&rxnfc->fs.ring_cookie,
2745 &compat_rxnfc->fs.ring_cookie,
2746 (void __user *)(&rxnfc->fs.location + 1) -
2747 (void __user *)&rxnfc->fs.ring_cookie) ||
2748 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2749 sizeof(rxnfc->rule_cnt)))
2750 return -EFAULT;
2751 }
2752
2753 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2754 if (ret)
2755 return ret;
2756
2757 if (convert_out) {
2758 if (copy_in_user(compat_rxnfc, rxnfc,
2759 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2760 (const void __user *)rxnfc) ||
2761 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2762 &rxnfc->fs.ring_cookie,
2763 (const void __user *)(&rxnfc->fs.location + 1) -
2764 (const void __user *)&rxnfc->fs.ring_cookie) ||
2765 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2766 sizeof(rxnfc->rule_cnt)))
2767 return -EFAULT;
2768
2769 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2770 /* As an optimisation, we only copy the actual
2771 * number of rules that the underlying
2772 * function returned. Since Mallory might
2773 * change the rule count in user memory, we
2774 * check that it is less than the rule count
2775 * originally given (as the user buffer size),
2776 * which has been range-checked.
2777 */
2778 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2779 return -EFAULT;
2780 if (actual_rule_cnt < rule_cnt)
2781 rule_cnt = actual_rule_cnt;
2782 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2783 &rxnfc->rule_locs[0],
2784 rule_cnt * sizeof(u32)))
2785 return -EFAULT;
2786 }
2787 }
2788
2789 return 0;
2790}
2791
2792static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2793{
2794 void __user *uptr;
2795 compat_uptr_t uptr32;
2796 struct ifreq __user *uifr;
2797
2798 uifr = compat_alloc_user_space(sizeof(*uifr));
2799 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2800 return -EFAULT;
2801
2802 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2803 return -EFAULT;
2804
2805 uptr = compat_ptr(uptr32);
2806
2807 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2808 return -EFAULT;
2809
2810 return dev_ioctl(net, SIOCWANDEV, uifr);
2811}
2812
2813static int bond_ioctl(struct net *net, unsigned int cmd,
2814 struct compat_ifreq __user *ifr32)
2815{
2816 struct ifreq kifr;
2817 mm_segment_t old_fs;
2818 int err;
2819
2820 switch (cmd) {
2821 case SIOCBONDENSLAVE:
2822 case SIOCBONDRELEASE:
2823 case SIOCBONDSETHWADDR:
2824 case SIOCBONDCHANGEACTIVE:
2825 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2826 return -EFAULT;
2827
2828 old_fs = get_fs();
2829 set_fs(KERNEL_DS);
2830 err = dev_ioctl(net, cmd,
2831 (struct ifreq __user __force *) &kifr);
2832 set_fs(old_fs);
2833
2834 return err;
2835 default:
2836 return -ENOIOCTLCMD;
2837 }
2838}
2839
2840/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2841static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2842 struct compat_ifreq __user *u_ifreq32)
2843{
2844 struct ifreq __user *u_ifreq64;
2845 char tmp_buf[IFNAMSIZ];
2846 void __user *data64;
2847 u32 data32;
2848
2849 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2850 IFNAMSIZ))
2851 return -EFAULT;
2852 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2853 return -EFAULT;
2854 data64 = compat_ptr(data32);
2855
2856 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2857
2858 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2859 IFNAMSIZ))
2860 return -EFAULT;
2861 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2862 return -EFAULT;
2863
2864 return dev_ioctl(net, cmd, u_ifreq64);
2865}
2866
2867static int dev_ifsioc(struct net *net, struct socket *sock,
2868 unsigned int cmd, struct compat_ifreq __user *uifr32)
2869{
2870 struct ifreq __user *uifr;
2871 int err;
2872
2873 uifr = compat_alloc_user_space(sizeof(*uifr));
2874 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2875 return -EFAULT;
2876
2877 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2878
2879 if (!err) {
2880 switch (cmd) {
2881 case SIOCGIFFLAGS:
2882 case SIOCGIFMETRIC:
2883 case SIOCGIFMTU:
2884 case SIOCGIFMEM:
2885 case SIOCGIFHWADDR:
2886 case SIOCGIFINDEX:
2887 case SIOCGIFADDR:
2888 case SIOCGIFBRDADDR:
2889 case SIOCGIFDSTADDR:
2890 case SIOCGIFNETMASK:
2891 case SIOCGIFPFLAGS:
2892 case SIOCGIFTXQLEN:
2893 case SIOCGMIIPHY:
2894 case SIOCGMIIREG:
2895 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2896 err = -EFAULT;
2897 break;
2898 }
2899 }
2900 return err;
2901}
2902
2903static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2904 struct compat_ifreq __user *uifr32)
2905{
2906 struct ifreq ifr;
2907 struct compat_ifmap __user *uifmap32;
2908 mm_segment_t old_fs;
2909 int err;
2910
2911 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2912 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2913 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2914 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2915 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2916 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2917 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2918 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2919 if (err)
2920 return -EFAULT;
2921
2922 old_fs = get_fs();
2923 set_fs(KERNEL_DS);
2924 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2925 set_fs(old_fs);
2926
2927 if (cmd == SIOCGIFMAP && !err) {
2928 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2929 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2930 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2931 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2932 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2933 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2934 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2935 if (err)
2936 err = -EFAULT;
2937 }
2938 return err;
2939}
2940
2941struct rtentry32 {
2942 u32 rt_pad1;
2943 struct sockaddr rt_dst; /* target address */
2944 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2945 struct sockaddr rt_genmask; /* target network mask (IP) */
2946 unsigned short rt_flags;
2947 short rt_pad2;
2948 u32 rt_pad3;
2949 unsigned char rt_tos;
2950 unsigned char rt_class;
2951 short rt_pad4;
2952 short rt_metric; /* +1 for binary compatibility! */
2953 /* char * */ u32 rt_dev; /* forcing the device at add */
2954 u32 rt_mtu; /* per route MTU/Window */
2955 u32 rt_window; /* Window clamping */
2956 unsigned short rt_irtt; /* Initial RTT */
2957};
2958
2959struct in6_rtmsg32 {
2960 struct in6_addr rtmsg_dst;
2961 struct in6_addr rtmsg_src;
2962 struct in6_addr rtmsg_gateway;
2963 u32 rtmsg_type;
2964 u16 rtmsg_dst_len;
2965 u16 rtmsg_src_len;
2966 u32 rtmsg_metric;
2967 u32 rtmsg_info;
2968 u32 rtmsg_flags;
2969 s32 rtmsg_ifindex;
2970};
2971
2972static int routing_ioctl(struct net *net, struct socket *sock,
2973 unsigned int cmd, void __user *argp)
2974{
2975 int ret;
2976 void *r = NULL;
2977 struct in6_rtmsg r6;
2978 struct rtentry r4;
2979 char devname[16];
2980 u32 rtdev;
2981 mm_segment_t old_fs = get_fs();
2982
2983 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2984 struct in6_rtmsg32 __user *ur6 = argp;
2985 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2986 3 * sizeof(struct in6_addr));
2987 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2988 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2989 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2990 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2991 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2992 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2993 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2994
2995 r = (void *) &r6;
2996 } else { /* ipv4 */
2997 struct rtentry32 __user *ur4 = argp;
2998 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2999 3 * sizeof(struct sockaddr));
3000 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3001 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3002 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3003 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3004 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3005 ret |= get_user(rtdev, &(ur4->rt_dev));
3006 if (rtdev) {
3007 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3008 r4.rt_dev = (char __user __force *)devname;
3009 devname[15] = 0;
3010 } else
3011 r4.rt_dev = NULL;
3012
3013 r = (void *) &r4;
3014 }
3015
3016 if (ret) {
3017 ret = -EFAULT;
3018 goto out;
3019 }
3020
3021 set_fs(KERNEL_DS);
3022 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3023 set_fs(old_fs);
3024
3025out:
3026 return ret;
3027}
3028
3029/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3030 * for some operations; this forces use of the newer bridge-utils that
3031 * use compatible ioctls
3032 */
3033static int old_bridge_ioctl(compat_ulong_t __user *argp)
3034{
3035 compat_ulong_t tmp;
3036
3037 if (get_user(tmp, argp))
3038 return -EFAULT;
3039 if (tmp == BRCTL_GET_VERSION)
3040 return BRCTL_VERSION + 1;
3041 return -EINVAL;
3042}
3043
3044static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3045 unsigned int cmd, unsigned long arg)
3046{
3047 void __user *argp = compat_ptr(arg);
3048 struct sock *sk = sock->sk;
3049 struct net *net = sock_net(sk);
3050
3051 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3052 return compat_ifr_data_ioctl(net, cmd, argp);
3053
3054 switch (cmd) {
3055 case SIOCSIFBR:
3056 case SIOCGIFBR:
3057 return old_bridge_ioctl(argp);
3058 case SIOCGIFNAME:
3059 return dev_ifname32(net, argp);
3060 case SIOCGIFCONF:
3061 return dev_ifconf(net, argp);
3062 case SIOCETHTOOL:
3063 return ethtool_ioctl(net, argp);
3064 case SIOCWANDEV:
3065 return compat_siocwandev(net, argp);
3066 case SIOCGIFMAP:
3067 case SIOCSIFMAP:
3068 return compat_sioc_ifmap(net, cmd, argp);
3069 case SIOCBONDENSLAVE:
3070 case SIOCBONDRELEASE:
3071 case SIOCBONDSETHWADDR:
3072 case SIOCBONDCHANGEACTIVE:
3073 return bond_ioctl(net, cmd, argp);
3074 case SIOCADDRT:
3075 case SIOCDELRT:
3076 return routing_ioctl(net, sock, cmd, argp);
3077 case SIOCGSTAMP:
3078 return do_siocgstamp(net, sock, cmd, argp);
3079 case SIOCGSTAMPNS:
3080 return do_siocgstampns(net, sock, cmd, argp);
3081 case SIOCBONDSLAVEINFOQUERY:
3082 case SIOCBONDINFOQUERY:
3083 case SIOCSHWTSTAMP:
3084 case SIOCGHWTSTAMP:
3085 return compat_ifr_data_ioctl(net, cmd, argp);
3086
3087 case FIOSETOWN:
3088 case SIOCSPGRP:
3089 case FIOGETOWN:
3090 case SIOCGPGRP:
3091 case SIOCBRADDBR:
3092 case SIOCBRDELBR:
3093 case SIOCGIFVLAN:
3094 case SIOCSIFVLAN:
3095 case SIOCADDDLCI:
3096 case SIOCDELDLCI:
3097 return sock_ioctl(file, cmd, arg);
3098
3099 case SIOCGIFFLAGS:
3100 case SIOCSIFFLAGS:
3101 case SIOCGIFMETRIC:
3102 case SIOCSIFMETRIC:
3103 case SIOCGIFMTU:
3104 case SIOCSIFMTU:
3105 case SIOCGIFMEM:
3106 case SIOCSIFMEM:
3107 case SIOCGIFHWADDR:
3108 case SIOCSIFHWADDR:
3109 case SIOCADDMULTI:
3110 case SIOCDELMULTI:
3111 case SIOCGIFINDEX:
3112 case SIOCGIFADDR:
3113 case SIOCSIFADDR:
3114 case SIOCSIFHWBROADCAST:
3115 case SIOCDIFADDR:
3116 case SIOCGIFBRDADDR:
3117 case SIOCSIFBRDADDR:
3118 case SIOCGIFDSTADDR:
3119 case SIOCSIFDSTADDR:
3120 case SIOCGIFNETMASK:
3121 case SIOCSIFNETMASK:
3122 case SIOCSIFPFLAGS:
3123 case SIOCGIFPFLAGS:
3124 case SIOCGIFTXQLEN:
3125 case SIOCSIFTXQLEN:
3126 case SIOCBRADDIF:
3127 case SIOCBRDELIF:
3128 case SIOCSIFNAME:
3129 case SIOCGMIIPHY:
3130 case SIOCGMIIREG:
3131 case SIOCSMIIREG:
3132 return dev_ifsioc(net, sock, cmd, argp);
3133
3134 case SIOCSARP:
3135 case SIOCGARP:
3136 case SIOCDARP:
3137 case SIOCATMARK:
3138 return sock_do_ioctl(net, sock, cmd, arg);
3139 }
3140
3141 return -ENOIOCTLCMD;
3142}
3143
3144static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3145 unsigned long arg)
3146{
3147 struct socket *sock = file->private_data;
3148 int ret = -ENOIOCTLCMD;
3149 struct sock *sk;
3150 struct net *net;
3151
3152 sk = sock->sk;
3153 net = sock_net(sk);
3154
3155 if (sock->ops->compat_ioctl)
3156 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3157
3158 if (ret == -ENOIOCTLCMD &&
3159 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3160 ret = compat_wext_handle_ioctl(net, cmd, arg);
3161
3162 if (ret == -ENOIOCTLCMD)
3163 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3164
3165 return ret;
3166}
3167#endif
3168
3169int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3170{
3171 return sock->ops->bind(sock, addr, addrlen);
3172}
3173EXPORT_SYMBOL(kernel_bind);
3174
3175int kernel_listen(struct socket *sock, int backlog)
3176{
3177 return sock->ops->listen(sock, backlog);
3178}
3179EXPORT_SYMBOL(kernel_listen);
3180
3181int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3182{
3183 struct sock *sk = sock->sk;
3184 int err;
3185
3186 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3187 newsock);
3188 if (err < 0)
3189 goto done;
3190
3191 err = sock->ops->accept(sock, *newsock, flags);
3192 if (err < 0) {
3193 sock_release(*newsock);
3194 *newsock = NULL;
3195 goto done;
3196 }
3197
3198 (*newsock)->ops = sock->ops;
3199 __module_get((*newsock)->ops->owner);
3200
3201done:
3202 return err;
3203}
3204EXPORT_SYMBOL(kernel_accept);
3205
3206int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3207 int flags)
3208{
3209 return sock->ops->connect(sock, addr, addrlen, flags);
3210}
3211EXPORT_SYMBOL(kernel_connect);
3212
3213int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3214 int *addrlen)
3215{
3216 return sock->ops->getname(sock, addr, addrlen, 0);
3217}
3218EXPORT_SYMBOL(kernel_getsockname);
3219
3220int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3221 int *addrlen)
3222{
3223 return sock->ops->getname(sock, addr, addrlen, 1);
3224}
3225EXPORT_SYMBOL(kernel_getpeername);
3226
3227int kernel_getsockopt(struct socket *sock, int level, int optname,
3228 char *optval, int *optlen)
3229{
3230 mm_segment_t oldfs = get_fs();
3231 char __user *uoptval;
3232 int __user *uoptlen;
3233 int err;
3234
3235 uoptval = (char __user __force *) optval;
3236 uoptlen = (int __user __force *) optlen;
3237
3238 set_fs(KERNEL_DS);
3239 if (level == SOL_SOCKET)
3240 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3241 else
3242 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3243 uoptlen);
3244 set_fs(oldfs);
3245 return err;
3246}
3247EXPORT_SYMBOL(kernel_getsockopt);
3248
3249int kernel_setsockopt(struct socket *sock, int level, int optname,
3250 char *optval, unsigned int optlen)
3251{
3252 mm_segment_t oldfs = get_fs();
3253 char __user *uoptval;
3254 int err;
3255
3256 uoptval = (char __user __force *) optval;
3257
3258 set_fs(KERNEL_DS);
3259 if (level == SOL_SOCKET)
3260 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3261 else
3262 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3263 optlen);
3264 set_fs(oldfs);
3265 return err;
3266}
3267EXPORT_SYMBOL(kernel_setsockopt);
3268
3269int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3270 size_t size, int flags)
3271{
3272 if (sock->ops->sendpage)
3273 return sock->ops->sendpage(sock, page, offset, size, flags);
3274
3275 return sock_no_sendpage(sock, page, offset, size, flags);
3276}
3277EXPORT_SYMBOL(kernel_sendpage);
3278
3279int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3280{
3281 mm_segment_t oldfs = get_fs();
3282 int err;
3283
3284 set_fs(KERNEL_DS);
3285 err = sock->ops->ioctl(sock, cmd, arg);
3286 set_fs(oldfs);
3287
3288 return err;
3289}
3290EXPORT_SYMBOL(kernel_sock_ioctl);
3291
3292int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3293{
3294 return sock->ops->shutdown(sock, how);
3295}
3296EXPORT_SYMBOL(kernel_sock_shutdown);