]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - net/wireless/reg.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
... / ...
CommitLineData
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22/**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48#include <linux/kernel.h>
49#include <linux/export.h>
50#include <linux/slab.h>
51#include <linux/list.h>
52#include <linux/ctype.h>
53#include <linux/nl80211.h>
54#include <linux/platform_device.h>
55#include <linux/moduleparam.h>
56#include <net/cfg80211.h>
57#include "core.h"
58#include "reg.h"
59#include "rdev-ops.h"
60#include "regdb.h"
61#include "nl80211.h"
62
63#ifdef CONFIG_CFG80211_REG_DEBUG
64#define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66#else
67#define REG_DBG_PRINT(args...)
68#endif
69
70/*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74#define REG_ENFORCE_GRACE_MS 60000
75
76/**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
86 * further processing is required, i.e., not need to update last_request
87 * etc. This should be used for user hints that do not provide an alpha2
88 * but some other type of regulatory hint, i.e., indoor operation.
89 */
90enum reg_request_treatment {
91 REG_REQ_OK,
92 REG_REQ_IGNORE,
93 REG_REQ_INTERSECT,
94 REG_REQ_ALREADY_SET,
95 REG_REQ_USER_HINT_HANDLED,
96};
97
98static struct regulatory_request core_request_world = {
99 .initiator = NL80211_REGDOM_SET_BY_CORE,
100 .alpha2[0] = '0',
101 .alpha2[1] = '0',
102 .intersect = false,
103 .processed = true,
104 .country_ie_env = ENVIRON_ANY,
105};
106
107/*
108 * Receipt of information from last regulatory request,
109 * protected by RTNL (and can be accessed with RCU protection)
110 */
111static struct regulatory_request __rcu *last_request =
112 (void __rcu *)&core_request_world;
113
114/* To trigger userspace events */
115static struct platform_device *reg_pdev;
116
117/*
118 * Central wireless core regulatory domains, we only need two,
119 * the current one and a world regulatory domain in case we have no
120 * information to give us an alpha2.
121 * (protected by RTNL, can be read under RCU)
122 */
123const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124
125/*
126 * Number of devices that registered to the core
127 * that support cellular base station regulatory hints
128 * (protected by RTNL)
129 */
130static int reg_num_devs_support_basehint;
131
132/*
133 * State variable indicating if the platform on which the devices
134 * are attached is operating in an indoor environment. The state variable
135 * is relevant for all registered devices.
136 * (protected by RTNL)
137 */
138static bool reg_is_indoor;
139
140static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141{
142 return rtnl_dereference(cfg80211_regdomain);
143}
144
145static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146{
147 return rtnl_dereference(wiphy->regd);
148}
149
150static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151{
152 switch (dfs_region) {
153 case NL80211_DFS_UNSET:
154 return "unset";
155 case NL80211_DFS_FCC:
156 return "FCC";
157 case NL80211_DFS_ETSI:
158 return "ETSI";
159 case NL80211_DFS_JP:
160 return "JP";
161 }
162 return "Unknown";
163}
164
165enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166{
167 const struct ieee80211_regdomain *regd = NULL;
168 const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170 regd = get_cfg80211_regdom();
171 if (!wiphy)
172 goto out;
173
174 wiphy_regd = get_wiphy_regdom(wiphy);
175 if (!wiphy_regd)
176 goto out;
177
178 if (wiphy_regd->dfs_region == regd->dfs_region)
179 goto out;
180
181 REG_DBG_PRINT("%s: device specific dfs_region "
182 "(%s) disagrees with cfg80211's "
183 "central dfs_region (%s)\n",
184 dev_name(&wiphy->dev),
185 reg_dfs_region_str(wiphy_regd->dfs_region),
186 reg_dfs_region_str(regd->dfs_region));
187
188out:
189 return regd->dfs_region;
190}
191
192static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193{
194 if (!r)
195 return;
196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197}
198
199static struct regulatory_request *get_last_request(void)
200{
201 return rcu_dereference_rtnl(last_request);
202}
203
204/* Used to queue up regulatory hints */
205static LIST_HEAD(reg_requests_list);
206static spinlock_t reg_requests_lock;
207
208/* Used to queue up beacon hints for review */
209static LIST_HEAD(reg_pending_beacons);
210static spinlock_t reg_pending_beacons_lock;
211
212/* Used to keep track of processed beacon hints */
213static LIST_HEAD(reg_beacon_list);
214
215struct reg_beacon {
216 struct list_head list;
217 struct ieee80211_channel chan;
218};
219
220static void reg_check_chans_work(struct work_struct *work);
221static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223static void reg_todo(struct work_struct *work);
224static DECLARE_WORK(reg_work, reg_todo);
225
226static void reg_timeout_work(struct work_struct *work);
227static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228
229/* We keep a static world regulatory domain in case of the absence of CRDA */
230static const struct ieee80211_regdomain world_regdom = {
231 .n_reg_rules = 6,
232 .alpha2 = "00",
233 .reg_rules = {
234 /* IEEE 802.11b/g, channels 1..11 */
235 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236 /* IEEE 802.11b/g, channels 12..13. */
237 REG_RULE(2467-10, 2472+10, 40, 6, 20,
238 NL80211_RRF_NO_IR),
239 /* IEEE 802.11 channel 14 - Only JP enables
240 * this and for 802.11b only */
241 REG_RULE(2484-10, 2484+10, 20, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_NO_OFDM),
244 /* IEEE 802.11a, channel 36..48 */
245 REG_RULE(5180-10, 5240+10, 160, 6, 20,
246 NL80211_RRF_NO_IR),
247
248 /* IEEE 802.11a, channel 52..64 - DFS required */
249 REG_RULE(5260-10, 5320+10, 160, 6, 20,
250 NL80211_RRF_NO_IR |
251 NL80211_RRF_DFS),
252
253 /* IEEE 802.11a, channel 100..144 - DFS required */
254 REG_RULE(5500-10, 5720+10, 160, 6, 20,
255 NL80211_RRF_NO_IR |
256 NL80211_RRF_DFS),
257
258 /* IEEE 802.11a, channel 149..165 */
259 REG_RULE(5745-10, 5825+10, 80, 6, 20,
260 NL80211_RRF_NO_IR),
261
262 /* IEEE 802.11ad (60gHz), channels 1..3 */
263 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264 }
265};
266
267/* protected by RTNL */
268static const struct ieee80211_regdomain *cfg80211_world_regdom =
269 &world_regdom;
270
271static char *ieee80211_regdom = "00";
272static char user_alpha2[2];
273
274module_param(ieee80211_regdom, charp, 0444);
275MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277static void reg_free_request(struct regulatory_request *request)
278{
279 if (request != get_last_request())
280 kfree(request);
281}
282
283static void reg_free_last_request(void)
284{
285 struct regulatory_request *lr = get_last_request();
286
287 if (lr != &core_request_world && lr)
288 kfree_rcu(lr, rcu_head);
289}
290
291static void reg_update_last_request(struct regulatory_request *request)
292{
293 struct regulatory_request *lr;
294
295 lr = get_last_request();
296 if (lr == request)
297 return;
298
299 reg_free_last_request();
300 rcu_assign_pointer(last_request, request);
301}
302
303static void reset_regdomains(bool full_reset,
304 const struct ieee80211_regdomain *new_regdom)
305{
306 const struct ieee80211_regdomain *r;
307
308 ASSERT_RTNL();
309
310 r = get_cfg80211_regdom();
311
312 /* avoid freeing static information or freeing something twice */
313 if (r == cfg80211_world_regdom)
314 r = NULL;
315 if (cfg80211_world_regdom == &world_regdom)
316 cfg80211_world_regdom = NULL;
317 if (r == &world_regdom)
318 r = NULL;
319
320 rcu_free_regdom(r);
321 rcu_free_regdom(cfg80211_world_regdom);
322
323 cfg80211_world_regdom = &world_regdom;
324 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326 if (!full_reset)
327 return;
328
329 reg_update_last_request(&core_request_world);
330}
331
332/*
333 * Dynamic world regulatory domain requested by the wireless
334 * core upon initialization
335 */
336static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337{
338 struct regulatory_request *lr;
339
340 lr = get_last_request();
341
342 WARN_ON(!lr);
343
344 reset_regdomains(false, rd);
345
346 cfg80211_world_regdom = rd;
347}
348
349bool is_world_regdom(const char *alpha2)
350{
351 if (!alpha2)
352 return false;
353 return alpha2[0] == '0' && alpha2[1] == '0';
354}
355
356static bool is_alpha2_set(const char *alpha2)
357{
358 if (!alpha2)
359 return false;
360 return alpha2[0] && alpha2[1];
361}
362
363static bool is_unknown_alpha2(const char *alpha2)
364{
365 if (!alpha2)
366 return false;
367 /*
368 * Special case where regulatory domain was built by driver
369 * but a specific alpha2 cannot be determined
370 */
371 return alpha2[0] == '9' && alpha2[1] == '9';
372}
373
374static bool is_intersected_alpha2(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 /*
379 * Special case where regulatory domain is the
380 * result of an intersection between two regulatory domain
381 * structures
382 */
383 return alpha2[0] == '9' && alpha2[1] == '8';
384}
385
386static bool is_an_alpha2(const char *alpha2)
387{
388 if (!alpha2)
389 return false;
390 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391}
392
393static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394{
395 if (!alpha2_x || !alpha2_y)
396 return false;
397 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398}
399
400static bool regdom_changes(const char *alpha2)
401{
402 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404 if (!r)
405 return true;
406 return !alpha2_equal(r->alpha2, alpha2);
407}
408
409/*
410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412 * has ever been issued.
413 */
414static bool is_user_regdom_saved(void)
415{
416 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 return false;
418
419 /* This would indicate a mistake on the design */
420 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 "Unexpected user alpha2: %c%c\n",
422 user_alpha2[0], user_alpha2[1]))
423 return false;
424
425 return true;
426}
427
428static const struct ieee80211_regdomain *
429reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430{
431 struct ieee80211_regdomain *regd;
432 int size_of_regd;
433 unsigned int i;
434
435 size_of_regd =
436 sizeof(struct ieee80211_regdomain) +
437 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439 regd = kzalloc(size_of_regd, GFP_KERNEL);
440 if (!regd)
441 return ERR_PTR(-ENOMEM);
442
443 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445 for (i = 0; i < src_regd->n_reg_rules; i++)
446 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 sizeof(struct ieee80211_reg_rule));
448
449 return regd;
450}
451
452#ifdef CONFIG_CFG80211_INTERNAL_REGDB
453struct reg_regdb_search_request {
454 char alpha2[2];
455 struct list_head list;
456};
457
458static LIST_HEAD(reg_regdb_search_list);
459static DEFINE_MUTEX(reg_regdb_search_mutex);
460
461static void reg_regdb_search(struct work_struct *work)
462{
463 struct reg_regdb_search_request *request;
464 const struct ieee80211_regdomain *curdom, *regdom = NULL;
465 int i;
466
467 rtnl_lock();
468
469 mutex_lock(&reg_regdb_search_mutex);
470 while (!list_empty(&reg_regdb_search_list)) {
471 request = list_first_entry(&reg_regdb_search_list,
472 struct reg_regdb_search_request,
473 list);
474 list_del(&request->list);
475
476 for (i = 0; i < reg_regdb_size; i++) {
477 curdom = reg_regdb[i];
478
479 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480 regdom = reg_copy_regd(curdom);
481 break;
482 }
483 }
484
485 kfree(request);
486 }
487 mutex_unlock(&reg_regdb_search_mutex);
488
489 if (!IS_ERR_OR_NULL(regdom))
490 set_regdom(regdom);
491
492 rtnl_unlock();
493}
494
495static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496
497static void reg_regdb_query(const char *alpha2)
498{
499 struct reg_regdb_search_request *request;
500
501 if (!alpha2)
502 return;
503
504 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 if (!request)
506 return;
507
508 memcpy(request->alpha2, alpha2, 2);
509
510 mutex_lock(&reg_regdb_search_mutex);
511 list_add_tail(&request->list, &reg_regdb_search_list);
512 mutex_unlock(&reg_regdb_search_mutex);
513
514 schedule_work(&reg_regdb_work);
515}
516
517/* Feel free to add any other sanity checks here */
518static void reg_regdb_size_check(void)
519{
520 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522}
523#else
524static inline void reg_regdb_size_check(void) {}
525static inline void reg_regdb_query(const char *alpha2) {}
526#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528/*
529 * This lets us keep regulatory code which is updated on a regulatory
530 * basis in userspace.
531 */
532static int call_crda(const char *alpha2)
533{
534 char country[12];
535 char *env[] = { country, NULL };
536
537 snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 alpha2[0], alpha2[1]);
539
540 if (!is_world_regdom((char *) alpha2))
541 pr_info("Calling CRDA for country: %c%c\n",
542 alpha2[0], alpha2[1]);
543 else
544 pr_info("Calling CRDA to update world regulatory domain\n");
545
546 /* query internal regulatory database (if it exists) */
547 reg_regdb_query(alpha2);
548
549 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550}
551
552static enum reg_request_treatment
553reg_call_crda(struct regulatory_request *request)
554{
555 if (call_crda(request->alpha2))
556 return REG_REQ_IGNORE;
557 return REG_REQ_OK;
558}
559
560bool reg_is_valid_request(const char *alpha2)
561{
562 struct regulatory_request *lr = get_last_request();
563
564 if (!lr || lr->processed)
565 return false;
566
567 return alpha2_equal(lr->alpha2, alpha2);
568}
569
570static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571{
572 struct regulatory_request *lr = get_last_request();
573
574 /*
575 * Follow the driver's regulatory domain, if present, unless a country
576 * IE has been processed or a user wants to help complaince further
577 */
578 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580 wiphy->regd)
581 return get_wiphy_regdom(wiphy);
582
583 return get_cfg80211_regdom();
584}
585
586static unsigned int
587reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588 const struct ieee80211_reg_rule *rule)
589{
590 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591 const struct ieee80211_freq_range *freq_range_tmp;
592 const struct ieee80211_reg_rule *tmp;
593 u32 start_freq, end_freq, idx, no;
594
595 for (idx = 0; idx < rd->n_reg_rules; idx++)
596 if (rule == &rd->reg_rules[idx])
597 break;
598
599 if (idx == rd->n_reg_rules)
600 return 0;
601
602 /* get start_freq */
603 no = idx;
604
605 while (no) {
606 tmp = &rd->reg_rules[--no];
607 freq_range_tmp = &tmp->freq_range;
608
609 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610 break;
611
612 freq_range = freq_range_tmp;
613 }
614
615 start_freq = freq_range->start_freq_khz;
616
617 /* get end_freq */
618 freq_range = &rule->freq_range;
619 no = idx;
620
621 while (no < rd->n_reg_rules - 1) {
622 tmp = &rd->reg_rules[++no];
623 freq_range_tmp = &tmp->freq_range;
624
625 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626 break;
627
628 freq_range = freq_range_tmp;
629 }
630
631 end_freq = freq_range->end_freq_khz;
632
633 return end_freq - start_freq;
634}
635
636unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637 const struct ieee80211_reg_rule *rule)
638{
639 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640
641 if (rule->flags & NL80211_RRF_NO_160MHZ)
642 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643 if (rule->flags & NL80211_RRF_NO_80MHZ)
644 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645
646 /*
647 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648 * are not allowed.
649 */
650 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651 rule->flags & NL80211_RRF_NO_HT40PLUS)
652 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653
654 return bw;
655}
656
657/* Sanity check on a regulatory rule */
658static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659{
660 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661 u32 freq_diff;
662
663 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664 return false;
665
666 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667 return false;
668
669 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670
671 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672 freq_range->max_bandwidth_khz > freq_diff)
673 return false;
674
675 return true;
676}
677
678static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679{
680 const struct ieee80211_reg_rule *reg_rule = NULL;
681 unsigned int i;
682
683 if (!rd->n_reg_rules)
684 return false;
685
686 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687 return false;
688
689 for (i = 0; i < rd->n_reg_rules; i++) {
690 reg_rule = &rd->reg_rules[i];
691 if (!is_valid_reg_rule(reg_rule))
692 return false;
693 }
694
695 return true;
696}
697
698static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699 u32 center_freq_khz, u32 bw_khz)
700{
701 u32 start_freq_khz, end_freq_khz;
702
703 start_freq_khz = center_freq_khz - (bw_khz/2);
704 end_freq_khz = center_freq_khz + (bw_khz/2);
705
706 if (start_freq_khz >= freq_range->start_freq_khz &&
707 end_freq_khz <= freq_range->end_freq_khz)
708 return true;
709
710 return false;
711}
712
713/**
714 * freq_in_rule_band - tells us if a frequency is in a frequency band
715 * @freq_range: frequency rule we want to query
716 * @freq_khz: frequency we are inquiring about
717 *
718 * This lets us know if a specific frequency rule is or is not relevant to
719 * a specific frequency's band. Bands are device specific and artificial
720 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721 * however it is safe for now to assume that a frequency rule should not be
722 * part of a frequency's band if the start freq or end freq are off by more
723 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724 * 60 GHz band.
725 * This resolution can be lowered and should be considered as we add
726 * regulatory rule support for other "bands".
727 **/
728static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729 u32 freq_khz)
730{
731#define ONE_GHZ_IN_KHZ 1000000
732 /*
733 * From 802.11ad: directional multi-gigabit (DMG):
734 * Pertaining to operation in a frequency band containing a channel
735 * with the Channel starting frequency above 45 GHz.
736 */
737 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740 return true;
741 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742 return true;
743 return false;
744#undef ONE_GHZ_IN_KHZ
745}
746
747/*
748 * Later on we can perhaps use the more restrictive DFS
749 * region but we don't have information for that yet so
750 * for now simply disallow conflicts.
751 */
752static enum nl80211_dfs_regions
753reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754 const enum nl80211_dfs_regions dfs_region2)
755{
756 if (dfs_region1 != dfs_region2)
757 return NL80211_DFS_UNSET;
758 return dfs_region1;
759}
760
761/*
762 * Helper for regdom_intersect(), this does the real
763 * mathematical intersection fun
764 */
765static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766 const struct ieee80211_regdomain *rd2,
767 const struct ieee80211_reg_rule *rule1,
768 const struct ieee80211_reg_rule *rule2,
769 struct ieee80211_reg_rule *intersected_rule)
770{
771 const struct ieee80211_freq_range *freq_range1, *freq_range2;
772 struct ieee80211_freq_range *freq_range;
773 const struct ieee80211_power_rule *power_rule1, *power_rule2;
774 struct ieee80211_power_rule *power_rule;
775 u32 freq_diff, max_bandwidth1, max_bandwidth2;
776
777 freq_range1 = &rule1->freq_range;
778 freq_range2 = &rule2->freq_range;
779 freq_range = &intersected_rule->freq_range;
780
781 power_rule1 = &rule1->power_rule;
782 power_rule2 = &rule2->power_rule;
783 power_rule = &intersected_rule->power_rule;
784
785 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786 freq_range2->start_freq_khz);
787 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788 freq_range2->end_freq_khz);
789
790 max_bandwidth1 = freq_range1->max_bandwidth_khz;
791 max_bandwidth2 = freq_range2->max_bandwidth_khz;
792
793 if (rule1->flags & NL80211_RRF_AUTO_BW)
794 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795 if (rule2->flags & NL80211_RRF_AUTO_BW)
796 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797
798 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799
800 intersected_rule->flags = rule1->flags | rule2->flags;
801
802 /*
803 * In case NL80211_RRF_AUTO_BW requested for both rules
804 * set AUTO_BW in intersected rule also. Next we will
805 * calculate BW correctly in handle_channel function.
806 * In other case remove AUTO_BW flag while we calculate
807 * maximum bandwidth correctly and auto calculation is
808 * not required.
809 */
810 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811 (rule2->flags & NL80211_RRF_AUTO_BW))
812 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813 else
814 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815
816 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817 if (freq_range->max_bandwidth_khz > freq_diff)
818 freq_range->max_bandwidth_khz = freq_diff;
819
820 power_rule->max_eirp = min(power_rule1->max_eirp,
821 power_rule2->max_eirp);
822 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823 power_rule2->max_antenna_gain);
824
825 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826 rule2->dfs_cac_ms);
827
828 if (!is_valid_reg_rule(intersected_rule))
829 return -EINVAL;
830
831 return 0;
832}
833
834/* check whether old rule contains new rule */
835static bool rule_contains(struct ieee80211_reg_rule *r1,
836 struct ieee80211_reg_rule *r2)
837{
838 /* for simplicity, currently consider only same flags */
839 if (r1->flags != r2->flags)
840 return false;
841
842 /* verify r1 is more restrictive */
843 if ((r1->power_rule.max_antenna_gain >
844 r2->power_rule.max_antenna_gain) ||
845 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846 return false;
847
848 /* make sure r2's range is contained within r1 */
849 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851 return false;
852
853 /* and finally verify that r1.max_bw >= r2.max_bw */
854 if (r1->freq_range.max_bandwidth_khz <
855 r2->freq_range.max_bandwidth_khz)
856 return false;
857
858 return true;
859}
860
861/* add or extend current rules. do nothing if rule is already contained */
862static void add_rule(struct ieee80211_reg_rule *rule,
863 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864{
865 struct ieee80211_reg_rule *tmp_rule;
866 int i;
867
868 for (i = 0; i < *n_rules; i++) {
869 tmp_rule = &reg_rules[i];
870 /* rule is already contained - do nothing */
871 if (rule_contains(tmp_rule, rule))
872 return;
873
874 /* extend rule if possible */
875 if (rule_contains(rule, tmp_rule)) {
876 memcpy(tmp_rule, rule, sizeof(*rule));
877 return;
878 }
879 }
880
881 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882 (*n_rules)++;
883}
884
885/**
886 * regdom_intersect - do the intersection between two regulatory domains
887 * @rd1: first regulatory domain
888 * @rd2: second regulatory domain
889 *
890 * Use this function to get the intersection between two regulatory domains.
891 * Once completed we will mark the alpha2 for the rd as intersected, "98",
892 * as no one single alpha2 can represent this regulatory domain.
893 *
894 * Returns a pointer to the regulatory domain structure which will hold the
895 * resulting intersection of rules between rd1 and rd2. We will
896 * kzalloc() this structure for you.
897 */
898static struct ieee80211_regdomain *
899regdom_intersect(const struct ieee80211_regdomain *rd1,
900 const struct ieee80211_regdomain *rd2)
901{
902 int r, size_of_regd;
903 unsigned int x, y;
904 unsigned int num_rules = 0;
905 const struct ieee80211_reg_rule *rule1, *rule2;
906 struct ieee80211_reg_rule intersected_rule;
907 struct ieee80211_regdomain *rd;
908
909 if (!rd1 || !rd2)
910 return NULL;
911
912 /*
913 * First we get a count of the rules we'll need, then we actually
914 * build them. This is to so we can malloc() and free() a
915 * regdomain once. The reason we use reg_rules_intersect() here
916 * is it will return -EINVAL if the rule computed makes no sense.
917 * All rules that do check out OK are valid.
918 */
919
920 for (x = 0; x < rd1->n_reg_rules; x++) {
921 rule1 = &rd1->reg_rules[x];
922 for (y = 0; y < rd2->n_reg_rules; y++) {
923 rule2 = &rd2->reg_rules[y];
924 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925 &intersected_rule))
926 num_rules++;
927 }
928 }
929
930 if (!num_rules)
931 return NULL;
932
933 size_of_regd = sizeof(struct ieee80211_regdomain) +
934 num_rules * sizeof(struct ieee80211_reg_rule);
935
936 rd = kzalloc(size_of_regd, GFP_KERNEL);
937 if (!rd)
938 return NULL;
939
940 for (x = 0; x < rd1->n_reg_rules; x++) {
941 rule1 = &rd1->reg_rules[x];
942 for (y = 0; y < rd2->n_reg_rules; y++) {
943 rule2 = &rd2->reg_rules[y];
944 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945 &intersected_rule);
946 /*
947 * No need to memset here the intersected rule here as
948 * we're not using the stack anymore
949 */
950 if (r)
951 continue;
952
953 add_rule(&intersected_rule, rd->reg_rules,
954 &rd->n_reg_rules);
955 }
956 }
957
958 rd->alpha2[0] = '9';
959 rd->alpha2[1] = '8';
960 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961 rd2->dfs_region);
962
963 return rd;
964}
965
966/*
967 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968 * want to just have the channel structure use these
969 */
970static u32 map_regdom_flags(u32 rd_flags)
971{
972 u32 channel_flags = 0;
973 if (rd_flags & NL80211_RRF_NO_IR_ALL)
974 channel_flags |= IEEE80211_CHAN_NO_IR;
975 if (rd_flags & NL80211_RRF_DFS)
976 channel_flags |= IEEE80211_CHAN_RADAR;
977 if (rd_flags & NL80211_RRF_NO_OFDM)
978 channel_flags |= IEEE80211_CHAN_NO_OFDM;
979 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981 if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987 if (rd_flags & NL80211_RRF_NO_80MHZ)
988 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989 if (rd_flags & NL80211_RRF_NO_160MHZ)
990 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991 return channel_flags;
992}
993
994static const struct ieee80211_reg_rule *
995freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996 const struct ieee80211_regdomain *regd)
997{
998 int i;
999 bool band_rule_found = false;
1000 bool bw_fits = false;
1001
1002 if (!regd)
1003 return ERR_PTR(-EINVAL);
1004
1005 for (i = 0; i < regd->n_reg_rules; i++) {
1006 const struct ieee80211_reg_rule *rr;
1007 const struct ieee80211_freq_range *fr = NULL;
1008
1009 rr = &regd->reg_rules[i];
1010 fr = &rr->freq_range;
1011
1012 /*
1013 * We only need to know if one frequency rule was
1014 * was in center_freq's band, that's enough, so lets
1015 * not overwrite it once found
1016 */
1017 if (!band_rule_found)
1018 band_rule_found = freq_in_rule_band(fr, center_freq);
1019
1020 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021
1022 if (band_rule_found && bw_fits)
1023 return rr;
1024 }
1025
1026 if (!band_rule_found)
1027 return ERR_PTR(-ERANGE);
1028
1029 return ERR_PTR(-EINVAL);
1030}
1031
1032const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033 u32 center_freq)
1034{
1035 const struct ieee80211_regdomain *regd;
1036
1037 regd = reg_get_regdomain(wiphy);
1038
1039 return freq_reg_info_regd(wiphy, center_freq, regd);
1040}
1041EXPORT_SYMBOL(freq_reg_info);
1042
1043const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044{
1045 switch (initiator) {
1046 case NL80211_REGDOM_SET_BY_CORE:
1047 return "core";
1048 case NL80211_REGDOM_SET_BY_USER:
1049 return "user";
1050 case NL80211_REGDOM_SET_BY_DRIVER:
1051 return "driver";
1052 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053 return "country IE";
1054 default:
1055 WARN_ON(1);
1056 return "bug";
1057 }
1058}
1059EXPORT_SYMBOL(reg_initiator_name);
1060
1061#ifdef CONFIG_CFG80211_REG_DEBUG
1062static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063 struct ieee80211_channel *chan,
1064 const struct ieee80211_reg_rule *reg_rule)
1065{
1066 const struct ieee80211_power_rule *power_rule;
1067 const struct ieee80211_freq_range *freq_range;
1068 char max_antenna_gain[32], bw[32];
1069
1070 power_rule = &reg_rule->power_rule;
1071 freq_range = &reg_rule->freq_range;
1072
1073 if (!power_rule->max_antenna_gain)
1074 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075 else
1076 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077 power_rule->max_antenna_gain);
1078
1079 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081 freq_range->max_bandwidth_khz,
1082 reg_get_max_bandwidth(regd, reg_rule));
1083 else
1084 snprintf(bw, sizeof(bw), "%d KHz",
1085 freq_range->max_bandwidth_khz);
1086
1087 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088 chan->center_freq);
1089
1090 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091 freq_range->start_freq_khz, freq_range->end_freq_khz,
1092 bw, max_antenna_gain,
1093 power_rule->max_eirp);
1094}
1095#else
1096static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097 struct ieee80211_channel *chan,
1098 const struct ieee80211_reg_rule *reg_rule)
1099{
1100 return;
1101}
1102#endif
1103
1104/*
1105 * Note that right now we assume the desired channel bandwidth
1106 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107 * per channel, the primary and the extension channel).
1108 */
1109static void handle_channel(struct wiphy *wiphy,
1110 enum nl80211_reg_initiator initiator,
1111 struct ieee80211_channel *chan)
1112{
1113 u32 flags, bw_flags = 0;
1114 const struct ieee80211_reg_rule *reg_rule = NULL;
1115 const struct ieee80211_power_rule *power_rule = NULL;
1116 const struct ieee80211_freq_range *freq_range = NULL;
1117 struct wiphy *request_wiphy = NULL;
1118 struct regulatory_request *lr = get_last_request();
1119 const struct ieee80211_regdomain *regd;
1120 u32 max_bandwidth_khz;
1121
1122 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123
1124 flags = chan->orig_flags;
1125
1126 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127 if (IS_ERR(reg_rule)) {
1128 /*
1129 * We will disable all channels that do not match our
1130 * received regulatory rule unless the hint is coming
1131 * from a Country IE and the Country IE had no information
1132 * about a band. The IEEE 802.11 spec allows for an AP
1133 * to send only a subset of the regulatory rules allowed,
1134 * so an AP in the US that only supports 2.4 GHz may only send
1135 * a country IE with information for the 2.4 GHz band
1136 * while 5 GHz is still supported.
1137 */
1138 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 PTR_ERR(reg_rule) == -ERANGE)
1140 return;
1141
1142 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143 request_wiphy && request_wiphy == wiphy &&
1144 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146 chan->center_freq);
1147 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148 chan->flags = chan->orig_flags;
1149 } else {
1150 REG_DBG_PRINT("Disabling freq %d MHz\n",
1151 chan->center_freq);
1152 chan->flags |= IEEE80211_CHAN_DISABLED;
1153 }
1154 return;
1155 }
1156
1157 regd = reg_get_regdomain(wiphy);
1158 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159
1160 power_rule = &reg_rule->power_rule;
1161 freq_range = &reg_rule->freq_range;
1162
1163 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164 /* Check if auto calculation requested */
1165 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167
1168 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169 bw_flags = IEEE80211_CHAN_NO_HT40;
1170 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174
1175 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 request_wiphy && request_wiphy == wiphy &&
1177 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 /*
1179 * This guarantees the driver's requested regulatory domain
1180 * will always be used as a base for further regulatory
1181 * settings
1182 */
1183 chan->flags = chan->orig_flags =
1184 map_regdom_flags(reg_rule->flags) | bw_flags;
1185 chan->max_antenna_gain = chan->orig_mag =
1186 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188 (int) MBM_TO_DBM(power_rule->max_eirp);
1189
1190 if (chan->flags & IEEE80211_CHAN_RADAR) {
1191 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192 if (reg_rule->dfs_cac_ms)
1193 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194 }
1195
1196 return;
1197 }
1198
1199 chan->dfs_state = NL80211_DFS_USABLE;
1200 chan->dfs_state_entered = jiffies;
1201
1202 chan->beacon_found = false;
1203 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204 chan->max_antenna_gain =
1205 min_t(int, chan->orig_mag,
1206 MBI_TO_DBI(power_rule->max_antenna_gain));
1207 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208
1209 if (chan->flags & IEEE80211_CHAN_RADAR) {
1210 if (reg_rule->dfs_cac_ms)
1211 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212 else
1213 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214 }
1215
1216 if (chan->orig_mpwr) {
1217 /*
1218 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219 * will always follow the passed country IE power settings.
1220 */
1221 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223 chan->max_power = chan->max_reg_power;
1224 else
1225 chan->max_power = min(chan->orig_mpwr,
1226 chan->max_reg_power);
1227 } else
1228 chan->max_power = chan->max_reg_power;
1229}
1230
1231static void handle_band(struct wiphy *wiphy,
1232 enum nl80211_reg_initiator initiator,
1233 struct ieee80211_supported_band *sband)
1234{
1235 unsigned int i;
1236
1237 if (!sband)
1238 return;
1239
1240 for (i = 0; i < sband->n_channels; i++)
1241 handle_channel(wiphy, initiator, &sband->channels[i]);
1242}
1243
1244static bool reg_request_cell_base(struct regulatory_request *request)
1245{
1246 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247 return false;
1248 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249}
1250
1251static bool reg_request_indoor(struct regulatory_request *request)
1252{
1253 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254 return false;
1255 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256}
1257
1258bool reg_last_request_cell_base(void)
1259{
1260 return reg_request_cell_base(get_last_request());
1261}
1262
1263#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264/* Core specific check */
1265static enum reg_request_treatment
1266reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267{
1268 struct regulatory_request *lr = get_last_request();
1269
1270 if (!reg_num_devs_support_basehint)
1271 return REG_REQ_IGNORE;
1272
1273 if (reg_request_cell_base(lr) &&
1274 !regdom_changes(pending_request->alpha2))
1275 return REG_REQ_ALREADY_SET;
1276
1277 return REG_REQ_OK;
1278}
1279
1280/* Device specific check */
1281static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282{
1283 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284}
1285#else
1286static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287{
1288 return REG_REQ_IGNORE;
1289}
1290
1291static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292{
1293 return true;
1294}
1295#endif
1296
1297static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298{
1299 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301 return true;
1302 return false;
1303}
1304
1305static bool ignore_reg_update(struct wiphy *wiphy,
1306 enum nl80211_reg_initiator initiator)
1307{
1308 struct regulatory_request *lr = get_last_request();
1309
1310 if (!lr) {
1311 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1312 "since last_request is not set\n",
1313 reg_initiator_name(initiator));
1314 return true;
1315 }
1316
1317 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1318 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1319 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1320 "since the driver uses its own custom "
1321 "regulatory domain\n",
1322 reg_initiator_name(initiator));
1323 return true;
1324 }
1325
1326 /*
1327 * wiphy->regd will be set once the device has its own
1328 * desired regulatory domain set
1329 */
1330 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1331 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1332 !is_world_regdom(lr->alpha2)) {
1333 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1334 "since the driver requires its own regulatory "
1335 "domain to be set first\n",
1336 reg_initiator_name(initiator));
1337 return true;
1338 }
1339
1340 if (reg_request_cell_base(lr))
1341 return reg_dev_ignore_cell_hint(wiphy);
1342
1343 return false;
1344}
1345
1346static bool reg_is_world_roaming(struct wiphy *wiphy)
1347{
1348 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1349 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1350 struct regulatory_request *lr = get_last_request();
1351
1352 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1353 return true;
1354
1355 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1357 return true;
1358
1359 return false;
1360}
1361
1362static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1363 struct reg_beacon *reg_beacon)
1364{
1365 struct ieee80211_supported_band *sband;
1366 struct ieee80211_channel *chan;
1367 bool channel_changed = false;
1368 struct ieee80211_channel chan_before;
1369
1370 sband = wiphy->bands[reg_beacon->chan.band];
1371 chan = &sband->channels[chan_idx];
1372
1373 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1374 return;
1375
1376 if (chan->beacon_found)
1377 return;
1378
1379 chan->beacon_found = true;
1380
1381 if (!reg_is_world_roaming(wiphy))
1382 return;
1383
1384 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1385 return;
1386
1387 chan_before.center_freq = chan->center_freq;
1388 chan_before.flags = chan->flags;
1389
1390 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1391 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1392 channel_changed = true;
1393 }
1394
1395 if (channel_changed)
1396 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1397}
1398
1399/*
1400 * Called when a scan on a wiphy finds a beacon on
1401 * new channel
1402 */
1403static void wiphy_update_new_beacon(struct wiphy *wiphy,
1404 struct reg_beacon *reg_beacon)
1405{
1406 unsigned int i;
1407 struct ieee80211_supported_band *sband;
1408
1409 if (!wiphy->bands[reg_beacon->chan.band])
1410 return;
1411
1412 sband = wiphy->bands[reg_beacon->chan.band];
1413
1414 for (i = 0; i < sband->n_channels; i++)
1415 handle_reg_beacon(wiphy, i, reg_beacon);
1416}
1417
1418/*
1419 * Called upon reg changes or a new wiphy is added
1420 */
1421static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422{
1423 unsigned int i;
1424 struct ieee80211_supported_band *sband;
1425 struct reg_beacon *reg_beacon;
1426
1427 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1428 if (!wiphy->bands[reg_beacon->chan.band])
1429 continue;
1430 sband = wiphy->bands[reg_beacon->chan.band];
1431 for (i = 0; i < sband->n_channels; i++)
1432 handle_reg_beacon(wiphy, i, reg_beacon);
1433 }
1434}
1435
1436/* Reap the advantages of previously found beacons */
1437static void reg_process_beacons(struct wiphy *wiphy)
1438{
1439 /*
1440 * Means we are just firing up cfg80211, so no beacons would
1441 * have been processed yet.
1442 */
1443 if (!last_request)
1444 return;
1445 wiphy_update_beacon_reg(wiphy);
1446}
1447
1448static bool is_ht40_allowed(struct ieee80211_channel *chan)
1449{
1450 if (!chan)
1451 return false;
1452 if (chan->flags & IEEE80211_CHAN_DISABLED)
1453 return false;
1454 /* This would happen when regulatory rules disallow HT40 completely */
1455 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1456 return false;
1457 return true;
1458}
1459
1460static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1461 struct ieee80211_channel *channel)
1462{
1463 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1464 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1465 unsigned int i;
1466
1467 if (!is_ht40_allowed(channel)) {
1468 channel->flags |= IEEE80211_CHAN_NO_HT40;
1469 return;
1470 }
1471
1472 /*
1473 * We need to ensure the extension channels exist to
1474 * be able to use HT40- or HT40+, this finds them (or not)
1475 */
1476 for (i = 0; i < sband->n_channels; i++) {
1477 struct ieee80211_channel *c = &sband->channels[i];
1478
1479 if (c->center_freq == (channel->center_freq - 20))
1480 channel_before = c;
1481 if (c->center_freq == (channel->center_freq + 20))
1482 channel_after = c;
1483 }
1484
1485 /*
1486 * Please note that this assumes target bandwidth is 20 MHz,
1487 * if that ever changes we also need to change the below logic
1488 * to include that as well.
1489 */
1490 if (!is_ht40_allowed(channel_before))
1491 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1492 else
1493 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1494
1495 if (!is_ht40_allowed(channel_after))
1496 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1497 else
1498 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1499}
1500
1501static void reg_process_ht_flags_band(struct wiphy *wiphy,
1502 struct ieee80211_supported_band *sband)
1503{
1504 unsigned int i;
1505
1506 if (!sband)
1507 return;
1508
1509 for (i = 0; i < sband->n_channels; i++)
1510 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1511}
1512
1513static void reg_process_ht_flags(struct wiphy *wiphy)
1514{
1515 enum ieee80211_band band;
1516
1517 if (!wiphy)
1518 return;
1519
1520 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1521 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1522}
1523
1524static void reg_call_notifier(struct wiphy *wiphy,
1525 struct regulatory_request *request)
1526{
1527 if (wiphy->reg_notifier)
1528 wiphy->reg_notifier(wiphy, request);
1529}
1530
1531static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1532{
1533 struct ieee80211_channel *ch;
1534 struct cfg80211_chan_def chandef;
1535 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1536 bool ret = true;
1537
1538 wdev_lock(wdev);
1539
1540 if (!wdev->netdev || !netif_running(wdev->netdev))
1541 goto out;
1542
1543 switch (wdev->iftype) {
1544 case NL80211_IFTYPE_AP:
1545 case NL80211_IFTYPE_P2P_GO:
1546 if (!wdev->beacon_interval)
1547 goto out;
1548
1549 ret = cfg80211_reg_can_beacon(wiphy,
1550 &wdev->chandef, wdev->iftype);
1551 break;
1552 case NL80211_IFTYPE_STATION:
1553 case NL80211_IFTYPE_P2P_CLIENT:
1554 case NL80211_IFTYPE_ADHOC:
1555 if (!wdev->current_bss ||
1556 !wdev->current_bss->pub.channel)
1557 goto out;
1558
1559 ch = wdev->current_bss->pub.channel;
1560 if (rdev->ops->get_channel &&
1561 !rdev_get_channel(rdev, wdev, &chandef))
1562 ret = cfg80211_chandef_usable(wiphy, &chandef,
1563 IEEE80211_CHAN_DISABLED);
1564 else
1565 ret = !(ch->flags & IEEE80211_CHAN_DISABLED);
1566 break;
1567 case NL80211_IFTYPE_MONITOR:
1568 case NL80211_IFTYPE_AP_VLAN:
1569 case NL80211_IFTYPE_P2P_DEVICE:
1570 /* no enforcement required */
1571 break;
1572 default:
1573 /* others not implemented for now */
1574 WARN_ON(1);
1575 break;
1576 }
1577
1578out:
1579 wdev_unlock(wdev);
1580 return ret;
1581}
1582
1583static void reg_leave_invalid_chans(struct wiphy *wiphy)
1584{
1585 struct wireless_dev *wdev;
1586 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1587
1588 ASSERT_RTNL();
1589
1590 list_for_each_entry(wdev, &rdev->wdev_list, list)
1591 if (!reg_wdev_chan_valid(wiphy, wdev))
1592 cfg80211_leave(rdev, wdev);
1593}
1594
1595static void reg_check_chans_work(struct work_struct *work)
1596{
1597 struct cfg80211_registered_device *rdev;
1598
1599 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1600 rtnl_lock();
1601
1602 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1603 if (!(rdev->wiphy.regulatory_flags &
1604 REGULATORY_IGNORE_STALE_KICKOFF))
1605 reg_leave_invalid_chans(&rdev->wiphy);
1606
1607 rtnl_unlock();
1608}
1609
1610static void reg_check_channels(void)
1611{
1612 /*
1613 * Give usermode a chance to do something nicer (move to another
1614 * channel, orderly disconnection), before forcing a disconnection.
1615 */
1616 mod_delayed_work(system_power_efficient_wq,
1617 &reg_check_chans,
1618 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1619}
1620
1621static void wiphy_update_regulatory(struct wiphy *wiphy,
1622 enum nl80211_reg_initiator initiator)
1623{
1624 enum ieee80211_band band;
1625 struct regulatory_request *lr = get_last_request();
1626
1627 if (ignore_reg_update(wiphy, initiator)) {
1628 /*
1629 * Regulatory updates set by CORE are ignored for custom
1630 * regulatory cards. Let us notify the changes to the driver,
1631 * as some drivers used this to restore its orig_* reg domain.
1632 */
1633 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1634 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1635 reg_call_notifier(wiphy, lr);
1636 return;
1637 }
1638
1639 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1640
1641 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1642 handle_band(wiphy, initiator, wiphy->bands[band]);
1643
1644 reg_process_beacons(wiphy);
1645 reg_process_ht_flags(wiphy);
1646 reg_call_notifier(wiphy, lr);
1647}
1648
1649static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1650{
1651 struct cfg80211_registered_device *rdev;
1652 struct wiphy *wiphy;
1653
1654 ASSERT_RTNL();
1655
1656 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1657 wiphy = &rdev->wiphy;
1658 wiphy_update_regulatory(wiphy, initiator);
1659 }
1660
1661 reg_check_channels();
1662}
1663
1664static void handle_channel_custom(struct wiphy *wiphy,
1665 struct ieee80211_channel *chan,
1666 const struct ieee80211_regdomain *regd)
1667{
1668 u32 bw_flags = 0;
1669 const struct ieee80211_reg_rule *reg_rule = NULL;
1670 const struct ieee80211_power_rule *power_rule = NULL;
1671 const struct ieee80211_freq_range *freq_range = NULL;
1672 u32 max_bandwidth_khz;
1673
1674 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1675 regd);
1676
1677 if (IS_ERR(reg_rule)) {
1678 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1679 chan->center_freq);
1680 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1681 chan->flags = chan->orig_flags;
1682 return;
1683 }
1684
1685 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1686
1687 power_rule = &reg_rule->power_rule;
1688 freq_range = &reg_rule->freq_range;
1689
1690 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1691 /* Check if auto calculation requested */
1692 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1693 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1694
1695 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1696 bw_flags = IEEE80211_CHAN_NO_HT40;
1697 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1698 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1699 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1700 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1701
1702 chan->dfs_state_entered = jiffies;
1703 chan->dfs_state = NL80211_DFS_USABLE;
1704
1705 chan->beacon_found = false;
1706 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1707 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1708 chan->max_reg_power = chan->max_power =
1709 (int) MBM_TO_DBM(power_rule->max_eirp);
1710
1711 if (chan->flags & IEEE80211_CHAN_RADAR) {
1712 if (reg_rule->dfs_cac_ms)
1713 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1714 else
1715 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1716 }
1717
1718 chan->max_power = chan->max_reg_power;
1719}
1720
1721static void handle_band_custom(struct wiphy *wiphy,
1722 struct ieee80211_supported_band *sband,
1723 const struct ieee80211_regdomain *regd)
1724{
1725 unsigned int i;
1726
1727 if (!sband)
1728 return;
1729
1730 for (i = 0; i < sband->n_channels; i++)
1731 handle_channel_custom(wiphy, &sband->channels[i], regd);
1732}
1733
1734/* Used by drivers prior to wiphy registration */
1735void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1736 const struct ieee80211_regdomain *regd)
1737{
1738 enum ieee80211_band band;
1739 unsigned int bands_set = 0;
1740
1741 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1742 "wiphy should have REGULATORY_CUSTOM_REG\n");
1743 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1744
1745 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1746 if (!wiphy->bands[band])
1747 continue;
1748 handle_band_custom(wiphy, wiphy->bands[band], regd);
1749 bands_set++;
1750 }
1751
1752 /*
1753 * no point in calling this if it won't have any effect
1754 * on your device's supported bands.
1755 */
1756 WARN_ON(!bands_set);
1757}
1758EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1759
1760static void reg_set_request_processed(void)
1761{
1762 bool need_more_processing = false;
1763 struct regulatory_request *lr = get_last_request();
1764
1765 lr->processed = true;
1766
1767 spin_lock(&reg_requests_lock);
1768 if (!list_empty(&reg_requests_list))
1769 need_more_processing = true;
1770 spin_unlock(&reg_requests_lock);
1771
1772 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1773 cancel_delayed_work(&reg_timeout);
1774
1775 if (need_more_processing)
1776 schedule_work(&reg_work);
1777}
1778
1779/**
1780 * reg_process_hint_core - process core regulatory requests
1781 * @pending_request: a pending core regulatory request
1782 *
1783 * The wireless subsystem can use this function to process
1784 * a regulatory request issued by the regulatory core.
1785 *
1786 * Returns one of the different reg request treatment values.
1787 */
1788static enum reg_request_treatment
1789reg_process_hint_core(struct regulatory_request *core_request)
1790{
1791
1792 core_request->intersect = false;
1793 core_request->processed = false;
1794
1795 reg_update_last_request(core_request);
1796
1797 return reg_call_crda(core_request);
1798}
1799
1800static enum reg_request_treatment
1801__reg_process_hint_user(struct regulatory_request *user_request)
1802{
1803 struct regulatory_request *lr = get_last_request();
1804
1805 if (reg_request_indoor(user_request)) {
1806 reg_is_indoor = true;
1807 return REG_REQ_USER_HINT_HANDLED;
1808 }
1809
1810 if (reg_request_cell_base(user_request))
1811 return reg_ignore_cell_hint(user_request);
1812
1813 if (reg_request_cell_base(lr))
1814 return REG_REQ_IGNORE;
1815
1816 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1817 return REG_REQ_INTERSECT;
1818 /*
1819 * If the user knows better the user should set the regdom
1820 * to their country before the IE is picked up
1821 */
1822 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1823 lr->intersect)
1824 return REG_REQ_IGNORE;
1825 /*
1826 * Process user requests only after previous user/driver/core
1827 * requests have been processed
1828 */
1829 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1830 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1831 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1832 regdom_changes(lr->alpha2))
1833 return REG_REQ_IGNORE;
1834
1835 if (!regdom_changes(user_request->alpha2))
1836 return REG_REQ_ALREADY_SET;
1837
1838 return REG_REQ_OK;
1839}
1840
1841/**
1842 * reg_process_hint_user - process user regulatory requests
1843 * @user_request: a pending user regulatory request
1844 *
1845 * The wireless subsystem can use this function to process
1846 * a regulatory request initiated by userspace.
1847 *
1848 * Returns one of the different reg request treatment values.
1849 */
1850static enum reg_request_treatment
1851reg_process_hint_user(struct regulatory_request *user_request)
1852{
1853 enum reg_request_treatment treatment;
1854
1855 treatment = __reg_process_hint_user(user_request);
1856 if (treatment == REG_REQ_IGNORE ||
1857 treatment == REG_REQ_ALREADY_SET ||
1858 treatment == REG_REQ_USER_HINT_HANDLED) {
1859 reg_free_request(user_request);
1860 return treatment;
1861 }
1862
1863 user_request->intersect = treatment == REG_REQ_INTERSECT;
1864 user_request->processed = false;
1865
1866 reg_update_last_request(user_request);
1867
1868 user_alpha2[0] = user_request->alpha2[0];
1869 user_alpha2[1] = user_request->alpha2[1];
1870
1871 return reg_call_crda(user_request);
1872}
1873
1874static enum reg_request_treatment
1875__reg_process_hint_driver(struct regulatory_request *driver_request)
1876{
1877 struct regulatory_request *lr = get_last_request();
1878
1879 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1880 if (regdom_changes(driver_request->alpha2))
1881 return REG_REQ_OK;
1882 return REG_REQ_ALREADY_SET;
1883 }
1884
1885 /*
1886 * This would happen if you unplug and plug your card
1887 * back in or if you add a new device for which the previously
1888 * loaded card also agrees on the regulatory domain.
1889 */
1890 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1891 !regdom_changes(driver_request->alpha2))
1892 return REG_REQ_ALREADY_SET;
1893
1894 return REG_REQ_INTERSECT;
1895}
1896
1897/**
1898 * reg_process_hint_driver - process driver regulatory requests
1899 * @driver_request: a pending driver regulatory request
1900 *
1901 * The wireless subsystem can use this function to process
1902 * a regulatory request issued by an 802.11 driver.
1903 *
1904 * Returns one of the different reg request treatment values.
1905 */
1906static enum reg_request_treatment
1907reg_process_hint_driver(struct wiphy *wiphy,
1908 struct regulatory_request *driver_request)
1909{
1910 const struct ieee80211_regdomain *regd;
1911 enum reg_request_treatment treatment;
1912
1913 treatment = __reg_process_hint_driver(driver_request);
1914
1915 switch (treatment) {
1916 case REG_REQ_OK:
1917 break;
1918 case REG_REQ_IGNORE:
1919 case REG_REQ_USER_HINT_HANDLED:
1920 reg_free_request(driver_request);
1921 return treatment;
1922 case REG_REQ_INTERSECT:
1923 /* fall through */
1924 case REG_REQ_ALREADY_SET:
1925 regd = reg_copy_regd(get_cfg80211_regdom());
1926 if (IS_ERR(regd)) {
1927 reg_free_request(driver_request);
1928 return REG_REQ_IGNORE;
1929 }
1930 rcu_assign_pointer(wiphy->regd, regd);
1931 }
1932
1933
1934 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1935 driver_request->processed = false;
1936
1937 reg_update_last_request(driver_request);
1938
1939 /*
1940 * Since CRDA will not be called in this case as we already
1941 * have applied the requested regulatory domain before we just
1942 * inform userspace we have processed the request
1943 */
1944 if (treatment == REG_REQ_ALREADY_SET) {
1945 nl80211_send_reg_change_event(driver_request);
1946 reg_set_request_processed();
1947 return treatment;
1948 }
1949
1950 return reg_call_crda(driver_request);
1951}
1952
1953static enum reg_request_treatment
1954__reg_process_hint_country_ie(struct wiphy *wiphy,
1955 struct regulatory_request *country_ie_request)
1956{
1957 struct wiphy *last_wiphy = NULL;
1958 struct regulatory_request *lr = get_last_request();
1959
1960 if (reg_request_cell_base(lr)) {
1961 /* Trust a Cell base station over the AP's country IE */
1962 if (regdom_changes(country_ie_request->alpha2))
1963 return REG_REQ_IGNORE;
1964 return REG_REQ_ALREADY_SET;
1965 } else {
1966 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1967 return REG_REQ_IGNORE;
1968 }
1969
1970 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1971 return -EINVAL;
1972
1973 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1974 return REG_REQ_OK;
1975
1976 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1977
1978 if (last_wiphy != wiphy) {
1979 /*
1980 * Two cards with two APs claiming different
1981 * Country IE alpha2s. We could
1982 * intersect them, but that seems unlikely
1983 * to be correct. Reject second one for now.
1984 */
1985 if (regdom_changes(country_ie_request->alpha2))
1986 return REG_REQ_IGNORE;
1987 return REG_REQ_ALREADY_SET;
1988 }
1989 /*
1990 * Two consecutive Country IE hints on the same wiphy.
1991 * This should be picked up early by the driver/stack
1992 */
1993 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1994 return REG_REQ_OK;
1995 return REG_REQ_ALREADY_SET;
1996}
1997
1998/**
1999 * reg_process_hint_country_ie - process regulatory requests from country IEs
2000 * @country_ie_request: a regulatory request from a country IE
2001 *
2002 * The wireless subsystem can use this function to process
2003 * a regulatory request issued by a country Information Element.
2004 *
2005 * Returns one of the different reg request treatment values.
2006 */
2007static enum reg_request_treatment
2008reg_process_hint_country_ie(struct wiphy *wiphy,
2009 struct regulatory_request *country_ie_request)
2010{
2011 enum reg_request_treatment treatment;
2012
2013 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2014
2015 switch (treatment) {
2016 case REG_REQ_OK:
2017 break;
2018 case REG_REQ_IGNORE:
2019 case REG_REQ_USER_HINT_HANDLED:
2020 /* fall through */
2021 case REG_REQ_ALREADY_SET:
2022 reg_free_request(country_ie_request);
2023 return treatment;
2024 case REG_REQ_INTERSECT:
2025 reg_free_request(country_ie_request);
2026 /*
2027 * This doesn't happen yet, not sure we
2028 * ever want to support it for this case.
2029 */
2030 WARN_ONCE(1, "Unexpected intersection for country IEs");
2031 return REG_REQ_IGNORE;
2032 }
2033
2034 country_ie_request->intersect = false;
2035 country_ie_request->processed = false;
2036
2037 reg_update_last_request(country_ie_request);
2038
2039 return reg_call_crda(country_ie_request);
2040}
2041
2042/* This processes *all* regulatory hints */
2043static void reg_process_hint(struct regulatory_request *reg_request)
2044{
2045 struct wiphy *wiphy = NULL;
2046 enum reg_request_treatment treatment;
2047
2048 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2049 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2050
2051 switch (reg_request->initiator) {
2052 case NL80211_REGDOM_SET_BY_CORE:
2053 reg_process_hint_core(reg_request);
2054 return;
2055 case NL80211_REGDOM_SET_BY_USER:
2056 treatment = reg_process_hint_user(reg_request);
2057 if (treatment == REG_REQ_IGNORE ||
2058 treatment == REG_REQ_ALREADY_SET ||
2059 treatment == REG_REQ_USER_HINT_HANDLED)
2060 return;
2061 queue_delayed_work(system_power_efficient_wq,
2062 &reg_timeout, msecs_to_jiffies(3142));
2063 return;
2064 case NL80211_REGDOM_SET_BY_DRIVER:
2065 if (!wiphy)
2066 goto out_free;
2067 treatment = reg_process_hint_driver(wiphy, reg_request);
2068 break;
2069 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2070 if (!wiphy)
2071 goto out_free;
2072 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2073 break;
2074 default:
2075 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2076 goto out_free;
2077 }
2078
2079 /* This is required so that the orig_* parameters are saved */
2080 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2081 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2082 wiphy_update_regulatory(wiphy, reg_request->initiator);
2083 reg_check_channels();
2084 }
2085
2086 return;
2087
2088out_free:
2089 reg_free_request(reg_request);
2090}
2091
2092/*
2093 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2094 * Regulatory hints come on a first come first serve basis and we
2095 * must process each one atomically.
2096 */
2097static void reg_process_pending_hints(void)
2098{
2099 struct regulatory_request *reg_request, *lr;
2100
2101 lr = get_last_request();
2102
2103 /* When last_request->processed becomes true this will be rescheduled */
2104 if (lr && !lr->processed) {
2105 reg_process_hint(lr);
2106 return;
2107 }
2108
2109 spin_lock(&reg_requests_lock);
2110
2111 if (list_empty(&reg_requests_list)) {
2112 spin_unlock(&reg_requests_lock);
2113 return;
2114 }
2115
2116 reg_request = list_first_entry(&reg_requests_list,
2117 struct regulatory_request,
2118 list);
2119 list_del_init(&reg_request->list);
2120
2121 spin_unlock(&reg_requests_lock);
2122
2123 reg_process_hint(reg_request);
2124}
2125
2126/* Processes beacon hints -- this has nothing to do with country IEs */
2127static void reg_process_pending_beacon_hints(void)
2128{
2129 struct cfg80211_registered_device *rdev;
2130 struct reg_beacon *pending_beacon, *tmp;
2131
2132 /* This goes through the _pending_ beacon list */
2133 spin_lock_bh(&reg_pending_beacons_lock);
2134
2135 list_for_each_entry_safe(pending_beacon, tmp,
2136 &reg_pending_beacons, list) {
2137 list_del_init(&pending_beacon->list);
2138
2139 /* Applies the beacon hint to current wiphys */
2140 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2141 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2142
2143 /* Remembers the beacon hint for new wiphys or reg changes */
2144 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2145 }
2146
2147 spin_unlock_bh(&reg_pending_beacons_lock);
2148}
2149
2150static void reg_todo(struct work_struct *work)
2151{
2152 rtnl_lock();
2153 reg_process_pending_hints();
2154 reg_process_pending_beacon_hints();
2155 rtnl_unlock();
2156}
2157
2158static void queue_regulatory_request(struct regulatory_request *request)
2159{
2160 request->alpha2[0] = toupper(request->alpha2[0]);
2161 request->alpha2[1] = toupper(request->alpha2[1]);
2162
2163 spin_lock(&reg_requests_lock);
2164 list_add_tail(&request->list, &reg_requests_list);
2165 spin_unlock(&reg_requests_lock);
2166
2167 schedule_work(&reg_work);
2168}
2169
2170/*
2171 * Core regulatory hint -- happens during cfg80211_init()
2172 * and when we restore regulatory settings.
2173 */
2174static int regulatory_hint_core(const char *alpha2)
2175{
2176 struct regulatory_request *request;
2177
2178 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2179 if (!request)
2180 return -ENOMEM;
2181
2182 request->alpha2[0] = alpha2[0];
2183 request->alpha2[1] = alpha2[1];
2184 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2185
2186 queue_regulatory_request(request);
2187
2188 return 0;
2189}
2190
2191/* User hints */
2192int regulatory_hint_user(const char *alpha2,
2193 enum nl80211_user_reg_hint_type user_reg_hint_type)
2194{
2195 struct regulatory_request *request;
2196
2197 if (WARN_ON(!alpha2))
2198 return -EINVAL;
2199
2200 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2201 if (!request)
2202 return -ENOMEM;
2203
2204 request->wiphy_idx = WIPHY_IDX_INVALID;
2205 request->alpha2[0] = alpha2[0];
2206 request->alpha2[1] = alpha2[1];
2207 request->initiator = NL80211_REGDOM_SET_BY_USER;
2208 request->user_reg_hint_type = user_reg_hint_type;
2209
2210 queue_regulatory_request(request);
2211
2212 return 0;
2213}
2214
2215int regulatory_hint_indoor_user(void)
2216{
2217 struct regulatory_request *request;
2218
2219 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2220 if (!request)
2221 return -ENOMEM;
2222
2223 request->wiphy_idx = WIPHY_IDX_INVALID;
2224 request->initiator = NL80211_REGDOM_SET_BY_USER;
2225 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2226 queue_regulatory_request(request);
2227
2228 return 0;
2229}
2230
2231/* Driver hints */
2232int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2233{
2234 struct regulatory_request *request;
2235
2236 if (WARN_ON(!alpha2 || !wiphy))
2237 return -EINVAL;
2238
2239 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2240
2241 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2242 if (!request)
2243 return -ENOMEM;
2244
2245 request->wiphy_idx = get_wiphy_idx(wiphy);
2246
2247 request->alpha2[0] = alpha2[0];
2248 request->alpha2[1] = alpha2[1];
2249 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2250
2251 queue_regulatory_request(request);
2252
2253 return 0;
2254}
2255EXPORT_SYMBOL(regulatory_hint);
2256
2257void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2258 const u8 *country_ie, u8 country_ie_len)
2259{
2260 char alpha2[2];
2261 enum environment_cap env = ENVIRON_ANY;
2262 struct regulatory_request *request = NULL, *lr;
2263
2264 /* IE len must be evenly divisible by 2 */
2265 if (country_ie_len & 0x01)
2266 return;
2267
2268 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2269 return;
2270
2271 request = kzalloc(sizeof(*request), GFP_KERNEL);
2272 if (!request)
2273 return;
2274
2275 alpha2[0] = country_ie[0];
2276 alpha2[1] = country_ie[1];
2277
2278 if (country_ie[2] == 'I')
2279 env = ENVIRON_INDOOR;
2280 else if (country_ie[2] == 'O')
2281 env = ENVIRON_OUTDOOR;
2282
2283 rcu_read_lock();
2284 lr = get_last_request();
2285
2286 if (unlikely(!lr))
2287 goto out;
2288
2289 /*
2290 * We will run this only upon a successful connection on cfg80211.
2291 * We leave conflict resolution to the workqueue, where can hold
2292 * the RTNL.
2293 */
2294 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2295 lr->wiphy_idx != WIPHY_IDX_INVALID)
2296 goto out;
2297
2298 request->wiphy_idx = get_wiphy_idx(wiphy);
2299 request->alpha2[0] = alpha2[0];
2300 request->alpha2[1] = alpha2[1];
2301 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2302 request->country_ie_env = env;
2303
2304 queue_regulatory_request(request);
2305 request = NULL;
2306out:
2307 kfree(request);
2308 rcu_read_unlock();
2309}
2310
2311static void restore_alpha2(char *alpha2, bool reset_user)
2312{
2313 /* indicates there is no alpha2 to consider for restoration */
2314 alpha2[0] = '9';
2315 alpha2[1] = '7';
2316
2317 /* The user setting has precedence over the module parameter */
2318 if (is_user_regdom_saved()) {
2319 /* Unless we're asked to ignore it and reset it */
2320 if (reset_user) {
2321 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2322 user_alpha2[0] = '9';
2323 user_alpha2[1] = '7';
2324
2325 /*
2326 * If we're ignoring user settings, we still need to
2327 * check the module parameter to ensure we put things
2328 * back as they were for a full restore.
2329 */
2330 if (!is_world_regdom(ieee80211_regdom)) {
2331 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2332 ieee80211_regdom[0], ieee80211_regdom[1]);
2333 alpha2[0] = ieee80211_regdom[0];
2334 alpha2[1] = ieee80211_regdom[1];
2335 }
2336 } else {
2337 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2338 user_alpha2[0], user_alpha2[1]);
2339 alpha2[0] = user_alpha2[0];
2340 alpha2[1] = user_alpha2[1];
2341 }
2342 } else if (!is_world_regdom(ieee80211_regdom)) {
2343 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2344 ieee80211_regdom[0], ieee80211_regdom[1]);
2345 alpha2[0] = ieee80211_regdom[0];
2346 alpha2[1] = ieee80211_regdom[1];
2347 } else
2348 REG_DBG_PRINT("Restoring regulatory settings\n");
2349}
2350
2351static void restore_custom_reg_settings(struct wiphy *wiphy)
2352{
2353 struct ieee80211_supported_band *sband;
2354 enum ieee80211_band band;
2355 struct ieee80211_channel *chan;
2356 int i;
2357
2358 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2359 sband = wiphy->bands[band];
2360 if (!sband)
2361 continue;
2362 for (i = 0; i < sband->n_channels; i++) {
2363 chan = &sband->channels[i];
2364 chan->flags = chan->orig_flags;
2365 chan->max_antenna_gain = chan->orig_mag;
2366 chan->max_power = chan->orig_mpwr;
2367 chan->beacon_found = false;
2368 }
2369 }
2370}
2371
2372/*
2373 * Restoring regulatory settings involves ingoring any
2374 * possibly stale country IE information and user regulatory
2375 * settings if so desired, this includes any beacon hints
2376 * learned as we could have traveled outside to another country
2377 * after disconnection. To restore regulatory settings we do
2378 * exactly what we did at bootup:
2379 *
2380 * - send a core regulatory hint
2381 * - send a user regulatory hint if applicable
2382 *
2383 * Device drivers that send a regulatory hint for a specific country
2384 * keep their own regulatory domain on wiphy->regd so that does does
2385 * not need to be remembered.
2386 */
2387static void restore_regulatory_settings(bool reset_user)
2388{
2389 char alpha2[2];
2390 char world_alpha2[2];
2391 struct reg_beacon *reg_beacon, *btmp;
2392 struct regulatory_request *reg_request, *tmp;
2393 LIST_HEAD(tmp_reg_req_list);
2394 struct cfg80211_registered_device *rdev;
2395
2396 ASSERT_RTNL();
2397
2398 reg_is_indoor = false;
2399
2400 reset_regdomains(true, &world_regdom);
2401 restore_alpha2(alpha2, reset_user);
2402
2403 /*
2404 * If there's any pending requests we simply
2405 * stash them to a temporary pending queue and
2406 * add then after we've restored regulatory
2407 * settings.
2408 */
2409 spin_lock(&reg_requests_lock);
2410 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2411 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2412 continue;
2413 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2414 }
2415 spin_unlock(&reg_requests_lock);
2416
2417 /* Clear beacon hints */
2418 spin_lock_bh(&reg_pending_beacons_lock);
2419 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2420 list_del(&reg_beacon->list);
2421 kfree(reg_beacon);
2422 }
2423 spin_unlock_bh(&reg_pending_beacons_lock);
2424
2425 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2426 list_del(&reg_beacon->list);
2427 kfree(reg_beacon);
2428 }
2429
2430 /* First restore to the basic regulatory settings */
2431 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2432 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2433
2434 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2435 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2436 restore_custom_reg_settings(&rdev->wiphy);
2437 }
2438
2439 regulatory_hint_core(world_alpha2);
2440
2441 /*
2442 * This restores the ieee80211_regdom module parameter
2443 * preference or the last user requested regulatory
2444 * settings, user regulatory settings takes precedence.
2445 */
2446 if (is_an_alpha2(alpha2))
2447 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2448
2449 spin_lock(&reg_requests_lock);
2450 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2451 spin_unlock(&reg_requests_lock);
2452
2453 REG_DBG_PRINT("Kicking the queue\n");
2454
2455 schedule_work(&reg_work);
2456}
2457
2458void regulatory_hint_disconnect(void)
2459{
2460 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2461 restore_regulatory_settings(false);
2462}
2463
2464static bool freq_is_chan_12_13_14(u16 freq)
2465{
2466 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2467 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2468 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2469 return true;
2470 return false;
2471}
2472
2473static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2474{
2475 struct reg_beacon *pending_beacon;
2476
2477 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2478 if (beacon_chan->center_freq ==
2479 pending_beacon->chan.center_freq)
2480 return true;
2481 return false;
2482}
2483
2484int regulatory_hint_found_beacon(struct wiphy *wiphy,
2485 struct ieee80211_channel *beacon_chan,
2486 gfp_t gfp)
2487{
2488 struct reg_beacon *reg_beacon;
2489 bool processing;
2490
2491 if (beacon_chan->beacon_found ||
2492 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2493 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2494 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2495 return 0;
2496
2497 spin_lock_bh(&reg_pending_beacons_lock);
2498 processing = pending_reg_beacon(beacon_chan);
2499 spin_unlock_bh(&reg_pending_beacons_lock);
2500
2501 if (processing)
2502 return 0;
2503
2504 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2505 if (!reg_beacon)
2506 return -ENOMEM;
2507
2508 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2509 beacon_chan->center_freq,
2510 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2511 wiphy_name(wiphy));
2512
2513 memcpy(&reg_beacon->chan, beacon_chan,
2514 sizeof(struct ieee80211_channel));
2515
2516 /*
2517 * Since we can be called from BH or and non-BH context
2518 * we must use spin_lock_bh()
2519 */
2520 spin_lock_bh(&reg_pending_beacons_lock);
2521 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2522 spin_unlock_bh(&reg_pending_beacons_lock);
2523
2524 schedule_work(&reg_work);
2525
2526 return 0;
2527}
2528
2529static void print_rd_rules(const struct ieee80211_regdomain *rd)
2530{
2531 unsigned int i;
2532 const struct ieee80211_reg_rule *reg_rule = NULL;
2533 const struct ieee80211_freq_range *freq_range = NULL;
2534 const struct ieee80211_power_rule *power_rule = NULL;
2535 char bw[32], cac_time[32];
2536
2537 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2538
2539 for (i = 0; i < rd->n_reg_rules; i++) {
2540 reg_rule = &rd->reg_rules[i];
2541 freq_range = &reg_rule->freq_range;
2542 power_rule = &reg_rule->power_rule;
2543
2544 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2545 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2546 freq_range->max_bandwidth_khz,
2547 reg_get_max_bandwidth(rd, reg_rule));
2548 else
2549 snprintf(bw, sizeof(bw), "%d KHz",
2550 freq_range->max_bandwidth_khz);
2551
2552 if (reg_rule->flags & NL80211_RRF_DFS)
2553 scnprintf(cac_time, sizeof(cac_time), "%u s",
2554 reg_rule->dfs_cac_ms/1000);
2555 else
2556 scnprintf(cac_time, sizeof(cac_time), "N/A");
2557
2558
2559 /*
2560 * There may not be documentation for max antenna gain
2561 * in certain regions
2562 */
2563 if (power_rule->max_antenna_gain)
2564 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2565 freq_range->start_freq_khz,
2566 freq_range->end_freq_khz,
2567 bw,
2568 power_rule->max_antenna_gain,
2569 power_rule->max_eirp,
2570 cac_time);
2571 else
2572 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2573 freq_range->start_freq_khz,
2574 freq_range->end_freq_khz,
2575 bw,
2576 power_rule->max_eirp,
2577 cac_time);
2578 }
2579}
2580
2581bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2582{
2583 switch (dfs_region) {
2584 case NL80211_DFS_UNSET:
2585 case NL80211_DFS_FCC:
2586 case NL80211_DFS_ETSI:
2587 case NL80211_DFS_JP:
2588 return true;
2589 default:
2590 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2591 dfs_region);
2592 return false;
2593 }
2594}
2595
2596static void print_regdomain(const struct ieee80211_regdomain *rd)
2597{
2598 struct regulatory_request *lr = get_last_request();
2599
2600 if (is_intersected_alpha2(rd->alpha2)) {
2601 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2602 struct cfg80211_registered_device *rdev;
2603 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2604 if (rdev) {
2605 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2606 rdev->country_ie_alpha2[0],
2607 rdev->country_ie_alpha2[1]);
2608 } else
2609 pr_info("Current regulatory domain intersected:\n");
2610 } else
2611 pr_info("Current regulatory domain intersected:\n");
2612 } else if (is_world_regdom(rd->alpha2)) {
2613 pr_info("World regulatory domain updated:\n");
2614 } else {
2615 if (is_unknown_alpha2(rd->alpha2))
2616 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2617 else {
2618 if (reg_request_cell_base(lr))
2619 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2620 rd->alpha2[0], rd->alpha2[1]);
2621 else
2622 pr_info("Regulatory domain changed to country: %c%c\n",
2623 rd->alpha2[0], rd->alpha2[1]);
2624 }
2625 }
2626
2627 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2628 print_rd_rules(rd);
2629}
2630
2631static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2632{
2633 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2634 print_rd_rules(rd);
2635}
2636
2637static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2638{
2639 if (!is_world_regdom(rd->alpha2))
2640 return -EINVAL;
2641 update_world_regdomain(rd);
2642 return 0;
2643}
2644
2645static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2646 struct regulatory_request *user_request)
2647{
2648 const struct ieee80211_regdomain *intersected_rd = NULL;
2649
2650 if (!regdom_changes(rd->alpha2))
2651 return -EALREADY;
2652
2653 if (!is_valid_rd(rd)) {
2654 pr_err("Invalid regulatory domain detected:\n");
2655 print_regdomain_info(rd);
2656 return -EINVAL;
2657 }
2658
2659 if (!user_request->intersect) {
2660 reset_regdomains(false, rd);
2661 return 0;
2662 }
2663
2664 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2665 if (!intersected_rd)
2666 return -EINVAL;
2667
2668 kfree(rd);
2669 rd = NULL;
2670 reset_regdomains(false, intersected_rd);
2671
2672 return 0;
2673}
2674
2675static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2676 struct regulatory_request *driver_request)
2677{
2678 const struct ieee80211_regdomain *regd;
2679 const struct ieee80211_regdomain *intersected_rd = NULL;
2680 const struct ieee80211_regdomain *tmp;
2681 struct wiphy *request_wiphy;
2682
2683 if (is_world_regdom(rd->alpha2))
2684 return -EINVAL;
2685
2686 if (!regdom_changes(rd->alpha2))
2687 return -EALREADY;
2688
2689 if (!is_valid_rd(rd)) {
2690 pr_err("Invalid regulatory domain detected:\n");
2691 print_regdomain_info(rd);
2692 return -EINVAL;
2693 }
2694
2695 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2696 if (!request_wiphy) {
2697 queue_delayed_work(system_power_efficient_wq,
2698 &reg_timeout, 0);
2699 return -ENODEV;
2700 }
2701
2702 if (!driver_request->intersect) {
2703 if (request_wiphy->regd)
2704 return -EALREADY;
2705
2706 regd = reg_copy_regd(rd);
2707 if (IS_ERR(regd))
2708 return PTR_ERR(regd);
2709
2710 rcu_assign_pointer(request_wiphy->regd, regd);
2711 reset_regdomains(false, rd);
2712 return 0;
2713 }
2714
2715 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2716 if (!intersected_rd)
2717 return -EINVAL;
2718
2719 /*
2720 * We can trash what CRDA provided now.
2721 * However if a driver requested this specific regulatory
2722 * domain we keep it for its private use
2723 */
2724 tmp = get_wiphy_regdom(request_wiphy);
2725 rcu_assign_pointer(request_wiphy->regd, rd);
2726 rcu_free_regdom(tmp);
2727
2728 rd = NULL;
2729
2730 reset_regdomains(false, intersected_rd);
2731
2732 return 0;
2733}
2734
2735static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2736 struct regulatory_request *country_ie_request)
2737{
2738 struct wiphy *request_wiphy;
2739
2740 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2741 !is_unknown_alpha2(rd->alpha2))
2742 return -EINVAL;
2743
2744 /*
2745 * Lets only bother proceeding on the same alpha2 if the current
2746 * rd is non static (it means CRDA was present and was used last)
2747 * and the pending request came in from a country IE
2748 */
2749
2750 if (!is_valid_rd(rd)) {
2751 pr_err("Invalid regulatory domain detected:\n");
2752 print_regdomain_info(rd);
2753 return -EINVAL;
2754 }
2755
2756 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2757 if (!request_wiphy) {
2758 queue_delayed_work(system_power_efficient_wq,
2759 &reg_timeout, 0);
2760 return -ENODEV;
2761 }
2762
2763 if (country_ie_request->intersect)
2764 return -EINVAL;
2765
2766 reset_regdomains(false, rd);
2767 return 0;
2768}
2769
2770/*
2771 * Use this call to set the current regulatory domain. Conflicts with
2772 * multiple drivers can be ironed out later. Caller must've already
2773 * kmalloc'd the rd structure.
2774 */
2775int set_regdom(const struct ieee80211_regdomain *rd)
2776{
2777 struct regulatory_request *lr;
2778 bool user_reset = false;
2779 int r;
2780
2781 if (!reg_is_valid_request(rd->alpha2)) {
2782 kfree(rd);
2783 return -EINVAL;
2784 }
2785
2786 lr = get_last_request();
2787
2788 /* Note that this doesn't update the wiphys, this is done below */
2789 switch (lr->initiator) {
2790 case NL80211_REGDOM_SET_BY_CORE:
2791 r = reg_set_rd_core(rd);
2792 break;
2793 case NL80211_REGDOM_SET_BY_USER:
2794 r = reg_set_rd_user(rd, lr);
2795 user_reset = true;
2796 break;
2797 case NL80211_REGDOM_SET_BY_DRIVER:
2798 r = reg_set_rd_driver(rd, lr);
2799 break;
2800 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2801 r = reg_set_rd_country_ie(rd, lr);
2802 break;
2803 default:
2804 WARN(1, "invalid initiator %d\n", lr->initiator);
2805 return -EINVAL;
2806 }
2807
2808 if (r) {
2809 switch (r) {
2810 case -EALREADY:
2811 reg_set_request_processed();
2812 break;
2813 default:
2814 /* Back to world regulatory in case of errors */
2815 restore_regulatory_settings(user_reset);
2816 }
2817
2818 kfree(rd);
2819 return r;
2820 }
2821
2822 /* This would make this whole thing pointless */
2823 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2824 return -EINVAL;
2825
2826 /* update all wiphys now with the new established regulatory domain */
2827 update_all_wiphy_regulatory(lr->initiator);
2828
2829 print_regdomain(get_cfg80211_regdom());
2830
2831 nl80211_send_reg_change_event(lr);
2832
2833 reg_set_request_processed();
2834
2835 return 0;
2836}
2837
2838void wiphy_regulatory_register(struct wiphy *wiphy)
2839{
2840 struct regulatory_request *lr;
2841
2842 if (!reg_dev_ignore_cell_hint(wiphy))
2843 reg_num_devs_support_basehint++;
2844
2845 lr = get_last_request();
2846 wiphy_update_regulatory(wiphy, lr->initiator);
2847}
2848
2849void wiphy_regulatory_deregister(struct wiphy *wiphy)
2850{
2851 struct wiphy *request_wiphy = NULL;
2852 struct regulatory_request *lr;
2853
2854 lr = get_last_request();
2855
2856 if (!reg_dev_ignore_cell_hint(wiphy))
2857 reg_num_devs_support_basehint--;
2858
2859 rcu_free_regdom(get_wiphy_regdom(wiphy));
2860 RCU_INIT_POINTER(wiphy->regd, NULL);
2861
2862 if (lr)
2863 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2864
2865 if (!request_wiphy || request_wiphy != wiphy)
2866 return;
2867
2868 lr->wiphy_idx = WIPHY_IDX_INVALID;
2869 lr->country_ie_env = ENVIRON_ANY;
2870}
2871
2872static void reg_timeout_work(struct work_struct *work)
2873{
2874 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2875 rtnl_lock();
2876 restore_regulatory_settings(true);
2877 rtnl_unlock();
2878}
2879
2880/*
2881 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2882 * UNII band definitions
2883 */
2884int cfg80211_get_unii(int freq)
2885{
2886 /* UNII-1 */
2887 if (freq >= 5150 && freq <= 5250)
2888 return 0;
2889
2890 /* UNII-2A */
2891 if (freq > 5250 && freq <= 5350)
2892 return 1;
2893
2894 /* UNII-2B */
2895 if (freq > 5350 && freq <= 5470)
2896 return 2;
2897
2898 /* UNII-2C */
2899 if (freq > 5470 && freq <= 5725)
2900 return 3;
2901
2902 /* UNII-3 */
2903 if (freq > 5725 && freq <= 5825)
2904 return 4;
2905
2906 return -EINVAL;
2907}
2908
2909bool regulatory_indoor_allowed(void)
2910{
2911 return reg_is_indoor;
2912}
2913
2914int __init regulatory_init(void)
2915{
2916 int err = 0;
2917
2918 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2919 if (IS_ERR(reg_pdev))
2920 return PTR_ERR(reg_pdev);
2921
2922 spin_lock_init(&reg_requests_lock);
2923 spin_lock_init(&reg_pending_beacons_lock);
2924
2925 reg_regdb_size_check();
2926
2927 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2928
2929 user_alpha2[0] = '9';
2930 user_alpha2[1] = '7';
2931
2932 /* We always try to get an update for the static regdomain */
2933 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2934 if (err) {
2935 if (err == -ENOMEM)
2936 return err;
2937 /*
2938 * N.B. kobject_uevent_env() can fail mainly for when we're out
2939 * memory which is handled and propagated appropriately above
2940 * but it can also fail during a netlink_broadcast() or during
2941 * early boot for call_usermodehelper(). For now treat these
2942 * errors as non-fatal.
2943 */
2944 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2945 }
2946
2947 /*
2948 * Finally, if the user set the module parameter treat it
2949 * as a user hint.
2950 */
2951 if (!is_world_regdom(ieee80211_regdom))
2952 regulatory_hint_user(ieee80211_regdom,
2953 NL80211_USER_REG_HINT_USER);
2954
2955 return 0;
2956}
2957
2958void regulatory_exit(void)
2959{
2960 struct regulatory_request *reg_request, *tmp;
2961 struct reg_beacon *reg_beacon, *btmp;
2962
2963 cancel_work_sync(&reg_work);
2964 cancel_delayed_work_sync(&reg_timeout);
2965 cancel_delayed_work_sync(&reg_check_chans);
2966
2967 /* Lock to suppress warnings */
2968 rtnl_lock();
2969 reset_regdomains(true, NULL);
2970 rtnl_unlock();
2971
2972 dev_set_uevent_suppress(&reg_pdev->dev, true);
2973
2974 platform_device_unregister(reg_pdev);
2975
2976 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2977 list_del(&reg_beacon->list);
2978 kfree(reg_beacon);
2979 }
2980
2981 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2982 list_del(&reg_beacon->list);
2983 kfree(reg_beacon);
2984 }
2985
2986 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2987 list_del(&reg_request->list);
2988 kfree(reg_request);
2989 }
2990}