]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - net/socket.c
net-timestamp: extend SCM_TIMESTAMPING ancillary data struct
[mirror_ubuntu-artful-kernel.git] / net / socket.c
... / ...
CommitLineData
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <asm/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110
111#ifdef CONFIG_NET_RX_BUSY_POLL
112unsigned int sysctl_net_busy_read __read_mostly;
113unsigned int sysctl_net_busy_poll __read_mostly;
114#endif
115
116static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123static int sock_close(struct inode *inode, struct file *file);
124static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127#ifdef CONFIG_COMPAT
128static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130#endif
131static int sock_fasync(int fd, struct file *filp, int on);
132static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
137
138/*
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150#ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152#endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
160};
161
162/*
163 * The protocol list. Each protocol is registered in here.
164 */
165
166static DEFINE_SPINLOCK(net_family_lock);
167static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169/*
170 * Statistics counters of the socket lists
171 */
172
173static DEFINE_PER_CPU(int, sockets_in_use);
174
175/*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181/**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193{
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201}
202
203/**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222{
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245}
246
247static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249static struct inode *sock_alloc_inode(struct super_block *sb)
250{
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
253
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
261 }
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
265
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
271
272 return &ei->vfs_inode;
273}
274
275static void sock_destroy_inode(struct inode *inode)
276{
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284}
285
286static void init_once(void *foo)
287{
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291}
292
293static int init_inodecache(void)
294{
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305}
306
307static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311};
312
313/*
314 * sockfs_dname() is called from d_path().
315 */
316static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317{
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320}
321
322static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324};
325
326static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328{
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331}
332
333static struct vfsmount *sock_mnt __read_mostly;
334
335static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339};
340
341/*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359{
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
370 }
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
386 }
387
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
392}
393EXPORT_SYMBOL(sock_alloc_file);
394
395static int sock_map_fd(struct socket *sock, int flags)
396{
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
401
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
406 }
407
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
410}
411
412struct socket *sock_from_file(struct file *file, int *err)
413{
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419}
420EXPORT_SYMBOL(sock_from_file);
421
422/**
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
426 *
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
431 *
432 * On a success the socket object pointer is returned.
433 */
434
435struct socket *sockfd_lookup(int fd, int *err)
436{
437 struct file *file;
438 struct socket *sock;
439
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
444 }
445
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
450}
451EXPORT_SYMBOL(sockfd_lookup);
452
453static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454{
455 struct fd f = fdget(fd);
456 struct socket *sock;
457
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
464 }
465 fdput(f);
466 }
467 return NULL;
468}
469
470#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
475{
476 const char *proto_name;
477 size_t proto_size;
478 int error;
479
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
484
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
489
490 strncpy(value, proto_name, proto_size + 1);
491 }
492 error = proto_size + 1;
493 }
494
495out:
496 return error;
497}
498
499static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
501{
502 ssize_t len;
503 ssize_t used = 0;
504
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
513 }
514
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
522 }
523
524 return used;
525}
526
527static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
530};
531
532/**
533 * sock_alloc - allocate a socket
534 *
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
538 */
539
540static struct socket *sock_alloc(void)
541{
542 struct inode *inode;
543 struct socket *sock;
544
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
548
549 sock = SOCKET_I(inode);
550
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
557
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
560}
561
562/*
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
566 */
567
568static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569{
570 return -ENXIO;
571}
572
573const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
577};
578
579/**
580 * sock_release - close a socket
581 * @sock: socket to close
582 *
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
586 */
587
588void sock_release(struct socket *sock)
589{
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
592
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610}
611EXPORT_SYMBOL(sock_release);
612
613void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
614{
615 *tx_flags = 0;
616 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
617 *tx_flags |= SKBTX_HW_TSTAMP;
618 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
619 *tx_flags |= SKBTX_SW_TSTAMP;
620 if (sock_flag(sk, SOCK_WIFI_STATUS))
621 *tx_flags |= SKBTX_WIFI_STATUS;
622}
623EXPORT_SYMBOL(sock_tx_timestamp);
624
625static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
626 struct msghdr *msg, size_t size)
627{
628 struct sock_iocb *si = kiocb_to_siocb(iocb);
629
630 si->sock = sock;
631 si->scm = NULL;
632 si->msg = msg;
633 si->size = size;
634
635 return sock->ops->sendmsg(iocb, sock, msg, size);
636}
637
638static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
639 struct msghdr *msg, size_t size)
640{
641 int err = security_socket_sendmsg(sock, msg, size);
642
643 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
644}
645
646int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
647{
648 struct kiocb iocb;
649 struct sock_iocb siocb;
650 int ret;
651
652 init_sync_kiocb(&iocb, NULL);
653 iocb.private = &siocb;
654 ret = __sock_sendmsg(&iocb, sock, msg, size);
655 if (-EIOCBQUEUED == ret)
656 ret = wait_on_sync_kiocb(&iocb);
657 return ret;
658}
659EXPORT_SYMBOL(sock_sendmsg);
660
661static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
662{
663 struct kiocb iocb;
664 struct sock_iocb siocb;
665 int ret;
666
667 init_sync_kiocb(&iocb, NULL);
668 iocb.private = &siocb;
669 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
670 if (-EIOCBQUEUED == ret)
671 ret = wait_on_sync_kiocb(&iocb);
672 return ret;
673}
674
675int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
676 struct kvec *vec, size_t num, size_t size)
677{
678 mm_segment_t oldfs = get_fs();
679 int result;
680
681 set_fs(KERNEL_DS);
682 /*
683 * the following is safe, since for compiler definitions of kvec and
684 * iovec are identical, yielding the same in-core layout and alignment
685 */
686 msg->msg_iov = (struct iovec *)vec;
687 msg->msg_iovlen = num;
688 result = sock_sendmsg(sock, msg, size);
689 set_fs(oldfs);
690 return result;
691}
692EXPORT_SYMBOL(kernel_sendmsg);
693
694/*
695 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
696 */
697void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
698 struct sk_buff *skb)
699{
700 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
701 struct scm_timestamping tss;
702 int empty = 1;
703 struct skb_shared_hwtstamps *shhwtstamps =
704 skb_hwtstamps(skb);
705
706 /* Race occurred between timestamp enabling and packet
707 receiving. Fill in the current time for now. */
708 if (need_software_tstamp && skb->tstamp.tv64 == 0)
709 __net_timestamp(skb);
710
711 if (need_software_tstamp) {
712 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
713 struct timeval tv;
714 skb_get_timestamp(skb, &tv);
715 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
716 sizeof(tv), &tv);
717 } else {
718 struct timespec ts;
719 skb_get_timestampns(skb, &ts);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
721 sizeof(ts), &ts);
722 }
723 }
724
725 memset(&tss, 0, sizeof(tss));
726 if ((sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) ||
727 skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP) &&
728 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
729 empty = 0;
730 if (shhwtstamps &&
731 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
732 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
733 empty = 0;
734 if (!empty)
735 put_cmsg(msg, SOL_SOCKET,
736 SCM_TIMESTAMPING, sizeof(tss), &tss);
737}
738EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
739
740void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
742{
743 int ack;
744
745 if (!sock_flag(sk, SOCK_WIFI_STATUS))
746 return;
747 if (!skb->wifi_acked_valid)
748 return;
749
750 ack = skb->wifi_acked;
751
752 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
753}
754EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
755
756static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
757 struct sk_buff *skb)
758{
759 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
760 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
761 sizeof(__u32), &skb->dropcount);
762}
763
764void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
765 struct sk_buff *skb)
766{
767 sock_recv_timestamp(msg, sk, skb);
768 sock_recv_drops(msg, sk, skb);
769}
770EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
771
772static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
773 struct msghdr *msg, size_t size, int flags)
774{
775 struct sock_iocb *si = kiocb_to_siocb(iocb);
776
777 si->sock = sock;
778 si->scm = NULL;
779 si->msg = msg;
780 si->size = size;
781 si->flags = flags;
782
783 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
784}
785
786static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
787 struct msghdr *msg, size_t size, int flags)
788{
789 int err = security_socket_recvmsg(sock, msg, size, flags);
790
791 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
792}
793
794int sock_recvmsg(struct socket *sock, struct msghdr *msg,
795 size_t size, int flags)
796{
797 struct kiocb iocb;
798 struct sock_iocb siocb;
799 int ret;
800
801 init_sync_kiocb(&iocb, NULL);
802 iocb.private = &siocb;
803 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
804 if (-EIOCBQUEUED == ret)
805 ret = wait_on_sync_kiocb(&iocb);
806 return ret;
807}
808EXPORT_SYMBOL(sock_recvmsg);
809
810static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
811 size_t size, int flags)
812{
813 struct kiocb iocb;
814 struct sock_iocb siocb;
815 int ret;
816
817 init_sync_kiocb(&iocb, NULL);
818 iocb.private = &siocb;
819 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
820 if (-EIOCBQUEUED == ret)
821 ret = wait_on_sync_kiocb(&iocb);
822 return ret;
823}
824
825/**
826 * kernel_recvmsg - Receive a message from a socket (kernel space)
827 * @sock: The socket to receive the message from
828 * @msg: Received message
829 * @vec: Input s/g array for message data
830 * @num: Size of input s/g array
831 * @size: Number of bytes to read
832 * @flags: Message flags (MSG_DONTWAIT, etc...)
833 *
834 * On return the msg structure contains the scatter/gather array passed in the
835 * vec argument. The array is modified so that it consists of the unfilled
836 * portion of the original array.
837 *
838 * The returned value is the total number of bytes received, or an error.
839 */
840int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
841 struct kvec *vec, size_t num, size_t size, int flags)
842{
843 mm_segment_t oldfs = get_fs();
844 int result;
845
846 set_fs(KERNEL_DS);
847 /*
848 * the following is safe, since for compiler definitions of kvec and
849 * iovec are identical, yielding the same in-core layout and alignment
850 */
851 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
852 result = sock_recvmsg(sock, msg, size, flags);
853 set_fs(oldfs);
854 return result;
855}
856EXPORT_SYMBOL(kernel_recvmsg);
857
858static ssize_t sock_sendpage(struct file *file, struct page *page,
859 int offset, size_t size, loff_t *ppos, int more)
860{
861 struct socket *sock;
862 int flags;
863
864 sock = file->private_data;
865
866 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
867 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
868 flags |= more;
869
870 return kernel_sendpage(sock, page, offset, size, flags);
871}
872
873static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
874 struct pipe_inode_info *pipe, size_t len,
875 unsigned int flags)
876{
877 struct socket *sock = file->private_data;
878
879 if (unlikely(!sock->ops->splice_read))
880 return -EINVAL;
881
882 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
883}
884
885static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
886 struct sock_iocb *siocb)
887{
888 if (!is_sync_kiocb(iocb))
889 BUG();
890
891 siocb->kiocb = iocb;
892 iocb->private = siocb;
893 return siocb;
894}
895
896static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
897 struct file *file, const struct iovec *iov,
898 unsigned long nr_segs)
899{
900 struct socket *sock = file->private_data;
901 size_t size = 0;
902 int i;
903
904 for (i = 0; i < nr_segs; i++)
905 size += iov[i].iov_len;
906
907 msg->msg_name = NULL;
908 msg->msg_namelen = 0;
909 msg->msg_control = NULL;
910 msg->msg_controllen = 0;
911 msg->msg_iov = (struct iovec *)iov;
912 msg->msg_iovlen = nr_segs;
913 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
914
915 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
916}
917
918static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
919 unsigned long nr_segs, loff_t pos)
920{
921 struct sock_iocb siocb, *x;
922
923 if (pos != 0)
924 return -ESPIPE;
925
926 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
927 return 0;
928
929
930 x = alloc_sock_iocb(iocb, &siocb);
931 if (!x)
932 return -ENOMEM;
933 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
934}
935
936static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
937 struct file *file, const struct iovec *iov,
938 unsigned long nr_segs)
939{
940 struct socket *sock = file->private_data;
941 size_t size = 0;
942 int i;
943
944 for (i = 0; i < nr_segs; i++)
945 size += iov[i].iov_len;
946
947 msg->msg_name = NULL;
948 msg->msg_namelen = 0;
949 msg->msg_control = NULL;
950 msg->msg_controllen = 0;
951 msg->msg_iov = (struct iovec *)iov;
952 msg->msg_iovlen = nr_segs;
953 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
954 if (sock->type == SOCK_SEQPACKET)
955 msg->msg_flags |= MSG_EOR;
956
957 return __sock_sendmsg(iocb, sock, msg, size);
958}
959
960static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
961 unsigned long nr_segs, loff_t pos)
962{
963 struct sock_iocb siocb, *x;
964
965 if (pos != 0)
966 return -ESPIPE;
967
968 x = alloc_sock_iocb(iocb, &siocb);
969 if (!x)
970 return -ENOMEM;
971
972 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
973}
974
975/*
976 * Atomic setting of ioctl hooks to avoid race
977 * with module unload.
978 */
979
980static DEFINE_MUTEX(br_ioctl_mutex);
981static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
982
983void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
984{
985 mutex_lock(&br_ioctl_mutex);
986 br_ioctl_hook = hook;
987 mutex_unlock(&br_ioctl_mutex);
988}
989EXPORT_SYMBOL(brioctl_set);
990
991static DEFINE_MUTEX(vlan_ioctl_mutex);
992static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
993
994void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
995{
996 mutex_lock(&vlan_ioctl_mutex);
997 vlan_ioctl_hook = hook;
998 mutex_unlock(&vlan_ioctl_mutex);
999}
1000EXPORT_SYMBOL(vlan_ioctl_set);
1001
1002static DEFINE_MUTEX(dlci_ioctl_mutex);
1003static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1004
1005void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1006{
1007 mutex_lock(&dlci_ioctl_mutex);
1008 dlci_ioctl_hook = hook;
1009 mutex_unlock(&dlci_ioctl_mutex);
1010}
1011EXPORT_SYMBOL(dlci_ioctl_set);
1012
1013static long sock_do_ioctl(struct net *net, struct socket *sock,
1014 unsigned int cmd, unsigned long arg)
1015{
1016 int err;
1017 void __user *argp = (void __user *)arg;
1018
1019 err = sock->ops->ioctl(sock, cmd, arg);
1020
1021 /*
1022 * If this ioctl is unknown try to hand it down
1023 * to the NIC driver.
1024 */
1025 if (err == -ENOIOCTLCMD)
1026 err = dev_ioctl(net, cmd, argp);
1027
1028 return err;
1029}
1030
1031/*
1032 * With an ioctl, arg may well be a user mode pointer, but we don't know
1033 * what to do with it - that's up to the protocol still.
1034 */
1035
1036static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1037{
1038 struct socket *sock;
1039 struct sock *sk;
1040 void __user *argp = (void __user *)arg;
1041 int pid, err;
1042 struct net *net;
1043
1044 sock = file->private_data;
1045 sk = sock->sk;
1046 net = sock_net(sk);
1047 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1048 err = dev_ioctl(net, cmd, argp);
1049 } else
1050#ifdef CONFIG_WEXT_CORE
1051 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1052 err = dev_ioctl(net, cmd, argp);
1053 } else
1054#endif
1055 switch (cmd) {
1056 case FIOSETOWN:
1057 case SIOCSPGRP:
1058 err = -EFAULT;
1059 if (get_user(pid, (int __user *)argp))
1060 break;
1061 err = f_setown(sock->file, pid, 1);
1062 break;
1063 case FIOGETOWN:
1064 case SIOCGPGRP:
1065 err = put_user(f_getown(sock->file),
1066 (int __user *)argp);
1067 break;
1068 case SIOCGIFBR:
1069 case SIOCSIFBR:
1070 case SIOCBRADDBR:
1071 case SIOCBRDELBR:
1072 err = -ENOPKG;
1073 if (!br_ioctl_hook)
1074 request_module("bridge");
1075
1076 mutex_lock(&br_ioctl_mutex);
1077 if (br_ioctl_hook)
1078 err = br_ioctl_hook(net, cmd, argp);
1079 mutex_unlock(&br_ioctl_mutex);
1080 break;
1081 case SIOCGIFVLAN:
1082 case SIOCSIFVLAN:
1083 err = -ENOPKG;
1084 if (!vlan_ioctl_hook)
1085 request_module("8021q");
1086
1087 mutex_lock(&vlan_ioctl_mutex);
1088 if (vlan_ioctl_hook)
1089 err = vlan_ioctl_hook(net, argp);
1090 mutex_unlock(&vlan_ioctl_mutex);
1091 break;
1092 case SIOCADDDLCI:
1093 case SIOCDELDLCI:
1094 err = -ENOPKG;
1095 if (!dlci_ioctl_hook)
1096 request_module("dlci");
1097
1098 mutex_lock(&dlci_ioctl_mutex);
1099 if (dlci_ioctl_hook)
1100 err = dlci_ioctl_hook(cmd, argp);
1101 mutex_unlock(&dlci_ioctl_mutex);
1102 break;
1103 default:
1104 err = sock_do_ioctl(net, sock, cmd, arg);
1105 break;
1106 }
1107 return err;
1108}
1109
1110int sock_create_lite(int family, int type, int protocol, struct socket **res)
1111{
1112 int err;
1113 struct socket *sock = NULL;
1114
1115 err = security_socket_create(family, type, protocol, 1);
1116 if (err)
1117 goto out;
1118
1119 sock = sock_alloc();
1120 if (!sock) {
1121 err = -ENOMEM;
1122 goto out;
1123 }
1124
1125 sock->type = type;
1126 err = security_socket_post_create(sock, family, type, protocol, 1);
1127 if (err)
1128 goto out_release;
1129
1130out:
1131 *res = sock;
1132 return err;
1133out_release:
1134 sock_release(sock);
1135 sock = NULL;
1136 goto out;
1137}
1138EXPORT_SYMBOL(sock_create_lite);
1139
1140/* No kernel lock held - perfect */
1141static unsigned int sock_poll(struct file *file, poll_table *wait)
1142{
1143 unsigned int busy_flag = 0;
1144 struct socket *sock;
1145
1146 /*
1147 * We can't return errors to poll, so it's either yes or no.
1148 */
1149 sock = file->private_data;
1150
1151 if (sk_can_busy_loop(sock->sk)) {
1152 /* this socket can poll_ll so tell the system call */
1153 busy_flag = POLL_BUSY_LOOP;
1154
1155 /* once, only if requested by syscall */
1156 if (wait && (wait->_key & POLL_BUSY_LOOP))
1157 sk_busy_loop(sock->sk, 1);
1158 }
1159
1160 return busy_flag | sock->ops->poll(file, sock, wait);
1161}
1162
1163static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1164{
1165 struct socket *sock = file->private_data;
1166
1167 return sock->ops->mmap(file, sock, vma);
1168}
1169
1170static int sock_close(struct inode *inode, struct file *filp)
1171{
1172 sock_release(SOCKET_I(inode));
1173 return 0;
1174}
1175
1176/*
1177 * Update the socket async list
1178 *
1179 * Fasync_list locking strategy.
1180 *
1181 * 1. fasync_list is modified only under process context socket lock
1182 * i.e. under semaphore.
1183 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1184 * or under socket lock
1185 */
1186
1187static int sock_fasync(int fd, struct file *filp, int on)
1188{
1189 struct socket *sock = filp->private_data;
1190 struct sock *sk = sock->sk;
1191 struct socket_wq *wq;
1192
1193 if (sk == NULL)
1194 return -EINVAL;
1195
1196 lock_sock(sk);
1197 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1198 fasync_helper(fd, filp, on, &wq->fasync_list);
1199
1200 if (!wq->fasync_list)
1201 sock_reset_flag(sk, SOCK_FASYNC);
1202 else
1203 sock_set_flag(sk, SOCK_FASYNC);
1204
1205 release_sock(sk);
1206 return 0;
1207}
1208
1209/* This function may be called only under socket lock or callback_lock or rcu_lock */
1210
1211int sock_wake_async(struct socket *sock, int how, int band)
1212{
1213 struct socket_wq *wq;
1214
1215 if (!sock)
1216 return -1;
1217 rcu_read_lock();
1218 wq = rcu_dereference(sock->wq);
1219 if (!wq || !wq->fasync_list) {
1220 rcu_read_unlock();
1221 return -1;
1222 }
1223 switch (how) {
1224 case SOCK_WAKE_WAITD:
1225 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1226 break;
1227 goto call_kill;
1228 case SOCK_WAKE_SPACE:
1229 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1230 break;
1231 /* fall through */
1232 case SOCK_WAKE_IO:
1233call_kill:
1234 kill_fasync(&wq->fasync_list, SIGIO, band);
1235 break;
1236 case SOCK_WAKE_URG:
1237 kill_fasync(&wq->fasync_list, SIGURG, band);
1238 }
1239 rcu_read_unlock();
1240 return 0;
1241}
1242EXPORT_SYMBOL(sock_wake_async);
1243
1244int __sock_create(struct net *net, int family, int type, int protocol,
1245 struct socket **res, int kern)
1246{
1247 int err;
1248 struct socket *sock;
1249 const struct net_proto_family *pf;
1250
1251 /*
1252 * Check protocol is in range
1253 */
1254 if (family < 0 || family >= NPROTO)
1255 return -EAFNOSUPPORT;
1256 if (type < 0 || type >= SOCK_MAX)
1257 return -EINVAL;
1258
1259 /* Compatibility.
1260
1261 This uglymoron is moved from INET layer to here to avoid
1262 deadlock in module load.
1263 */
1264 if (family == PF_INET && type == SOCK_PACKET) {
1265 static int warned;
1266 if (!warned) {
1267 warned = 1;
1268 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1269 current->comm);
1270 }
1271 family = PF_PACKET;
1272 }
1273
1274 err = security_socket_create(family, type, protocol, kern);
1275 if (err)
1276 return err;
1277
1278 /*
1279 * Allocate the socket and allow the family to set things up. if
1280 * the protocol is 0, the family is instructed to select an appropriate
1281 * default.
1282 */
1283 sock = sock_alloc();
1284 if (!sock) {
1285 net_warn_ratelimited("socket: no more sockets\n");
1286 return -ENFILE; /* Not exactly a match, but its the
1287 closest posix thing */
1288 }
1289
1290 sock->type = type;
1291
1292#ifdef CONFIG_MODULES
1293 /* Attempt to load a protocol module if the find failed.
1294 *
1295 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1296 * requested real, full-featured networking support upon configuration.
1297 * Otherwise module support will break!
1298 */
1299 if (rcu_access_pointer(net_families[family]) == NULL)
1300 request_module("net-pf-%d", family);
1301#endif
1302
1303 rcu_read_lock();
1304 pf = rcu_dereference(net_families[family]);
1305 err = -EAFNOSUPPORT;
1306 if (!pf)
1307 goto out_release;
1308
1309 /*
1310 * We will call the ->create function, that possibly is in a loadable
1311 * module, so we have to bump that loadable module refcnt first.
1312 */
1313 if (!try_module_get(pf->owner))
1314 goto out_release;
1315
1316 /* Now protected by module ref count */
1317 rcu_read_unlock();
1318
1319 err = pf->create(net, sock, protocol, kern);
1320 if (err < 0)
1321 goto out_module_put;
1322
1323 /*
1324 * Now to bump the refcnt of the [loadable] module that owns this
1325 * socket at sock_release time we decrement its refcnt.
1326 */
1327 if (!try_module_get(sock->ops->owner))
1328 goto out_module_busy;
1329
1330 /*
1331 * Now that we're done with the ->create function, the [loadable]
1332 * module can have its refcnt decremented
1333 */
1334 module_put(pf->owner);
1335 err = security_socket_post_create(sock, family, type, protocol, kern);
1336 if (err)
1337 goto out_sock_release;
1338 *res = sock;
1339
1340 return 0;
1341
1342out_module_busy:
1343 err = -EAFNOSUPPORT;
1344out_module_put:
1345 sock->ops = NULL;
1346 module_put(pf->owner);
1347out_sock_release:
1348 sock_release(sock);
1349 return err;
1350
1351out_release:
1352 rcu_read_unlock();
1353 goto out_sock_release;
1354}
1355EXPORT_SYMBOL(__sock_create);
1356
1357int sock_create(int family, int type, int protocol, struct socket **res)
1358{
1359 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1360}
1361EXPORT_SYMBOL(sock_create);
1362
1363int sock_create_kern(int family, int type, int protocol, struct socket **res)
1364{
1365 return __sock_create(&init_net, family, type, protocol, res, 1);
1366}
1367EXPORT_SYMBOL(sock_create_kern);
1368
1369SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1370{
1371 int retval;
1372 struct socket *sock;
1373 int flags;
1374
1375 /* Check the SOCK_* constants for consistency. */
1376 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1377 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1378 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1379 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1380
1381 flags = type & ~SOCK_TYPE_MASK;
1382 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1383 return -EINVAL;
1384 type &= SOCK_TYPE_MASK;
1385
1386 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1387 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1388
1389 retval = sock_create(family, type, protocol, &sock);
1390 if (retval < 0)
1391 goto out;
1392
1393 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1394 if (retval < 0)
1395 goto out_release;
1396
1397out:
1398 /* It may be already another descriptor 8) Not kernel problem. */
1399 return retval;
1400
1401out_release:
1402 sock_release(sock);
1403 return retval;
1404}
1405
1406/*
1407 * Create a pair of connected sockets.
1408 */
1409
1410SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1411 int __user *, usockvec)
1412{
1413 struct socket *sock1, *sock2;
1414 int fd1, fd2, err;
1415 struct file *newfile1, *newfile2;
1416 int flags;
1417
1418 flags = type & ~SOCK_TYPE_MASK;
1419 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1420 return -EINVAL;
1421 type &= SOCK_TYPE_MASK;
1422
1423 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1424 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1425
1426 /*
1427 * Obtain the first socket and check if the underlying protocol
1428 * supports the socketpair call.
1429 */
1430
1431 err = sock_create(family, type, protocol, &sock1);
1432 if (err < 0)
1433 goto out;
1434
1435 err = sock_create(family, type, protocol, &sock2);
1436 if (err < 0)
1437 goto out_release_1;
1438
1439 err = sock1->ops->socketpair(sock1, sock2);
1440 if (err < 0)
1441 goto out_release_both;
1442
1443 fd1 = get_unused_fd_flags(flags);
1444 if (unlikely(fd1 < 0)) {
1445 err = fd1;
1446 goto out_release_both;
1447 }
1448
1449 fd2 = get_unused_fd_flags(flags);
1450 if (unlikely(fd2 < 0)) {
1451 err = fd2;
1452 goto out_put_unused_1;
1453 }
1454
1455 newfile1 = sock_alloc_file(sock1, flags, NULL);
1456 if (unlikely(IS_ERR(newfile1))) {
1457 err = PTR_ERR(newfile1);
1458 goto out_put_unused_both;
1459 }
1460
1461 newfile2 = sock_alloc_file(sock2, flags, NULL);
1462 if (IS_ERR(newfile2)) {
1463 err = PTR_ERR(newfile2);
1464 goto out_fput_1;
1465 }
1466
1467 err = put_user(fd1, &usockvec[0]);
1468 if (err)
1469 goto out_fput_both;
1470
1471 err = put_user(fd2, &usockvec[1]);
1472 if (err)
1473 goto out_fput_both;
1474
1475 audit_fd_pair(fd1, fd2);
1476
1477 fd_install(fd1, newfile1);
1478 fd_install(fd2, newfile2);
1479 /* fd1 and fd2 may be already another descriptors.
1480 * Not kernel problem.
1481 */
1482
1483 return 0;
1484
1485out_fput_both:
1486 fput(newfile2);
1487 fput(newfile1);
1488 put_unused_fd(fd2);
1489 put_unused_fd(fd1);
1490 goto out;
1491
1492out_fput_1:
1493 fput(newfile1);
1494 put_unused_fd(fd2);
1495 put_unused_fd(fd1);
1496 sock_release(sock2);
1497 goto out;
1498
1499out_put_unused_both:
1500 put_unused_fd(fd2);
1501out_put_unused_1:
1502 put_unused_fd(fd1);
1503out_release_both:
1504 sock_release(sock2);
1505out_release_1:
1506 sock_release(sock1);
1507out:
1508 return err;
1509}
1510
1511/*
1512 * Bind a name to a socket. Nothing much to do here since it's
1513 * the protocol's responsibility to handle the local address.
1514 *
1515 * We move the socket address to kernel space before we call
1516 * the protocol layer (having also checked the address is ok).
1517 */
1518
1519SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1520{
1521 struct socket *sock;
1522 struct sockaddr_storage address;
1523 int err, fput_needed;
1524
1525 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1526 if (sock) {
1527 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1528 if (err >= 0) {
1529 err = security_socket_bind(sock,
1530 (struct sockaddr *)&address,
1531 addrlen);
1532 if (!err)
1533 err = sock->ops->bind(sock,
1534 (struct sockaddr *)
1535 &address, addrlen);
1536 }
1537 fput_light(sock->file, fput_needed);
1538 }
1539 return err;
1540}
1541
1542/*
1543 * Perform a listen. Basically, we allow the protocol to do anything
1544 * necessary for a listen, and if that works, we mark the socket as
1545 * ready for listening.
1546 */
1547
1548SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1549{
1550 struct socket *sock;
1551 int err, fput_needed;
1552 int somaxconn;
1553
1554 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 if (sock) {
1556 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1557 if ((unsigned int)backlog > somaxconn)
1558 backlog = somaxconn;
1559
1560 err = security_socket_listen(sock, backlog);
1561 if (!err)
1562 err = sock->ops->listen(sock, backlog);
1563
1564 fput_light(sock->file, fput_needed);
1565 }
1566 return err;
1567}
1568
1569/*
1570 * For accept, we attempt to create a new socket, set up the link
1571 * with the client, wake up the client, then return the new
1572 * connected fd. We collect the address of the connector in kernel
1573 * space and move it to user at the very end. This is unclean because
1574 * we open the socket then return an error.
1575 *
1576 * 1003.1g adds the ability to recvmsg() to query connection pending
1577 * status to recvmsg. We need to add that support in a way thats
1578 * clean when we restucture accept also.
1579 */
1580
1581SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582 int __user *, upeer_addrlen, int, flags)
1583{
1584 struct socket *sock, *newsock;
1585 struct file *newfile;
1586 int err, len, newfd, fput_needed;
1587 struct sockaddr_storage address;
1588
1589 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1590 return -EINVAL;
1591
1592 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1593 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1594
1595 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596 if (!sock)
1597 goto out;
1598
1599 err = -ENFILE;
1600 newsock = sock_alloc();
1601 if (!newsock)
1602 goto out_put;
1603
1604 newsock->type = sock->type;
1605 newsock->ops = sock->ops;
1606
1607 /*
1608 * We don't need try_module_get here, as the listening socket (sock)
1609 * has the protocol module (sock->ops->owner) held.
1610 */
1611 __module_get(newsock->ops->owner);
1612
1613 newfd = get_unused_fd_flags(flags);
1614 if (unlikely(newfd < 0)) {
1615 err = newfd;
1616 sock_release(newsock);
1617 goto out_put;
1618 }
1619 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1620 if (unlikely(IS_ERR(newfile))) {
1621 err = PTR_ERR(newfile);
1622 put_unused_fd(newfd);
1623 sock_release(newsock);
1624 goto out_put;
1625 }
1626
1627 err = security_socket_accept(sock, newsock);
1628 if (err)
1629 goto out_fd;
1630
1631 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1632 if (err < 0)
1633 goto out_fd;
1634
1635 if (upeer_sockaddr) {
1636 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1637 &len, 2) < 0) {
1638 err = -ECONNABORTED;
1639 goto out_fd;
1640 }
1641 err = move_addr_to_user(&address,
1642 len, upeer_sockaddr, upeer_addrlen);
1643 if (err < 0)
1644 goto out_fd;
1645 }
1646
1647 /* File flags are not inherited via accept() unlike another OSes. */
1648
1649 fd_install(newfd, newfile);
1650 err = newfd;
1651
1652out_put:
1653 fput_light(sock->file, fput_needed);
1654out:
1655 return err;
1656out_fd:
1657 fput(newfile);
1658 put_unused_fd(newfd);
1659 goto out_put;
1660}
1661
1662SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1663 int __user *, upeer_addrlen)
1664{
1665 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1666}
1667
1668/*
1669 * Attempt to connect to a socket with the server address. The address
1670 * is in user space so we verify it is OK and move it to kernel space.
1671 *
1672 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1673 * break bindings
1674 *
1675 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1676 * other SEQPACKET protocols that take time to connect() as it doesn't
1677 * include the -EINPROGRESS status for such sockets.
1678 */
1679
1680SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1681 int, addrlen)
1682{
1683 struct socket *sock;
1684 struct sockaddr_storage address;
1685 int err, fput_needed;
1686
1687 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1688 if (!sock)
1689 goto out;
1690 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1691 if (err < 0)
1692 goto out_put;
1693
1694 err =
1695 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1696 if (err)
1697 goto out_put;
1698
1699 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1700 sock->file->f_flags);
1701out_put:
1702 fput_light(sock->file, fput_needed);
1703out:
1704 return err;
1705}
1706
1707/*
1708 * Get the local address ('name') of a socket object. Move the obtained
1709 * name to user space.
1710 */
1711
1712SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1713 int __user *, usockaddr_len)
1714{
1715 struct socket *sock;
1716 struct sockaddr_storage address;
1717 int len, err, fput_needed;
1718
1719 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 if (!sock)
1721 goto out;
1722
1723 err = security_socket_getsockname(sock);
1724 if (err)
1725 goto out_put;
1726
1727 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1728 if (err)
1729 goto out_put;
1730 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1731
1732out_put:
1733 fput_light(sock->file, fput_needed);
1734out:
1735 return err;
1736}
1737
1738/*
1739 * Get the remote address ('name') of a socket object. Move the obtained
1740 * name to user space.
1741 */
1742
1743SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1744 int __user *, usockaddr_len)
1745{
1746 struct socket *sock;
1747 struct sockaddr_storage address;
1748 int len, err, fput_needed;
1749
1750 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1751 if (sock != NULL) {
1752 err = security_socket_getpeername(sock);
1753 if (err) {
1754 fput_light(sock->file, fput_needed);
1755 return err;
1756 }
1757
1758 err =
1759 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1760 1);
1761 if (!err)
1762 err = move_addr_to_user(&address, len, usockaddr,
1763 usockaddr_len);
1764 fput_light(sock->file, fput_needed);
1765 }
1766 return err;
1767}
1768
1769/*
1770 * Send a datagram to a given address. We move the address into kernel
1771 * space and check the user space data area is readable before invoking
1772 * the protocol.
1773 */
1774
1775SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1776 unsigned int, flags, struct sockaddr __user *, addr,
1777 int, addr_len)
1778{
1779 struct socket *sock;
1780 struct sockaddr_storage address;
1781 int err;
1782 struct msghdr msg;
1783 struct iovec iov;
1784 int fput_needed;
1785
1786 if (len > INT_MAX)
1787 len = INT_MAX;
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 if (!sock)
1790 goto out;
1791
1792 iov.iov_base = buff;
1793 iov.iov_len = len;
1794 msg.msg_name = NULL;
1795 msg.msg_iov = &iov;
1796 msg.msg_iovlen = 1;
1797 msg.msg_control = NULL;
1798 msg.msg_controllen = 0;
1799 msg.msg_namelen = 0;
1800 if (addr) {
1801 err = move_addr_to_kernel(addr, addr_len, &address);
1802 if (err < 0)
1803 goto out_put;
1804 msg.msg_name = (struct sockaddr *)&address;
1805 msg.msg_namelen = addr_len;
1806 }
1807 if (sock->file->f_flags & O_NONBLOCK)
1808 flags |= MSG_DONTWAIT;
1809 msg.msg_flags = flags;
1810 err = sock_sendmsg(sock, &msg, len);
1811
1812out_put:
1813 fput_light(sock->file, fput_needed);
1814out:
1815 return err;
1816}
1817
1818/*
1819 * Send a datagram down a socket.
1820 */
1821
1822SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1823 unsigned int, flags)
1824{
1825 return sys_sendto(fd, buff, len, flags, NULL, 0);
1826}
1827
1828/*
1829 * Receive a frame from the socket and optionally record the address of the
1830 * sender. We verify the buffers are writable and if needed move the
1831 * sender address from kernel to user space.
1832 */
1833
1834SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1835 unsigned int, flags, struct sockaddr __user *, addr,
1836 int __user *, addr_len)
1837{
1838 struct socket *sock;
1839 struct iovec iov;
1840 struct msghdr msg;
1841 struct sockaddr_storage address;
1842 int err, err2;
1843 int fput_needed;
1844
1845 if (size > INT_MAX)
1846 size = INT_MAX;
1847 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 if (!sock)
1849 goto out;
1850
1851 msg.msg_control = NULL;
1852 msg.msg_controllen = 0;
1853 msg.msg_iovlen = 1;
1854 msg.msg_iov = &iov;
1855 iov.iov_len = size;
1856 iov.iov_base = ubuf;
1857 /* Save some cycles and don't copy the address if not needed */
1858 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1859 /* We assume all kernel code knows the size of sockaddr_storage */
1860 msg.msg_namelen = 0;
1861 if (sock->file->f_flags & O_NONBLOCK)
1862 flags |= MSG_DONTWAIT;
1863 err = sock_recvmsg(sock, &msg, size, flags);
1864
1865 if (err >= 0 && addr != NULL) {
1866 err2 = move_addr_to_user(&address,
1867 msg.msg_namelen, addr, addr_len);
1868 if (err2 < 0)
1869 err = err2;
1870 }
1871
1872 fput_light(sock->file, fput_needed);
1873out:
1874 return err;
1875}
1876
1877/*
1878 * Receive a datagram from a socket.
1879 */
1880
1881SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1882 unsigned int, flags)
1883{
1884 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1885}
1886
1887/*
1888 * Set a socket option. Because we don't know the option lengths we have
1889 * to pass the user mode parameter for the protocols to sort out.
1890 */
1891
1892SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1893 char __user *, optval, int, optlen)
1894{
1895 int err, fput_needed;
1896 struct socket *sock;
1897
1898 if (optlen < 0)
1899 return -EINVAL;
1900
1901 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1902 if (sock != NULL) {
1903 err = security_socket_setsockopt(sock, level, optname);
1904 if (err)
1905 goto out_put;
1906
1907 if (level == SOL_SOCKET)
1908 err =
1909 sock_setsockopt(sock, level, optname, optval,
1910 optlen);
1911 else
1912 err =
1913 sock->ops->setsockopt(sock, level, optname, optval,
1914 optlen);
1915out_put:
1916 fput_light(sock->file, fput_needed);
1917 }
1918 return err;
1919}
1920
1921/*
1922 * Get a socket option. Because we don't know the option lengths we have
1923 * to pass a user mode parameter for the protocols to sort out.
1924 */
1925
1926SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1927 char __user *, optval, int __user *, optlen)
1928{
1929 int err, fput_needed;
1930 struct socket *sock;
1931
1932 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933 if (sock != NULL) {
1934 err = security_socket_getsockopt(sock, level, optname);
1935 if (err)
1936 goto out_put;
1937
1938 if (level == SOL_SOCKET)
1939 err =
1940 sock_getsockopt(sock, level, optname, optval,
1941 optlen);
1942 else
1943 err =
1944 sock->ops->getsockopt(sock, level, optname, optval,
1945 optlen);
1946out_put:
1947 fput_light(sock->file, fput_needed);
1948 }
1949 return err;
1950}
1951
1952/*
1953 * Shutdown a socket.
1954 */
1955
1956SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1957{
1958 int err, fput_needed;
1959 struct socket *sock;
1960
1961 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 if (sock != NULL) {
1963 err = security_socket_shutdown(sock, how);
1964 if (!err)
1965 err = sock->ops->shutdown(sock, how);
1966 fput_light(sock->file, fput_needed);
1967 }
1968 return err;
1969}
1970
1971/* A couple of helpful macros for getting the address of the 32/64 bit
1972 * fields which are the same type (int / unsigned) on our platforms.
1973 */
1974#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1975#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1976#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1977
1978struct used_address {
1979 struct sockaddr_storage name;
1980 unsigned int name_len;
1981};
1982
1983static int copy_msghdr_from_user(struct msghdr *kmsg,
1984 struct msghdr __user *umsg)
1985{
1986 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1987 return -EFAULT;
1988
1989 if (kmsg->msg_namelen < 0)
1990 return -EINVAL;
1991
1992 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1993 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1994 return 0;
1995}
1996
1997static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1998 struct msghdr *msg_sys, unsigned int flags,
1999 struct used_address *used_address)
2000{
2001 struct compat_msghdr __user *msg_compat =
2002 (struct compat_msghdr __user *)msg;
2003 struct sockaddr_storage address;
2004 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2005 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2006 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2007 /* 20 is size of ipv6_pktinfo */
2008 unsigned char *ctl_buf = ctl;
2009 int err, ctl_len, total_len;
2010
2011 err = -EFAULT;
2012 if (MSG_CMSG_COMPAT & flags) {
2013 if (get_compat_msghdr(msg_sys, msg_compat))
2014 return -EFAULT;
2015 } else {
2016 err = copy_msghdr_from_user(msg_sys, msg);
2017 if (err)
2018 return err;
2019 }
2020
2021 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2022 err = -EMSGSIZE;
2023 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2024 goto out;
2025 err = -ENOMEM;
2026 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2027 GFP_KERNEL);
2028 if (!iov)
2029 goto out;
2030 }
2031
2032 /* This will also move the address data into kernel space */
2033 if (MSG_CMSG_COMPAT & flags) {
2034 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2035 } else
2036 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2037 if (err < 0)
2038 goto out_freeiov;
2039 total_len = err;
2040
2041 err = -ENOBUFS;
2042
2043 if (msg_sys->msg_controllen > INT_MAX)
2044 goto out_freeiov;
2045 ctl_len = msg_sys->msg_controllen;
2046 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2047 err =
2048 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2049 sizeof(ctl));
2050 if (err)
2051 goto out_freeiov;
2052 ctl_buf = msg_sys->msg_control;
2053 ctl_len = msg_sys->msg_controllen;
2054 } else if (ctl_len) {
2055 if (ctl_len > sizeof(ctl)) {
2056 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2057 if (ctl_buf == NULL)
2058 goto out_freeiov;
2059 }
2060 err = -EFAULT;
2061 /*
2062 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2063 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2064 * checking falls down on this.
2065 */
2066 if (copy_from_user(ctl_buf,
2067 (void __user __force *)msg_sys->msg_control,
2068 ctl_len))
2069 goto out_freectl;
2070 msg_sys->msg_control = ctl_buf;
2071 }
2072 msg_sys->msg_flags = flags;
2073
2074 if (sock->file->f_flags & O_NONBLOCK)
2075 msg_sys->msg_flags |= MSG_DONTWAIT;
2076 /*
2077 * If this is sendmmsg() and current destination address is same as
2078 * previously succeeded address, omit asking LSM's decision.
2079 * used_address->name_len is initialized to UINT_MAX so that the first
2080 * destination address never matches.
2081 */
2082 if (used_address && msg_sys->msg_name &&
2083 used_address->name_len == msg_sys->msg_namelen &&
2084 !memcmp(&used_address->name, msg_sys->msg_name,
2085 used_address->name_len)) {
2086 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2087 goto out_freectl;
2088 }
2089 err = sock_sendmsg(sock, msg_sys, total_len);
2090 /*
2091 * If this is sendmmsg() and sending to current destination address was
2092 * successful, remember it.
2093 */
2094 if (used_address && err >= 0) {
2095 used_address->name_len = msg_sys->msg_namelen;
2096 if (msg_sys->msg_name)
2097 memcpy(&used_address->name, msg_sys->msg_name,
2098 used_address->name_len);
2099 }
2100
2101out_freectl:
2102 if (ctl_buf != ctl)
2103 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2104out_freeiov:
2105 if (iov != iovstack)
2106 kfree(iov);
2107out:
2108 return err;
2109}
2110
2111/*
2112 * BSD sendmsg interface
2113 */
2114
2115long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2116{
2117 int fput_needed, err;
2118 struct msghdr msg_sys;
2119 struct socket *sock;
2120
2121 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2122 if (!sock)
2123 goto out;
2124
2125 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2126
2127 fput_light(sock->file, fput_needed);
2128out:
2129 return err;
2130}
2131
2132SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2133{
2134 if (flags & MSG_CMSG_COMPAT)
2135 return -EINVAL;
2136 return __sys_sendmsg(fd, msg, flags);
2137}
2138
2139/*
2140 * Linux sendmmsg interface
2141 */
2142
2143int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2144 unsigned int flags)
2145{
2146 int fput_needed, err, datagrams;
2147 struct socket *sock;
2148 struct mmsghdr __user *entry;
2149 struct compat_mmsghdr __user *compat_entry;
2150 struct msghdr msg_sys;
2151 struct used_address used_address;
2152
2153 if (vlen > UIO_MAXIOV)
2154 vlen = UIO_MAXIOV;
2155
2156 datagrams = 0;
2157
2158 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2159 if (!sock)
2160 return err;
2161
2162 used_address.name_len = UINT_MAX;
2163 entry = mmsg;
2164 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2165 err = 0;
2166
2167 while (datagrams < vlen) {
2168 if (MSG_CMSG_COMPAT & flags) {
2169 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2170 &msg_sys, flags, &used_address);
2171 if (err < 0)
2172 break;
2173 err = __put_user(err, &compat_entry->msg_len);
2174 ++compat_entry;
2175 } else {
2176 err = ___sys_sendmsg(sock,
2177 (struct msghdr __user *)entry,
2178 &msg_sys, flags, &used_address);
2179 if (err < 0)
2180 break;
2181 err = put_user(err, &entry->msg_len);
2182 ++entry;
2183 }
2184
2185 if (err)
2186 break;
2187 ++datagrams;
2188 }
2189
2190 fput_light(sock->file, fput_needed);
2191
2192 /* We only return an error if no datagrams were able to be sent */
2193 if (datagrams != 0)
2194 return datagrams;
2195
2196 return err;
2197}
2198
2199SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2200 unsigned int, vlen, unsigned int, flags)
2201{
2202 if (flags & MSG_CMSG_COMPAT)
2203 return -EINVAL;
2204 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2205}
2206
2207static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2208 struct msghdr *msg_sys, unsigned int flags, int nosec)
2209{
2210 struct compat_msghdr __user *msg_compat =
2211 (struct compat_msghdr __user *)msg;
2212 struct iovec iovstack[UIO_FASTIOV];
2213 struct iovec *iov = iovstack;
2214 unsigned long cmsg_ptr;
2215 int err, total_len, len;
2216
2217 /* kernel mode address */
2218 struct sockaddr_storage addr;
2219
2220 /* user mode address pointers */
2221 struct sockaddr __user *uaddr;
2222 int __user *uaddr_len;
2223
2224 if (MSG_CMSG_COMPAT & flags) {
2225 if (get_compat_msghdr(msg_sys, msg_compat))
2226 return -EFAULT;
2227 } else {
2228 err = copy_msghdr_from_user(msg_sys, msg);
2229 if (err)
2230 return err;
2231 }
2232
2233 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2234 err = -EMSGSIZE;
2235 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2236 goto out;
2237 err = -ENOMEM;
2238 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2239 GFP_KERNEL);
2240 if (!iov)
2241 goto out;
2242 }
2243
2244 /* Save the user-mode address (verify_iovec will change the
2245 * kernel msghdr to use the kernel address space)
2246 */
2247 uaddr = (__force void __user *)msg_sys->msg_name;
2248 uaddr_len = COMPAT_NAMELEN(msg);
2249 if (MSG_CMSG_COMPAT & flags)
2250 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2251 else
2252 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253 if (err < 0)
2254 goto out_freeiov;
2255 total_len = err;
2256
2257 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2258 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2259
2260 /* We assume all kernel code knows the size of sockaddr_storage */
2261 msg_sys->msg_namelen = 0;
2262
2263 if (sock->file->f_flags & O_NONBLOCK)
2264 flags |= MSG_DONTWAIT;
2265 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2266 total_len, flags);
2267 if (err < 0)
2268 goto out_freeiov;
2269 len = err;
2270
2271 if (uaddr != NULL) {
2272 err = move_addr_to_user(&addr,
2273 msg_sys->msg_namelen, uaddr,
2274 uaddr_len);
2275 if (err < 0)
2276 goto out_freeiov;
2277 }
2278 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2279 COMPAT_FLAGS(msg));
2280 if (err)
2281 goto out_freeiov;
2282 if (MSG_CMSG_COMPAT & flags)
2283 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2284 &msg_compat->msg_controllen);
2285 else
2286 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2287 &msg->msg_controllen);
2288 if (err)
2289 goto out_freeiov;
2290 err = len;
2291
2292out_freeiov:
2293 if (iov != iovstack)
2294 kfree(iov);
2295out:
2296 return err;
2297}
2298
2299/*
2300 * BSD recvmsg interface
2301 */
2302
2303long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2304{
2305 int fput_needed, err;
2306 struct msghdr msg_sys;
2307 struct socket *sock;
2308
2309 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2310 if (!sock)
2311 goto out;
2312
2313 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2314
2315 fput_light(sock->file, fput_needed);
2316out:
2317 return err;
2318}
2319
2320SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2321 unsigned int, flags)
2322{
2323 if (flags & MSG_CMSG_COMPAT)
2324 return -EINVAL;
2325 return __sys_recvmsg(fd, msg, flags);
2326}
2327
2328/*
2329 * Linux recvmmsg interface
2330 */
2331
2332int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2333 unsigned int flags, struct timespec *timeout)
2334{
2335 int fput_needed, err, datagrams;
2336 struct socket *sock;
2337 struct mmsghdr __user *entry;
2338 struct compat_mmsghdr __user *compat_entry;
2339 struct msghdr msg_sys;
2340 struct timespec end_time;
2341
2342 if (timeout &&
2343 poll_select_set_timeout(&end_time, timeout->tv_sec,
2344 timeout->tv_nsec))
2345 return -EINVAL;
2346
2347 datagrams = 0;
2348
2349 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2350 if (!sock)
2351 return err;
2352
2353 err = sock_error(sock->sk);
2354 if (err)
2355 goto out_put;
2356
2357 entry = mmsg;
2358 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2359
2360 while (datagrams < vlen) {
2361 /*
2362 * No need to ask LSM for more than the first datagram.
2363 */
2364 if (MSG_CMSG_COMPAT & flags) {
2365 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2366 &msg_sys, flags & ~MSG_WAITFORONE,
2367 datagrams);
2368 if (err < 0)
2369 break;
2370 err = __put_user(err, &compat_entry->msg_len);
2371 ++compat_entry;
2372 } else {
2373 err = ___sys_recvmsg(sock,
2374 (struct msghdr __user *)entry,
2375 &msg_sys, flags & ~MSG_WAITFORONE,
2376 datagrams);
2377 if (err < 0)
2378 break;
2379 err = put_user(err, &entry->msg_len);
2380 ++entry;
2381 }
2382
2383 if (err)
2384 break;
2385 ++datagrams;
2386
2387 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2388 if (flags & MSG_WAITFORONE)
2389 flags |= MSG_DONTWAIT;
2390
2391 if (timeout) {
2392 ktime_get_ts(timeout);
2393 *timeout = timespec_sub(end_time, *timeout);
2394 if (timeout->tv_sec < 0) {
2395 timeout->tv_sec = timeout->tv_nsec = 0;
2396 break;
2397 }
2398
2399 /* Timeout, return less than vlen datagrams */
2400 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2401 break;
2402 }
2403
2404 /* Out of band data, return right away */
2405 if (msg_sys.msg_flags & MSG_OOB)
2406 break;
2407 }
2408
2409out_put:
2410 fput_light(sock->file, fput_needed);
2411
2412 if (err == 0)
2413 return datagrams;
2414
2415 if (datagrams != 0) {
2416 /*
2417 * We may return less entries than requested (vlen) if the
2418 * sock is non block and there aren't enough datagrams...
2419 */
2420 if (err != -EAGAIN) {
2421 /*
2422 * ... or if recvmsg returns an error after we
2423 * received some datagrams, where we record the
2424 * error to return on the next call or if the
2425 * app asks about it using getsockopt(SO_ERROR).
2426 */
2427 sock->sk->sk_err = -err;
2428 }
2429
2430 return datagrams;
2431 }
2432
2433 return err;
2434}
2435
2436SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2437 unsigned int, vlen, unsigned int, flags,
2438 struct timespec __user *, timeout)
2439{
2440 int datagrams;
2441 struct timespec timeout_sys;
2442
2443 if (flags & MSG_CMSG_COMPAT)
2444 return -EINVAL;
2445
2446 if (!timeout)
2447 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2448
2449 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2450 return -EFAULT;
2451
2452 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2453
2454 if (datagrams > 0 &&
2455 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2456 datagrams = -EFAULT;
2457
2458 return datagrams;
2459}
2460
2461#ifdef __ARCH_WANT_SYS_SOCKETCALL
2462/* Argument list sizes for sys_socketcall */
2463#define AL(x) ((x) * sizeof(unsigned long))
2464static const unsigned char nargs[21] = {
2465 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2466 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2467 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2468 AL(4), AL(5), AL(4)
2469};
2470
2471#undef AL
2472
2473/*
2474 * System call vectors.
2475 *
2476 * Argument checking cleaned up. Saved 20% in size.
2477 * This function doesn't need to set the kernel lock because
2478 * it is set by the callees.
2479 */
2480
2481SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2482{
2483 unsigned long a[AUDITSC_ARGS];
2484 unsigned long a0, a1;
2485 int err;
2486 unsigned int len;
2487
2488 if (call < 1 || call > SYS_SENDMMSG)
2489 return -EINVAL;
2490
2491 len = nargs[call];
2492 if (len > sizeof(a))
2493 return -EINVAL;
2494
2495 /* copy_from_user should be SMP safe. */
2496 if (copy_from_user(a, args, len))
2497 return -EFAULT;
2498
2499 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2500 if (err)
2501 return err;
2502
2503 a0 = a[0];
2504 a1 = a[1];
2505
2506 switch (call) {
2507 case SYS_SOCKET:
2508 err = sys_socket(a0, a1, a[2]);
2509 break;
2510 case SYS_BIND:
2511 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2512 break;
2513 case SYS_CONNECT:
2514 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2515 break;
2516 case SYS_LISTEN:
2517 err = sys_listen(a0, a1);
2518 break;
2519 case SYS_ACCEPT:
2520 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 (int __user *)a[2], 0);
2522 break;
2523 case SYS_GETSOCKNAME:
2524 err =
2525 sys_getsockname(a0, (struct sockaddr __user *)a1,
2526 (int __user *)a[2]);
2527 break;
2528 case SYS_GETPEERNAME:
2529 err =
2530 sys_getpeername(a0, (struct sockaddr __user *)a1,
2531 (int __user *)a[2]);
2532 break;
2533 case SYS_SOCKETPAIR:
2534 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2535 break;
2536 case SYS_SEND:
2537 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2538 break;
2539 case SYS_SENDTO:
2540 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2541 (struct sockaddr __user *)a[4], a[5]);
2542 break;
2543 case SYS_RECV:
2544 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2545 break;
2546 case SYS_RECVFROM:
2547 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2548 (struct sockaddr __user *)a[4],
2549 (int __user *)a[5]);
2550 break;
2551 case SYS_SHUTDOWN:
2552 err = sys_shutdown(a0, a1);
2553 break;
2554 case SYS_SETSOCKOPT:
2555 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2556 break;
2557 case SYS_GETSOCKOPT:
2558 err =
2559 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2560 (int __user *)a[4]);
2561 break;
2562 case SYS_SENDMSG:
2563 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2564 break;
2565 case SYS_SENDMMSG:
2566 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2567 break;
2568 case SYS_RECVMSG:
2569 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2570 break;
2571 case SYS_RECVMMSG:
2572 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2573 (struct timespec __user *)a[4]);
2574 break;
2575 case SYS_ACCEPT4:
2576 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2577 (int __user *)a[2], a[3]);
2578 break;
2579 default:
2580 err = -EINVAL;
2581 break;
2582 }
2583 return err;
2584}
2585
2586#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2587
2588/**
2589 * sock_register - add a socket protocol handler
2590 * @ops: description of protocol
2591 *
2592 * This function is called by a protocol handler that wants to
2593 * advertise its address family, and have it linked into the
2594 * socket interface. The value ops->family coresponds to the
2595 * socket system call protocol family.
2596 */
2597int sock_register(const struct net_proto_family *ops)
2598{
2599 int err;
2600
2601 if (ops->family >= NPROTO) {
2602 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2603 return -ENOBUFS;
2604 }
2605
2606 spin_lock(&net_family_lock);
2607 if (rcu_dereference_protected(net_families[ops->family],
2608 lockdep_is_held(&net_family_lock)))
2609 err = -EEXIST;
2610 else {
2611 rcu_assign_pointer(net_families[ops->family], ops);
2612 err = 0;
2613 }
2614 spin_unlock(&net_family_lock);
2615
2616 pr_info("NET: Registered protocol family %d\n", ops->family);
2617 return err;
2618}
2619EXPORT_SYMBOL(sock_register);
2620
2621/**
2622 * sock_unregister - remove a protocol handler
2623 * @family: protocol family to remove
2624 *
2625 * This function is called by a protocol handler that wants to
2626 * remove its address family, and have it unlinked from the
2627 * new socket creation.
2628 *
2629 * If protocol handler is a module, then it can use module reference
2630 * counts to protect against new references. If protocol handler is not
2631 * a module then it needs to provide its own protection in
2632 * the ops->create routine.
2633 */
2634void sock_unregister(int family)
2635{
2636 BUG_ON(family < 0 || family >= NPROTO);
2637
2638 spin_lock(&net_family_lock);
2639 RCU_INIT_POINTER(net_families[family], NULL);
2640 spin_unlock(&net_family_lock);
2641
2642 synchronize_rcu();
2643
2644 pr_info("NET: Unregistered protocol family %d\n", family);
2645}
2646EXPORT_SYMBOL(sock_unregister);
2647
2648static int __init sock_init(void)
2649{
2650 int err;
2651 /*
2652 * Initialize the network sysctl infrastructure.
2653 */
2654 err = net_sysctl_init();
2655 if (err)
2656 goto out;
2657
2658 /*
2659 * Initialize skbuff SLAB cache
2660 */
2661 skb_init();
2662
2663 /*
2664 * Initialize the protocols module.
2665 */
2666
2667 init_inodecache();
2668
2669 err = register_filesystem(&sock_fs_type);
2670 if (err)
2671 goto out_fs;
2672 sock_mnt = kern_mount(&sock_fs_type);
2673 if (IS_ERR(sock_mnt)) {
2674 err = PTR_ERR(sock_mnt);
2675 goto out_mount;
2676 }
2677
2678 /* The real protocol initialization is performed in later initcalls.
2679 */
2680
2681#ifdef CONFIG_NETFILTER
2682 err = netfilter_init();
2683 if (err)
2684 goto out;
2685#endif
2686
2687 ptp_classifier_init();
2688
2689out:
2690 return err;
2691
2692out_mount:
2693 unregister_filesystem(&sock_fs_type);
2694out_fs:
2695 goto out;
2696}
2697
2698core_initcall(sock_init); /* early initcall */
2699
2700#ifdef CONFIG_PROC_FS
2701void socket_seq_show(struct seq_file *seq)
2702{
2703 int cpu;
2704 int counter = 0;
2705
2706 for_each_possible_cpu(cpu)
2707 counter += per_cpu(sockets_in_use, cpu);
2708
2709 /* It can be negative, by the way. 8) */
2710 if (counter < 0)
2711 counter = 0;
2712
2713 seq_printf(seq, "sockets: used %d\n", counter);
2714}
2715#endif /* CONFIG_PROC_FS */
2716
2717#ifdef CONFIG_COMPAT
2718static int do_siocgstamp(struct net *net, struct socket *sock,
2719 unsigned int cmd, void __user *up)
2720{
2721 mm_segment_t old_fs = get_fs();
2722 struct timeval ktv;
2723 int err;
2724
2725 set_fs(KERNEL_DS);
2726 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2727 set_fs(old_fs);
2728 if (!err)
2729 err = compat_put_timeval(&ktv, up);
2730
2731 return err;
2732}
2733
2734static int do_siocgstampns(struct net *net, struct socket *sock,
2735 unsigned int cmd, void __user *up)
2736{
2737 mm_segment_t old_fs = get_fs();
2738 struct timespec kts;
2739 int err;
2740
2741 set_fs(KERNEL_DS);
2742 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2743 set_fs(old_fs);
2744 if (!err)
2745 err = compat_put_timespec(&kts, up);
2746
2747 return err;
2748}
2749
2750static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2751{
2752 struct ifreq __user *uifr;
2753 int err;
2754
2755 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2756 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2757 return -EFAULT;
2758
2759 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2760 if (err)
2761 return err;
2762
2763 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2764 return -EFAULT;
2765
2766 return 0;
2767}
2768
2769static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2770{
2771 struct compat_ifconf ifc32;
2772 struct ifconf ifc;
2773 struct ifconf __user *uifc;
2774 struct compat_ifreq __user *ifr32;
2775 struct ifreq __user *ifr;
2776 unsigned int i, j;
2777 int err;
2778
2779 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2780 return -EFAULT;
2781
2782 memset(&ifc, 0, sizeof(ifc));
2783 if (ifc32.ifcbuf == 0) {
2784 ifc32.ifc_len = 0;
2785 ifc.ifc_len = 0;
2786 ifc.ifc_req = NULL;
2787 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2788 } else {
2789 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2790 sizeof(struct ifreq);
2791 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2792 ifc.ifc_len = len;
2793 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2794 ifr32 = compat_ptr(ifc32.ifcbuf);
2795 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2796 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2797 return -EFAULT;
2798 ifr++;
2799 ifr32++;
2800 }
2801 }
2802 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2803 return -EFAULT;
2804
2805 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2806 if (err)
2807 return err;
2808
2809 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2810 return -EFAULT;
2811
2812 ifr = ifc.ifc_req;
2813 ifr32 = compat_ptr(ifc32.ifcbuf);
2814 for (i = 0, j = 0;
2815 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2816 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2817 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2818 return -EFAULT;
2819 ifr32++;
2820 ifr++;
2821 }
2822
2823 if (ifc32.ifcbuf == 0) {
2824 /* Translate from 64-bit structure multiple to
2825 * a 32-bit one.
2826 */
2827 i = ifc.ifc_len;
2828 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2829 ifc32.ifc_len = i;
2830 } else {
2831 ifc32.ifc_len = i;
2832 }
2833 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2834 return -EFAULT;
2835
2836 return 0;
2837}
2838
2839static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2840{
2841 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2842 bool convert_in = false, convert_out = false;
2843 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2844 struct ethtool_rxnfc __user *rxnfc;
2845 struct ifreq __user *ifr;
2846 u32 rule_cnt = 0, actual_rule_cnt;
2847 u32 ethcmd;
2848 u32 data;
2849 int ret;
2850
2851 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2852 return -EFAULT;
2853
2854 compat_rxnfc = compat_ptr(data);
2855
2856 if (get_user(ethcmd, &compat_rxnfc->cmd))
2857 return -EFAULT;
2858
2859 /* Most ethtool structures are defined without padding.
2860 * Unfortunately struct ethtool_rxnfc is an exception.
2861 */
2862 switch (ethcmd) {
2863 default:
2864 break;
2865 case ETHTOOL_GRXCLSRLALL:
2866 /* Buffer size is variable */
2867 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2868 return -EFAULT;
2869 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2870 return -ENOMEM;
2871 buf_size += rule_cnt * sizeof(u32);
2872 /* fall through */
2873 case ETHTOOL_GRXRINGS:
2874 case ETHTOOL_GRXCLSRLCNT:
2875 case ETHTOOL_GRXCLSRULE:
2876 case ETHTOOL_SRXCLSRLINS:
2877 convert_out = true;
2878 /* fall through */
2879 case ETHTOOL_SRXCLSRLDEL:
2880 buf_size += sizeof(struct ethtool_rxnfc);
2881 convert_in = true;
2882 break;
2883 }
2884
2885 ifr = compat_alloc_user_space(buf_size);
2886 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2887
2888 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889 return -EFAULT;
2890
2891 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2892 &ifr->ifr_ifru.ifru_data))
2893 return -EFAULT;
2894
2895 if (convert_in) {
2896 /* We expect there to be holes between fs.m_ext and
2897 * fs.ring_cookie and at the end of fs, but nowhere else.
2898 */
2899 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2900 sizeof(compat_rxnfc->fs.m_ext) !=
2901 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2902 sizeof(rxnfc->fs.m_ext));
2903 BUILD_BUG_ON(
2904 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2905 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2906 offsetof(struct ethtool_rxnfc, fs.location) -
2907 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2908
2909 if (copy_in_user(rxnfc, compat_rxnfc,
2910 (void __user *)(&rxnfc->fs.m_ext + 1) -
2911 (void __user *)rxnfc) ||
2912 copy_in_user(&rxnfc->fs.ring_cookie,
2913 &compat_rxnfc->fs.ring_cookie,
2914 (void __user *)(&rxnfc->fs.location + 1) -
2915 (void __user *)&rxnfc->fs.ring_cookie) ||
2916 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2917 sizeof(rxnfc->rule_cnt)))
2918 return -EFAULT;
2919 }
2920
2921 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2922 if (ret)
2923 return ret;
2924
2925 if (convert_out) {
2926 if (copy_in_user(compat_rxnfc, rxnfc,
2927 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2928 (const void __user *)rxnfc) ||
2929 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2930 &rxnfc->fs.ring_cookie,
2931 (const void __user *)(&rxnfc->fs.location + 1) -
2932 (const void __user *)&rxnfc->fs.ring_cookie) ||
2933 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2934 sizeof(rxnfc->rule_cnt)))
2935 return -EFAULT;
2936
2937 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2938 /* As an optimisation, we only copy the actual
2939 * number of rules that the underlying
2940 * function returned. Since Mallory might
2941 * change the rule count in user memory, we
2942 * check that it is less than the rule count
2943 * originally given (as the user buffer size),
2944 * which has been range-checked.
2945 */
2946 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2947 return -EFAULT;
2948 if (actual_rule_cnt < rule_cnt)
2949 rule_cnt = actual_rule_cnt;
2950 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2951 &rxnfc->rule_locs[0],
2952 rule_cnt * sizeof(u32)))
2953 return -EFAULT;
2954 }
2955 }
2956
2957 return 0;
2958}
2959
2960static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2961{
2962 void __user *uptr;
2963 compat_uptr_t uptr32;
2964 struct ifreq __user *uifr;
2965
2966 uifr = compat_alloc_user_space(sizeof(*uifr));
2967 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2968 return -EFAULT;
2969
2970 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2971 return -EFAULT;
2972
2973 uptr = compat_ptr(uptr32);
2974
2975 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2976 return -EFAULT;
2977
2978 return dev_ioctl(net, SIOCWANDEV, uifr);
2979}
2980
2981static int bond_ioctl(struct net *net, unsigned int cmd,
2982 struct compat_ifreq __user *ifr32)
2983{
2984 struct ifreq kifr;
2985 mm_segment_t old_fs;
2986 int err;
2987
2988 switch (cmd) {
2989 case SIOCBONDENSLAVE:
2990 case SIOCBONDRELEASE:
2991 case SIOCBONDSETHWADDR:
2992 case SIOCBONDCHANGEACTIVE:
2993 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2994 return -EFAULT;
2995
2996 old_fs = get_fs();
2997 set_fs(KERNEL_DS);
2998 err = dev_ioctl(net, cmd,
2999 (struct ifreq __user __force *) &kifr);
3000 set_fs(old_fs);
3001
3002 return err;
3003 default:
3004 return -ENOIOCTLCMD;
3005 }
3006}
3007
3008/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3009static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3010 struct compat_ifreq __user *u_ifreq32)
3011{
3012 struct ifreq __user *u_ifreq64;
3013 char tmp_buf[IFNAMSIZ];
3014 void __user *data64;
3015 u32 data32;
3016
3017 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3018 IFNAMSIZ))
3019 return -EFAULT;
3020 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3021 return -EFAULT;
3022 data64 = compat_ptr(data32);
3023
3024 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3025
3026 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3027 IFNAMSIZ))
3028 return -EFAULT;
3029 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3030 return -EFAULT;
3031
3032 return dev_ioctl(net, cmd, u_ifreq64);
3033}
3034
3035static int dev_ifsioc(struct net *net, struct socket *sock,
3036 unsigned int cmd, struct compat_ifreq __user *uifr32)
3037{
3038 struct ifreq __user *uifr;
3039 int err;
3040
3041 uifr = compat_alloc_user_space(sizeof(*uifr));
3042 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3043 return -EFAULT;
3044
3045 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3046
3047 if (!err) {
3048 switch (cmd) {
3049 case SIOCGIFFLAGS:
3050 case SIOCGIFMETRIC:
3051 case SIOCGIFMTU:
3052 case SIOCGIFMEM:
3053 case SIOCGIFHWADDR:
3054 case SIOCGIFINDEX:
3055 case SIOCGIFADDR:
3056 case SIOCGIFBRDADDR:
3057 case SIOCGIFDSTADDR:
3058 case SIOCGIFNETMASK:
3059 case SIOCGIFPFLAGS:
3060 case SIOCGIFTXQLEN:
3061 case SIOCGMIIPHY:
3062 case SIOCGMIIREG:
3063 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3064 err = -EFAULT;
3065 break;
3066 }
3067 }
3068 return err;
3069}
3070
3071static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3072 struct compat_ifreq __user *uifr32)
3073{
3074 struct ifreq ifr;
3075 struct compat_ifmap __user *uifmap32;
3076 mm_segment_t old_fs;
3077 int err;
3078
3079 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3080 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3081 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3082 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3083 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3084 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3085 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3086 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3087 if (err)
3088 return -EFAULT;
3089
3090 old_fs = get_fs();
3091 set_fs(KERNEL_DS);
3092 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3093 set_fs(old_fs);
3094
3095 if (cmd == SIOCGIFMAP && !err) {
3096 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3097 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3098 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3099 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3100 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3101 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3102 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3103 if (err)
3104 err = -EFAULT;
3105 }
3106 return err;
3107}
3108
3109struct rtentry32 {
3110 u32 rt_pad1;
3111 struct sockaddr rt_dst; /* target address */
3112 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3113 struct sockaddr rt_genmask; /* target network mask (IP) */
3114 unsigned short rt_flags;
3115 short rt_pad2;
3116 u32 rt_pad3;
3117 unsigned char rt_tos;
3118 unsigned char rt_class;
3119 short rt_pad4;
3120 short rt_metric; /* +1 for binary compatibility! */
3121 /* char * */ u32 rt_dev; /* forcing the device at add */
3122 u32 rt_mtu; /* per route MTU/Window */
3123 u32 rt_window; /* Window clamping */
3124 unsigned short rt_irtt; /* Initial RTT */
3125};
3126
3127struct in6_rtmsg32 {
3128 struct in6_addr rtmsg_dst;
3129 struct in6_addr rtmsg_src;
3130 struct in6_addr rtmsg_gateway;
3131 u32 rtmsg_type;
3132 u16 rtmsg_dst_len;
3133 u16 rtmsg_src_len;
3134 u32 rtmsg_metric;
3135 u32 rtmsg_info;
3136 u32 rtmsg_flags;
3137 s32 rtmsg_ifindex;
3138};
3139
3140static int routing_ioctl(struct net *net, struct socket *sock,
3141 unsigned int cmd, void __user *argp)
3142{
3143 int ret;
3144 void *r = NULL;
3145 struct in6_rtmsg r6;
3146 struct rtentry r4;
3147 char devname[16];
3148 u32 rtdev;
3149 mm_segment_t old_fs = get_fs();
3150
3151 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3152 struct in6_rtmsg32 __user *ur6 = argp;
3153 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3154 3 * sizeof(struct in6_addr));
3155 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3156 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3157 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3158 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3159 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3160 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3161 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3162
3163 r = (void *) &r6;
3164 } else { /* ipv4 */
3165 struct rtentry32 __user *ur4 = argp;
3166 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3167 3 * sizeof(struct sockaddr));
3168 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3169 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3170 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3171 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3172 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3173 ret |= get_user(rtdev, &(ur4->rt_dev));
3174 if (rtdev) {
3175 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3176 r4.rt_dev = (char __user __force *)devname;
3177 devname[15] = 0;
3178 } else
3179 r4.rt_dev = NULL;
3180
3181 r = (void *) &r4;
3182 }
3183
3184 if (ret) {
3185 ret = -EFAULT;
3186 goto out;
3187 }
3188
3189 set_fs(KERNEL_DS);
3190 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3191 set_fs(old_fs);
3192
3193out:
3194 return ret;
3195}
3196
3197/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3198 * for some operations; this forces use of the newer bridge-utils that
3199 * use compatible ioctls
3200 */
3201static int old_bridge_ioctl(compat_ulong_t __user *argp)
3202{
3203 compat_ulong_t tmp;
3204
3205 if (get_user(tmp, argp))
3206 return -EFAULT;
3207 if (tmp == BRCTL_GET_VERSION)
3208 return BRCTL_VERSION + 1;
3209 return -EINVAL;
3210}
3211
3212static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3213 unsigned int cmd, unsigned long arg)
3214{
3215 void __user *argp = compat_ptr(arg);
3216 struct sock *sk = sock->sk;
3217 struct net *net = sock_net(sk);
3218
3219 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3220 return compat_ifr_data_ioctl(net, cmd, argp);
3221
3222 switch (cmd) {
3223 case SIOCSIFBR:
3224 case SIOCGIFBR:
3225 return old_bridge_ioctl(argp);
3226 case SIOCGIFNAME:
3227 return dev_ifname32(net, argp);
3228 case SIOCGIFCONF:
3229 return dev_ifconf(net, argp);
3230 case SIOCETHTOOL:
3231 return ethtool_ioctl(net, argp);
3232 case SIOCWANDEV:
3233 return compat_siocwandev(net, argp);
3234 case SIOCGIFMAP:
3235 case SIOCSIFMAP:
3236 return compat_sioc_ifmap(net, cmd, argp);
3237 case SIOCBONDENSLAVE:
3238 case SIOCBONDRELEASE:
3239 case SIOCBONDSETHWADDR:
3240 case SIOCBONDCHANGEACTIVE:
3241 return bond_ioctl(net, cmd, argp);
3242 case SIOCADDRT:
3243 case SIOCDELRT:
3244 return routing_ioctl(net, sock, cmd, argp);
3245 case SIOCGSTAMP:
3246 return do_siocgstamp(net, sock, cmd, argp);
3247 case SIOCGSTAMPNS:
3248 return do_siocgstampns(net, sock, cmd, argp);
3249 case SIOCBONDSLAVEINFOQUERY:
3250 case SIOCBONDINFOQUERY:
3251 case SIOCSHWTSTAMP:
3252 case SIOCGHWTSTAMP:
3253 return compat_ifr_data_ioctl(net, cmd, argp);
3254
3255 case FIOSETOWN:
3256 case SIOCSPGRP:
3257 case FIOGETOWN:
3258 case SIOCGPGRP:
3259 case SIOCBRADDBR:
3260 case SIOCBRDELBR:
3261 case SIOCGIFVLAN:
3262 case SIOCSIFVLAN:
3263 case SIOCADDDLCI:
3264 case SIOCDELDLCI:
3265 return sock_ioctl(file, cmd, arg);
3266
3267 case SIOCGIFFLAGS:
3268 case SIOCSIFFLAGS:
3269 case SIOCGIFMETRIC:
3270 case SIOCSIFMETRIC:
3271 case SIOCGIFMTU:
3272 case SIOCSIFMTU:
3273 case SIOCGIFMEM:
3274 case SIOCSIFMEM:
3275 case SIOCGIFHWADDR:
3276 case SIOCSIFHWADDR:
3277 case SIOCADDMULTI:
3278 case SIOCDELMULTI:
3279 case SIOCGIFINDEX:
3280 case SIOCGIFADDR:
3281 case SIOCSIFADDR:
3282 case SIOCSIFHWBROADCAST:
3283 case SIOCDIFADDR:
3284 case SIOCGIFBRDADDR:
3285 case SIOCSIFBRDADDR:
3286 case SIOCGIFDSTADDR:
3287 case SIOCSIFDSTADDR:
3288 case SIOCGIFNETMASK:
3289 case SIOCSIFNETMASK:
3290 case SIOCSIFPFLAGS:
3291 case SIOCGIFPFLAGS:
3292 case SIOCGIFTXQLEN:
3293 case SIOCSIFTXQLEN:
3294 case SIOCBRADDIF:
3295 case SIOCBRDELIF:
3296 case SIOCSIFNAME:
3297 case SIOCGMIIPHY:
3298 case SIOCGMIIREG:
3299 case SIOCSMIIREG:
3300 return dev_ifsioc(net, sock, cmd, argp);
3301
3302 case SIOCSARP:
3303 case SIOCGARP:
3304 case SIOCDARP:
3305 case SIOCATMARK:
3306 return sock_do_ioctl(net, sock, cmd, arg);
3307 }
3308
3309 return -ENOIOCTLCMD;
3310}
3311
3312static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3313 unsigned long arg)
3314{
3315 struct socket *sock = file->private_data;
3316 int ret = -ENOIOCTLCMD;
3317 struct sock *sk;
3318 struct net *net;
3319
3320 sk = sock->sk;
3321 net = sock_net(sk);
3322
3323 if (sock->ops->compat_ioctl)
3324 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3325
3326 if (ret == -ENOIOCTLCMD &&
3327 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328 ret = compat_wext_handle_ioctl(net, cmd, arg);
3329
3330 if (ret == -ENOIOCTLCMD)
3331 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3332
3333 return ret;
3334}
3335#endif
3336
3337int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3338{
3339 return sock->ops->bind(sock, addr, addrlen);
3340}
3341EXPORT_SYMBOL(kernel_bind);
3342
3343int kernel_listen(struct socket *sock, int backlog)
3344{
3345 return sock->ops->listen(sock, backlog);
3346}
3347EXPORT_SYMBOL(kernel_listen);
3348
3349int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3350{
3351 struct sock *sk = sock->sk;
3352 int err;
3353
3354 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3355 newsock);
3356 if (err < 0)
3357 goto done;
3358
3359 err = sock->ops->accept(sock, *newsock, flags);
3360 if (err < 0) {
3361 sock_release(*newsock);
3362 *newsock = NULL;
3363 goto done;
3364 }
3365
3366 (*newsock)->ops = sock->ops;
3367 __module_get((*newsock)->ops->owner);
3368
3369done:
3370 return err;
3371}
3372EXPORT_SYMBOL(kernel_accept);
3373
3374int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3375 int flags)
3376{
3377 return sock->ops->connect(sock, addr, addrlen, flags);
3378}
3379EXPORT_SYMBOL(kernel_connect);
3380
3381int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3382 int *addrlen)
3383{
3384 return sock->ops->getname(sock, addr, addrlen, 0);
3385}
3386EXPORT_SYMBOL(kernel_getsockname);
3387
3388int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3389 int *addrlen)
3390{
3391 return sock->ops->getname(sock, addr, addrlen, 1);
3392}
3393EXPORT_SYMBOL(kernel_getpeername);
3394
3395int kernel_getsockopt(struct socket *sock, int level, int optname,
3396 char *optval, int *optlen)
3397{
3398 mm_segment_t oldfs = get_fs();
3399 char __user *uoptval;
3400 int __user *uoptlen;
3401 int err;
3402
3403 uoptval = (char __user __force *) optval;
3404 uoptlen = (int __user __force *) optlen;
3405
3406 set_fs(KERNEL_DS);
3407 if (level == SOL_SOCKET)
3408 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3409 else
3410 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3411 uoptlen);
3412 set_fs(oldfs);
3413 return err;
3414}
3415EXPORT_SYMBOL(kernel_getsockopt);
3416
3417int kernel_setsockopt(struct socket *sock, int level, int optname,
3418 char *optval, unsigned int optlen)
3419{
3420 mm_segment_t oldfs = get_fs();
3421 char __user *uoptval;
3422 int err;
3423
3424 uoptval = (char __user __force *) optval;
3425
3426 set_fs(KERNEL_DS);
3427 if (level == SOL_SOCKET)
3428 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3429 else
3430 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3431 optlen);
3432 set_fs(oldfs);
3433 return err;
3434}
3435EXPORT_SYMBOL(kernel_setsockopt);
3436
3437int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438 size_t size, int flags)
3439{
3440 if (sock->ops->sendpage)
3441 return sock->ops->sendpage(sock, page, offset, size, flags);
3442
3443 return sock_no_sendpage(sock, page, offset, size, flags);
3444}
3445EXPORT_SYMBOL(kernel_sendpage);
3446
3447int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3448{
3449 mm_segment_t oldfs = get_fs();
3450 int err;
3451
3452 set_fs(KERNEL_DS);
3453 err = sock->ops->ioctl(sock, cmd, arg);
3454 set_fs(oldfs);
3455
3456 return err;
3457}
3458EXPORT_SYMBOL(kernel_sock_ioctl);
3459
3460int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3461{
3462 return sock->ops->shutdown(sock, how);
3463}
3464EXPORT_SYMBOL(kernel_sock_shutdown);