]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - net/vmw_vsock/af_vsock.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / net / vmw_vsock / af_vsock.c
... / ...
CommitLineData
1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16/* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the TCP_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
85 *
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
88 *
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
94 */
95
96#include <linux/types.h>
97#include <linux/bitops.h>
98#include <linux/cred.h>
99#include <linux/init.h>
100#include <linux/io.h>
101#include <linux/kernel.h>
102#include <linux/sched/signal.h>
103#include <linux/kmod.h>
104#include <linux/list.h>
105#include <linux/miscdevice.h>
106#include <linux/module.h>
107#include <linux/mutex.h>
108#include <linux/net.h>
109#include <linux/poll.h>
110#include <linux/random.h>
111#include <linux/skbuff.h>
112#include <linux/smp.h>
113#include <linux/socket.h>
114#include <linux/stddef.h>
115#include <linux/unistd.h>
116#include <linux/wait.h>
117#include <linux/workqueue.h>
118#include <net/sock.h>
119#include <net/af_vsock.h>
120
121static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122static void vsock_sk_destruct(struct sock *sk);
123static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124
125/* Protocol family. */
126static struct proto vsock_proto = {
127 .name = "AF_VSOCK",
128 .owner = THIS_MODULE,
129 .obj_size = sizeof(struct vsock_sock),
130};
131
132/* The default peer timeout indicates how long we will wait for a peer response
133 * to a control message.
134 */
135#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136
137static const struct vsock_transport *transport;
138static DEFINE_MUTEX(vsock_register_mutex);
139
140/**** EXPORTS ****/
141
142/* Get the ID of the local context. This is transport dependent. */
143
144int vm_sockets_get_local_cid(void)
145{
146 return transport->get_local_cid();
147}
148EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149
150/**** UTILS ****/
151
152/* Each bound VSocket is stored in the bind hash table and each connected
153 * VSocket is stored in the connected hash table.
154 *
155 * Unbound sockets are all put on the same list attached to the end of the hash
156 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
157 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158 * represents the list that addr hashes to).
159 *
160 * Specifically, we initialize the vsock_bind_table array to a size of
161 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
164 * mods with VSOCK_HASH_SIZE to ensure this.
165 */
166#define MAX_PORT_RETRIES 24
167
168#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
169#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
171
172/* XXX This can probably be implemented in a better way. */
173#define VSOCK_CONN_HASH(src, dst) \
174 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175#define vsock_connected_sockets(src, dst) \
176 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177#define vsock_connected_sockets_vsk(vsk) \
178 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179
180struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181EXPORT_SYMBOL_GPL(vsock_bind_table);
182struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183EXPORT_SYMBOL_GPL(vsock_connected_table);
184DEFINE_SPINLOCK(vsock_table_lock);
185EXPORT_SYMBOL_GPL(vsock_table_lock);
186
187/* Autobind this socket to the local address if necessary. */
188static int vsock_auto_bind(struct vsock_sock *vsk)
189{
190 struct sock *sk = sk_vsock(vsk);
191 struct sockaddr_vm local_addr;
192
193 if (vsock_addr_bound(&vsk->local_addr))
194 return 0;
195 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196 return __vsock_bind(sk, &local_addr);
197}
198
199static int __init vsock_init_tables(void)
200{
201 int i;
202
203 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204 INIT_LIST_HEAD(&vsock_bind_table[i]);
205
206 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207 INIT_LIST_HEAD(&vsock_connected_table[i]);
208 return 0;
209}
210
211static void __vsock_insert_bound(struct list_head *list,
212 struct vsock_sock *vsk)
213{
214 sock_hold(&vsk->sk);
215 list_add(&vsk->bound_table, list);
216}
217
218static void __vsock_insert_connected(struct list_head *list,
219 struct vsock_sock *vsk)
220{
221 sock_hold(&vsk->sk);
222 list_add(&vsk->connected_table, list);
223}
224
225static void __vsock_remove_bound(struct vsock_sock *vsk)
226{
227 list_del_init(&vsk->bound_table);
228 sock_put(&vsk->sk);
229}
230
231static void __vsock_remove_connected(struct vsock_sock *vsk)
232{
233 list_del_init(&vsk->connected_table);
234 sock_put(&vsk->sk);
235}
236
237static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238{
239 struct vsock_sock *vsk;
240
241 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
242 if (addr->svm_port == vsk->local_addr.svm_port)
243 return sk_vsock(vsk);
244
245 return NULL;
246}
247
248static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
249 struct sockaddr_vm *dst)
250{
251 struct vsock_sock *vsk;
252
253 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
254 connected_table) {
255 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
256 dst->svm_port == vsk->local_addr.svm_port) {
257 return sk_vsock(vsk);
258 }
259 }
260
261 return NULL;
262}
263
264static void vsock_insert_unbound(struct vsock_sock *vsk)
265{
266 spin_lock_bh(&vsock_table_lock);
267 __vsock_insert_bound(vsock_unbound_sockets, vsk);
268 spin_unlock_bh(&vsock_table_lock);
269}
270
271void vsock_insert_connected(struct vsock_sock *vsk)
272{
273 struct list_head *list = vsock_connected_sockets(
274 &vsk->remote_addr, &vsk->local_addr);
275
276 spin_lock_bh(&vsock_table_lock);
277 __vsock_insert_connected(list, vsk);
278 spin_unlock_bh(&vsock_table_lock);
279}
280EXPORT_SYMBOL_GPL(vsock_insert_connected);
281
282void vsock_remove_bound(struct vsock_sock *vsk)
283{
284 spin_lock_bh(&vsock_table_lock);
285 if (__vsock_in_bound_table(vsk))
286 __vsock_remove_bound(vsk);
287 spin_unlock_bh(&vsock_table_lock);
288}
289EXPORT_SYMBOL_GPL(vsock_remove_bound);
290
291void vsock_remove_connected(struct vsock_sock *vsk)
292{
293 spin_lock_bh(&vsock_table_lock);
294 if (__vsock_in_connected_table(vsk))
295 __vsock_remove_connected(vsk);
296 spin_unlock_bh(&vsock_table_lock);
297}
298EXPORT_SYMBOL_GPL(vsock_remove_connected);
299
300struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
301{
302 struct sock *sk;
303
304 spin_lock_bh(&vsock_table_lock);
305 sk = __vsock_find_bound_socket(addr);
306 if (sk)
307 sock_hold(sk);
308
309 spin_unlock_bh(&vsock_table_lock);
310
311 return sk;
312}
313EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
314
315struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
316 struct sockaddr_vm *dst)
317{
318 struct sock *sk;
319
320 spin_lock_bh(&vsock_table_lock);
321 sk = __vsock_find_connected_socket(src, dst);
322 if (sk)
323 sock_hold(sk);
324
325 spin_unlock_bh(&vsock_table_lock);
326
327 return sk;
328}
329EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
330
331void vsock_remove_sock(struct vsock_sock *vsk)
332{
333 vsock_remove_bound(vsk);
334 vsock_remove_connected(vsk);
335}
336EXPORT_SYMBOL_GPL(vsock_remove_sock);
337
338void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
339{
340 int i;
341
342 spin_lock_bh(&vsock_table_lock);
343
344 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
345 struct vsock_sock *vsk;
346 list_for_each_entry(vsk, &vsock_connected_table[i],
347 connected_table)
348 fn(sk_vsock(vsk));
349 }
350
351 spin_unlock_bh(&vsock_table_lock);
352}
353EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
354
355void vsock_add_pending(struct sock *listener, struct sock *pending)
356{
357 struct vsock_sock *vlistener;
358 struct vsock_sock *vpending;
359
360 vlistener = vsock_sk(listener);
361 vpending = vsock_sk(pending);
362
363 sock_hold(pending);
364 sock_hold(listener);
365 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
366}
367EXPORT_SYMBOL_GPL(vsock_add_pending);
368
369void vsock_remove_pending(struct sock *listener, struct sock *pending)
370{
371 struct vsock_sock *vpending = vsock_sk(pending);
372
373 list_del_init(&vpending->pending_links);
374 sock_put(listener);
375 sock_put(pending);
376}
377EXPORT_SYMBOL_GPL(vsock_remove_pending);
378
379void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
380{
381 struct vsock_sock *vlistener;
382 struct vsock_sock *vconnected;
383
384 vlistener = vsock_sk(listener);
385 vconnected = vsock_sk(connected);
386
387 sock_hold(connected);
388 sock_hold(listener);
389 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
390}
391EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
392
393static struct sock *vsock_dequeue_accept(struct sock *listener)
394{
395 struct vsock_sock *vlistener;
396 struct vsock_sock *vconnected;
397
398 vlistener = vsock_sk(listener);
399
400 if (list_empty(&vlistener->accept_queue))
401 return NULL;
402
403 vconnected = list_entry(vlistener->accept_queue.next,
404 struct vsock_sock, accept_queue);
405
406 list_del_init(&vconnected->accept_queue);
407 sock_put(listener);
408 /* The caller will need a reference on the connected socket so we let
409 * it call sock_put().
410 */
411
412 return sk_vsock(vconnected);
413}
414
415static bool vsock_is_accept_queue_empty(struct sock *sk)
416{
417 struct vsock_sock *vsk = vsock_sk(sk);
418 return list_empty(&vsk->accept_queue);
419}
420
421static bool vsock_is_pending(struct sock *sk)
422{
423 struct vsock_sock *vsk = vsock_sk(sk);
424 return !list_empty(&vsk->pending_links);
425}
426
427static int vsock_send_shutdown(struct sock *sk, int mode)
428{
429 return transport->shutdown(vsock_sk(sk), mode);
430}
431
432static void vsock_pending_work(struct work_struct *work)
433{
434 struct sock *sk;
435 struct sock *listener;
436 struct vsock_sock *vsk;
437 bool cleanup;
438
439 vsk = container_of(work, struct vsock_sock, pending_work.work);
440 sk = sk_vsock(vsk);
441 listener = vsk->listener;
442 cleanup = true;
443
444 lock_sock(listener);
445 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
446
447 if (vsock_is_pending(sk)) {
448 vsock_remove_pending(listener, sk);
449
450 listener->sk_ack_backlog--;
451 } else if (!vsk->rejected) {
452 /* We are not on the pending list and accept() did not reject
453 * us, so we must have been accepted by our user process. We
454 * just need to drop our references to the sockets and be on
455 * our way.
456 */
457 cleanup = false;
458 goto out;
459 }
460
461 /* We need to remove ourself from the global connected sockets list so
462 * incoming packets can't find this socket, and to reduce the reference
463 * count.
464 */
465 vsock_remove_connected(vsk);
466
467 sk->sk_state = TCP_CLOSE;
468
469out:
470 release_sock(sk);
471 release_sock(listener);
472 if (cleanup)
473 sock_put(sk);
474
475 sock_put(sk);
476 sock_put(listener);
477}
478
479/**** SOCKET OPERATIONS ****/
480
481static int __vsock_bind_stream(struct vsock_sock *vsk,
482 struct sockaddr_vm *addr)
483{
484 static u32 port = 0;
485 struct sockaddr_vm new_addr;
486
487 if (!port)
488 port = LAST_RESERVED_PORT + 1 +
489 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
490
491 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
492
493 if (addr->svm_port == VMADDR_PORT_ANY) {
494 bool found = false;
495 unsigned int i;
496
497 for (i = 0; i < MAX_PORT_RETRIES; i++) {
498 if (port <= LAST_RESERVED_PORT)
499 port = LAST_RESERVED_PORT + 1;
500
501 new_addr.svm_port = port++;
502
503 if (!__vsock_find_bound_socket(&new_addr)) {
504 found = true;
505 break;
506 }
507 }
508
509 if (!found)
510 return -EADDRNOTAVAIL;
511 } else {
512 /* If port is in reserved range, ensure caller
513 * has necessary privileges.
514 */
515 if (addr->svm_port <= LAST_RESERVED_PORT &&
516 !capable(CAP_NET_BIND_SERVICE)) {
517 return -EACCES;
518 }
519
520 if (__vsock_find_bound_socket(&new_addr))
521 return -EADDRINUSE;
522 }
523
524 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
525
526 /* Remove stream sockets from the unbound list and add them to the hash
527 * table for easy lookup by its address. The unbound list is simply an
528 * extra entry at the end of the hash table, a trick used by AF_UNIX.
529 */
530 __vsock_remove_bound(vsk);
531 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
532
533 return 0;
534}
535
536static int __vsock_bind_dgram(struct vsock_sock *vsk,
537 struct sockaddr_vm *addr)
538{
539 return transport->dgram_bind(vsk, addr);
540}
541
542static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
543{
544 struct vsock_sock *vsk = vsock_sk(sk);
545 u32 cid;
546 int retval;
547
548 /* First ensure this socket isn't already bound. */
549 if (vsock_addr_bound(&vsk->local_addr))
550 return -EINVAL;
551
552 /* Now bind to the provided address or select appropriate values if
553 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
554 * like AF_INET prevents binding to a non-local IP address (in most
555 * cases), we only allow binding to the local CID.
556 */
557 cid = transport->get_local_cid();
558 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
559 return -EADDRNOTAVAIL;
560
561 switch (sk->sk_socket->type) {
562 case SOCK_STREAM:
563 spin_lock_bh(&vsock_table_lock);
564 retval = __vsock_bind_stream(vsk, addr);
565 spin_unlock_bh(&vsock_table_lock);
566 break;
567
568 case SOCK_DGRAM:
569 retval = __vsock_bind_dgram(vsk, addr);
570 break;
571
572 default:
573 retval = -EINVAL;
574 break;
575 }
576
577 return retval;
578}
579
580static void vsock_connect_timeout(struct work_struct *work);
581
582struct sock *__vsock_create(struct net *net,
583 struct socket *sock,
584 struct sock *parent,
585 gfp_t priority,
586 unsigned short type,
587 int kern)
588{
589 struct sock *sk;
590 struct vsock_sock *psk;
591 struct vsock_sock *vsk;
592
593 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
594 if (!sk)
595 return NULL;
596
597 sock_init_data(sock, sk);
598
599 /* sk->sk_type is normally set in sock_init_data, but only if sock is
600 * non-NULL. We make sure that our sockets always have a type by
601 * setting it here if needed.
602 */
603 if (!sock)
604 sk->sk_type = type;
605
606 vsk = vsock_sk(sk);
607 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
608 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
609
610 sk->sk_destruct = vsock_sk_destruct;
611 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
612 sock_reset_flag(sk, SOCK_DONE);
613
614 INIT_LIST_HEAD(&vsk->bound_table);
615 INIT_LIST_HEAD(&vsk->connected_table);
616 vsk->listener = NULL;
617 INIT_LIST_HEAD(&vsk->pending_links);
618 INIT_LIST_HEAD(&vsk->accept_queue);
619 vsk->rejected = false;
620 vsk->sent_request = false;
621 vsk->ignore_connecting_rst = false;
622 vsk->peer_shutdown = 0;
623 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
624 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
625
626 psk = parent ? vsock_sk(parent) : NULL;
627 if (parent) {
628 vsk->trusted = psk->trusted;
629 vsk->owner = get_cred(psk->owner);
630 vsk->connect_timeout = psk->connect_timeout;
631 } else {
632 vsk->trusted = capable(CAP_NET_ADMIN);
633 vsk->owner = get_current_cred();
634 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
635 }
636
637 if (transport->init(vsk, psk) < 0) {
638 sk_free(sk);
639 return NULL;
640 }
641
642 if (sock)
643 vsock_insert_unbound(vsk);
644
645 return sk;
646}
647EXPORT_SYMBOL_GPL(__vsock_create);
648
649static void __vsock_release(struct sock *sk, int level)
650{
651 if (sk) {
652 struct sk_buff *skb;
653 struct sock *pending;
654 struct vsock_sock *vsk;
655
656 vsk = vsock_sk(sk);
657 pending = NULL; /* Compiler warning. */
658
659 /* The release call is supposed to use lock_sock_nested()
660 * rather than lock_sock(), if a sock lock should be acquired.
661 */
662 transport->release(vsk);
663
664 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
665 * version to avoid the warning "possible recursive locking
666 * detected". When "level" is 0, lock_sock_nested(sk, level)
667 * is the same as lock_sock(sk).
668 */
669 lock_sock_nested(sk, level);
670 sock_orphan(sk);
671 sk->sk_shutdown = SHUTDOWN_MASK;
672
673 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
674 kfree_skb(skb);
675
676 /* Clean up any sockets that never were accepted. */
677 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
678 __vsock_release(pending, SINGLE_DEPTH_NESTING);
679 sock_put(pending);
680 }
681
682 release_sock(sk);
683 sock_put(sk);
684 }
685}
686
687static void vsock_sk_destruct(struct sock *sk)
688{
689 struct vsock_sock *vsk = vsock_sk(sk);
690
691 transport->destruct(vsk);
692
693 /* When clearing these addresses, there's no need to set the family and
694 * possibly register the address family with the kernel.
695 */
696 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
697 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
698
699 put_cred(vsk->owner);
700}
701
702static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
703{
704 int err;
705
706 err = sock_queue_rcv_skb(sk, skb);
707 if (err)
708 kfree_skb(skb);
709
710 return err;
711}
712
713s64 vsock_stream_has_data(struct vsock_sock *vsk)
714{
715 return transport->stream_has_data(vsk);
716}
717EXPORT_SYMBOL_GPL(vsock_stream_has_data);
718
719s64 vsock_stream_has_space(struct vsock_sock *vsk)
720{
721 return transport->stream_has_space(vsk);
722}
723EXPORT_SYMBOL_GPL(vsock_stream_has_space);
724
725static int vsock_release(struct socket *sock)
726{
727 __vsock_release(sock->sk, 0);
728 sock->sk = NULL;
729 sock->state = SS_FREE;
730
731 return 0;
732}
733
734static int
735vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
736{
737 int err;
738 struct sock *sk;
739 struct sockaddr_vm *vm_addr;
740
741 sk = sock->sk;
742
743 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
744 return -EINVAL;
745
746 lock_sock(sk);
747 err = __vsock_bind(sk, vm_addr);
748 release_sock(sk);
749
750 return err;
751}
752
753static int vsock_getname(struct socket *sock,
754 struct sockaddr *addr, int *addr_len, int peer)
755{
756 int err;
757 struct sock *sk;
758 struct vsock_sock *vsk;
759 struct sockaddr_vm *vm_addr;
760
761 sk = sock->sk;
762 vsk = vsock_sk(sk);
763 err = 0;
764
765 lock_sock(sk);
766
767 if (peer) {
768 if (sock->state != SS_CONNECTED) {
769 err = -ENOTCONN;
770 goto out;
771 }
772 vm_addr = &vsk->remote_addr;
773 } else {
774 vm_addr = &vsk->local_addr;
775 }
776
777 if (!vm_addr) {
778 err = -EINVAL;
779 goto out;
780 }
781
782 /* sys_getsockname() and sys_getpeername() pass us a
783 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
784 * that macro is defined in socket.c instead of .h, so we hardcode its
785 * value here.
786 */
787 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
788 memcpy(addr, vm_addr, sizeof(*vm_addr));
789 *addr_len = sizeof(*vm_addr);
790
791out:
792 release_sock(sk);
793 return err;
794}
795
796static int vsock_shutdown(struct socket *sock, int mode)
797{
798 int err;
799 struct sock *sk;
800
801 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
802 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
803 * here like the other address families do. Note also that the
804 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
805 * which is what we want.
806 */
807 mode++;
808
809 if ((mode & ~SHUTDOWN_MASK) || !mode)
810 return -EINVAL;
811
812 /* If this is a STREAM socket and it is not connected then bail out
813 * immediately. If it is a DGRAM socket then we must first kick the
814 * socket so that it wakes up from any sleeping calls, for example
815 * recv(), and then afterwards return the error.
816 */
817
818 sk = sock->sk;
819 if (sock->state == SS_UNCONNECTED) {
820 err = -ENOTCONN;
821 if (sk->sk_type == SOCK_STREAM)
822 return err;
823 } else {
824 sock->state = SS_DISCONNECTING;
825 err = 0;
826 }
827
828 /* Receive and send shutdowns are treated alike. */
829 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
830 if (mode) {
831 lock_sock(sk);
832 sk->sk_shutdown |= mode;
833 sk->sk_state_change(sk);
834 release_sock(sk);
835
836 if (sk->sk_type == SOCK_STREAM) {
837 sock_reset_flag(sk, SOCK_DONE);
838 vsock_send_shutdown(sk, mode);
839 }
840 }
841
842 return err;
843}
844
845static unsigned int vsock_poll(struct file *file, struct socket *sock,
846 poll_table *wait)
847{
848 struct sock *sk;
849 unsigned int mask;
850 struct vsock_sock *vsk;
851
852 sk = sock->sk;
853 vsk = vsock_sk(sk);
854
855 poll_wait(file, sk_sleep(sk), wait);
856 mask = 0;
857
858 if (sk->sk_err)
859 /* Signify that there has been an error on this socket. */
860 mask |= POLLERR;
861
862 /* INET sockets treat local write shutdown and peer write shutdown as a
863 * case of POLLHUP set.
864 */
865 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
866 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
867 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
868 mask |= POLLHUP;
869 }
870
871 if (sk->sk_shutdown & RCV_SHUTDOWN ||
872 vsk->peer_shutdown & SEND_SHUTDOWN) {
873 mask |= POLLRDHUP;
874 }
875
876 if (sock->type == SOCK_DGRAM) {
877 /* For datagram sockets we can read if there is something in
878 * the queue and write as long as the socket isn't shutdown for
879 * sending.
880 */
881 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
882 (sk->sk_shutdown & RCV_SHUTDOWN)) {
883 mask |= POLLIN | POLLRDNORM;
884 }
885
886 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
887 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
888
889 } else if (sock->type == SOCK_STREAM) {
890 lock_sock(sk);
891
892 /* Listening sockets that have connections in their accept
893 * queue can be read.
894 */
895 if (sk->sk_state == TCP_LISTEN
896 && !vsock_is_accept_queue_empty(sk))
897 mask |= POLLIN | POLLRDNORM;
898
899 /* If there is something in the queue then we can read. */
900 if (transport->stream_is_active(vsk) &&
901 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
902 bool data_ready_now = false;
903 int ret = transport->notify_poll_in(
904 vsk, 1, &data_ready_now);
905 if (ret < 0) {
906 mask |= POLLERR;
907 } else {
908 if (data_ready_now)
909 mask |= POLLIN | POLLRDNORM;
910
911 }
912 }
913
914 /* Sockets whose connections have been closed, reset, or
915 * terminated should also be considered read, and we check the
916 * shutdown flag for that.
917 */
918 if (sk->sk_shutdown & RCV_SHUTDOWN ||
919 vsk->peer_shutdown & SEND_SHUTDOWN) {
920 mask |= POLLIN | POLLRDNORM;
921 }
922
923 /* Connected sockets that can produce data can be written. */
924 if (sk->sk_state == TCP_ESTABLISHED) {
925 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
926 bool space_avail_now = false;
927 int ret = transport->notify_poll_out(
928 vsk, 1, &space_avail_now);
929 if (ret < 0) {
930 mask |= POLLERR;
931 } else {
932 if (space_avail_now)
933 /* Remove POLLWRBAND since INET
934 * sockets are not setting it.
935 */
936 mask |= POLLOUT | POLLWRNORM;
937
938 }
939 }
940 }
941
942 /* Simulate INET socket poll behaviors, which sets
943 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
944 * but local send is not shutdown.
945 */
946 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
947 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
948 mask |= POLLOUT | POLLWRNORM;
949
950 }
951
952 release_sock(sk);
953 }
954
955 return mask;
956}
957
958static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
959 size_t len)
960{
961 int err;
962 struct sock *sk;
963 struct vsock_sock *vsk;
964 struct sockaddr_vm *remote_addr;
965
966 if (msg->msg_flags & MSG_OOB)
967 return -EOPNOTSUPP;
968
969 /* For now, MSG_DONTWAIT is always assumed... */
970 err = 0;
971 sk = sock->sk;
972 vsk = vsock_sk(sk);
973
974 lock_sock(sk);
975
976 err = vsock_auto_bind(vsk);
977 if (err)
978 goto out;
979
980
981 /* If the provided message contains an address, use that. Otherwise
982 * fall back on the socket's remote handle (if it has been connected).
983 */
984 if (msg->msg_name &&
985 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
986 &remote_addr) == 0) {
987 /* Ensure this address is of the right type and is a valid
988 * destination.
989 */
990
991 if (remote_addr->svm_cid == VMADDR_CID_ANY)
992 remote_addr->svm_cid = transport->get_local_cid();
993
994 if (!vsock_addr_bound(remote_addr)) {
995 err = -EINVAL;
996 goto out;
997 }
998 } else if (sock->state == SS_CONNECTED) {
999 remote_addr = &vsk->remote_addr;
1000
1001 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1002 remote_addr->svm_cid = transport->get_local_cid();
1003
1004 /* XXX Should connect() or this function ensure remote_addr is
1005 * bound?
1006 */
1007 if (!vsock_addr_bound(&vsk->remote_addr)) {
1008 err = -EINVAL;
1009 goto out;
1010 }
1011 } else {
1012 err = -EINVAL;
1013 goto out;
1014 }
1015
1016 if (!transport->dgram_allow(remote_addr->svm_cid,
1017 remote_addr->svm_port)) {
1018 err = -EINVAL;
1019 goto out;
1020 }
1021
1022 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1023
1024out:
1025 release_sock(sk);
1026 return err;
1027}
1028
1029static int vsock_dgram_connect(struct socket *sock,
1030 struct sockaddr *addr, int addr_len, int flags)
1031{
1032 int err;
1033 struct sock *sk;
1034 struct vsock_sock *vsk;
1035 struct sockaddr_vm *remote_addr;
1036
1037 sk = sock->sk;
1038 vsk = vsock_sk(sk);
1039
1040 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1041 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1042 lock_sock(sk);
1043 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1044 VMADDR_PORT_ANY);
1045 sock->state = SS_UNCONNECTED;
1046 release_sock(sk);
1047 return 0;
1048 } else if (err != 0)
1049 return -EINVAL;
1050
1051 lock_sock(sk);
1052
1053 err = vsock_auto_bind(vsk);
1054 if (err)
1055 goto out;
1056
1057 if (!transport->dgram_allow(remote_addr->svm_cid,
1058 remote_addr->svm_port)) {
1059 err = -EINVAL;
1060 goto out;
1061 }
1062
1063 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1064 sock->state = SS_CONNECTED;
1065
1066out:
1067 release_sock(sk);
1068 return err;
1069}
1070
1071static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1072 size_t len, int flags)
1073{
1074 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1075}
1076
1077static const struct proto_ops vsock_dgram_ops = {
1078 .family = PF_VSOCK,
1079 .owner = THIS_MODULE,
1080 .release = vsock_release,
1081 .bind = vsock_bind,
1082 .connect = vsock_dgram_connect,
1083 .socketpair = sock_no_socketpair,
1084 .accept = sock_no_accept,
1085 .getname = vsock_getname,
1086 .poll = vsock_poll,
1087 .ioctl = sock_no_ioctl,
1088 .listen = sock_no_listen,
1089 .shutdown = vsock_shutdown,
1090 .setsockopt = sock_no_setsockopt,
1091 .getsockopt = sock_no_getsockopt,
1092 .sendmsg = vsock_dgram_sendmsg,
1093 .recvmsg = vsock_dgram_recvmsg,
1094 .mmap = sock_no_mmap,
1095 .sendpage = sock_no_sendpage,
1096};
1097
1098static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1099{
1100 if (!transport->cancel_pkt)
1101 return -EOPNOTSUPP;
1102
1103 return transport->cancel_pkt(vsk);
1104}
1105
1106static void vsock_connect_timeout(struct work_struct *work)
1107{
1108 struct sock *sk;
1109 struct vsock_sock *vsk;
1110 int cancel = 0;
1111
1112 vsk = container_of(work, struct vsock_sock, connect_work.work);
1113 sk = sk_vsock(vsk);
1114
1115 lock_sock(sk);
1116 if (sk->sk_state == TCP_SYN_SENT &&
1117 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1118 sk->sk_state = TCP_CLOSE;
1119 sk->sk_err = ETIMEDOUT;
1120 sk->sk_error_report(sk);
1121 cancel = 1;
1122 }
1123 release_sock(sk);
1124 if (cancel)
1125 vsock_transport_cancel_pkt(vsk);
1126
1127 sock_put(sk);
1128}
1129
1130static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1131 int addr_len, int flags)
1132{
1133 int err;
1134 struct sock *sk;
1135 struct vsock_sock *vsk;
1136 struct sockaddr_vm *remote_addr;
1137 long timeout;
1138 DEFINE_WAIT(wait);
1139
1140 err = 0;
1141 sk = sock->sk;
1142 vsk = vsock_sk(sk);
1143
1144 lock_sock(sk);
1145
1146 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1147 switch (sock->state) {
1148 case SS_CONNECTED:
1149 err = -EISCONN;
1150 goto out;
1151 case SS_DISCONNECTING:
1152 err = -EINVAL;
1153 goto out;
1154 case SS_CONNECTING:
1155 /* This continues on so we can move sock into the SS_CONNECTED
1156 * state once the connection has completed (at which point err
1157 * will be set to zero also). Otherwise, we will either wait
1158 * for the connection or return -EALREADY should this be a
1159 * non-blocking call.
1160 */
1161 err = -EALREADY;
1162 break;
1163 default:
1164 if ((sk->sk_state == TCP_LISTEN) ||
1165 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1166 err = -EINVAL;
1167 goto out;
1168 }
1169
1170 /* The hypervisor and well-known contexts do not have socket
1171 * endpoints.
1172 */
1173 if (!transport->stream_allow(remote_addr->svm_cid,
1174 remote_addr->svm_port)) {
1175 err = -ENETUNREACH;
1176 goto out;
1177 }
1178
1179 /* Set the remote address that we are connecting to. */
1180 memcpy(&vsk->remote_addr, remote_addr,
1181 sizeof(vsk->remote_addr));
1182
1183 err = vsock_auto_bind(vsk);
1184 if (err)
1185 goto out;
1186
1187 sk->sk_state = TCP_SYN_SENT;
1188
1189 err = transport->connect(vsk);
1190 if (err < 0)
1191 goto out;
1192
1193 /* Mark sock as connecting and set the error code to in
1194 * progress in case this is a non-blocking connect.
1195 */
1196 sock->state = SS_CONNECTING;
1197 err = -EINPROGRESS;
1198 }
1199
1200 /* The receive path will handle all communication until we are able to
1201 * enter the connected state. Here we wait for the connection to be
1202 * completed or a notification of an error.
1203 */
1204 timeout = vsk->connect_timeout;
1205 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1206
1207 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1208 if (flags & O_NONBLOCK) {
1209 /* If we're not going to block, we schedule a timeout
1210 * function to generate a timeout on the connection
1211 * attempt, in case the peer doesn't respond in a
1212 * timely manner. We hold on to the socket until the
1213 * timeout fires.
1214 */
1215 sock_hold(sk);
1216 schedule_delayed_work(&vsk->connect_work, timeout);
1217
1218 /* Skip ahead to preserve error code set above. */
1219 goto out_wait;
1220 }
1221
1222 release_sock(sk);
1223 timeout = schedule_timeout(timeout);
1224 lock_sock(sk);
1225
1226 if (signal_pending(current)) {
1227 err = sock_intr_errno(timeout);
1228 sk->sk_state = TCP_CLOSE;
1229 sock->state = SS_UNCONNECTED;
1230 vsock_transport_cancel_pkt(vsk);
1231 goto out_wait;
1232 } else if (timeout == 0) {
1233 err = -ETIMEDOUT;
1234 sk->sk_state = TCP_CLOSE;
1235 sock->state = SS_UNCONNECTED;
1236 vsock_transport_cancel_pkt(vsk);
1237 goto out_wait;
1238 }
1239
1240 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1241 }
1242
1243 if (sk->sk_err) {
1244 err = -sk->sk_err;
1245 sk->sk_state = TCP_CLOSE;
1246 sock->state = SS_UNCONNECTED;
1247 } else {
1248 err = 0;
1249 }
1250
1251out_wait:
1252 finish_wait(sk_sleep(sk), &wait);
1253out:
1254 release_sock(sk);
1255 return err;
1256}
1257
1258static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1259 bool kern)
1260{
1261 struct sock *listener;
1262 int err;
1263 struct sock *connected;
1264 struct vsock_sock *vconnected;
1265 long timeout;
1266 DEFINE_WAIT(wait);
1267
1268 err = 0;
1269 listener = sock->sk;
1270
1271 lock_sock(listener);
1272
1273 if (sock->type != SOCK_STREAM) {
1274 err = -EOPNOTSUPP;
1275 goto out;
1276 }
1277
1278 if (listener->sk_state != TCP_LISTEN) {
1279 err = -EINVAL;
1280 goto out;
1281 }
1282
1283 /* Wait for children sockets to appear; these are the new sockets
1284 * created upon connection establishment.
1285 */
1286 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1287 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1288
1289 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1290 listener->sk_err == 0) {
1291 release_sock(listener);
1292 timeout = schedule_timeout(timeout);
1293 finish_wait(sk_sleep(listener), &wait);
1294 lock_sock(listener);
1295
1296 if (signal_pending(current)) {
1297 err = sock_intr_errno(timeout);
1298 goto out;
1299 } else if (timeout == 0) {
1300 err = -EAGAIN;
1301 goto out;
1302 }
1303
1304 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1305 }
1306 finish_wait(sk_sleep(listener), &wait);
1307
1308 if (listener->sk_err)
1309 err = -listener->sk_err;
1310
1311 if (connected) {
1312 listener->sk_ack_backlog--;
1313
1314 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1315 vconnected = vsock_sk(connected);
1316
1317 /* If the listener socket has received an error, then we should
1318 * reject this socket and return. Note that we simply mark the
1319 * socket rejected, drop our reference, and let the cleanup
1320 * function handle the cleanup; the fact that we found it in
1321 * the listener's accept queue guarantees that the cleanup
1322 * function hasn't run yet.
1323 */
1324 if (err) {
1325 vconnected->rejected = true;
1326 } else {
1327 newsock->state = SS_CONNECTED;
1328 sock_graft(connected, newsock);
1329 }
1330
1331 release_sock(connected);
1332 sock_put(connected);
1333 }
1334
1335out:
1336 release_sock(listener);
1337 return err;
1338}
1339
1340static int vsock_listen(struct socket *sock, int backlog)
1341{
1342 int err;
1343 struct sock *sk;
1344 struct vsock_sock *vsk;
1345
1346 sk = sock->sk;
1347
1348 lock_sock(sk);
1349
1350 if (sock->type != SOCK_STREAM) {
1351 err = -EOPNOTSUPP;
1352 goto out;
1353 }
1354
1355 if (sock->state != SS_UNCONNECTED) {
1356 err = -EINVAL;
1357 goto out;
1358 }
1359
1360 vsk = vsock_sk(sk);
1361
1362 if (!vsock_addr_bound(&vsk->local_addr)) {
1363 err = -EINVAL;
1364 goto out;
1365 }
1366
1367 sk->sk_max_ack_backlog = backlog;
1368 sk->sk_state = TCP_LISTEN;
1369
1370 err = 0;
1371
1372out:
1373 release_sock(sk);
1374 return err;
1375}
1376
1377static int vsock_stream_setsockopt(struct socket *sock,
1378 int level,
1379 int optname,
1380 char __user *optval,
1381 unsigned int optlen)
1382{
1383 int err;
1384 struct sock *sk;
1385 struct vsock_sock *vsk;
1386 u64 val;
1387
1388 if (level != AF_VSOCK)
1389 return -ENOPROTOOPT;
1390
1391#define COPY_IN(_v) \
1392 do { \
1393 if (optlen < sizeof(_v)) { \
1394 err = -EINVAL; \
1395 goto exit; \
1396 } \
1397 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1398 err = -EFAULT; \
1399 goto exit; \
1400 } \
1401 } while (0)
1402
1403 err = 0;
1404 sk = sock->sk;
1405 vsk = vsock_sk(sk);
1406
1407 lock_sock(sk);
1408
1409 switch (optname) {
1410 case SO_VM_SOCKETS_BUFFER_SIZE:
1411 COPY_IN(val);
1412 transport->set_buffer_size(vsk, val);
1413 break;
1414
1415 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1416 COPY_IN(val);
1417 transport->set_max_buffer_size(vsk, val);
1418 break;
1419
1420 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1421 COPY_IN(val);
1422 transport->set_min_buffer_size(vsk, val);
1423 break;
1424
1425 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1426 struct timeval tv;
1427 COPY_IN(tv);
1428 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1429 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1430 vsk->connect_timeout = tv.tv_sec * HZ +
1431 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1432 if (vsk->connect_timeout == 0)
1433 vsk->connect_timeout =
1434 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1435
1436 } else {
1437 err = -ERANGE;
1438 }
1439 break;
1440 }
1441
1442 default:
1443 err = -ENOPROTOOPT;
1444 break;
1445 }
1446
1447#undef COPY_IN
1448
1449exit:
1450 release_sock(sk);
1451 return err;
1452}
1453
1454static int vsock_stream_getsockopt(struct socket *sock,
1455 int level, int optname,
1456 char __user *optval,
1457 int __user *optlen)
1458{
1459 int err;
1460 int len;
1461 struct sock *sk;
1462 struct vsock_sock *vsk;
1463 u64 val;
1464
1465 if (level != AF_VSOCK)
1466 return -ENOPROTOOPT;
1467
1468 err = get_user(len, optlen);
1469 if (err != 0)
1470 return err;
1471
1472#define COPY_OUT(_v) \
1473 do { \
1474 if (len < sizeof(_v)) \
1475 return -EINVAL; \
1476 \
1477 len = sizeof(_v); \
1478 if (copy_to_user(optval, &_v, len) != 0) \
1479 return -EFAULT; \
1480 \
1481 } while (0)
1482
1483 err = 0;
1484 sk = sock->sk;
1485 vsk = vsock_sk(sk);
1486
1487 switch (optname) {
1488 case SO_VM_SOCKETS_BUFFER_SIZE:
1489 val = transport->get_buffer_size(vsk);
1490 COPY_OUT(val);
1491 break;
1492
1493 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1494 val = transport->get_max_buffer_size(vsk);
1495 COPY_OUT(val);
1496 break;
1497
1498 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1499 val = transport->get_min_buffer_size(vsk);
1500 COPY_OUT(val);
1501 break;
1502
1503 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1504 struct timeval tv;
1505 tv.tv_sec = vsk->connect_timeout / HZ;
1506 tv.tv_usec =
1507 (vsk->connect_timeout -
1508 tv.tv_sec * HZ) * (1000000 / HZ);
1509 COPY_OUT(tv);
1510 break;
1511 }
1512 default:
1513 return -ENOPROTOOPT;
1514 }
1515
1516 err = put_user(len, optlen);
1517 if (err != 0)
1518 return -EFAULT;
1519
1520#undef COPY_OUT
1521
1522 return 0;
1523}
1524
1525static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1526 size_t len)
1527{
1528 struct sock *sk;
1529 struct vsock_sock *vsk;
1530 ssize_t total_written;
1531 long timeout;
1532 int err;
1533 struct vsock_transport_send_notify_data send_data;
1534 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1535
1536 sk = sock->sk;
1537 vsk = vsock_sk(sk);
1538 total_written = 0;
1539 err = 0;
1540
1541 if (msg->msg_flags & MSG_OOB)
1542 return -EOPNOTSUPP;
1543
1544 lock_sock(sk);
1545
1546 /* Callers should not provide a destination with stream sockets. */
1547 if (msg->msg_namelen) {
1548 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1549 goto out;
1550 }
1551
1552 /* Send data only if both sides are not shutdown in the direction. */
1553 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1554 vsk->peer_shutdown & RCV_SHUTDOWN) {
1555 err = -EPIPE;
1556 goto out;
1557 }
1558
1559 if (sk->sk_state != TCP_ESTABLISHED ||
1560 !vsock_addr_bound(&vsk->local_addr)) {
1561 err = -ENOTCONN;
1562 goto out;
1563 }
1564
1565 if (!vsock_addr_bound(&vsk->remote_addr)) {
1566 err = -EDESTADDRREQ;
1567 goto out;
1568 }
1569
1570 /* Wait for room in the produce queue to enqueue our user's data. */
1571 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1572
1573 err = transport->notify_send_init(vsk, &send_data);
1574 if (err < 0)
1575 goto out;
1576
1577 while (total_written < len) {
1578 ssize_t written;
1579
1580 add_wait_queue(sk_sleep(sk), &wait);
1581 while (vsock_stream_has_space(vsk) == 0 &&
1582 sk->sk_err == 0 &&
1583 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1584 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1585
1586 /* Don't wait for non-blocking sockets. */
1587 if (timeout == 0) {
1588 err = -EAGAIN;
1589 remove_wait_queue(sk_sleep(sk), &wait);
1590 goto out_err;
1591 }
1592
1593 err = transport->notify_send_pre_block(vsk, &send_data);
1594 if (err < 0) {
1595 remove_wait_queue(sk_sleep(sk), &wait);
1596 goto out_err;
1597 }
1598
1599 release_sock(sk);
1600 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1601 lock_sock(sk);
1602 if (signal_pending(current)) {
1603 err = sock_intr_errno(timeout);
1604 remove_wait_queue(sk_sleep(sk), &wait);
1605 goto out_err;
1606 } else if (timeout == 0) {
1607 err = -EAGAIN;
1608 remove_wait_queue(sk_sleep(sk), &wait);
1609 goto out_err;
1610 }
1611 }
1612 remove_wait_queue(sk_sleep(sk), &wait);
1613
1614 /* These checks occur both as part of and after the loop
1615 * conditional since we need to check before and after
1616 * sleeping.
1617 */
1618 if (sk->sk_err) {
1619 err = -sk->sk_err;
1620 goto out_err;
1621 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1622 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1623 err = -EPIPE;
1624 goto out_err;
1625 }
1626
1627 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1628 if (err < 0)
1629 goto out_err;
1630
1631 /* Note that enqueue will only write as many bytes as are free
1632 * in the produce queue, so we don't need to ensure len is
1633 * smaller than the queue size. It is the caller's
1634 * responsibility to check how many bytes we were able to send.
1635 */
1636
1637 written = transport->stream_enqueue(
1638 vsk, msg,
1639 len - total_written);
1640 if (written < 0) {
1641 err = -ENOMEM;
1642 goto out_err;
1643 }
1644
1645 total_written += written;
1646
1647 err = transport->notify_send_post_enqueue(
1648 vsk, written, &send_data);
1649 if (err < 0)
1650 goto out_err;
1651
1652 }
1653
1654out_err:
1655 if (total_written > 0)
1656 err = total_written;
1657out:
1658 release_sock(sk);
1659 return err;
1660}
1661
1662
1663static int
1664vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1665 int flags)
1666{
1667 struct sock *sk;
1668 struct vsock_sock *vsk;
1669 int err;
1670 size_t target;
1671 ssize_t copied;
1672 long timeout;
1673 struct vsock_transport_recv_notify_data recv_data;
1674
1675 DEFINE_WAIT(wait);
1676
1677 sk = sock->sk;
1678 vsk = vsock_sk(sk);
1679 err = 0;
1680
1681 lock_sock(sk);
1682
1683 if (sk->sk_state != TCP_ESTABLISHED) {
1684 /* Recvmsg is supposed to return 0 if a peer performs an
1685 * orderly shutdown. Differentiate between that case and when a
1686 * peer has not connected or a local shutdown occured with the
1687 * SOCK_DONE flag.
1688 */
1689 if (sock_flag(sk, SOCK_DONE))
1690 err = 0;
1691 else
1692 err = -ENOTCONN;
1693
1694 goto out;
1695 }
1696
1697 if (flags & MSG_OOB) {
1698 err = -EOPNOTSUPP;
1699 goto out;
1700 }
1701
1702 /* We don't check peer_shutdown flag here since peer may actually shut
1703 * down, but there can be data in the queue that a local socket can
1704 * receive.
1705 */
1706 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1707 err = 0;
1708 goto out;
1709 }
1710
1711 /* It is valid on Linux to pass in a zero-length receive buffer. This
1712 * is not an error. We may as well bail out now.
1713 */
1714 if (!len) {
1715 err = 0;
1716 goto out;
1717 }
1718
1719 /* We must not copy less than target bytes into the user's buffer
1720 * before returning successfully, so we wait for the consume queue to
1721 * have that much data to consume before dequeueing. Note that this
1722 * makes it impossible to handle cases where target is greater than the
1723 * queue size.
1724 */
1725 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1726 if (target >= transport->stream_rcvhiwat(vsk)) {
1727 err = -ENOMEM;
1728 goto out;
1729 }
1730 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1731 copied = 0;
1732
1733 err = transport->notify_recv_init(vsk, target, &recv_data);
1734 if (err < 0)
1735 goto out;
1736
1737
1738 while (1) {
1739 s64 ready;
1740
1741 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1742 ready = vsock_stream_has_data(vsk);
1743
1744 if (ready == 0) {
1745 if (sk->sk_err != 0 ||
1746 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1747 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1748 finish_wait(sk_sleep(sk), &wait);
1749 break;
1750 }
1751 /* Don't wait for non-blocking sockets. */
1752 if (timeout == 0) {
1753 err = -EAGAIN;
1754 finish_wait(sk_sleep(sk), &wait);
1755 break;
1756 }
1757
1758 err = transport->notify_recv_pre_block(
1759 vsk, target, &recv_data);
1760 if (err < 0) {
1761 finish_wait(sk_sleep(sk), &wait);
1762 break;
1763 }
1764 release_sock(sk);
1765 timeout = schedule_timeout(timeout);
1766 lock_sock(sk);
1767
1768 if (signal_pending(current)) {
1769 err = sock_intr_errno(timeout);
1770 finish_wait(sk_sleep(sk), &wait);
1771 break;
1772 } else if (timeout == 0) {
1773 err = -EAGAIN;
1774 finish_wait(sk_sleep(sk), &wait);
1775 break;
1776 }
1777 } else {
1778 ssize_t read;
1779
1780 finish_wait(sk_sleep(sk), &wait);
1781
1782 if (ready < 0) {
1783 /* Invalid queue pair content. XXX This should
1784 * be changed to a connection reset in a later
1785 * change.
1786 */
1787
1788 err = -ENOMEM;
1789 goto out;
1790 }
1791
1792 err = transport->notify_recv_pre_dequeue(
1793 vsk, target, &recv_data);
1794 if (err < 0)
1795 break;
1796
1797 read = transport->stream_dequeue(
1798 vsk, msg,
1799 len - copied, flags);
1800 if (read < 0) {
1801 err = -ENOMEM;
1802 break;
1803 }
1804
1805 copied += read;
1806
1807 err = transport->notify_recv_post_dequeue(
1808 vsk, target, read,
1809 !(flags & MSG_PEEK), &recv_data);
1810 if (err < 0)
1811 goto out;
1812
1813 if (read >= target || flags & MSG_PEEK)
1814 break;
1815
1816 target -= read;
1817 }
1818 }
1819
1820 if (sk->sk_err)
1821 err = -sk->sk_err;
1822 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1823 err = 0;
1824
1825 if (copied > 0)
1826 err = copied;
1827
1828out:
1829 release_sock(sk);
1830 return err;
1831}
1832
1833static const struct proto_ops vsock_stream_ops = {
1834 .family = PF_VSOCK,
1835 .owner = THIS_MODULE,
1836 .release = vsock_release,
1837 .bind = vsock_bind,
1838 .connect = vsock_stream_connect,
1839 .socketpair = sock_no_socketpair,
1840 .accept = vsock_accept,
1841 .getname = vsock_getname,
1842 .poll = vsock_poll,
1843 .ioctl = sock_no_ioctl,
1844 .listen = vsock_listen,
1845 .shutdown = vsock_shutdown,
1846 .setsockopt = vsock_stream_setsockopt,
1847 .getsockopt = vsock_stream_getsockopt,
1848 .sendmsg = vsock_stream_sendmsg,
1849 .recvmsg = vsock_stream_recvmsg,
1850 .mmap = sock_no_mmap,
1851 .sendpage = sock_no_sendpage,
1852};
1853
1854static int vsock_create(struct net *net, struct socket *sock,
1855 int protocol, int kern)
1856{
1857 if (!sock)
1858 return -EINVAL;
1859
1860 if (protocol && protocol != PF_VSOCK)
1861 return -EPROTONOSUPPORT;
1862
1863 switch (sock->type) {
1864 case SOCK_DGRAM:
1865 sock->ops = &vsock_dgram_ops;
1866 break;
1867 case SOCK_STREAM:
1868 sock->ops = &vsock_stream_ops;
1869 break;
1870 default:
1871 return -ESOCKTNOSUPPORT;
1872 }
1873
1874 sock->state = SS_UNCONNECTED;
1875
1876 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1877}
1878
1879static const struct net_proto_family vsock_family_ops = {
1880 .family = AF_VSOCK,
1881 .create = vsock_create,
1882 .owner = THIS_MODULE,
1883};
1884
1885static long vsock_dev_do_ioctl(struct file *filp,
1886 unsigned int cmd, void __user *ptr)
1887{
1888 u32 __user *p = ptr;
1889 int retval = 0;
1890
1891 switch (cmd) {
1892 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1893 if (put_user(transport->get_local_cid(), p) != 0)
1894 retval = -EFAULT;
1895 break;
1896
1897 default:
1898 pr_err("Unknown ioctl %d\n", cmd);
1899 retval = -EINVAL;
1900 }
1901
1902 return retval;
1903}
1904
1905static long vsock_dev_ioctl(struct file *filp,
1906 unsigned int cmd, unsigned long arg)
1907{
1908 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1909}
1910
1911#ifdef CONFIG_COMPAT
1912static long vsock_dev_compat_ioctl(struct file *filp,
1913 unsigned int cmd, unsigned long arg)
1914{
1915 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1916}
1917#endif
1918
1919static const struct file_operations vsock_device_ops = {
1920 .owner = THIS_MODULE,
1921 .unlocked_ioctl = vsock_dev_ioctl,
1922#ifdef CONFIG_COMPAT
1923 .compat_ioctl = vsock_dev_compat_ioctl,
1924#endif
1925 .open = nonseekable_open,
1926};
1927
1928static struct miscdevice vsock_device = {
1929 .name = "vsock",
1930 .fops = &vsock_device_ops,
1931};
1932
1933int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1934{
1935 int err = mutex_lock_interruptible(&vsock_register_mutex);
1936
1937 if (err)
1938 return err;
1939
1940 if (transport) {
1941 err = -EBUSY;
1942 goto err_busy;
1943 }
1944
1945 /* Transport must be the owner of the protocol so that it can't
1946 * unload while there are open sockets.
1947 */
1948 vsock_proto.owner = owner;
1949 transport = t;
1950
1951 vsock_device.minor = MISC_DYNAMIC_MINOR;
1952 err = misc_register(&vsock_device);
1953 if (err) {
1954 pr_err("Failed to register misc device\n");
1955 goto err_reset_transport;
1956 }
1957
1958 err = proto_register(&vsock_proto, 1); /* we want our slab */
1959 if (err) {
1960 pr_err("Cannot register vsock protocol\n");
1961 goto err_deregister_misc;
1962 }
1963
1964 err = sock_register(&vsock_family_ops);
1965 if (err) {
1966 pr_err("could not register af_vsock (%d) address family: %d\n",
1967 AF_VSOCK, err);
1968 goto err_unregister_proto;
1969 }
1970
1971 mutex_unlock(&vsock_register_mutex);
1972 return 0;
1973
1974err_unregister_proto:
1975 proto_unregister(&vsock_proto);
1976err_deregister_misc:
1977 misc_deregister(&vsock_device);
1978err_reset_transport:
1979 transport = NULL;
1980err_busy:
1981 mutex_unlock(&vsock_register_mutex);
1982 return err;
1983}
1984EXPORT_SYMBOL_GPL(__vsock_core_init);
1985
1986void vsock_core_exit(void)
1987{
1988 mutex_lock(&vsock_register_mutex);
1989
1990 misc_deregister(&vsock_device);
1991 sock_unregister(AF_VSOCK);
1992 proto_unregister(&vsock_proto);
1993
1994 /* We do not want the assignment below re-ordered. */
1995 mb();
1996 transport = NULL;
1997
1998 mutex_unlock(&vsock_register_mutex);
1999}
2000EXPORT_SYMBOL_GPL(vsock_core_exit);
2001
2002const struct vsock_transport *vsock_core_get_transport(void)
2003{
2004 /* vsock_register_mutex not taken since only the transport uses this
2005 * function and only while registered.
2006 */
2007 return transport;
2008}
2009EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2010
2011static void __exit vsock_exit(void)
2012{
2013 /* Do nothing. This function makes this module removable. */
2014}
2015
2016module_init(vsock_init_tables);
2017module_exit(vsock_exit);
2018
2019MODULE_AUTHOR("VMware, Inc.");
2020MODULE_DESCRIPTION("VMware Virtual Socket Family");
2021MODULE_VERSION("1.0.2.0-k");
2022MODULE_LICENSE("GPL v2");