]> git.proxmox.com Git - ovs.git/blame_incremental - ofproto/ofproto-dpif.c
odp-util: Elaborate the comment for odp_flow_format() function.
[ovs.git] / ofproto / ofproto-dpif.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <config.h>
18
19#include "ofproto/ofproto-dpif.h"
20#include "ofproto/ofproto-provider.h"
21
22#include <errno.h>
23
24#include "bfd.h"
25#include "bond.h"
26#include "bundle.h"
27#include "byte-order.h"
28#include "connmgr.h"
29#include "coverage.h"
30#include "cfm.h"
31#include "dpif.h"
32#include "dynamic-string.h"
33#include "fail-open.h"
34#include "guarded-list.h"
35#include "hmapx.h"
36#include "lacp.h"
37#include "learn.h"
38#include "mac-learning.h"
39#include "meta-flow.h"
40#include "multipath.h"
41#include "netdev-vport.h"
42#include "netdev.h"
43#include "netlink.h"
44#include "nx-match.h"
45#include "odp-util.h"
46#include "odp-execute.h"
47#include "ofp-util.h"
48#include "ofpbuf.h"
49#include "ofp-actions.h"
50#include "ofp-parse.h"
51#include "ofp-print.h"
52#include "ofproto-dpif-governor.h"
53#include "ofproto-dpif-ipfix.h"
54#include "ofproto-dpif-mirror.h"
55#include "ofproto-dpif-monitor.h"
56#include "ofproto-dpif-sflow.h"
57#include "ofproto-dpif-upcall.h"
58#include "ofproto-dpif-xlate.h"
59#include "poll-loop.h"
60#include "simap.h"
61#include "smap.h"
62#include "timer.h"
63#include "tunnel.h"
64#include "unaligned.h"
65#include "unixctl.h"
66#include "vlan-bitmap.h"
67#include "vlog.h"
68
69VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
70
71COVERAGE_DEFINE(ofproto_dpif_expired);
72COVERAGE_DEFINE(facet_revalidate);
73COVERAGE_DEFINE(facet_unexpected);
74COVERAGE_DEFINE(facet_create);
75COVERAGE_DEFINE(facet_remove);
76COVERAGE_DEFINE(subfacet_create);
77COVERAGE_DEFINE(subfacet_destroy);
78COVERAGE_DEFINE(subfacet_install_fail);
79COVERAGE_DEFINE(packet_in_overflow);
80
81/* Number of implemented OpenFlow tables. */
82enum { N_TABLES = 255 };
83enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
84BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
85
86struct flow_miss;
87struct facet;
88
89struct rule_dpif {
90 struct rule up;
91
92 /* These statistics:
93 *
94 * - Do include packets and bytes from facets that have been deleted or
95 * whose own statistics have been folded into the rule.
96 *
97 * - Do include packets and bytes sent "by hand" that were accounted to
98 * the rule without any facet being involved (this is a rare corner
99 * case in rule_execute()).
100 *
101 * - Do not include packet or bytes that can be obtained from any facet's
102 * packet_count or byte_count member or that can be obtained from the
103 * datapath by, e.g., dpif_flow_get() for any subfacet.
104 */
105 struct ovs_mutex stats_mutex;
106 uint64_t packet_count OVS_GUARDED; /* Number of packets received. */
107 uint64_t byte_count OVS_GUARDED; /* Number of bytes received. */
108};
109
110static void rule_get_stats(struct rule *, uint64_t *packets, uint64_t *bytes);
111static struct rule_dpif *rule_dpif_cast(const struct rule *);
112
113struct ofbundle {
114 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
115 struct ofproto_dpif *ofproto; /* Owning ofproto. */
116 void *aux; /* Key supplied by ofproto's client. */
117 char *name; /* Identifier for log messages. */
118
119 /* Configuration. */
120 struct list ports; /* Contains "struct ofport"s. */
121 enum port_vlan_mode vlan_mode; /* VLAN mode */
122 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
123 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
124 * NULL if all VLANs are trunked. */
125 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
126 struct bond *bond; /* Nonnull iff more than one port. */
127 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
128
129 /* Status. */
130 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
131};
132
133static void bundle_remove(struct ofport *);
134static void bundle_update(struct ofbundle *);
135static void bundle_destroy(struct ofbundle *);
136static void bundle_del_port(struct ofport_dpif *);
137static void bundle_run(struct ofbundle *);
138static void bundle_wait(struct ofbundle *);
139
140static void stp_run(struct ofproto_dpif *ofproto);
141static void stp_wait(struct ofproto_dpif *ofproto);
142static int set_stp_port(struct ofport *,
143 const struct ofproto_port_stp_settings *);
144
145static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
146 enum slow_path_reason,
147 uint64_t *stub, size_t stub_size,
148 const struct nlattr **actionsp,
149 size_t *actions_lenp);
150
151/* A subfacet (see "struct subfacet" below) has three possible installation
152 * states:
153 *
154 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
155 * case just after the subfacet is created, just before the subfacet is
156 * destroyed, or if the datapath returns an error when we try to install a
157 * subfacet.
158 *
159 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
160 *
161 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
162 * ofproto_dpif is installed in the datapath.
163 */
164enum subfacet_path {
165 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
166 SF_FAST_PATH, /* Full actions are installed. */
167 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
168};
169
170/* A dpif flow and actions associated with a facet.
171 *
172 * See also the large comment on struct facet. */
173struct subfacet {
174 /* Owners. */
175 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
176 struct list list_node; /* In struct facet's 'facets' list. */
177 struct facet *facet; /* Owning facet. */
178 struct dpif_backer *backer; /* Owning backer. */
179
180 struct nlattr *key;
181 int key_len;
182
183 long long int used; /* Time last used; time created if not used. */
184 long long int created; /* Time created. */
185
186 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
187 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
188
189 enum subfacet_path path; /* Installed in datapath? */
190};
191
192#define SUBFACET_DESTROY_MAX_BATCH 50
193
194static struct subfacet *subfacet_create(struct facet *, struct flow_miss *);
195static struct subfacet *subfacet_find(struct dpif_backer *,
196 const struct nlattr *key, size_t key_len,
197 uint32_t key_hash);
198static void subfacet_destroy(struct subfacet *);
199static void subfacet_destroy__(struct subfacet *);
200static void subfacet_destroy_batch(struct dpif_backer *,
201 struct subfacet **, int n);
202static void subfacet_reset_dp_stats(struct subfacet *,
203 struct dpif_flow_stats *);
204static void subfacet_update_stats(struct subfacet *,
205 const struct dpif_flow_stats *);
206static int subfacet_install(struct subfacet *,
207 const struct ofpbuf *odp_actions,
208 struct dpif_flow_stats *);
209static void subfacet_uninstall(struct subfacet *);
210
211/* A unique, non-overlapping instantiation of an OpenFlow flow.
212 *
213 * A facet associates a "struct flow", which represents the Open vSwitch
214 * userspace idea of an exact-match flow, with one or more subfacets.
215 * While the facet is created based on an exact-match flow, it is stored
216 * within the ofproto based on the wildcards that could be expressed
217 * based on the flow table and other configuration. (See the 'wc'
218 * description in "struct xlate_out" for more details.)
219 *
220 * Each subfacet tracks the datapath's idea of the flow equivalent to
221 * the facet. When the kernel module (or other dpif implementation) and
222 * Open vSwitch userspace agree on the definition of a flow key, there
223 * is exactly one subfacet per facet. If the dpif implementation
224 * supports more-specific flow matching than userspace, however, a facet
225 * can have more than one subfacet. Examples include the dpif
226 * implementation not supporting the same wildcards as userspace or some
227 * distinction in flow that userspace simply doesn't understand.
228 *
229 * Flow expiration works in terms of subfacets, so a facet must have at
230 * least one subfacet or it will never expire, leaking memory. */
231struct facet {
232 /* Owner. */
233 struct ofproto_dpif *ofproto;
234
235 /* Owned data. */
236 struct list subfacets;
237 long long int used; /* Time last used; time created if not used. */
238
239 /* Key. */
240 struct flow flow; /* Flow of the creating subfacet. */
241 struct cls_rule cr; /* In 'ofproto_dpif's facets classifier. */
242
243 /* These statistics:
244 *
245 * - Do include packets and bytes sent "by hand", e.g. with
246 * dpif_execute().
247 *
248 * - Do include packets and bytes that were obtained from the datapath
249 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
250 * DPIF_FP_ZERO_STATS).
251 *
252 * - Do not include packets or bytes that can be obtained from the
253 * datapath for any existing subfacet.
254 */
255 uint64_t packet_count; /* Number of packets received. */
256 uint64_t byte_count; /* Number of bytes received. */
257
258 /* Resubmit statistics. */
259 uint64_t prev_packet_count; /* Number of packets from last stats push. */
260 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
261 long long int prev_used; /* Used time from last stats push. */
262
263 /* Accounting. */
264 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
265 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
266 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
267
268 struct xlate_out xout;
269
270 /* Storage for a single subfacet, to reduce malloc() time and space
271 * overhead. (A facet always has at least one subfacet and in the common
272 * case has exactly one subfacet. However, 'one_subfacet' may not
273 * always be valid, since it could have been removed after newer
274 * subfacets were pushed onto the 'subfacets' list.) */
275 struct subfacet one_subfacet;
276
277 long long int learn_rl; /* Rate limiter for facet_learn(). */
278};
279
280static struct facet *facet_create(const struct flow_miss *);
281static void facet_remove(struct facet *);
282static void facet_free(struct facet *);
283
284static struct facet *facet_find(struct ofproto_dpif *, const struct flow *);
285static struct facet *facet_lookup_valid(struct ofproto_dpif *,
286 const struct flow *);
287static bool facet_revalidate(struct facet *);
288static bool facet_check_consistency(struct facet *);
289
290static void facet_flush_stats(struct facet *);
291
292static void facet_reset_counters(struct facet *);
293static void flow_push_stats(struct ofproto_dpif *, struct flow *,
294 struct dpif_flow_stats *, bool may_learn);
295static void facet_push_stats(struct facet *, bool may_learn);
296static void facet_learn(struct facet *);
297static void facet_account(struct facet *);
298static void push_all_stats(void);
299
300static bool facet_is_controller_flow(struct facet *);
301
302struct ofport_dpif {
303 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
304 struct ofport up;
305
306 odp_port_t odp_port;
307 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
308 struct list bundle_node; /* In struct ofbundle's "ports" list. */
309 struct cfm *cfm; /* Connectivity Fault Management, if any. */
310 struct bfd *bfd; /* BFD, if any. */
311 bool may_enable; /* May be enabled in bonds. */
312 bool is_tunnel; /* This port is a tunnel. */
313 long long int carrier_seq; /* Carrier status changes. */
314 struct ofport_dpif *peer; /* Peer if patch port. */
315
316 /* Spanning tree. */
317 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
318 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
319 long long int stp_state_entered;
320
321 /* Queue to DSCP mapping. */
322 struct ofproto_port_queue *qdscp;
323 size_t n_qdscp;
324
325 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
326 *
327 * This is deprecated. It is only for compatibility with broken device
328 * drivers in old versions of Linux that do not properly support VLANs when
329 * VLAN devices are not used. When broken device drivers are no longer in
330 * widespread use, we will delete these interfaces. */
331 ofp_port_t realdev_ofp_port;
332 int vlandev_vid;
333};
334
335/* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
336 *
337 * This is deprecated. It is only for compatibility with broken device drivers
338 * in old versions of Linux that do not properly support VLANs when VLAN
339 * devices are not used. When broken device drivers are no longer in
340 * widespread use, we will delete these interfaces. */
341struct vlan_splinter {
342 struct hmap_node realdev_vid_node;
343 struct hmap_node vlandev_node;
344 ofp_port_t realdev_ofp_port;
345 ofp_port_t vlandev_ofp_port;
346 int vid;
347};
348
349static void vsp_remove(struct ofport_dpif *);
350static void vsp_add(struct ofport_dpif *, ofp_port_t realdev_ofp_port, int vid);
351
352static odp_port_t ofp_port_to_odp_port(const struct ofproto_dpif *,
353 ofp_port_t);
354
355static ofp_port_t odp_port_to_ofp_port(const struct ofproto_dpif *,
356 odp_port_t);
357
358static struct ofport_dpif *
359ofport_dpif_cast(const struct ofport *ofport)
360{
361 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
362}
363
364static void port_run(struct ofport_dpif *);
365static int set_bfd(struct ofport *, const struct smap *);
366static int set_cfm(struct ofport *, const struct cfm_settings *);
367static void ofport_update_peer(struct ofport_dpif *);
368static void run_fast_rl(void);
369static int run_fast(struct ofproto *);
370
371struct dpif_completion {
372 struct list list_node;
373 struct ofoperation *op;
374};
375
376/* Reasons that we might need to revalidate every facet, and corresponding
377 * coverage counters.
378 *
379 * A value of 0 means that there is no need to revalidate.
380 *
381 * It would be nice to have some cleaner way to integrate with coverage
382 * counters, but with only a few reasons I guess this is good enough for
383 * now. */
384enum revalidate_reason {
385 REV_RECONFIGURE = 1, /* Switch configuration changed. */
386 REV_STP, /* Spanning tree protocol port status change. */
387 REV_BOND, /* Bonding changed. */
388 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
389 REV_FLOW_TABLE, /* Flow table changed. */
390 REV_MAC_LEARNING, /* Mac learning changed. */
391 REV_INCONSISTENCY /* Facet self-check failed. */
392};
393COVERAGE_DEFINE(rev_reconfigure);
394COVERAGE_DEFINE(rev_stp);
395COVERAGE_DEFINE(rev_bond);
396COVERAGE_DEFINE(rev_port_toggled);
397COVERAGE_DEFINE(rev_flow_table);
398COVERAGE_DEFINE(rev_mac_learning);
399COVERAGE_DEFINE(rev_inconsistency);
400
401struct avg_subfacet_rates {
402 double add_rate; /* Moving average of new flows created per minute. */
403 double del_rate; /* Moving average of flows deleted per minute. */
404};
405
406/* All datapaths of a given type share a single dpif backer instance. */
407struct dpif_backer {
408 char *type;
409 int refcount;
410 struct dpif *dpif;
411 struct udpif *udpif;
412 struct timer next_expiration;
413
414 struct ovs_rwlock odp_to_ofport_lock;
415 struct hmap odp_to_ofport_map OVS_GUARDED; /* ODP port to ofport map. */
416
417 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
418
419 /* Facet revalidation flags applying to facets which use this backer. */
420 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
421
422 struct hmap drop_keys; /* Set of dropped odp keys. */
423 bool recv_set_enable; /* Enables or disables receiving packets. */
424
425 struct hmap subfacets;
426 struct governor *governor;
427
428 /* Subfacet statistics.
429 *
430 * These keep track of the total number of subfacets added and deleted and
431 * flow life span. They are useful for computing the flow rates stats
432 * exposed via "ovs-appctl dpif/show". The goal is to learn about
433 * traffic patterns in ways that we can use later to improve Open vSwitch
434 * performance in new situations. */
435 long long int created; /* Time when it is created. */
436 unsigned max_n_subfacet; /* Maximum number of flows */
437 unsigned avg_n_subfacet; /* Average number of flows. */
438 long long int avg_subfacet_life; /* Average life span of subfacets. */
439
440 /* Number of upcall handling threads. */
441 unsigned int n_handler_threads;
442};
443
444/* All existing ofproto_backer instances, indexed by ofproto->up.type. */
445static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
446
447static void drop_key_clear(struct dpif_backer *);
448
449struct ofproto_dpif {
450 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
451 struct ofproto up;
452 struct dpif_backer *backer;
453
454 /* Special OpenFlow rules. */
455 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
456 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
457 struct rule_dpif *drop_frags_rule; /* Used in OFPC_FRAG_DROP mode. */
458
459 /* Bridging. */
460 struct netflow *netflow;
461 struct dpif_sflow *sflow;
462 struct dpif_ipfix *ipfix;
463 struct hmap bundles; /* Contains "struct ofbundle"s. */
464 struct mac_learning *ml;
465 bool has_bonded_bundles;
466 struct mbridge *mbridge;
467
468 /* Facets. */
469 struct classifier facets; /* Contains 'struct facet's. */
470 long long int consistency_rl;
471
472 struct ovs_mutex stats_mutex;
473 struct netdev_stats stats OVS_GUARDED; /* To account packets generated and
474 * consumed in userspace. */
475
476 /* Spanning tree. */
477 struct stp *stp;
478 long long int stp_last_tick;
479
480 /* VLAN splinters. */
481 struct ovs_mutex vsp_mutex;
482 struct hmap realdev_vid_map OVS_GUARDED; /* (realdev,vid) -> vlandev. */
483 struct hmap vlandev_map OVS_GUARDED; /* vlandev -> (realdev,vid). */
484
485 /* Ports. */
486 struct sset ports; /* Set of standard port names. */
487 struct sset ghost_ports; /* Ports with no datapath port. */
488 struct sset port_poll_set; /* Queued names for port_poll() reply. */
489 int port_poll_errno; /* Last errno for port_poll() reply. */
490
491 /* Per ofproto's dpif stats. */
492 uint64_t n_hit;
493 uint64_t n_missed;
494
495 /* Work queues. */
496 struct guarded_list pins; /* Contains "struct ofputil_packet_in"s. */
497};
498
499/* By default, flows in the datapath are wildcarded (megaflows). They
500 * may be disabled with the "ovs-appctl dpif/disable-megaflows" command. */
501static bool enable_megaflows = true;
502
503/* All existing ofproto_dpif instances, indexed by ->up.name. */
504static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
505
506static void ofproto_dpif_unixctl_init(void);
507
508static inline struct ofproto_dpif *
509ofproto_dpif_cast(const struct ofproto *ofproto)
510{
511 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
512 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
513}
514
515static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *ofproto,
516 ofp_port_t ofp_port);
517static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
518 const struct ofpbuf *packet, struct ds *);
519
520/* Upcalls. */
521static void handle_upcalls(struct dpif_backer *);
522
523/* Flow expiration. */
524static int expire(struct dpif_backer *);
525
526/* NetFlow. */
527static void send_netflow_active_timeouts(struct ofproto_dpif *);
528
529/* Global variables. */
530static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
531
532/* Initial mappings of port to bridge mappings. */
533static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
534
535/* Executes 'fm'. The caller retains ownership of 'fm' and everything in
536 * it. */
537void
538ofproto_dpif_flow_mod(struct ofproto_dpif *ofproto,
539 struct ofputil_flow_mod *fm)
540{
541 ofproto_flow_mod(&ofproto->up, fm);
542}
543
544/* Appends 'pin' to the queue of "packet ins" to be sent to the controller.
545 * Takes ownership of 'pin' and pin->packet. */
546void
547ofproto_dpif_send_packet_in(struct ofproto_dpif *ofproto,
548 struct ofputil_packet_in *pin)
549{
550 if (!guarded_list_push_back(&ofproto->pins, &pin->list_node, 1024)) {
551 COVERAGE_INC(packet_in_overflow);
552 free(CONST_CAST(void *, pin->packet));
553 free(pin);
554 }
555}
556\f
557/* Factory functions. */
558
559static void
560init(const struct shash *iface_hints)
561{
562 struct shash_node *node;
563
564 /* Make a local copy, since we don't own 'iface_hints' elements. */
565 SHASH_FOR_EACH(node, iface_hints) {
566 const struct iface_hint *orig_hint = node->data;
567 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
568
569 new_hint->br_name = xstrdup(orig_hint->br_name);
570 new_hint->br_type = xstrdup(orig_hint->br_type);
571 new_hint->ofp_port = orig_hint->ofp_port;
572
573 shash_add(&init_ofp_ports, node->name, new_hint);
574 }
575}
576
577static void
578enumerate_types(struct sset *types)
579{
580 dp_enumerate_types(types);
581}
582
583static int
584enumerate_names(const char *type, struct sset *names)
585{
586 struct ofproto_dpif *ofproto;
587
588 sset_clear(names);
589 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
590 if (strcmp(type, ofproto->up.type)) {
591 continue;
592 }
593 sset_add(names, ofproto->up.name);
594 }
595
596 return 0;
597}
598
599static int
600del(const char *type, const char *name)
601{
602 struct dpif *dpif;
603 int error;
604
605 error = dpif_open(name, type, &dpif);
606 if (!error) {
607 error = dpif_delete(dpif);
608 dpif_close(dpif);
609 }
610 return error;
611}
612\f
613static const char *
614port_open_type(const char *datapath_type, const char *port_type)
615{
616 return dpif_port_open_type(datapath_type, port_type);
617}
618
619/* Type functions. */
620
621static void process_dpif_port_changes(struct dpif_backer *);
622static void process_dpif_all_ports_changed(struct dpif_backer *);
623static void process_dpif_port_change(struct dpif_backer *,
624 const char *devname);
625static void process_dpif_port_error(struct dpif_backer *, int error);
626
627static struct ofproto_dpif *
628lookup_ofproto_dpif_by_port_name(const char *name)
629{
630 struct ofproto_dpif *ofproto;
631
632 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
633 if (sset_contains(&ofproto->ports, name)) {
634 return ofproto;
635 }
636 }
637
638 return NULL;
639}
640
641static int
642type_run(const char *type)
643{
644 static long long int push_timer = LLONG_MIN;
645 struct dpif_backer *backer;
646
647 backer = shash_find_data(&all_dpif_backers, type);
648 if (!backer) {
649 /* This is not necessarily a problem, since backers are only
650 * created on demand. */
651 return 0;
652 }
653
654 dpif_run(backer->dpif);
655
656 /* The most natural place to push facet statistics is when they're pulled
657 * from the datapath. However, when there are many flows in the datapath,
658 * this expensive operation can occur so frequently, that it reduces our
659 * ability to quickly set up flows. To reduce the cost, we push statistics
660 * here instead. */
661 if (time_msec() > push_timer) {
662 push_timer = time_msec() + 2000;
663 push_all_stats();
664 }
665
666 /* If vswitchd started with other_config:flow_restore_wait set as "true",
667 * and the configuration has now changed to "false", enable receiving
668 * packets from the datapath. */
669 if (!backer->recv_set_enable && !ofproto_get_flow_restore_wait()) {
670 int error;
671
672 backer->recv_set_enable = true;
673
674 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
675 if (error) {
676 udpif_recv_set(backer->udpif, 0, false);
677 VLOG_ERR("Failed to enable receiving packets in dpif.");
678 return error;
679 }
680 udpif_recv_set(backer->udpif, n_handler_threads,
681 backer->recv_set_enable);
682 dpif_flow_flush(backer->dpif);
683 backer->need_revalidate = REV_RECONFIGURE;
684 }
685
686 /* If the n_handler_threads is reconfigured, call udpif_recv_set()
687 * to reset the handler threads. */
688 if (backer->n_handler_threads != n_handler_threads) {
689 udpif_recv_set(backer->udpif, n_handler_threads,
690 backer->recv_set_enable);
691 backer->n_handler_threads = n_handler_threads;
692 }
693
694 if (backer->need_revalidate) {
695 struct ofproto_dpif *ofproto;
696 struct simap_node *node;
697 struct simap tmp_backers;
698
699 /* Handle tunnel garbage collection. */
700 simap_init(&tmp_backers);
701 simap_swap(&backer->tnl_backers, &tmp_backers);
702
703 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
704 struct ofport_dpif *iter;
705
706 if (backer != ofproto->backer) {
707 continue;
708 }
709
710 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
711 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
712 const char *dp_port;
713
714 if (!iter->is_tunnel) {
715 continue;
716 }
717
718 dp_port = netdev_vport_get_dpif_port(iter->up.netdev,
719 namebuf, sizeof namebuf);
720 node = simap_find(&tmp_backers, dp_port);
721 if (node) {
722 simap_put(&backer->tnl_backers, dp_port, node->data);
723 simap_delete(&tmp_backers, node);
724 node = simap_find(&backer->tnl_backers, dp_port);
725 } else {
726 node = simap_find(&backer->tnl_backers, dp_port);
727 if (!node) {
728 odp_port_t odp_port = ODPP_NONE;
729
730 if (!dpif_port_add(backer->dpif, iter->up.netdev,
731 &odp_port)) {
732 simap_put(&backer->tnl_backers, dp_port,
733 odp_to_u32(odp_port));
734 node = simap_find(&backer->tnl_backers, dp_port);
735 }
736 }
737 }
738
739 iter->odp_port = node ? u32_to_odp(node->data) : ODPP_NONE;
740 if (tnl_port_reconfigure(iter, iter->up.netdev,
741 iter->odp_port)) {
742 backer->need_revalidate = REV_RECONFIGURE;
743 }
744 }
745 }
746
747 SIMAP_FOR_EACH (node, &tmp_backers) {
748 dpif_port_del(backer->dpif, u32_to_odp(node->data));
749 }
750 simap_destroy(&tmp_backers);
751
752 switch (backer->need_revalidate) {
753 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
754 case REV_STP: COVERAGE_INC(rev_stp); break;
755 case REV_BOND: COVERAGE_INC(rev_bond); break;
756 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
757 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
758 case REV_MAC_LEARNING: COVERAGE_INC(rev_mac_learning); break;
759 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
760 }
761 backer->need_revalidate = 0;
762
763 /* Clear the drop_keys in case we should now be accepting some
764 * formerly dropped flows. */
765 drop_key_clear(backer);
766
767 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
768 struct facet *facet, *next;
769 struct ofport_dpif *ofport;
770 struct cls_cursor cursor;
771 struct ofbundle *bundle;
772
773 if (ofproto->backer != backer) {
774 continue;
775 }
776
777 ovs_rwlock_wrlock(&xlate_rwlock);
778 xlate_ofproto_set(ofproto, ofproto->up.name,
779 ofproto->backer->dpif, ofproto->miss_rule,
780 ofproto->no_packet_in_rule, ofproto->ml,
781 ofproto->stp, ofproto->mbridge,
782 ofproto->sflow, ofproto->ipfix,
783 ofproto->up.frag_handling,
784 ofproto->up.forward_bpdu,
785 connmgr_has_in_band(ofproto->up.connmgr),
786 ofproto->netflow != NULL);
787
788 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
789 xlate_bundle_set(ofproto, bundle, bundle->name,
790 bundle->vlan_mode, bundle->vlan,
791 bundle->trunks, bundle->use_priority_tags,
792 bundle->bond, bundle->lacp,
793 bundle->floodable);
794 }
795
796 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
797 int stp_port = ofport->stp_port
798 ? stp_port_no(ofport->stp_port)
799 : -1;
800 xlate_ofport_set(ofproto, ofport->bundle, ofport,
801 ofport->up.ofp_port, ofport->odp_port,
802 ofport->up.netdev, ofport->cfm,
803 ofport->bfd, ofport->peer, stp_port,
804 ofport->qdscp, ofport->n_qdscp,
805 ofport->up.pp.config, ofport->is_tunnel,
806 ofport->may_enable);
807 }
808 ovs_rwlock_unlock(&xlate_rwlock);
809
810 /* Only ofproto-dpif cares about the facet classifier so we just
811 * lock cls_cursor_init() to appease the thread safety analysis. */
812 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
813 cls_cursor_init(&cursor, &ofproto->facets, NULL);
814 ovs_rwlock_unlock(&ofproto->facets.rwlock);
815 CLS_CURSOR_FOR_EACH_SAFE (facet, next, cr, &cursor) {
816 facet_revalidate(facet);
817 run_fast_rl();
818 }
819 }
820
821 udpif_revalidate(backer->udpif);
822 }
823
824 if (!backer->recv_set_enable) {
825 /* Wake up before a max of 1000ms. */
826 timer_set_duration(&backer->next_expiration, 1000);
827 } else if (timer_expired(&backer->next_expiration)) {
828 int delay = expire(backer);
829 timer_set_duration(&backer->next_expiration, delay);
830 }
831
832 process_dpif_port_changes(backer);
833
834 if (backer->governor) {
835 size_t n_subfacets;
836
837 governor_run(backer->governor);
838
839 /* If the governor has shrunk to its minimum size and the number of
840 * subfacets has dwindled, then drop the governor entirely.
841 *
842 * For hysteresis, the number of subfacets to drop the governor is
843 * smaller than the number needed to trigger its creation. */
844 n_subfacets = hmap_count(&backer->subfacets);
845 if (n_subfacets * 4 < flow_eviction_threshold
846 && governor_is_idle(backer->governor)) {
847 governor_destroy(backer->governor);
848 backer->governor = NULL;
849 }
850 }
851
852 return 0;
853}
854
855/* Check for and handle port changes in 'backer''s dpif. */
856static void
857process_dpif_port_changes(struct dpif_backer *backer)
858{
859 for (;;) {
860 char *devname;
861 int error;
862
863 error = dpif_port_poll(backer->dpif, &devname);
864 switch (error) {
865 case EAGAIN:
866 return;
867
868 case ENOBUFS:
869 process_dpif_all_ports_changed(backer);
870 break;
871
872 case 0:
873 process_dpif_port_change(backer, devname);
874 free(devname);
875 break;
876
877 default:
878 process_dpif_port_error(backer, error);
879 break;
880 }
881 }
882}
883
884static void
885process_dpif_all_ports_changed(struct dpif_backer *backer)
886{
887 struct ofproto_dpif *ofproto;
888 struct dpif_port dpif_port;
889 struct dpif_port_dump dump;
890 struct sset devnames;
891 const char *devname;
892
893 sset_init(&devnames);
894 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
895 if (ofproto->backer == backer) {
896 struct ofport *ofport;
897
898 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
899 sset_add(&devnames, netdev_get_name(ofport->netdev));
900 }
901 }
902 }
903 DPIF_PORT_FOR_EACH (&dpif_port, &dump, backer->dpif) {
904 sset_add(&devnames, dpif_port.name);
905 }
906
907 SSET_FOR_EACH (devname, &devnames) {
908 process_dpif_port_change(backer, devname);
909 }
910 sset_destroy(&devnames);
911}
912
913static void
914process_dpif_port_change(struct dpif_backer *backer, const char *devname)
915{
916 struct ofproto_dpif *ofproto;
917 struct dpif_port port;
918
919 /* Don't report on the datapath's device. */
920 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
921 return;
922 }
923
924 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
925 &all_ofproto_dpifs) {
926 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
927 return;
928 }
929 }
930
931 ofproto = lookup_ofproto_dpif_by_port_name(devname);
932 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
933 /* The port was removed. If we know the datapath,
934 * report it through poll_set(). If we don't, it may be
935 * notifying us of a removal we initiated, so ignore it.
936 * If there's a pending ENOBUFS, let it stand, since
937 * everything will be reevaluated. */
938 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
939 sset_add(&ofproto->port_poll_set, devname);
940 ofproto->port_poll_errno = 0;
941 }
942 } else if (!ofproto) {
943 /* The port was added, but we don't know with which
944 * ofproto we should associate it. Delete it. */
945 dpif_port_del(backer->dpif, port.port_no);
946 } else {
947 struct ofport_dpif *ofport;
948
949 ofport = ofport_dpif_cast(shash_find_data(
950 &ofproto->up.port_by_name, devname));
951 if (ofport
952 && ofport->odp_port != port.port_no
953 && !odp_port_to_ofport(backer, port.port_no))
954 {
955 /* 'ofport''s datapath port number has changed from
956 * 'ofport->odp_port' to 'port.port_no'. Update our internal data
957 * structures to match. */
958 ovs_rwlock_wrlock(&backer->odp_to_ofport_lock);
959 hmap_remove(&backer->odp_to_ofport_map, &ofport->odp_port_node);
960 ofport->odp_port = port.port_no;
961 hmap_insert(&backer->odp_to_ofport_map, &ofport->odp_port_node,
962 hash_odp_port(port.port_no));
963 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
964 backer->need_revalidate = REV_RECONFIGURE;
965 }
966 }
967 dpif_port_destroy(&port);
968}
969
970/* Propagate 'error' to all ofprotos based on 'backer'. */
971static void
972process_dpif_port_error(struct dpif_backer *backer, int error)
973{
974 struct ofproto_dpif *ofproto;
975
976 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
977 if (ofproto->backer == backer) {
978 sset_clear(&ofproto->port_poll_set);
979 ofproto->port_poll_errno = error;
980 }
981 }
982}
983
984static int
985dpif_backer_run_fast(struct dpif_backer *backer)
986{
987 handle_upcalls(backer);
988
989 return 0;
990}
991
992static int
993type_run_fast(const char *type)
994{
995 struct dpif_backer *backer;
996
997 backer = shash_find_data(&all_dpif_backers, type);
998 if (!backer) {
999 /* This is not necessarily a problem, since backers are only
1000 * created on demand. */
1001 return 0;
1002 }
1003
1004 return dpif_backer_run_fast(backer);
1005}
1006
1007static void
1008run_fast_rl(void)
1009{
1010 static long long int port_rl = LLONG_MIN;
1011
1012 if (time_msec() >= port_rl) {
1013 struct ofproto_dpif *ofproto;
1014
1015 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1016 run_fast(&ofproto->up);
1017 }
1018 port_rl = time_msec() + 200;
1019 }
1020}
1021
1022static void
1023type_wait(const char *type)
1024{
1025 struct dpif_backer *backer;
1026
1027 backer = shash_find_data(&all_dpif_backers, type);
1028 if (!backer) {
1029 /* This is not necessarily a problem, since backers are only
1030 * created on demand. */
1031 return;
1032 }
1033
1034 if (backer->governor) {
1035 governor_wait(backer->governor);
1036 }
1037
1038 timer_wait(&backer->next_expiration);
1039 dpif_wait(backer->dpif);
1040 udpif_wait(backer->udpif);
1041}
1042\f
1043/* Basic life-cycle. */
1044
1045static int add_internal_flows(struct ofproto_dpif *);
1046
1047static struct ofproto *
1048alloc(void)
1049{
1050 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1051 return &ofproto->up;
1052}
1053
1054static void
1055dealloc(struct ofproto *ofproto_)
1056{
1057 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1058 free(ofproto);
1059}
1060
1061static void
1062close_dpif_backer(struct dpif_backer *backer)
1063{
1064 ovs_assert(backer->refcount > 0);
1065
1066 if (--backer->refcount) {
1067 return;
1068 }
1069
1070 drop_key_clear(backer);
1071 hmap_destroy(&backer->drop_keys);
1072
1073 udpif_destroy(backer->udpif);
1074
1075 simap_destroy(&backer->tnl_backers);
1076 ovs_rwlock_destroy(&backer->odp_to_ofport_lock);
1077 hmap_destroy(&backer->odp_to_ofport_map);
1078 shash_find_and_delete(&all_dpif_backers, backer->type);
1079 free(backer->type);
1080 dpif_close(backer->dpif);
1081
1082 ovs_assert(hmap_is_empty(&backer->subfacets));
1083 hmap_destroy(&backer->subfacets);
1084 governor_destroy(backer->governor);
1085
1086 free(backer);
1087}
1088
1089/* Datapath port slated for removal from datapath. */
1090struct odp_garbage {
1091 struct list list_node;
1092 odp_port_t odp_port;
1093};
1094
1095static int
1096open_dpif_backer(const char *type, struct dpif_backer **backerp)
1097{
1098 struct dpif_backer *backer;
1099 struct dpif_port_dump port_dump;
1100 struct dpif_port port;
1101 struct shash_node *node;
1102 struct list garbage_list;
1103 struct odp_garbage *garbage, *next;
1104 struct sset names;
1105 char *backer_name;
1106 const char *name;
1107 int error;
1108
1109 backer = shash_find_data(&all_dpif_backers, type);
1110 if (backer) {
1111 backer->refcount++;
1112 *backerp = backer;
1113 return 0;
1114 }
1115
1116 backer_name = xasprintf("ovs-%s", type);
1117
1118 /* Remove any existing datapaths, since we assume we're the only
1119 * userspace controlling the datapath. */
1120 sset_init(&names);
1121 dp_enumerate_names(type, &names);
1122 SSET_FOR_EACH(name, &names) {
1123 struct dpif *old_dpif;
1124
1125 /* Don't remove our backer if it exists. */
1126 if (!strcmp(name, backer_name)) {
1127 continue;
1128 }
1129
1130 if (dpif_open(name, type, &old_dpif)) {
1131 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1132 } else {
1133 dpif_delete(old_dpif);
1134 dpif_close(old_dpif);
1135 }
1136 }
1137 sset_destroy(&names);
1138
1139 backer = xmalloc(sizeof *backer);
1140
1141 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1142 free(backer_name);
1143 if (error) {
1144 VLOG_ERR("failed to open datapath of type %s: %s", type,
1145 ovs_strerror(error));
1146 free(backer);
1147 return error;
1148 }
1149 backer->udpif = udpif_create(backer, backer->dpif);
1150
1151 backer->type = xstrdup(type);
1152 backer->governor = NULL;
1153 backer->refcount = 1;
1154 hmap_init(&backer->odp_to_ofport_map);
1155 ovs_rwlock_init(&backer->odp_to_ofport_lock);
1156 hmap_init(&backer->drop_keys);
1157 hmap_init(&backer->subfacets);
1158 timer_set_duration(&backer->next_expiration, 1000);
1159 backer->need_revalidate = 0;
1160 simap_init(&backer->tnl_backers);
1161 backer->recv_set_enable = !ofproto_get_flow_restore_wait();
1162 *backerp = backer;
1163
1164 if (backer->recv_set_enable) {
1165 dpif_flow_flush(backer->dpif);
1166 }
1167
1168 /* Loop through the ports already on the datapath and remove any
1169 * that we don't need anymore. */
1170 list_init(&garbage_list);
1171 dpif_port_dump_start(&port_dump, backer->dpif);
1172 while (dpif_port_dump_next(&port_dump, &port)) {
1173 node = shash_find(&init_ofp_ports, port.name);
1174 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1175 garbage = xmalloc(sizeof *garbage);
1176 garbage->odp_port = port.port_no;
1177 list_push_front(&garbage_list, &garbage->list_node);
1178 }
1179 }
1180 dpif_port_dump_done(&port_dump);
1181
1182 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1183 dpif_port_del(backer->dpif, garbage->odp_port);
1184 list_remove(&garbage->list_node);
1185 free(garbage);
1186 }
1187
1188 shash_add(&all_dpif_backers, type, backer);
1189
1190 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
1191 if (error) {
1192 VLOG_ERR("failed to listen on datapath of type %s: %s",
1193 type, ovs_strerror(error));
1194 close_dpif_backer(backer);
1195 return error;
1196 }
1197 udpif_recv_set(backer->udpif, n_handler_threads,
1198 backer->recv_set_enable);
1199 backer->n_handler_threads = n_handler_threads;
1200
1201 backer->max_n_subfacet = 0;
1202 backer->created = time_msec();
1203 backer->avg_n_subfacet = 0;
1204 backer->avg_subfacet_life = 0;
1205
1206 return error;
1207}
1208
1209static int
1210construct(struct ofproto *ofproto_)
1211{
1212 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1213 struct shash_node *node, *next;
1214 uint32_t max_ports;
1215 int error;
1216
1217 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1218 if (error) {
1219 return error;
1220 }
1221
1222 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1223 ofproto_init_max_ports(ofproto_, MIN(max_ports, ofp_to_u16(OFPP_MAX)));
1224
1225 ofproto->netflow = NULL;
1226 ofproto->sflow = NULL;
1227 ofproto->ipfix = NULL;
1228 ofproto->stp = NULL;
1229 hmap_init(&ofproto->bundles);
1230 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1231 ofproto->mbridge = mbridge_create();
1232 ofproto->has_bonded_bundles = false;
1233 ovs_mutex_init(&ofproto->stats_mutex);
1234 ovs_mutex_init(&ofproto->vsp_mutex);
1235
1236 classifier_init(&ofproto->facets);
1237 ofproto->consistency_rl = LLONG_MIN;
1238
1239 guarded_list_init(&ofproto->pins);
1240
1241 ofproto_dpif_unixctl_init();
1242
1243 hmap_init(&ofproto->vlandev_map);
1244 hmap_init(&ofproto->realdev_vid_map);
1245
1246 sset_init(&ofproto->ports);
1247 sset_init(&ofproto->ghost_ports);
1248 sset_init(&ofproto->port_poll_set);
1249 ofproto->port_poll_errno = 0;
1250
1251 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1252 struct iface_hint *iface_hint = node->data;
1253
1254 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1255 /* Check if the datapath already has this port. */
1256 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1257 sset_add(&ofproto->ports, node->name);
1258 }
1259
1260 free(iface_hint->br_name);
1261 free(iface_hint->br_type);
1262 free(iface_hint);
1263 shash_delete(&init_ofp_ports, node);
1264 }
1265 }
1266
1267 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1268 hash_string(ofproto->up.name, 0));
1269 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1270
1271 ofproto_init_tables(ofproto_, N_TABLES);
1272 error = add_internal_flows(ofproto);
1273 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1274
1275 ofproto->n_hit = 0;
1276 ofproto->n_missed = 0;
1277
1278 return error;
1279}
1280
1281static int
1282add_internal_flow(struct ofproto_dpif *ofproto, int id,
1283 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1284{
1285 struct ofputil_flow_mod fm;
1286 int error;
1287
1288 match_init_catchall(&fm.match);
1289 fm.priority = 0;
1290 match_set_reg(&fm.match, 0, id);
1291 fm.new_cookie = htonll(0);
1292 fm.cookie = htonll(0);
1293 fm.cookie_mask = htonll(0);
1294 fm.modify_cookie = false;
1295 fm.table_id = TBL_INTERNAL;
1296 fm.command = OFPFC_ADD;
1297 fm.idle_timeout = 0;
1298 fm.hard_timeout = 0;
1299 fm.buffer_id = 0;
1300 fm.out_port = 0;
1301 fm.flags = 0;
1302 fm.ofpacts = ofpacts->data;
1303 fm.ofpacts_len = ofpacts->size;
1304
1305 error = ofproto_flow_mod(&ofproto->up, &fm);
1306 if (error) {
1307 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1308 id, ofperr_to_string(error));
1309 return error;
1310 }
1311
1312 if (rule_dpif_lookup_in_table(ofproto, &fm.match.flow, NULL, TBL_INTERNAL,
1313 rulep)) {
1314 rule_dpif_unref(*rulep);
1315 } else {
1316 NOT_REACHED();
1317 }
1318
1319 return 0;
1320}
1321
1322static int
1323add_internal_flows(struct ofproto_dpif *ofproto)
1324{
1325 struct ofpact_controller *controller;
1326 uint64_t ofpacts_stub[128 / 8];
1327 struct ofpbuf ofpacts;
1328 int error;
1329 int id;
1330
1331 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1332 id = 1;
1333
1334 controller = ofpact_put_CONTROLLER(&ofpacts);
1335 controller->max_len = UINT16_MAX;
1336 controller->controller_id = 0;
1337 controller->reason = OFPR_NO_MATCH;
1338 ofpact_pad(&ofpacts);
1339
1340 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1341 if (error) {
1342 return error;
1343 }
1344
1345 ofpbuf_clear(&ofpacts);
1346 error = add_internal_flow(ofproto, id++, &ofpacts,
1347 &ofproto->no_packet_in_rule);
1348 if (error) {
1349 return error;
1350 }
1351
1352 error = add_internal_flow(ofproto, id++, &ofpacts,
1353 &ofproto->drop_frags_rule);
1354 return error;
1355}
1356
1357static void
1358destruct(struct ofproto *ofproto_)
1359{
1360 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1361 struct rule_dpif *rule, *next_rule;
1362 struct ofputil_packet_in *pin, *next_pin;
1363 struct facet *facet, *next_facet;
1364 struct cls_cursor cursor;
1365 struct oftable *table;
1366 struct list pins;
1367
1368 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1369 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1370 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1371 CLS_CURSOR_FOR_EACH_SAFE (facet, next_facet, cr, &cursor) {
1372 facet_remove(facet);
1373 }
1374
1375 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1376 ovs_rwlock_wrlock(&xlate_rwlock);
1377 xlate_remove_ofproto(ofproto);
1378 ovs_rwlock_unlock(&xlate_rwlock);
1379
1380 /* Discard any flow_miss_batches queued up for 'ofproto', avoiding a
1381 * use-after-free error. */
1382 udpif_revalidate(ofproto->backer->udpif);
1383
1384 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1385
1386 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1387 struct cls_cursor cursor;
1388
1389 ovs_rwlock_rdlock(&table->cls.rwlock);
1390 cls_cursor_init(&cursor, &table->cls, NULL);
1391 ovs_rwlock_unlock(&table->cls.rwlock);
1392 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1393 ofproto_rule_delete(&ofproto->up, &rule->up);
1394 }
1395 }
1396
1397 guarded_list_pop_all(&ofproto->pins, &pins);
1398 LIST_FOR_EACH_SAFE (pin, next_pin, list_node, &pins) {
1399 list_remove(&pin->list_node);
1400 free(CONST_CAST(void *, pin->packet));
1401 free(pin);
1402 }
1403 guarded_list_destroy(&ofproto->pins);
1404
1405 mbridge_unref(ofproto->mbridge);
1406
1407 netflow_destroy(ofproto->netflow);
1408 dpif_sflow_unref(ofproto->sflow);
1409 hmap_destroy(&ofproto->bundles);
1410 mac_learning_unref(ofproto->ml);
1411
1412 classifier_destroy(&ofproto->facets);
1413
1414 hmap_destroy(&ofproto->vlandev_map);
1415 hmap_destroy(&ofproto->realdev_vid_map);
1416
1417 sset_destroy(&ofproto->ports);
1418 sset_destroy(&ofproto->ghost_ports);
1419 sset_destroy(&ofproto->port_poll_set);
1420
1421 ovs_mutex_destroy(&ofproto->stats_mutex);
1422 ovs_mutex_destroy(&ofproto->vsp_mutex);
1423
1424 close_dpif_backer(ofproto->backer);
1425}
1426
1427static int
1428run_fast(struct ofproto *ofproto_)
1429{
1430 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1431 struct ofputil_packet_in *pin, *next_pin;
1432 struct list pins;
1433
1434 /* Do not perform any periodic activity required by 'ofproto' while
1435 * waiting for flow restore to complete. */
1436 if (ofproto_get_flow_restore_wait()) {
1437 return 0;
1438 }
1439
1440 guarded_list_pop_all(&ofproto->pins, &pins);
1441 LIST_FOR_EACH_SAFE (pin, next_pin, list_node, &pins) {
1442 connmgr_send_packet_in(ofproto->up.connmgr, pin);
1443 list_remove(&pin->list_node);
1444 free(CONST_CAST(void *, pin->packet));
1445 free(pin);
1446 }
1447
1448 ofproto_dpif_monitor_run_fast();
1449 return 0;
1450}
1451
1452static int
1453run(struct ofproto *ofproto_)
1454{
1455 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1456 struct ofport_dpif *ofport;
1457 struct ofbundle *bundle;
1458 int error;
1459
1460 if (mbridge_need_revalidate(ofproto->mbridge)) {
1461 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1462 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
1463 mac_learning_flush(ofproto->ml);
1464 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1465 }
1466
1467 /* Do not perform any periodic activity below required by 'ofproto' while
1468 * waiting for flow restore to complete. */
1469 if (ofproto_get_flow_restore_wait()) {
1470 return 0;
1471 }
1472
1473 error = run_fast(ofproto_);
1474 if (error) {
1475 return error;
1476 }
1477
1478 if (ofproto->netflow) {
1479 if (netflow_run(ofproto->netflow)) {
1480 send_netflow_active_timeouts(ofproto);
1481 }
1482 }
1483 if (ofproto->sflow) {
1484 dpif_sflow_run(ofproto->sflow);
1485 }
1486 if (ofproto->ipfix) {
1487 dpif_ipfix_run(ofproto->ipfix);
1488 }
1489
1490 ofproto_dpif_monitor_run_fast();
1491 ofproto_dpif_monitor_run();
1492
1493 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1494 port_run(ofport);
1495 }
1496 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1497 bundle_run(bundle);
1498 }
1499
1500 stp_run(ofproto);
1501 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
1502 if (mac_learning_run(ofproto->ml)) {
1503 ofproto->backer->need_revalidate = REV_MAC_LEARNING;
1504 }
1505 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1506
1507 /* Check the consistency of a random facet, to aid debugging. */
1508 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1509 if (time_msec() >= ofproto->consistency_rl
1510 && !classifier_is_empty(&ofproto->facets)
1511 && !ofproto->backer->need_revalidate) {
1512 struct cls_table *table;
1513 struct cls_rule *cr;
1514 struct facet *facet;
1515
1516 ofproto->consistency_rl = time_msec() + 250;
1517
1518 table = CONTAINER_OF(hmap_random_node(&ofproto->facets.tables),
1519 struct cls_table, hmap_node);
1520 cr = CONTAINER_OF(hmap_random_node(&table->rules), struct cls_rule,
1521 hmap_node);
1522 facet = CONTAINER_OF(cr, struct facet, cr);
1523
1524 if (!facet_check_consistency(facet)) {
1525 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1526 }
1527 }
1528 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1529
1530 return 0;
1531}
1532
1533static void
1534wait(struct ofproto *ofproto_)
1535{
1536 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1537 struct ofbundle *bundle;
1538
1539 if (ofproto_get_flow_restore_wait()) {
1540 return;
1541 }
1542
1543 if (ofproto->sflow) {
1544 dpif_sflow_wait(ofproto->sflow);
1545 }
1546 if (ofproto->ipfix) {
1547 dpif_ipfix_wait(ofproto->ipfix);
1548 }
1549 ofproto_dpif_monitor_wait();
1550 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1551 bundle_wait(bundle);
1552 }
1553 if (ofproto->netflow) {
1554 netflow_wait(ofproto->netflow);
1555 }
1556 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
1557 mac_learning_wait(ofproto->ml);
1558 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1559 stp_wait(ofproto);
1560 if (ofproto->backer->need_revalidate) {
1561 /* Shouldn't happen, but if it does just go around again. */
1562 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1563 poll_immediate_wake();
1564 }
1565}
1566
1567static void
1568get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1569{
1570 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1571 struct cls_cursor cursor;
1572 size_t n_subfacets = 0;
1573 struct facet *facet;
1574
1575 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1576 simap_increase(usage, "facets", classifier_count(&ofproto->facets));
1577 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1578
1579 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1580 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1581 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
1582 n_subfacets += list_size(&facet->subfacets);
1583 }
1584 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1585 simap_increase(usage, "subfacets", n_subfacets);
1586}
1587
1588static void
1589flush(struct ofproto *ofproto_)
1590{
1591 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1592 struct subfacet *subfacet, *next_subfacet;
1593 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1594 int n_batch;
1595
1596 n_batch = 0;
1597 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1598 &ofproto->backer->subfacets) {
1599 if (subfacet->facet->ofproto != ofproto) {
1600 continue;
1601 }
1602
1603 if (subfacet->path != SF_NOT_INSTALLED) {
1604 batch[n_batch++] = subfacet;
1605 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1606 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1607 n_batch = 0;
1608 }
1609 } else {
1610 subfacet_destroy(subfacet);
1611 }
1612 }
1613
1614 if (n_batch > 0) {
1615 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1616 }
1617}
1618
1619static void
1620get_features(struct ofproto *ofproto_ OVS_UNUSED,
1621 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1622{
1623 *arp_match_ip = true;
1624 *actions = (OFPUTIL_A_OUTPUT |
1625 OFPUTIL_A_SET_VLAN_VID |
1626 OFPUTIL_A_SET_VLAN_PCP |
1627 OFPUTIL_A_STRIP_VLAN |
1628 OFPUTIL_A_SET_DL_SRC |
1629 OFPUTIL_A_SET_DL_DST |
1630 OFPUTIL_A_SET_NW_SRC |
1631 OFPUTIL_A_SET_NW_DST |
1632 OFPUTIL_A_SET_NW_TOS |
1633 OFPUTIL_A_SET_TP_SRC |
1634 OFPUTIL_A_SET_TP_DST |
1635 OFPUTIL_A_ENQUEUE);
1636}
1637
1638static void
1639get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1640{
1641 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1642 struct dpif_dp_stats s;
1643 uint64_t n_miss, n_no_pkt_in, n_bytes, n_dropped_frags;
1644 uint64_t n_lookup;
1645
1646 strcpy(ots->name, "classifier");
1647
1648 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1649 rule_get_stats(&ofproto->miss_rule->up, &n_miss, &n_bytes);
1650 rule_get_stats(&ofproto->no_packet_in_rule->up, &n_no_pkt_in, &n_bytes);
1651 rule_get_stats(&ofproto->drop_frags_rule->up, &n_dropped_frags, &n_bytes);
1652
1653 n_lookup = s.n_hit + s.n_missed - n_dropped_frags;
1654 ots->lookup_count = htonll(n_lookup);
1655 ots->matched_count = htonll(n_lookup - n_miss - n_no_pkt_in);
1656}
1657
1658static struct ofport *
1659port_alloc(void)
1660{
1661 struct ofport_dpif *port = xmalloc(sizeof *port);
1662 return &port->up;
1663}
1664
1665static void
1666port_dealloc(struct ofport *port_)
1667{
1668 struct ofport_dpif *port = ofport_dpif_cast(port_);
1669 free(port);
1670}
1671
1672static int
1673port_construct(struct ofport *port_)
1674{
1675 struct ofport_dpif *port = ofport_dpif_cast(port_);
1676 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1677 const struct netdev *netdev = port->up.netdev;
1678 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1679 struct dpif_port dpif_port;
1680 int error;
1681
1682 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1683 port->bundle = NULL;
1684 port->cfm = NULL;
1685 port->bfd = NULL;
1686 port->may_enable = true;
1687 port->stp_port = NULL;
1688 port->stp_state = STP_DISABLED;
1689 port->is_tunnel = false;
1690 port->peer = NULL;
1691 port->qdscp = NULL;
1692 port->n_qdscp = 0;
1693 port->realdev_ofp_port = 0;
1694 port->vlandev_vid = 0;
1695 port->carrier_seq = netdev_get_carrier_resets(netdev);
1696
1697 if (netdev_vport_is_patch(netdev)) {
1698 /* By bailing out here, we don't submit the port to the sFlow module
1699 * to be considered for counter polling export. This is correct
1700 * because the patch port represents an interface that sFlow considers
1701 * to be "internal" to the switch as a whole, and therefore not an
1702 * candidate for counter polling. */
1703 port->odp_port = ODPP_NONE;
1704 ofport_update_peer(port);
1705 return 0;
1706 }
1707
1708 error = dpif_port_query_by_name(ofproto->backer->dpif,
1709 netdev_vport_get_dpif_port(netdev, namebuf,
1710 sizeof namebuf),
1711 &dpif_port);
1712 if (error) {
1713 return error;
1714 }
1715
1716 port->odp_port = dpif_port.port_no;
1717
1718 if (netdev_get_tunnel_config(netdev)) {
1719 tnl_port_add(port, port->up.netdev, port->odp_port);
1720 port->is_tunnel = true;
1721 } else {
1722 /* Sanity-check that a mapping doesn't already exist. This
1723 * shouldn't happen for non-tunnel ports. */
1724 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1725 VLOG_ERR("port %s already has an OpenFlow port number",
1726 dpif_port.name);
1727 dpif_port_destroy(&dpif_port);
1728 return EBUSY;
1729 }
1730
1731 ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
1732 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1733 hash_odp_port(port->odp_port));
1734 ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
1735 }
1736 dpif_port_destroy(&dpif_port);
1737
1738 if (ofproto->sflow) {
1739 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1740 }
1741
1742 return 0;
1743}
1744
1745static void
1746port_destruct(struct ofport *port_)
1747{
1748 struct ofport_dpif *port = ofport_dpif_cast(port_);
1749 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1750 const char *devname = netdev_get_name(port->up.netdev);
1751 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1752 const char *dp_port_name;
1753
1754 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1755 ovs_rwlock_wrlock(&xlate_rwlock);
1756 xlate_ofport_remove(port);
1757 ovs_rwlock_unlock(&xlate_rwlock);
1758
1759 dp_port_name = netdev_vport_get_dpif_port(port->up.netdev, namebuf,
1760 sizeof namebuf);
1761 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1762 /* The underlying device is still there, so delete it. This
1763 * happens when the ofproto is being destroyed, since the caller
1764 * assumes that removal of attached ports will happen as part of
1765 * destruction. */
1766 if (!port->is_tunnel) {
1767 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1768 }
1769 }
1770
1771 if (port->peer) {
1772 port->peer->peer = NULL;
1773 port->peer = NULL;
1774 }
1775
1776 if (port->odp_port != ODPP_NONE && !port->is_tunnel) {
1777 ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
1778 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1779 ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
1780 }
1781
1782 tnl_port_del(port);
1783 sset_find_and_delete(&ofproto->ports, devname);
1784 sset_find_and_delete(&ofproto->ghost_ports, devname);
1785 bundle_remove(port_);
1786 set_cfm(port_, NULL);
1787 set_bfd(port_, NULL);
1788 if (ofproto->sflow) {
1789 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1790 }
1791
1792 free(port->qdscp);
1793}
1794
1795static void
1796port_modified(struct ofport *port_)
1797{
1798 struct ofport_dpif *port = ofport_dpif_cast(port_);
1799
1800 if (port->bundle && port->bundle->bond) {
1801 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1802 }
1803
1804 if (port->cfm) {
1805 cfm_set_netdev(port->cfm, port->up.netdev);
1806 }
1807
1808 if (port->bfd) {
1809 bfd_set_netdev(port->bfd, port->up.netdev);
1810 }
1811
1812 ofproto_dpif_monitor_port_update(port, port->bfd, port->cfm,
1813 port->up.pp.hw_addr);
1814
1815 if (port->is_tunnel && tnl_port_reconfigure(port, port->up.netdev,
1816 port->odp_port)) {
1817 ofproto_dpif_cast(port->up.ofproto)->backer->need_revalidate =
1818 REV_RECONFIGURE;
1819 }
1820
1821 ofport_update_peer(port);
1822}
1823
1824static void
1825port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1826{
1827 struct ofport_dpif *port = ofport_dpif_cast(port_);
1828 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1829 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1830
1831 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1832 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1833 OFPUTIL_PC_NO_PACKET_IN)) {
1834 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1835
1836 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1837 bundle_update(port->bundle);
1838 }
1839 }
1840}
1841
1842static int
1843set_sflow(struct ofproto *ofproto_,
1844 const struct ofproto_sflow_options *sflow_options)
1845{
1846 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1847 struct dpif_sflow *ds = ofproto->sflow;
1848
1849 if (sflow_options) {
1850 if (!ds) {
1851 struct ofport_dpif *ofport;
1852
1853 ds = ofproto->sflow = dpif_sflow_create();
1854 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1855 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1856 }
1857 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1858 }
1859 dpif_sflow_set_options(ds, sflow_options);
1860 } else {
1861 if (ds) {
1862 dpif_sflow_unref(ds);
1863 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1864 ofproto->sflow = NULL;
1865 }
1866 }
1867 return 0;
1868}
1869
1870static int
1871set_ipfix(
1872 struct ofproto *ofproto_,
1873 const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options,
1874 const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options,
1875 size_t n_flow_exporters_options)
1876{
1877 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1878 struct dpif_ipfix *di = ofproto->ipfix;
1879 bool has_options = bridge_exporter_options || flow_exporters_options;
1880
1881 if (has_options && !di) {
1882 di = ofproto->ipfix = dpif_ipfix_create();
1883 }
1884
1885 if (di) {
1886 /* Call set_options in any case to cleanly flush the flow
1887 * caches in the last exporters that are to be destroyed. */
1888 dpif_ipfix_set_options(
1889 di, bridge_exporter_options, flow_exporters_options,
1890 n_flow_exporters_options);
1891
1892 if (!has_options) {
1893 dpif_ipfix_unref(di);
1894 ofproto->ipfix = NULL;
1895 }
1896 }
1897
1898 return 0;
1899}
1900
1901static int
1902set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1903{
1904 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1905 int error = 0;
1906
1907 if (s) {
1908 if (!ofport->cfm) {
1909 struct ofproto_dpif *ofproto;
1910
1911 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1912 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1913 ofport->cfm = cfm_create(ofport->up.netdev);
1914 }
1915
1916 if (cfm_configure(ofport->cfm, s)) {
1917 error = 0;
1918 goto out;
1919 }
1920
1921 error = EINVAL;
1922 }
1923 cfm_unref(ofport->cfm);
1924 ofport->cfm = NULL;
1925out:
1926 ofproto_dpif_monitor_port_update(ofport, ofport->bfd, ofport->cfm,
1927 ofport->up.pp.hw_addr);
1928 return error;
1929}
1930
1931static bool
1932get_cfm_status(const struct ofport *ofport_,
1933 struct ofproto_cfm_status *status)
1934{
1935 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1936
1937 if (ofport->cfm) {
1938 status->faults = cfm_get_fault(ofport->cfm);
1939 status->remote_opstate = cfm_get_opup(ofport->cfm);
1940 status->health = cfm_get_health(ofport->cfm);
1941 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
1942 return true;
1943 } else {
1944 return false;
1945 }
1946}
1947
1948static int
1949set_bfd(struct ofport *ofport_, const struct smap *cfg)
1950{
1951 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
1952 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1953 struct bfd *old;
1954
1955 old = ofport->bfd;
1956 ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev),
1957 cfg, ofport->up.netdev);
1958 if (ofport->bfd != old) {
1959 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1960 }
1961 ofproto_dpif_monitor_port_update(ofport, ofport->bfd, ofport->cfm,
1962 ofport->up.pp.hw_addr);
1963 return 0;
1964}
1965
1966static int
1967get_bfd_status(struct ofport *ofport_, struct smap *smap)
1968{
1969 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1970
1971 if (ofport->bfd) {
1972 bfd_get_status(ofport->bfd, smap);
1973 return 0;
1974 } else {
1975 return ENOENT;
1976 }
1977}
1978\f
1979/* Spanning Tree. */
1980
1981static void
1982send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1983{
1984 struct ofproto_dpif *ofproto = ofproto_;
1985 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1986 struct ofport_dpif *ofport;
1987
1988 ofport = stp_port_get_aux(sp);
1989 if (!ofport) {
1990 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1991 ofproto->up.name, port_num);
1992 } else {
1993 struct eth_header *eth = pkt->l2;
1994
1995 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1996 if (eth_addr_is_zero(eth->eth_src)) {
1997 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1998 "with unknown MAC", ofproto->up.name, port_num);
1999 } else {
2000 ofproto_dpif_send_packet(ofport, pkt);
2001 }
2002 }
2003 ofpbuf_delete(pkt);
2004}
2005
2006/* Configures STP on 'ofproto_' using the settings defined in 's'. */
2007static int
2008set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
2009{
2010 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2011
2012 /* Only revalidate flows if the configuration changed. */
2013 if (!s != !ofproto->stp) {
2014 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2015 }
2016
2017 if (s) {
2018 if (!ofproto->stp) {
2019 ofproto->stp = stp_create(ofproto_->name, s->system_id,
2020 send_bpdu_cb, ofproto);
2021 ofproto->stp_last_tick = time_msec();
2022 }
2023
2024 stp_set_bridge_id(ofproto->stp, s->system_id);
2025 stp_set_bridge_priority(ofproto->stp, s->priority);
2026 stp_set_hello_time(ofproto->stp, s->hello_time);
2027 stp_set_max_age(ofproto->stp, s->max_age);
2028 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
2029 } else {
2030 struct ofport *ofport;
2031
2032 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
2033 set_stp_port(ofport, NULL);
2034 }
2035
2036 stp_unref(ofproto->stp);
2037 ofproto->stp = NULL;
2038 }
2039
2040 return 0;
2041}
2042
2043static int
2044get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
2045{
2046 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2047
2048 if (ofproto->stp) {
2049 s->enabled = true;
2050 s->bridge_id = stp_get_bridge_id(ofproto->stp);
2051 s->designated_root = stp_get_designated_root(ofproto->stp);
2052 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
2053 } else {
2054 s->enabled = false;
2055 }
2056
2057 return 0;
2058}
2059
2060static void
2061update_stp_port_state(struct ofport_dpif *ofport)
2062{
2063 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2064 enum stp_state state;
2065
2066 /* Figure out new state. */
2067 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
2068 : STP_DISABLED;
2069
2070 /* Update state. */
2071 if (ofport->stp_state != state) {
2072 enum ofputil_port_state of_state;
2073 bool fwd_change;
2074
2075 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
2076 netdev_get_name(ofport->up.netdev),
2077 stp_state_name(ofport->stp_state),
2078 stp_state_name(state));
2079 if (stp_learn_in_state(ofport->stp_state)
2080 != stp_learn_in_state(state)) {
2081 /* xxx Learning action flows should also be flushed. */
2082 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2083 mac_learning_flush(ofproto->ml);
2084 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2085 }
2086 fwd_change = stp_forward_in_state(ofport->stp_state)
2087 != stp_forward_in_state(state);
2088
2089 ofproto->backer->need_revalidate = REV_STP;
2090 ofport->stp_state = state;
2091 ofport->stp_state_entered = time_msec();
2092
2093 if (fwd_change && ofport->bundle) {
2094 bundle_update(ofport->bundle);
2095 }
2096
2097 /* Update the STP state bits in the OpenFlow port description. */
2098 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
2099 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
2100 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
2101 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
2102 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
2103 : 0);
2104 ofproto_port_set_state(&ofport->up, of_state);
2105 }
2106}
2107
2108/* Configures STP on 'ofport_' using the settings defined in 's'. The
2109 * caller is responsible for assigning STP port numbers and ensuring
2110 * there are no duplicates. */
2111static int
2112set_stp_port(struct ofport *ofport_,
2113 const struct ofproto_port_stp_settings *s)
2114{
2115 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2116 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2117 struct stp_port *sp = ofport->stp_port;
2118
2119 if (!s || !s->enable) {
2120 if (sp) {
2121 ofport->stp_port = NULL;
2122 stp_port_disable(sp);
2123 update_stp_port_state(ofport);
2124 }
2125 return 0;
2126 } else if (sp && stp_port_no(sp) != s->port_num
2127 && ofport == stp_port_get_aux(sp)) {
2128 /* The port-id changed, so disable the old one if it's not
2129 * already in use by another port. */
2130 stp_port_disable(sp);
2131 }
2132
2133 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
2134 stp_port_enable(sp);
2135
2136 stp_port_set_aux(sp, ofport);
2137 stp_port_set_priority(sp, s->priority);
2138 stp_port_set_path_cost(sp, s->path_cost);
2139
2140 update_stp_port_state(ofport);
2141
2142 return 0;
2143}
2144
2145static int
2146get_stp_port_status(struct ofport *ofport_,
2147 struct ofproto_port_stp_status *s)
2148{
2149 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2150 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2151 struct stp_port *sp = ofport->stp_port;
2152
2153 if (!ofproto->stp || !sp) {
2154 s->enabled = false;
2155 return 0;
2156 }
2157
2158 s->enabled = true;
2159 s->port_id = stp_port_get_id(sp);
2160 s->state = stp_port_get_state(sp);
2161 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
2162 s->role = stp_port_get_role(sp);
2163 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
2164
2165 return 0;
2166}
2167
2168static void
2169stp_run(struct ofproto_dpif *ofproto)
2170{
2171 if (ofproto->stp) {
2172 long long int now = time_msec();
2173 long long int elapsed = now - ofproto->stp_last_tick;
2174 struct stp_port *sp;
2175
2176 if (elapsed > 0) {
2177 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2178 ofproto->stp_last_tick = now;
2179 }
2180 while (stp_get_changed_port(ofproto->stp, &sp)) {
2181 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2182
2183 if (ofport) {
2184 update_stp_port_state(ofport);
2185 }
2186 }
2187
2188 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2189 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2190 mac_learning_flush(ofproto->ml);
2191 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2192 }
2193 }
2194}
2195
2196static void
2197stp_wait(struct ofproto_dpif *ofproto)
2198{
2199 if (ofproto->stp) {
2200 poll_timer_wait(1000);
2201 }
2202}
2203\f
2204static int
2205set_queues(struct ofport *ofport_, const struct ofproto_port_queue *qdscp,
2206 size_t n_qdscp)
2207{
2208 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2209 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2210
2211 if (ofport->n_qdscp != n_qdscp
2212 || (n_qdscp && memcmp(ofport->qdscp, qdscp,
2213 n_qdscp * sizeof *qdscp))) {
2214 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2215 free(ofport->qdscp);
2216 ofport->qdscp = n_qdscp
2217 ? xmemdup(qdscp, n_qdscp * sizeof *qdscp)
2218 : NULL;
2219 ofport->n_qdscp = n_qdscp;
2220 }
2221
2222 return 0;
2223}
2224\f
2225/* Bundles. */
2226
2227/* Expires all MAC learning entries associated with 'bundle' and forces its
2228 * ofproto to revalidate every flow.
2229 *
2230 * Normally MAC learning entries are removed only from the ofproto associated
2231 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2232 * are removed from every ofproto. When patch ports and SLB bonds are in use
2233 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2234 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2235 * with the host from which it migrated. */
2236static void
2237bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2238{
2239 struct ofproto_dpif *ofproto = bundle->ofproto;
2240 struct mac_learning *ml = ofproto->ml;
2241 struct mac_entry *mac, *next_mac;
2242
2243 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2244 ovs_rwlock_wrlock(&ml->rwlock);
2245 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2246 if (mac->port.p == bundle) {
2247 if (all_ofprotos) {
2248 struct ofproto_dpif *o;
2249
2250 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2251 if (o != ofproto) {
2252 struct mac_entry *e;
2253
2254 ovs_rwlock_wrlock(&o->ml->rwlock);
2255 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan);
2256 if (e) {
2257 mac_learning_expire(o->ml, e);
2258 }
2259 ovs_rwlock_unlock(&o->ml->rwlock);
2260 }
2261 }
2262 }
2263
2264 mac_learning_expire(ml, mac);
2265 }
2266 }
2267 ovs_rwlock_unlock(&ml->rwlock);
2268}
2269
2270static struct ofbundle *
2271bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2272{
2273 struct ofbundle *bundle;
2274
2275 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2276 &ofproto->bundles) {
2277 if (bundle->aux == aux) {
2278 return bundle;
2279 }
2280 }
2281 return NULL;
2282}
2283
2284static void
2285bundle_update(struct ofbundle *bundle)
2286{
2287 struct ofport_dpif *port;
2288
2289 bundle->floodable = true;
2290 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2291 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2292 || !stp_forward_in_state(port->stp_state)) {
2293 bundle->floodable = false;
2294 break;
2295 }
2296 }
2297}
2298
2299static void
2300bundle_del_port(struct ofport_dpif *port)
2301{
2302 struct ofbundle *bundle = port->bundle;
2303
2304 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2305
2306 list_remove(&port->bundle_node);
2307 port->bundle = NULL;
2308
2309 if (bundle->lacp) {
2310 lacp_slave_unregister(bundle->lacp, port);
2311 }
2312 if (bundle->bond) {
2313 bond_slave_unregister(bundle->bond, port);
2314 }
2315
2316 bundle_update(bundle);
2317}
2318
2319static bool
2320bundle_add_port(struct ofbundle *bundle, ofp_port_t ofp_port,
2321 struct lacp_slave_settings *lacp)
2322{
2323 struct ofport_dpif *port;
2324
2325 port = get_ofp_port(bundle->ofproto, ofp_port);
2326 if (!port) {
2327 return false;
2328 }
2329
2330 if (port->bundle != bundle) {
2331 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2332 if (port->bundle) {
2333 bundle_remove(&port->up);
2334 }
2335
2336 port->bundle = bundle;
2337 list_push_back(&bundle->ports, &port->bundle_node);
2338 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2339 || !stp_forward_in_state(port->stp_state)) {
2340 bundle->floodable = false;
2341 }
2342 }
2343 if (lacp) {
2344 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2345 lacp_slave_register(bundle->lacp, port, lacp);
2346 }
2347
2348 return true;
2349}
2350
2351static void
2352bundle_destroy(struct ofbundle *bundle)
2353{
2354 struct ofproto_dpif *ofproto;
2355 struct ofport_dpif *port, *next_port;
2356
2357 if (!bundle) {
2358 return;
2359 }
2360
2361 ofproto = bundle->ofproto;
2362 mbridge_unregister_bundle(ofproto->mbridge, bundle->aux);
2363
2364 ovs_rwlock_wrlock(&xlate_rwlock);
2365 xlate_bundle_remove(bundle);
2366 ovs_rwlock_unlock(&xlate_rwlock);
2367
2368 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2369 bundle_del_port(port);
2370 }
2371
2372 bundle_flush_macs(bundle, true);
2373 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2374 free(bundle->name);
2375 free(bundle->trunks);
2376 lacp_unref(bundle->lacp);
2377 bond_unref(bundle->bond);
2378 free(bundle);
2379}
2380
2381static int
2382bundle_set(struct ofproto *ofproto_, void *aux,
2383 const struct ofproto_bundle_settings *s)
2384{
2385 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2386 bool need_flush = false;
2387 struct ofport_dpif *port;
2388 struct ofbundle *bundle;
2389 unsigned long *trunks;
2390 int vlan;
2391 size_t i;
2392 bool ok;
2393
2394 if (!s) {
2395 bundle_destroy(bundle_lookup(ofproto, aux));
2396 return 0;
2397 }
2398
2399 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2400 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2401
2402 bundle = bundle_lookup(ofproto, aux);
2403 if (!bundle) {
2404 bundle = xmalloc(sizeof *bundle);
2405
2406 bundle->ofproto = ofproto;
2407 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2408 hash_pointer(aux, 0));
2409 bundle->aux = aux;
2410 bundle->name = NULL;
2411
2412 list_init(&bundle->ports);
2413 bundle->vlan_mode = PORT_VLAN_TRUNK;
2414 bundle->vlan = -1;
2415 bundle->trunks = NULL;
2416 bundle->use_priority_tags = s->use_priority_tags;
2417 bundle->lacp = NULL;
2418 bundle->bond = NULL;
2419
2420 bundle->floodable = true;
2421 mbridge_register_bundle(ofproto->mbridge, bundle);
2422 }
2423
2424 if (!bundle->name || strcmp(s->name, bundle->name)) {
2425 free(bundle->name);
2426 bundle->name = xstrdup(s->name);
2427 }
2428
2429 /* LACP. */
2430 if (s->lacp) {
2431 if (!bundle->lacp) {
2432 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2433 bundle->lacp = lacp_create();
2434 }
2435 lacp_configure(bundle->lacp, s->lacp);
2436 } else {
2437 lacp_unref(bundle->lacp);
2438 bundle->lacp = NULL;
2439 }
2440
2441 /* Update set of ports. */
2442 ok = true;
2443 for (i = 0; i < s->n_slaves; i++) {
2444 if (!bundle_add_port(bundle, s->slaves[i],
2445 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2446 ok = false;
2447 }
2448 }
2449 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2450 struct ofport_dpif *next_port;
2451
2452 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2453 for (i = 0; i < s->n_slaves; i++) {
2454 if (s->slaves[i] == port->up.ofp_port) {
2455 goto found;
2456 }
2457 }
2458
2459 bundle_del_port(port);
2460 found: ;
2461 }
2462 }
2463 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2464
2465 if (list_is_empty(&bundle->ports)) {
2466 bundle_destroy(bundle);
2467 return EINVAL;
2468 }
2469
2470 /* Set VLAN tagging mode */
2471 if (s->vlan_mode != bundle->vlan_mode
2472 || s->use_priority_tags != bundle->use_priority_tags) {
2473 bundle->vlan_mode = s->vlan_mode;
2474 bundle->use_priority_tags = s->use_priority_tags;
2475 need_flush = true;
2476 }
2477
2478 /* Set VLAN tag. */
2479 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2480 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2481 : 0);
2482 if (vlan != bundle->vlan) {
2483 bundle->vlan = vlan;
2484 need_flush = true;
2485 }
2486
2487 /* Get trunked VLANs. */
2488 switch (s->vlan_mode) {
2489 case PORT_VLAN_ACCESS:
2490 trunks = NULL;
2491 break;
2492
2493 case PORT_VLAN_TRUNK:
2494 trunks = CONST_CAST(unsigned long *, s->trunks);
2495 break;
2496
2497 case PORT_VLAN_NATIVE_UNTAGGED:
2498 case PORT_VLAN_NATIVE_TAGGED:
2499 if (vlan != 0 && (!s->trunks
2500 || !bitmap_is_set(s->trunks, vlan)
2501 || bitmap_is_set(s->trunks, 0))) {
2502 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2503 if (s->trunks) {
2504 trunks = bitmap_clone(s->trunks, 4096);
2505 } else {
2506 trunks = bitmap_allocate1(4096);
2507 }
2508 bitmap_set1(trunks, vlan);
2509 bitmap_set0(trunks, 0);
2510 } else {
2511 trunks = CONST_CAST(unsigned long *, s->trunks);
2512 }
2513 break;
2514
2515 default:
2516 NOT_REACHED();
2517 }
2518 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2519 free(bundle->trunks);
2520 if (trunks == s->trunks) {
2521 bundle->trunks = vlan_bitmap_clone(trunks);
2522 } else {
2523 bundle->trunks = trunks;
2524 trunks = NULL;
2525 }
2526 need_flush = true;
2527 }
2528 if (trunks != s->trunks) {
2529 free(trunks);
2530 }
2531
2532 /* Bonding. */
2533 if (!list_is_short(&bundle->ports)) {
2534 bundle->ofproto->has_bonded_bundles = true;
2535 if (bundle->bond) {
2536 if (bond_reconfigure(bundle->bond, s->bond)) {
2537 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2538 }
2539 } else {
2540 bundle->bond = bond_create(s->bond);
2541 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2542 }
2543
2544 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2545 bond_slave_register(bundle->bond, port, port->up.netdev);
2546 }
2547 } else {
2548 bond_unref(bundle->bond);
2549 bundle->bond = NULL;
2550 }
2551
2552 /* If we changed something that would affect MAC learning, un-learn
2553 * everything on this port and force flow revalidation. */
2554 if (need_flush) {
2555 bundle_flush_macs(bundle, false);
2556 }
2557
2558 return 0;
2559}
2560
2561static void
2562bundle_remove(struct ofport *port_)
2563{
2564 struct ofport_dpif *port = ofport_dpif_cast(port_);
2565 struct ofbundle *bundle = port->bundle;
2566
2567 if (bundle) {
2568 bundle_del_port(port);
2569 if (list_is_empty(&bundle->ports)) {
2570 bundle_destroy(bundle);
2571 } else if (list_is_short(&bundle->ports)) {
2572 bond_unref(bundle->bond);
2573 bundle->bond = NULL;
2574 }
2575 }
2576}
2577
2578static void
2579send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2580{
2581 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2582 struct ofport_dpif *port = port_;
2583 uint8_t ea[ETH_ADDR_LEN];
2584 int error;
2585
2586 error = netdev_get_etheraddr(port->up.netdev, ea);
2587 if (!error) {
2588 struct ofpbuf packet;
2589 void *packet_pdu;
2590
2591 ofpbuf_init(&packet, 0);
2592 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2593 pdu_size);
2594 memcpy(packet_pdu, pdu, pdu_size);
2595
2596 ofproto_dpif_send_packet(port, &packet);
2597 ofpbuf_uninit(&packet);
2598 } else {
2599 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2600 "%s (%s)", port->bundle->name,
2601 netdev_get_name(port->up.netdev), ovs_strerror(error));
2602 }
2603}
2604
2605static void
2606bundle_send_learning_packets(struct ofbundle *bundle)
2607{
2608 struct ofproto_dpif *ofproto = bundle->ofproto;
2609 struct ofpbuf *learning_packet;
2610 int error, n_packets, n_errors;
2611 struct mac_entry *e;
2612 struct list packets;
2613
2614 list_init(&packets);
2615 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
2616 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2617 if (e->port.p != bundle) {
2618 void *port_void;
2619
2620 learning_packet = bond_compose_learning_packet(bundle->bond,
2621 e->mac, e->vlan,
2622 &port_void);
2623 learning_packet->private_p = port_void;
2624 list_push_back(&packets, &learning_packet->list_node);
2625 }
2626 }
2627 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2628
2629 error = n_packets = n_errors = 0;
2630 LIST_FOR_EACH (learning_packet, list_node, &packets) {
2631 int ret;
2632
2633 ret = ofproto_dpif_send_packet(learning_packet->private_p, learning_packet);
2634 if (ret) {
2635 error = ret;
2636 n_errors++;
2637 }
2638 n_packets++;
2639 }
2640 ofpbuf_list_delete(&packets);
2641
2642 if (n_errors) {
2643 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2644 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2645 "packets, last error was: %s",
2646 bundle->name, n_errors, n_packets, ovs_strerror(error));
2647 } else {
2648 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2649 bundle->name, n_packets);
2650 }
2651}
2652
2653static void
2654bundle_run(struct ofbundle *bundle)
2655{
2656 if (bundle->lacp) {
2657 lacp_run(bundle->lacp, send_pdu_cb);
2658 }
2659 if (bundle->bond) {
2660 struct ofport_dpif *port;
2661
2662 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2663 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2664 }
2665
2666 if (bond_run(bundle->bond, lacp_status(bundle->lacp))) {
2667 bundle->ofproto->backer->need_revalidate = REV_BOND;
2668 }
2669
2670 if (bond_should_send_learning_packets(bundle->bond)) {
2671 bundle_send_learning_packets(bundle);
2672 }
2673 }
2674}
2675
2676static void
2677bundle_wait(struct ofbundle *bundle)
2678{
2679 if (bundle->lacp) {
2680 lacp_wait(bundle->lacp);
2681 }
2682 if (bundle->bond) {
2683 bond_wait(bundle->bond);
2684 }
2685}
2686\f
2687/* Mirrors. */
2688
2689static int
2690mirror_set__(struct ofproto *ofproto_, void *aux,
2691 const struct ofproto_mirror_settings *s)
2692{
2693 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2694 struct ofbundle **srcs, **dsts;
2695 int error;
2696 size_t i;
2697
2698 if (!s) {
2699 mirror_destroy(ofproto->mbridge, aux);
2700 return 0;
2701 }
2702
2703 srcs = xmalloc(s->n_srcs * sizeof *srcs);
2704 dsts = xmalloc(s->n_dsts * sizeof *dsts);
2705
2706 for (i = 0; i < s->n_srcs; i++) {
2707 srcs[i] = bundle_lookup(ofproto, s->srcs[i]);
2708 }
2709
2710 for (i = 0; i < s->n_dsts; i++) {
2711 dsts[i] = bundle_lookup(ofproto, s->dsts[i]);
2712 }
2713
2714 error = mirror_set(ofproto->mbridge, aux, s->name, srcs, s->n_srcs, dsts,
2715 s->n_dsts, s->src_vlans,
2716 bundle_lookup(ofproto, s->out_bundle), s->out_vlan);
2717 free(srcs);
2718 free(dsts);
2719 return error;
2720}
2721
2722static int
2723mirror_get_stats__(struct ofproto *ofproto, void *aux,
2724 uint64_t *packets, uint64_t *bytes)
2725{
2726 push_all_stats();
2727 return mirror_get_stats(ofproto_dpif_cast(ofproto)->mbridge, aux, packets,
2728 bytes);
2729}
2730
2731static int
2732set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2733{
2734 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2735 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2736 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2737 mac_learning_flush(ofproto->ml);
2738 }
2739 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2740 return 0;
2741}
2742
2743static bool
2744is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2745{
2746 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2747 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2748 return bundle && mirror_bundle_out(ofproto->mbridge, bundle) != 0;
2749}
2750
2751static void
2752forward_bpdu_changed(struct ofproto *ofproto_)
2753{
2754 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2755 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2756}
2757
2758static void
2759set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
2760 size_t max_entries)
2761{
2762 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2763 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2764 mac_learning_set_idle_time(ofproto->ml, idle_time);
2765 mac_learning_set_max_entries(ofproto->ml, max_entries);
2766 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2767}
2768\f
2769/* Ports. */
2770
2771static struct ofport_dpif *
2772get_ofp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
2773{
2774 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2775 return ofport ? ofport_dpif_cast(ofport) : NULL;
2776}
2777
2778static struct ofport_dpif *
2779get_odp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port)
2780{
2781 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
2782 return port && &ofproto->up == port->up.ofproto ? port : NULL;
2783}
2784
2785static void
2786ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2787 struct ofproto_port *ofproto_port,
2788 struct dpif_port *dpif_port)
2789{
2790 ofproto_port->name = dpif_port->name;
2791 ofproto_port->type = dpif_port->type;
2792 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2793}
2794
2795static void
2796ofport_update_peer(struct ofport_dpif *ofport)
2797{
2798 const struct ofproto_dpif *ofproto;
2799 struct dpif_backer *backer;
2800 char *peer_name;
2801
2802 if (!netdev_vport_is_patch(ofport->up.netdev)) {
2803 return;
2804 }
2805
2806 backer = ofproto_dpif_cast(ofport->up.ofproto)->backer;
2807 backer->need_revalidate = REV_RECONFIGURE;
2808
2809 if (ofport->peer) {
2810 ofport->peer->peer = NULL;
2811 ofport->peer = NULL;
2812 }
2813
2814 peer_name = netdev_vport_patch_peer(ofport->up.netdev);
2815 if (!peer_name) {
2816 return;
2817 }
2818
2819 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2820 struct ofport *peer_ofport;
2821 struct ofport_dpif *peer;
2822 char *peer_peer;
2823
2824 if (ofproto->backer != backer) {
2825 continue;
2826 }
2827
2828 peer_ofport = shash_find_data(&ofproto->up.port_by_name, peer_name);
2829 if (!peer_ofport) {
2830 continue;
2831 }
2832
2833 peer = ofport_dpif_cast(peer_ofport);
2834 peer_peer = netdev_vport_patch_peer(peer->up.netdev);
2835 if (peer_peer && !strcmp(netdev_get_name(ofport->up.netdev),
2836 peer_peer)) {
2837 ofport->peer = peer;
2838 ofport->peer->peer = ofport;
2839 }
2840 free(peer_peer);
2841
2842 break;
2843 }
2844 free(peer_name);
2845}
2846
2847static void
2848port_run(struct ofport_dpif *ofport)
2849{
2850 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2851 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2852 bool enable = netdev_get_carrier(ofport->up.netdev);
2853 bool cfm_enable = false;
2854 bool bfd_enable = false;
2855
2856 ofport->carrier_seq = carrier_seq;
2857
2858 if (ofport->cfm) {
2859 int cfm_opup = cfm_get_opup(ofport->cfm);
2860
2861 cfm_enable = !cfm_get_fault(ofport->cfm);
2862
2863 if (cfm_opup >= 0) {
2864 cfm_enable = cfm_enable && cfm_opup;
2865 }
2866 }
2867
2868 if (ofport->bfd) {
2869 bfd_enable = bfd_forwarding(ofport->bfd);
2870 }
2871
2872 if (ofport->bfd || ofport->cfm) {
2873 enable = enable && (cfm_enable || bfd_enable);
2874 }
2875
2876 if (ofport->bundle) {
2877 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
2878 if (carrier_changed) {
2879 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
2880 }
2881 }
2882
2883 if (ofport->may_enable != enable) {
2884 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2885 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
2886 }
2887
2888 ofport->may_enable = enable;
2889}
2890
2891static int
2892port_query_by_name(const struct ofproto *ofproto_, const char *devname,
2893 struct ofproto_port *ofproto_port)
2894{
2895 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2896 struct dpif_port dpif_port;
2897 int error;
2898
2899 if (sset_contains(&ofproto->ghost_ports, devname)) {
2900 const char *type = netdev_get_type_from_name(devname);
2901
2902 /* We may be called before ofproto->up.port_by_name is populated with
2903 * the appropriate ofport. For this reason, we must get the name and
2904 * type from the netdev layer directly. */
2905 if (type) {
2906 const struct ofport *ofport;
2907
2908 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
2909 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
2910 ofproto_port->name = xstrdup(devname);
2911 ofproto_port->type = xstrdup(type);
2912 return 0;
2913 }
2914 return ENODEV;
2915 }
2916
2917 if (!sset_contains(&ofproto->ports, devname)) {
2918 return ENODEV;
2919 }
2920 error = dpif_port_query_by_name(ofproto->backer->dpif,
2921 devname, &dpif_port);
2922 if (!error) {
2923 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
2924 }
2925 return error;
2926}
2927
2928static int
2929port_add(struct ofproto *ofproto_, struct netdev *netdev)
2930{
2931 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2932 const char *devname = netdev_get_name(netdev);
2933 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
2934 const char *dp_port_name;
2935
2936 if (netdev_vport_is_patch(netdev)) {
2937 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
2938 return 0;
2939 }
2940
2941 dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
2942 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
2943 odp_port_t port_no = ODPP_NONE;
2944 int error;
2945
2946 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
2947 if (error) {
2948 return error;
2949 }
2950 if (netdev_get_tunnel_config(netdev)) {
2951 simap_put(&ofproto->backer->tnl_backers,
2952 dp_port_name, odp_to_u32(port_no));
2953 }
2954 }
2955
2956 if (netdev_get_tunnel_config(netdev)) {
2957 sset_add(&ofproto->ghost_ports, devname);
2958 } else {
2959 sset_add(&ofproto->ports, devname);
2960 }
2961 return 0;
2962}
2963
2964static int
2965port_del(struct ofproto *ofproto_, ofp_port_t ofp_port)
2966{
2967 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2968 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
2969 int error = 0;
2970
2971 if (!ofport) {
2972 return 0;
2973 }
2974
2975 sset_find_and_delete(&ofproto->ghost_ports,
2976 netdev_get_name(ofport->up.netdev));
2977 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2978 if (!ofport->is_tunnel && !netdev_vport_is_patch(ofport->up.netdev)) {
2979 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
2980 if (!error) {
2981 /* The caller is going to close ofport->up.netdev. If this is a
2982 * bonded port, then the bond is using that netdev, so remove it
2983 * from the bond. The client will need to reconfigure everything
2984 * after deleting ports, so then the slave will get re-added. */
2985 bundle_remove(&ofport->up);
2986 }
2987 }
2988 return error;
2989}
2990
2991static int
2992port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
2993{
2994 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2995 int error;
2996
2997 push_all_stats();
2998
2999 error = netdev_get_stats(ofport->up.netdev, stats);
3000
3001 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3002 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3003
3004 ovs_mutex_lock(&ofproto->stats_mutex);
3005 /* ofproto->stats.tx_packets represents packets that we created
3006 * internally and sent to some port (e.g. packets sent with
3007 * ofproto_dpif_send_packet()). Account for them as if they had
3008 * come from OFPP_LOCAL and got forwarded. */
3009
3010 if (stats->rx_packets != UINT64_MAX) {
3011 stats->rx_packets += ofproto->stats.tx_packets;
3012 }
3013
3014 if (stats->rx_bytes != UINT64_MAX) {
3015 stats->rx_bytes += ofproto->stats.tx_bytes;
3016 }
3017
3018 /* ofproto->stats.rx_packets represents packets that were received on
3019 * some port and we processed internally and dropped (e.g. STP).
3020 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3021
3022 if (stats->tx_packets != UINT64_MAX) {
3023 stats->tx_packets += ofproto->stats.rx_packets;
3024 }
3025
3026 if (stats->tx_bytes != UINT64_MAX) {
3027 stats->tx_bytes += ofproto->stats.rx_bytes;
3028 }
3029 ovs_mutex_unlock(&ofproto->stats_mutex);
3030 }
3031
3032 return error;
3033}
3034
3035struct port_dump_state {
3036 uint32_t bucket;
3037 uint32_t offset;
3038 bool ghost;
3039
3040 struct ofproto_port port;
3041 bool has_port;
3042};
3043
3044static int
3045port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3046{
3047 *statep = xzalloc(sizeof(struct port_dump_state));
3048 return 0;
3049}
3050
3051static int
3052port_dump_next(const struct ofproto *ofproto_, void *state_,
3053 struct ofproto_port *port)
3054{
3055 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3056 struct port_dump_state *state = state_;
3057 const struct sset *sset;
3058 struct sset_node *node;
3059
3060 if (state->has_port) {
3061 ofproto_port_destroy(&state->port);
3062 state->has_port = false;
3063 }
3064 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3065 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3066 int error;
3067
3068 error = port_query_by_name(ofproto_, node->name, &state->port);
3069 if (!error) {
3070 *port = state->port;
3071 state->has_port = true;
3072 return 0;
3073 } else if (error != ENODEV) {
3074 return error;
3075 }
3076 }
3077
3078 if (!state->ghost) {
3079 state->ghost = true;
3080 state->bucket = 0;
3081 state->offset = 0;
3082 return port_dump_next(ofproto_, state_, port);
3083 }
3084
3085 return EOF;
3086}
3087
3088static int
3089port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3090{
3091 struct port_dump_state *state = state_;
3092
3093 if (state->has_port) {
3094 ofproto_port_destroy(&state->port);
3095 }
3096 free(state);
3097 return 0;
3098}
3099
3100static int
3101port_poll(const struct ofproto *ofproto_, char **devnamep)
3102{
3103 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3104
3105 if (ofproto->port_poll_errno) {
3106 int error = ofproto->port_poll_errno;
3107 ofproto->port_poll_errno = 0;
3108 return error;
3109 }
3110
3111 if (sset_is_empty(&ofproto->port_poll_set)) {
3112 return EAGAIN;
3113 }
3114
3115 *devnamep = sset_pop(&ofproto->port_poll_set);
3116 return 0;
3117}
3118
3119static void
3120port_poll_wait(const struct ofproto *ofproto_)
3121{
3122 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3123 dpif_port_poll_wait(ofproto->backer->dpif);
3124}
3125
3126static int
3127port_is_lacp_current(const struct ofport *ofport_)
3128{
3129 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3130 return (ofport->bundle && ofport->bundle->lacp
3131 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3132 : -1);
3133}
3134\f
3135/* Upcall handling. */
3136
3137struct flow_miss_op {
3138 struct dpif_op dpif_op;
3139
3140 uint64_t slow_stub[128 / 8]; /* Buffer for compose_slow_path() */
3141 struct xlate_out xout;
3142 bool xout_garbage; /* 'xout' needs to be uninitialized? */
3143
3144 struct ofpbuf mask; /* Flow mask for "put" ops. */
3145 struct odputil_keybuf maskbuf;
3146
3147 /* If this is a "put" op, then a pointer to the subfacet that should
3148 * be marked as uninstalled if the operation fails. */
3149 struct subfacet *subfacet;
3150};
3151
3152/* Figures out whether a flow that missed in 'ofproto', whose details are in
3153 * 'miss' masked by 'wc', is likely to be worth tracking in detail in userspace
3154 * and (usually) installing a datapath flow. The answer is usually "yes" (a
3155 * return value of true). However, for short flows the cost of bookkeeping is
3156 * much higher than the benefits, so when the datapath holds a large number of
3157 * flows we impose some heuristics to decide which flows are likely to be worth
3158 * tracking. */
3159static bool
3160flow_miss_should_make_facet(struct flow_miss *miss)
3161{
3162 struct dpif_backer *backer = miss->ofproto->backer;
3163 uint32_t hash;
3164
3165 switch (flow_miss_model) {
3166 case OFPROTO_HANDLE_MISS_AUTO:
3167 break;
3168 case OFPROTO_HANDLE_MISS_WITH_FACETS:
3169 return true;
3170 case OFPROTO_HANDLE_MISS_WITHOUT_FACETS:
3171 return false;
3172 }
3173
3174 if (!backer->governor) {
3175 size_t n_subfacets;
3176
3177 n_subfacets = hmap_count(&backer->subfacets);
3178 if (n_subfacets * 2 <= flow_eviction_threshold) {
3179 return true;
3180 }
3181
3182 backer->governor = governor_create();
3183 }
3184
3185 hash = flow_hash_in_wildcards(&miss->flow, &miss->xout.wc, 0);
3186 return governor_should_install_flow(backer->governor, hash,
3187 miss->stats.n_packets);
3188}
3189
3190/* Handles 'miss', which matches 'facet'. May add any required datapath
3191 * operations to 'ops', incrementing '*n_ops' for each new op.
3192 *
3193 * All of the packets in 'miss' are considered to have arrived at time
3194 * 'miss->stats.used'. This is really important only for new facets: if we
3195 * just called time_msec() here, then the new subfacet or its packets could
3196 * look (occasionally) as though it was used some time after the facet was
3197 * used. That can make a one-packet flow look like it has a nonzero duration,
3198 * which looks odd in e.g. NetFlow statistics. */
3199static void
3200handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3201 struct flow_miss_op *ops, size_t *n_ops)
3202{
3203 enum subfacet_path want_path;
3204 struct subfacet *subfacet;
3205
3206 facet->packet_count += miss->stats.n_packets;
3207 facet->prev_packet_count += miss->stats.n_packets;
3208 facet->byte_count += miss->stats.n_bytes;
3209 facet->prev_byte_count += miss->stats.n_bytes;
3210
3211 want_path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
3212
3213 /* Don't install the flow if it's the result of the "userspace"
3214 * action for an already installed facet. This can occur when a
3215 * datapath flow with wildcards has a "userspace" action and flows
3216 * sent to userspace result in a different subfacet, which will then
3217 * be rejected as overlapping by the datapath. */
3218 if (miss->upcall_type == DPIF_UC_ACTION
3219 && !list_is_empty(&facet->subfacets)) {
3220 return;
3221 }
3222
3223 subfacet = subfacet_create(facet, miss);
3224 if (subfacet->path != want_path) {
3225 struct flow_miss_op *op = &ops[(*n_ops)++];
3226 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3227
3228 subfacet->path = want_path;
3229
3230 ofpbuf_use_stack(&op->mask, &op->maskbuf, sizeof op->maskbuf);
3231 if (enable_megaflows) {
3232 odp_flow_key_from_mask(&op->mask, &facet->xout.wc.masks,
3233 &miss->flow, UINT32_MAX);
3234 }
3235
3236 op->xout_garbage = false;
3237 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3238 op->subfacet = subfacet;
3239 put->flags = DPIF_FP_CREATE;
3240 put->key = miss->key;
3241 put->key_len = miss->key_len;
3242 put->mask = op->mask.data;
3243 put->mask_len = op->mask.size;
3244
3245 if (want_path == SF_FAST_PATH) {
3246 put->actions = facet->xout.odp_actions.data;
3247 put->actions_len = facet->xout.odp_actions.size;
3248 } else {
3249 compose_slow_path(facet->ofproto, &miss->flow, facet->xout.slow,
3250 op->slow_stub, sizeof op->slow_stub,
3251 &put->actions, &put->actions_len);
3252 }
3253 put->stats = NULL;
3254 }
3255}
3256
3257/* Handles flow miss 'miss'. May add any required datapath operations
3258 * to 'ops', incrementing '*n_ops' for each new op. */
3259static void
3260handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3261 size_t *n_ops)
3262{
3263 struct facet *facet;
3264
3265 miss->ofproto->n_missed += miss->stats.n_packets;
3266
3267 facet = facet_lookup_valid(miss->ofproto, &miss->flow);
3268 if (!facet) {
3269 /* There does not exist a bijection between 'struct flow' and datapath
3270 * flow keys with fitness ODP_FIT_TO_LITTLE. This breaks a fundamental
3271 * assumption used throughout the facet and subfacet handling code.
3272 * Since we have to handle these misses in userspace anyway, we simply
3273 * skip facet creation, avoiding the problem altogether. */
3274 if (miss->key_fitness == ODP_FIT_TOO_LITTLE
3275 || !flow_miss_should_make_facet(miss)) {
3276 return;
3277 }
3278
3279 facet = facet_create(miss);
3280 }
3281 handle_flow_miss_with_facet(miss, facet, ops, n_ops);
3282}
3283
3284static struct drop_key *
3285drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3286 size_t key_len)
3287{
3288 struct drop_key *drop_key;
3289
3290 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3291 &backer->drop_keys) {
3292 if (drop_key->key_len == key_len
3293 && !memcmp(drop_key->key, key, key_len)) {
3294 return drop_key;
3295 }
3296 }
3297 return NULL;
3298}
3299
3300static void
3301drop_key_clear(struct dpif_backer *backer)
3302{
3303 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3304 struct drop_key *drop_key, *next;
3305
3306 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3307 int error;
3308
3309 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3310 NULL);
3311 if (error && !VLOG_DROP_WARN(&rl)) {
3312 struct ds ds = DS_EMPTY_INITIALIZER;
3313 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3314 VLOG_WARN("Failed to delete drop key (%s) (%s)",
3315 ovs_strerror(error), ds_cstr(&ds));
3316 ds_destroy(&ds);
3317 }
3318
3319 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3320 drop_key_destroy(drop_key);
3321 }
3322
3323 udpif_drop_key_clear(backer->udpif);
3324}
3325
3326static void
3327handle_flow_misses(struct dpif_backer *backer, struct flow_miss_batch *fmb)
3328{
3329 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH];
3330 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH];
3331 struct flow_miss *miss;
3332 size_t n_ops, i;
3333
3334 /* Process each element in the to-do list, constructing the set of
3335 * operations to batch. */
3336 n_ops = 0;
3337 HMAP_FOR_EACH (miss, hmap_node, &fmb->misses) {
3338 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3339 }
3340 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3341
3342 /* Execute batch. */
3343 for (i = 0; i < n_ops; i++) {
3344 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3345 }
3346 dpif_operate(backer->dpif, dpif_ops, n_ops);
3347
3348 for (i = 0; i < n_ops; i++) {
3349 if (dpif_ops[i]->error != 0
3350 && flow_miss_ops[i].dpif_op.type == DPIF_OP_FLOW_PUT
3351 && flow_miss_ops[i].subfacet) {
3352 struct subfacet *subfacet = flow_miss_ops[i].subfacet;
3353
3354 COVERAGE_INC(subfacet_install_fail);
3355
3356 /* Zero-out subfacet counters when installation failed, but
3357 * datapath reported hits. This should not happen and
3358 * indicates a bug, since if the datapath flow exists, we
3359 * should not be attempting to create a new subfacet. A
3360 * buggy datapath could trigger this, so just zero out the
3361 * counters and log an error. */
3362 if (subfacet->dp_packet_count || subfacet->dp_byte_count) {
3363 VLOG_ERR_RL(&rl, "failed to install subfacet for which "
3364 "datapath reported hits");
3365 subfacet->dp_packet_count = subfacet->dp_byte_count = 0;
3366 }
3367
3368 subfacet->path = SF_NOT_INSTALLED;
3369 }
3370 }
3371}
3372
3373static void
3374handle_upcalls(struct dpif_backer *backer)
3375{
3376 struct flow_miss_batch *fmb;
3377 int n_processed;
3378
3379 for (n_processed = 0; n_processed < FLOW_MISS_MAX_BATCH; n_processed++) {
3380 struct drop_key *drop_key = drop_key_next(backer->udpif);
3381 if (!drop_key) {
3382 break;
3383 }
3384
3385 if (!drop_key_lookup(backer, drop_key->key, drop_key->key_len)) {
3386 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
3387 hash_bytes(drop_key->key, drop_key->key_len, 0));
3388 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
3389 drop_key->key, drop_key->key_len,
3390 NULL, 0, NULL, 0, NULL);
3391 } else {
3392 drop_key_destroy(drop_key);
3393 }
3394 }
3395
3396 fmb = flow_miss_batch_next(backer->udpif);
3397 if (fmb) {
3398 handle_flow_misses(backer, fmb);
3399 flow_miss_batch_destroy(fmb);
3400 }
3401}
3402\f
3403/* Flow expiration. */
3404
3405static int subfacet_max_idle(const struct dpif_backer *);
3406static void update_stats(struct dpif_backer *);
3407static void rule_expire(struct rule_dpif *) OVS_REQUIRES(ofproto_mutex);
3408static void expire_subfacets(struct dpif_backer *, int dp_max_idle);
3409
3410/* This function is called periodically by run(). Its job is to collect
3411 * updates for the flows that have been installed into the datapath, most
3412 * importantly when they last were used, and then use that information to
3413 * expire flows that have not been used recently.
3414 *
3415 * Returns the number of milliseconds after which it should be called again. */
3416static int
3417expire(struct dpif_backer *backer)
3418{
3419 struct ofproto_dpif *ofproto;
3420 size_t n_subfacets;
3421 int max_idle;
3422
3423 /* Periodically clear out the drop keys in an effort to keep them
3424 * relatively few. */
3425 drop_key_clear(backer);
3426
3427 /* Update stats for each flow in the backer. */
3428 update_stats(backer);
3429
3430 n_subfacets = hmap_count(&backer->subfacets);
3431 if (n_subfacets) {
3432 struct subfacet *subfacet;
3433 long long int total, now;
3434
3435 total = 0;
3436 now = time_msec();
3437 HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) {
3438 total += now - subfacet->created;
3439 }
3440 backer->avg_subfacet_life += total / n_subfacets;
3441 }
3442 backer->avg_subfacet_life /= 2;
3443
3444 backer->avg_n_subfacet += n_subfacets;
3445 backer->avg_n_subfacet /= 2;
3446
3447 backer->max_n_subfacet = MAX(backer->max_n_subfacet, n_subfacets);
3448
3449 max_idle = subfacet_max_idle(backer);
3450 expire_subfacets(backer, max_idle);
3451
3452 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3453 struct rule *rule, *next_rule;
3454
3455 if (ofproto->backer != backer) {
3456 continue;
3457 }
3458
3459 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
3460 * has passed. */
3461 ovs_mutex_lock(&ofproto_mutex);
3462 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
3463 &ofproto->up.expirable) {
3464 rule_expire(rule_dpif_cast(rule));
3465 }
3466 ovs_mutex_unlock(&ofproto_mutex);
3467
3468 /* All outstanding data in existing flows has been accounted, so it's a
3469 * good time to do bond rebalancing. */
3470 if (ofproto->has_bonded_bundles) {
3471 struct ofbundle *bundle;
3472
3473 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3474 if (bundle->bond) {
3475 bond_rebalance(bundle->bond);
3476 }
3477 }
3478 }
3479 }
3480
3481 return MIN(max_idle, 1000);
3482}
3483
3484/* Updates flow table statistics given that the datapath just reported 'stats'
3485 * as 'subfacet''s statistics. */
3486static void
3487update_subfacet_stats(struct subfacet *subfacet,
3488 const struct dpif_flow_stats *stats)
3489{
3490 struct facet *facet = subfacet->facet;
3491 struct dpif_flow_stats diff;
3492
3493 diff.tcp_flags = stats->tcp_flags;
3494 diff.used = stats->used;
3495
3496 if (stats->n_packets >= subfacet->dp_packet_count) {
3497 diff.n_packets = stats->n_packets - subfacet->dp_packet_count;
3498 } else {
3499 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
3500 diff.n_packets = 0;
3501 }
3502
3503 if (stats->n_bytes >= subfacet->dp_byte_count) {
3504 diff.n_bytes = stats->n_bytes - subfacet->dp_byte_count;
3505 } else {
3506 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
3507 diff.n_bytes = 0;
3508 }
3509
3510 facet->ofproto->n_hit += diff.n_packets;
3511 subfacet->dp_packet_count = stats->n_packets;
3512 subfacet->dp_byte_count = stats->n_bytes;
3513 subfacet_update_stats(subfacet, &diff);
3514
3515 if (facet->accounted_bytes < facet->byte_count) {
3516 facet_learn(facet);
3517 facet_account(facet);
3518 facet->accounted_bytes = facet->byte_count;
3519 }
3520}
3521
3522/* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
3523 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
3524static void
3525delete_unexpected_flow(struct dpif_backer *backer,
3526 const struct nlattr *key, size_t key_len)
3527{
3528 if (!VLOG_DROP_WARN(&rl)) {
3529 struct ds s;
3530
3531 ds_init(&s);
3532 odp_flow_key_format(key, key_len, &s);
3533 VLOG_WARN("unexpected flow: %s", ds_cstr(&s));
3534 ds_destroy(&s);
3535 }
3536
3537 COVERAGE_INC(facet_unexpected);
3538 dpif_flow_del(backer->dpif, key, key_len, NULL);
3539}
3540
3541/* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
3542 *
3543 * This function also pushes statistics updates to rules which each facet
3544 * resubmits into. Generally these statistics will be accurate. However, if a
3545 * facet changes the rule it resubmits into at some time in between
3546 * update_stats() runs, it is possible that statistics accrued to the
3547 * old rule will be incorrectly attributed to the new rule. This could be
3548 * avoided by calling update_stats() whenever rules are created or
3549 * deleted. However, the performance impact of making so many calls to the
3550 * datapath do not justify the benefit of having perfectly accurate statistics.
3551 *
3552 * In addition, this function maintains per ofproto flow hit counts. The patch
3553 * port is not treated specially. e.g. A packet ingress from br0 patched into
3554 * br1 will increase the hit count of br0 by 1, however, does not affect
3555 * the hit or miss counts of br1.
3556 */
3557static void
3558update_stats(struct dpif_backer *backer)
3559{
3560 const struct dpif_flow_stats *stats;
3561 struct dpif_flow_dump dump;
3562 const struct nlattr *key, *mask;
3563 size_t key_len, mask_len;
3564
3565 dpif_flow_dump_start(&dump, backer->dpif);
3566 while (dpif_flow_dump_next(&dump, &key, &key_len,
3567 &mask, &mask_len, NULL, NULL, &stats)) {
3568 struct subfacet *subfacet;
3569 uint32_t key_hash;
3570
3571 key_hash = odp_flow_key_hash(key, key_len);
3572 subfacet = subfacet_find(backer, key, key_len, key_hash);
3573 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
3574 case SF_FAST_PATH:
3575 update_subfacet_stats(subfacet, stats);
3576 break;
3577
3578 case SF_SLOW_PATH:
3579 /* Stats are updated per-packet. */
3580 break;
3581
3582 case SF_NOT_INSTALLED:
3583 default:
3584 delete_unexpected_flow(backer, key, key_len);
3585 break;
3586 }
3587 run_fast_rl();
3588 }
3589 dpif_flow_dump_done(&dump);
3590}
3591
3592/* Calculates and returns the number of milliseconds of idle time after which
3593 * subfacets should expire from the datapath. When a subfacet expires, we fold
3594 * its statistics into its facet, and when a facet's last subfacet expires, we
3595 * fold its statistic into its rule. */
3596static int
3597subfacet_max_idle(const struct dpif_backer *backer)
3598{
3599 /*
3600 * Idle time histogram.
3601 *
3602 * Most of the time a switch has a relatively small number of subfacets.
3603 * When this is the case we might as well keep statistics for all of them
3604 * in userspace and to cache them in the kernel datapath for performance as
3605 * well.
3606 *
3607 * As the number of subfacets increases, the memory required to maintain
3608 * statistics about them in userspace and in the kernel becomes
3609 * significant. However, with a large number of subfacets it is likely
3610 * that only a few of them are "heavy hitters" that consume a large amount
3611 * of bandwidth. At this point, only heavy hitters are worth caching in
3612 * the kernel and maintaining in userspaces; other subfacets we can
3613 * discard.
3614 *
3615 * The technique used to compute the idle time is to build a histogram with
3616 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
3617 * that is installed in the kernel gets dropped in the appropriate bucket.
3618 * After the histogram has been built, we compute the cutoff so that only
3619 * the most-recently-used 1% of subfacets (but at least
3620 * flow_eviction_threshold flows) are kept cached. At least
3621 * the most-recently-used bucket of subfacets is kept, so actually an
3622 * arbitrary number of subfacets can be kept in any given expiration run
3623 * (though the next run will delete most of those unless they receive
3624 * additional data).
3625 *
3626 * This requires a second pass through the subfacets, in addition to the
3627 * pass made by update_stats(), because the former function never looks at
3628 * uninstallable subfacets.
3629 */
3630 enum { BUCKET_WIDTH = 100 };
3631 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
3632 int buckets[N_BUCKETS] = { 0 };
3633 int total, subtotal, bucket;
3634 struct subfacet *subfacet;
3635 long long int now;
3636 int i;
3637
3638 total = hmap_count(&backer->subfacets);
3639 if (total <= flow_eviction_threshold) {
3640 return N_BUCKETS * BUCKET_WIDTH;
3641 }
3642
3643 /* Build histogram. */
3644 now = time_msec();
3645 HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) {
3646 long long int idle = now - subfacet->used;
3647 int bucket = (idle <= 0 ? 0
3648 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
3649 : (unsigned int) idle / BUCKET_WIDTH);
3650 buckets[bucket]++;
3651 }
3652
3653 /* Find the first bucket whose flows should be expired. */
3654 subtotal = bucket = 0;
3655 do {
3656 subtotal += buckets[bucket++];
3657 } while (bucket < N_BUCKETS &&
3658 subtotal < MAX(flow_eviction_threshold, total / 100));
3659
3660 if (VLOG_IS_DBG_ENABLED()) {
3661 struct ds s;
3662
3663 ds_init(&s);
3664 ds_put_cstr(&s, "keep");
3665 for (i = 0; i < N_BUCKETS; i++) {
3666 if (i == bucket) {
3667 ds_put_cstr(&s, ", drop");
3668 }
3669 if (buckets[i]) {
3670 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
3671 }
3672 }
3673 VLOG_INFO("%s (msec:count)", ds_cstr(&s));
3674 ds_destroy(&s);
3675 }
3676
3677 return bucket * BUCKET_WIDTH;
3678}
3679
3680static void
3681expire_subfacets(struct dpif_backer *backer, int dp_max_idle)
3682{
3683 /* Cutoff time for most flows. */
3684 long long int normal_cutoff = time_msec() - dp_max_idle;
3685
3686 /* We really want to keep flows for special protocols around, so use a more
3687 * conservative cutoff. */
3688 long long int special_cutoff = time_msec() - 10000;
3689
3690 struct subfacet *subfacet, *next_subfacet;
3691 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
3692 int n_batch;
3693
3694 n_batch = 0;
3695 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
3696 &backer->subfacets) {
3697 long long int cutoff;
3698
3699 cutoff = (subfacet->facet->xout.slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP
3700 | SLOW_STP)
3701 ? special_cutoff
3702 : normal_cutoff);
3703 if (subfacet->used < cutoff) {
3704 if (subfacet->path != SF_NOT_INSTALLED) {
3705 batch[n_batch++] = subfacet;
3706 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
3707 subfacet_destroy_batch(backer, batch, n_batch);
3708 n_batch = 0;
3709 }
3710 } else {
3711 subfacet_destroy(subfacet);
3712 }
3713 }
3714 }
3715
3716 if (n_batch > 0) {
3717 subfacet_destroy_batch(backer, batch, n_batch);
3718 }
3719}
3720
3721/* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
3722 * then delete it entirely. */
3723static void
3724rule_expire(struct rule_dpif *rule)
3725 OVS_REQUIRES(ofproto_mutex)
3726{
3727 uint16_t idle_timeout, hard_timeout;
3728 long long int now = time_msec();
3729 int reason;
3730
3731 ovs_assert(!rule->up.pending);
3732
3733 /* Has 'rule' expired? */
3734 ovs_mutex_lock(&rule->up.mutex);
3735 hard_timeout = rule->up.hard_timeout;
3736 idle_timeout = rule->up.idle_timeout;
3737 if (hard_timeout && now > rule->up.modified + hard_timeout * 1000) {
3738 reason = OFPRR_HARD_TIMEOUT;
3739 } else if (idle_timeout && now > rule->up.used + idle_timeout * 1000) {
3740 reason = OFPRR_IDLE_TIMEOUT;
3741 } else {
3742 reason = -1;
3743 }
3744 ovs_mutex_unlock(&rule->up.mutex);
3745
3746 if (reason >= 0) {
3747 COVERAGE_INC(ofproto_dpif_expired);
3748 ofproto_rule_expire(&rule->up, reason);
3749 }
3750}
3751\f
3752/* Facets. */
3753
3754/* Creates and returns a new facet based on 'miss'.
3755 *
3756 * The caller must already have determined that no facet with an identical
3757 * 'miss->flow' exists in 'miss->ofproto'.
3758 *
3759 * 'rule' and 'xout' must have been created based on 'miss'.
3760 *
3761 * 'facet'' statistics are initialized based on 'stats'.
3762 *
3763 * The facet will initially have no subfacets. The caller should create (at
3764 * least) one subfacet with subfacet_create(). */
3765static struct facet *
3766facet_create(const struct flow_miss *miss)
3767{
3768 struct ofproto_dpif *ofproto = miss->ofproto;
3769 struct facet *facet;
3770 struct match match;
3771
3772 COVERAGE_INC(facet_create);
3773 facet = xzalloc(sizeof *facet);
3774 facet->ofproto = miss->ofproto;
3775 facet->used = miss->stats.used;
3776 facet->flow = miss->flow;
3777 facet->learn_rl = time_msec() + 500;
3778
3779 list_init(&facet->subfacets);
3780 netflow_flow_init(&facet->nf_flow);
3781 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
3782
3783 xlate_out_copy(&facet->xout, &miss->xout);
3784
3785 match_init(&match, &facet->flow, &facet->xout.wc);
3786 cls_rule_init(&facet->cr, &match, OFP_DEFAULT_PRIORITY);
3787 ovs_rwlock_wrlock(&ofproto->facets.rwlock);
3788 classifier_insert(&ofproto->facets, &facet->cr);
3789 ovs_rwlock_unlock(&ofproto->facets.rwlock);
3790
3791 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
3792 return facet;
3793}
3794
3795static void
3796facet_free(struct facet *facet)
3797{
3798 if (facet) {
3799 xlate_out_uninit(&facet->xout);
3800 free(facet);
3801 }
3802}
3803
3804/* Executes, within 'ofproto', the actions in 'rule' or 'ofpacts' on 'packet'.
3805 * 'flow' must reflect the data in 'packet'. */
3806int
3807ofproto_dpif_execute_actions(struct ofproto_dpif *ofproto,
3808 const struct flow *flow,
3809 struct rule_dpif *rule,
3810 const struct ofpact *ofpacts, size_t ofpacts_len,
3811 struct ofpbuf *packet)
3812{
3813 struct odputil_keybuf keybuf;
3814 struct dpif_flow_stats stats;
3815 struct xlate_out xout;
3816 struct xlate_in xin;
3817 ofp_port_t in_port;
3818 struct ofpbuf key;
3819 int error;
3820
3821 ovs_assert((rule != NULL) != (ofpacts != NULL));
3822
3823 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
3824 if (rule) {
3825 rule_dpif_credit_stats(rule, &stats);
3826 }
3827
3828 xlate_in_init(&xin, ofproto, flow, rule, stats.tcp_flags, packet);
3829 xin.ofpacts = ofpacts;
3830 xin.ofpacts_len = ofpacts_len;
3831 xin.resubmit_stats = &stats;
3832 xlate_actions(&xin, &xout);
3833
3834 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
3835 in_port = flow->in_port.ofp_port;
3836 if (in_port == OFPP_NONE) {
3837 in_port = OFPP_LOCAL;
3838 }
3839 odp_flow_key_from_flow(&key, flow, ofp_port_to_odp_port(ofproto, in_port));
3840
3841 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
3842 xout.odp_actions.data, xout.odp_actions.size, packet,
3843 (xout.slow & SLOW_ACTION) != 0);
3844 xlate_out_uninit(&xout);
3845
3846 return error;
3847}
3848
3849/* Remove 'facet' from its ofproto and free up the associated memory:
3850 *
3851 * - If 'facet' was installed in the datapath, uninstalls it and updates its
3852 * rule's statistics, via subfacet_uninstall().
3853 *
3854 * - Removes 'facet' from its rule and from ofproto->facets.
3855 */
3856static void
3857facet_remove(struct facet *facet)
3858{
3859 struct subfacet *subfacet, *next_subfacet;
3860
3861 COVERAGE_INC(facet_remove);
3862 ovs_assert(!list_is_empty(&facet->subfacets));
3863
3864 /* First uninstall all of the subfacets to get final statistics. */
3865 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
3866 subfacet_uninstall(subfacet);
3867 }
3868
3869 /* Flush the final stats to the rule.
3870 *
3871 * This might require us to have at least one subfacet around so that we
3872 * can use its actions for accounting in facet_account(), which is why we
3873 * have uninstalled but not yet destroyed the subfacets. */
3874 facet_flush_stats(facet);
3875
3876 /* Now we're really all done so destroy everything. */
3877 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
3878 &facet->subfacets) {
3879 subfacet_destroy__(subfacet);
3880 }
3881 ovs_rwlock_wrlock(&facet->ofproto->facets.rwlock);
3882 classifier_remove(&facet->ofproto->facets, &facet->cr);
3883 ovs_rwlock_unlock(&facet->ofproto->facets.rwlock);
3884 cls_rule_destroy(&facet->cr);
3885 facet_free(facet);
3886}
3887
3888/* Feed information from 'facet' back into the learning table to keep it in
3889 * sync with what is actually flowing through the datapath. */
3890static void
3891facet_learn(struct facet *facet)
3892{
3893 long long int now = time_msec();
3894
3895 if (!facet->xout.has_fin_timeout && now < facet->learn_rl) {
3896 return;
3897 }
3898
3899 facet->learn_rl = now + 500;
3900
3901 if (!facet->xout.has_learn
3902 && !facet->xout.has_normal
3903 && (!facet->xout.has_fin_timeout
3904 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
3905 return;
3906 }
3907
3908 facet_push_stats(facet, true);
3909}
3910
3911static void
3912facet_account(struct facet *facet)
3913{
3914 const struct nlattr *a;
3915 unsigned int left;
3916 ovs_be16 vlan_tci;
3917 uint64_t n_bytes;
3918
3919 if (!facet->xout.has_normal || !facet->ofproto->has_bonded_bundles) {
3920 return;
3921 }
3922 n_bytes = facet->byte_count - facet->accounted_bytes;
3923
3924 /* This loop feeds byte counters to bond_account() for rebalancing to use
3925 * as a basis. We also need to track the actual VLAN on which the packet
3926 * is going to be sent to ensure that it matches the one passed to
3927 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
3928 * hash bucket.)
3929 *
3930 * We use the actions from an arbitrary subfacet because they should all
3931 * be equally valid for our purpose. */
3932 vlan_tci = facet->flow.vlan_tci;
3933 NL_ATTR_FOR_EACH_UNSAFE (a, left, facet->xout.odp_actions.data,
3934 facet->xout.odp_actions.size) {
3935 const struct ovs_action_push_vlan *vlan;
3936 struct ofport_dpif *port;
3937
3938 switch (nl_attr_type(a)) {
3939 case OVS_ACTION_ATTR_OUTPUT:
3940 port = get_odp_port(facet->ofproto, nl_attr_get_odp_port(a));
3941 if (port && port->bundle && port->bundle->bond) {
3942 bond_account(port->bundle->bond, &facet->flow,
3943 vlan_tci_to_vid(vlan_tci), n_bytes);
3944 }
3945 break;
3946
3947 case OVS_ACTION_ATTR_POP_VLAN:
3948 vlan_tci = htons(0);
3949 break;
3950
3951 case OVS_ACTION_ATTR_PUSH_VLAN:
3952 vlan = nl_attr_get(a);
3953 vlan_tci = vlan->vlan_tci;
3954 break;
3955 }
3956 }
3957}
3958
3959/* Returns true if the only action for 'facet' is to send to the controller.
3960 * (We don't report NetFlow expiration messages for such facets because they
3961 * are just part of the control logic for the network, not real traffic). */
3962static bool
3963facet_is_controller_flow(struct facet *facet)
3964{
3965 if (facet) {
3966 struct ofproto_dpif *ofproto = facet->ofproto;
3967 const struct ofpact *ofpacts;
3968 struct rule_actions *actions;
3969 struct rule_dpif *rule;
3970 size_t ofpacts_len;
3971 bool is_controller;
3972
3973 rule_dpif_lookup(ofproto, &facet->flow, NULL, &rule);
3974 actions = rule_dpif_get_actions(rule);
3975 rule_dpif_unref(rule);
3976
3977 ofpacts_len = actions->ofpacts_len;
3978 ofpacts = actions->ofpacts;
3979 is_controller = ofpacts_len > 0
3980 && ofpacts->type == OFPACT_CONTROLLER
3981 && ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len);
3982 rule_actions_unref(actions);
3983
3984 return is_controller;
3985 }
3986 return false;
3987}
3988
3989/* Folds all of 'facet''s statistics into its rule. Also updates the
3990 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
3991 * 'facet''s statistics in the datapath should have been zeroed and folded into
3992 * its packet and byte counts before this function is called. */
3993static void
3994facet_flush_stats(struct facet *facet)
3995{
3996 struct ofproto_dpif *ofproto = facet->ofproto;
3997 struct subfacet *subfacet;
3998
3999 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4000 ovs_assert(!subfacet->dp_byte_count);
4001 ovs_assert(!subfacet->dp_packet_count);
4002 }
4003
4004 facet_push_stats(facet, false);
4005 if (facet->accounted_bytes < facet->byte_count) {
4006 facet_account(facet);
4007 facet->accounted_bytes = facet->byte_count;
4008 }
4009
4010 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4011 struct ofexpired expired;
4012 expired.flow = facet->flow;
4013 expired.packet_count = facet->packet_count;
4014 expired.byte_count = facet->byte_count;
4015 expired.used = facet->used;
4016 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4017 }
4018
4019 /* Reset counters to prevent double counting if 'facet' ever gets
4020 * reinstalled. */
4021 facet_reset_counters(facet);
4022
4023 netflow_flow_clear(&facet->nf_flow);
4024 facet->tcp_flags = 0;
4025}
4026
4027/* Searches 'ofproto''s table of facets for one which would be responsible for
4028 * 'flow'. Returns it if found, otherwise a null pointer.
4029 *
4030 * The returned facet might need revalidation; use facet_lookup_valid()
4031 * instead if that is important. */
4032static struct facet *
4033facet_find(struct ofproto_dpif *ofproto, const struct flow *flow)
4034{
4035 struct cls_rule *cr;
4036
4037 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
4038 cr = classifier_lookup(&ofproto->facets, flow, NULL);
4039 ovs_rwlock_unlock(&ofproto->facets.rwlock);
4040 return cr ? CONTAINER_OF(cr, struct facet, cr) : NULL;
4041}
4042
4043/* Searches 'ofproto''s table of facets for one capable that covers
4044 * 'flow'. Returns it if found, otherwise a null pointer.
4045 *
4046 * The returned facet is guaranteed to be valid. */
4047static struct facet *
4048facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow)
4049{
4050 struct facet *facet;
4051
4052 facet = facet_find(ofproto, flow);
4053 if (facet
4054 && ofproto->backer->need_revalidate
4055 && !facet_revalidate(facet)) {
4056 return NULL;
4057 }
4058
4059 return facet;
4060}
4061
4062static bool
4063facet_check_consistency(struct facet *facet)
4064{
4065 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4066
4067 struct xlate_out xout;
4068 struct xlate_in xin;
4069 bool ok;
4070
4071 /* Check the datapath actions for consistency. */
4072 xlate_in_init(&xin, facet->ofproto, &facet->flow, NULL, 0, NULL);
4073 xlate_actions(&xin, &xout);
4074
4075 ok = ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)
4076 && facet->xout.slow == xout.slow;
4077 if (!ok && !VLOG_DROP_WARN(&rl)) {
4078 struct ds s = DS_EMPTY_INITIALIZER;
4079
4080 flow_format(&s, &facet->flow);
4081 ds_put_cstr(&s, ": inconsistency in facet");
4082
4083 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4084 ds_put_cstr(&s, " (actions were: ");
4085 format_odp_actions(&s, facet->xout.odp_actions.data,
4086 facet->xout.odp_actions.size);
4087 ds_put_cstr(&s, ") (correct actions: ");
4088 format_odp_actions(&s, xout.odp_actions.data,
4089 xout.odp_actions.size);
4090 ds_put_char(&s, ')');
4091 }
4092
4093 if (facet->xout.slow != xout.slow) {
4094 ds_put_format(&s, " slow path incorrect. should be %d", xout.slow);
4095 }
4096
4097 ds_destroy(&s);
4098 }
4099 xlate_out_uninit(&xout);
4100
4101 return ok;
4102}
4103
4104/* Re-searches the classifier for 'facet':
4105 *
4106 * - If the rule found is different from 'facet''s current rule, moves
4107 * 'facet' to the new rule and recompiles its actions.
4108 *
4109 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4110 * where it is and recompiles its actions anyway.
4111 *
4112 * - If any of 'facet''s subfacets correspond to a new flow according to
4113 * xlate_receive(), 'facet' is removed.
4114 *
4115 * Returns true if 'facet' is still valid. False if 'facet' was removed. */
4116static bool
4117facet_revalidate(struct facet *facet)
4118{
4119 struct ofproto_dpif *ofproto = facet->ofproto;
4120 struct rule_dpif *new_rule;
4121 struct subfacet *subfacet;
4122 struct flow_wildcards wc;
4123 struct xlate_out xout;
4124 struct xlate_in xin;
4125
4126 COVERAGE_INC(facet_revalidate);
4127
4128 /* Check that child subfacets still correspond to this facet. Tunnel
4129 * configuration changes could cause a subfacet's OpenFlow in_port to
4130 * change. */
4131 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4132 struct ofproto_dpif *recv_ofproto;
4133 struct flow recv_flow;
4134 int error;
4135
4136 error = xlate_receive(ofproto->backer, NULL, subfacet->key,
4137 subfacet->key_len, &recv_flow, NULL,
4138 &recv_ofproto, NULL);
4139 if (error
4140 || recv_ofproto != ofproto
4141 || facet != facet_find(ofproto, &recv_flow)) {
4142 facet_remove(facet);
4143 return false;
4144 }
4145 }
4146
4147 flow_wildcards_init_catchall(&wc);
4148 rule_dpif_lookup(ofproto, &facet->flow, &wc, &new_rule);
4149
4150 /* Calculate new datapath actions.
4151 *
4152 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4153 * emit a NetFlow expiration and, if so, we need to have the old state
4154 * around to properly compose it. */
4155 xlate_in_init(&xin, ofproto, &facet->flow, new_rule, 0, NULL);
4156 xlate_actions(&xin, &xout);
4157 flow_wildcards_or(&xout.wc, &xout.wc, &wc);
4158
4159 /* A facet's slow path reason should only change under dramatic
4160 * circumstances. Rather than try to update everything, it's simpler to
4161 * remove the facet and start over.
4162 *
4163 * More importantly, if a facet's wildcards change, it will be relatively
4164 * difficult to figure out if its subfacets still belong to it, and if not
4165 * which facet they may belong to. Again, to avoid the complexity, we
4166 * simply give up instead. */
4167 if (facet->xout.slow != xout.slow
4168 || memcmp(&facet->xout.wc, &xout.wc, sizeof xout.wc)) {
4169 facet_remove(facet);
4170 xlate_out_uninit(&xout);
4171 rule_dpif_unref(new_rule);
4172 return false;
4173 }
4174
4175 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4176 LIST_FOR_EACH(subfacet, list_node, &facet->subfacets) {
4177 if (subfacet->path == SF_FAST_PATH) {
4178 struct dpif_flow_stats stats;
4179
4180 subfacet_install(subfacet, &xout.odp_actions, &stats);
4181 subfacet_update_stats(subfacet, &stats);
4182 }
4183 }
4184
4185 facet_flush_stats(facet);
4186
4187 ofpbuf_clear(&facet->xout.odp_actions);
4188 ofpbuf_put(&facet->xout.odp_actions, xout.odp_actions.data,
4189 xout.odp_actions.size);
4190 }
4191
4192 /* Update 'facet' now that we've taken care of all the old state. */
4193 facet->xout.slow = xout.slow;
4194 facet->xout.has_learn = xout.has_learn;
4195 facet->xout.has_normal = xout.has_normal;
4196 facet->xout.has_fin_timeout = xout.has_fin_timeout;
4197 facet->xout.nf_output_iface = xout.nf_output_iface;
4198 facet->xout.mirrors = xout.mirrors;
4199 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
4200
4201 ovs_mutex_lock(&new_rule->up.mutex);
4202 facet->used = MAX(facet->used, new_rule->up.created);
4203 ovs_mutex_unlock(&new_rule->up.mutex);
4204
4205 xlate_out_uninit(&xout);
4206 rule_dpif_unref(new_rule);
4207 return true;
4208}
4209
4210static void
4211facet_reset_counters(struct facet *facet)
4212{
4213 facet->packet_count = 0;
4214 facet->byte_count = 0;
4215 facet->prev_packet_count = 0;
4216 facet->prev_byte_count = 0;
4217 facet->accounted_bytes = 0;
4218}
4219
4220static void
4221flow_push_stats(struct ofproto_dpif *ofproto, struct flow *flow,
4222 struct dpif_flow_stats *stats, bool may_learn)
4223{
4224 struct ofport_dpif *in_port;
4225 struct xlate_in xin;
4226
4227 in_port = get_ofp_port(ofproto, flow->in_port.ofp_port);
4228 if (in_port && in_port->is_tunnel) {
4229 netdev_vport_inc_rx(in_port->up.netdev, stats);
4230 }
4231
4232 xlate_in_init(&xin, ofproto, flow, NULL, stats->tcp_flags, NULL);
4233 xin.resubmit_stats = stats;
4234 xin.may_learn = may_learn;
4235 xlate_actions_for_side_effects(&xin);
4236}
4237
4238static void
4239facet_push_stats(struct facet *facet, bool may_learn)
4240{
4241 struct dpif_flow_stats stats;
4242
4243 ovs_assert(facet->packet_count >= facet->prev_packet_count);
4244 ovs_assert(facet->byte_count >= facet->prev_byte_count);
4245 ovs_assert(facet->used >= facet->prev_used);
4246
4247 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4248 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4249 stats.used = facet->used;
4250 stats.tcp_flags = facet->tcp_flags;
4251
4252 if (may_learn || stats.n_packets || facet->used > facet->prev_used) {
4253 facet->prev_packet_count = facet->packet_count;
4254 facet->prev_byte_count = facet->byte_count;
4255 facet->prev_used = facet->used;
4256
4257 netflow_flow_update_time(facet->ofproto->netflow, &facet->nf_flow,
4258 facet->used);
4259 netflow_flow_update_flags(&facet->nf_flow, facet->tcp_flags);
4260 mirror_update_stats(facet->ofproto->mbridge, facet->xout.mirrors,
4261 stats.n_packets, stats.n_bytes);
4262 flow_push_stats(facet->ofproto, &facet->flow, &stats, may_learn);
4263 }
4264}
4265
4266static void
4267push_all_stats__(bool run_fast)
4268{
4269 static long long int rl = LLONG_MIN;
4270 struct ofproto_dpif *ofproto;
4271
4272 if (time_msec() < rl) {
4273 return;
4274 }
4275
4276 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4277 struct cls_cursor cursor;
4278 struct facet *facet;
4279
4280 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
4281 cls_cursor_init(&cursor, &ofproto->facets, NULL);
4282 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
4283 facet_push_stats(facet, false);
4284 if (run_fast) {
4285 run_fast_rl();
4286 }
4287 }
4288 ovs_rwlock_unlock(&ofproto->facets.rwlock);
4289 }
4290
4291 rl = time_msec() + 100;
4292}
4293
4294static void
4295push_all_stats(void)
4296{
4297 push_all_stats__(true);
4298}
4299
4300void
4301rule_dpif_credit_stats(struct rule_dpif *rule,
4302 const struct dpif_flow_stats *stats)
4303{
4304 ovs_mutex_lock(&rule->stats_mutex);
4305 rule->packet_count += stats->n_packets;
4306 rule->byte_count += stats->n_bytes;
4307 rule->up.used = MAX(rule->up.used, stats->used);
4308 ovs_mutex_unlock(&rule->stats_mutex);
4309}
4310
4311bool
4312rule_dpif_fail_open(const struct rule_dpif *rule)
4313{
4314 return rule->up.cr.priority == FAIL_OPEN_PRIORITY;
4315}
4316
4317ovs_be64
4318rule_dpif_get_flow_cookie(const struct rule_dpif *rule)
4319 OVS_REQUIRES(rule->up.mutex)
4320{
4321 return rule->up.flow_cookie;
4322}
4323
4324void
4325rule_dpif_reduce_timeouts(struct rule_dpif *rule, uint16_t idle_timeout,
4326 uint16_t hard_timeout)
4327{
4328 ofproto_rule_reduce_timeouts(&rule->up, idle_timeout, hard_timeout);
4329}
4330
4331/* Returns 'rule''s actions. The caller owns a reference on the returned
4332 * actions and must eventually release it (with rule_actions_unref()) to avoid
4333 * a memory leak. */
4334struct rule_actions *
4335rule_dpif_get_actions(const struct rule_dpif *rule)
4336{
4337 return rule_get_actions(&rule->up);
4338}
4339\f
4340/* Subfacets. */
4341
4342static struct subfacet *
4343subfacet_find(struct dpif_backer *backer, const struct nlattr *key,
4344 size_t key_len, uint32_t key_hash)
4345{
4346 struct subfacet *subfacet;
4347
4348 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4349 &backer->subfacets) {
4350 if (subfacet->key_len == key_len
4351 && !memcmp(key, subfacet->key, key_len)) {
4352 return subfacet;
4353 }
4354 }
4355
4356 return NULL;
4357}
4358
4359/* Searches 'facet' (within 'ofproto') for a subfacet with the specified
4360 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
4361 * existing subfacet if there is one, otherwise creates and returns a
4362 * new subfacet. */
4363static struct subfacet *
4364subfacet_create(struct facet *facet, struct flow_miss *miss)
4365{
4366 struct dpif_backer *backer = miss->ofproto->backer;
4367 const struct nlattr *key = miss->key;
4368 size_t key_len = miss->key_len;
4369 uint32_t key_hash;
4370 struct subfacet *subfacet;
4371
4372 key_hash = odp_flow_key_hash(key, key_len);
4373
4374 if (list_is_empty(&facet->subfacets)) {
4375 subfacet = &facet->one_subfacet;
4376 } else {
4377 subfacet = subfacet_find(backer, key, key_len, key_hash);
4378 if (subfacet) {
4379 if (subfacet->facet == facet) {
4380 return subfacet;
4381 }
4382
4383 /* This shouldn't happen. */
4384 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
4385 subfacet_destroy(subfacet);
4386 }
4387
4388 subfacet = xmalloc(sizeof *subfacet);
4389 }
4390
4391 COVERAGE_INC(subfacet_create);
4392 hmap_insert(&backer->subfacets, &subfacet->hmap_node, key_hash);
4393 list_push_back(&facet->subfacets, &subfacet->list_node);
4394 subfacet->facet = facet;
4395 subfacet->key = xmemdup(key, key_len);
4396 subfacet->key_len = key_len;
4397 subfacet->used = miss->stats.used;
4398 subfacet->created = subfacet->used;
4399 subfacet->dp_packet_count = 0;
4400 subfacet->dp_byte_count = 0;
4401 subfacet->path = SF_NOT_INSTALLED;
4402 subfacet->backer = backer;
4403
4404 return subfacet;
4405}
4406
4407/* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
4408 * its facet within 'ofproto', and frees it. */
4409static void
4410subfacet_destroy__(struct subfacet *subfacet)
4411{
4412 struct facet *facet = subfacet->facet;
4413
4414 COVERAGE_INC(subfacet_destroy);
4415 subfacet_uninstall(subfacet);
4416 hmap_remove(&subfacet->backer->subfacets, &subfacet->hmap_node);
4417 list_remove(&subfacet->list_node);
4418 free(subfacet->key);
4419 if (subfacet != &facet->one_subfacet) {
4420 free(subfacet);
4421 }
4422}
4423
4424/* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
4425 * last remaining subfacet in its facet destroys the facet too. */
4426static void
4427subfacet_destroy(struct subfacet *subfacet)
4428{
4429 struct facet *facet = subfacet->facet;
4430
4431 if (list_is_singleton(&facet->subfacets)) {
4432 /* facet_remove() needs at least one subfacet (it will remove it). */
4433 facet_remove(facet);
4434 } else {
4435 subfacet_destroy__(subfacet);
4436 }
4437}
4438
4439static void
4440subfacet_destroy_batch(struct dpif_backer *backer,
4441 struct subfacet **subfacets, int n)
4442{
4443 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
4444 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
4445 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
4446 int i;
4447
4448 for (i = 0; i < n; i++) {
4449 ops[i].type = DPIF_OP_FLOW_DEL;
4450 ops[i].u.flow_del.key = subfacets[i]->key;
4451 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
4452 ops[i].u.flow_del.stats = &stats[i];
4453 opsp[i] = &ops[i];
4454 }
4455
4456 dpif_operate(backer->dpif, opsp, n);
4457 for (i = 0; i < n; i++) {
4458 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
4459 subfacets[i]->path = SF_NOT_INSTALLED;
4460 subfacet_destroy(subfacets[i]);
4461 run_fast_rl();
4462 }
4463}
4464
4465/* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
4466 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
4467 * in the datapath will be zeroed and 'stats' will be updated with traffic new
4468 * since 'subfacet' was last updated.
4469 *
4470 * Returns 0 if successful, otherwise a positive errno value. */
4471static int
4472subfacet_install(struct subfacet *subfacet, const struct ofpbuf *odp_actions,
4473 struct dpif_flow_stats *stats)
4474{
4475 struct facet *facet = subfacet->facet;
4476 enum subfacet_path path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
4477 const struct nlattr *actions = odp_actions->data;
4478 size_t actions_len = odp_actions->size;
4479 struct odputil_keybuf maskbuf;
4480 struct ofpbuf mask;
4481
4482 uint64_t slow_path_stub[128 / 8];
4483 enum dpif_flow_put_flags flags;
4484 int ret;
4485
4486 flags = subfacet->path == SF_NOT_INSTALLED ? DPIF_FP_CREATE
4487 : DPIF_FP_MODIFY;
4488 if (stats) {
4489 flags |= DPIF_FP_ZERO_STATS;
4490 }
4491
4492 if (path == SF_SLOW_PATH) {
4493 compose_slow_path(facet->ofproto, &facet->flow, facet->xout.slow,
4494 slow_path_stub, sizeof slow_path_stub,
4495 &actions, &actions_len);
4496 }
4497
4498 ofpbuf_use_stack(&mask, &maskbuf, sizeof maskbuf);
4499 if (enable_megaflows) {
4500 odp_flow_key_from_mask(&mask, &facet->xout.wc.masks,
4501 &facet->flow, UINT32_MAX);
4502 }
4503
4504 ret = dpif_flow_put(subfacet->backer->dpif, flags, subfacet->key,
4505 subfacet->key_len, mask.data, mask.size,
4506 actions, actions_len, stats);
4507
4508 if (stats) {
4509 subfacet_reset_dp_stats(subfacet, stats);
4510 }
4511
4512 if (ret) {
4513 COVERAGE_INC(subfacet_install_fail);
4514 } else {
4515 subfacet->path = path;
4516 }
4517 return ret;
4518}
4519
4520/* If 'subfacet' is installed in the datapath, uninstalls it. */
4521static void
4522subfacet_uninstall(struct subfacet *subfacet)
4523{
4524 if (subfacet->path != SF_NOT_INSTALLED) {
4525 struct ofproto_dpif *ofproto = subfacet->facet->ofproto;
4526 struct dpif_flow_stats stats;
4527 int error;
4528
4529 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
4530 subfacet->key_len, &stats);
4531 subfacet_reset_dp_stats(subfacet, &stats);
4532 if (!error) {
4533 subfacet_update_stats(subfacet, &stats);
4534 }
4535 subfacet->path = SF_NOT_INSTALLED;
4536 } else {
4537 ovs_assert(subfacet->dp_packet_count == 0);
4538 ovs_assert(subfacet->dp_byte_count == 0);
4539 }
4540}
4541
4542/* Resets 'subfacet''s datapath statistics counters. This should be called
4543 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
4544 * non-null, it should contain the statistics returned by dpif when 'subfacet'
4545 * was reset in the datapath. 'stats' will be modified to include only
4546 * statistics new since 'subfacet' was last updated. */
4547static void
4548subfacet_reset_dp_stats(struct subfacet *subfacet,
4549 struct dpif_flow_stats *stats)
4550{
4551 if (stats
4552 && subfacet->dp_packet_count <= stats->n_packets
4553 && subfacet->dp_byte_count <= stats->n_bytes) {
4554 stats->n_packets -= subfacet->dp_packet_count;
4555 stats->n_bytes -= subfacet->dp_byte_count;
4556 }
4557
4558 subfacet->dp_packet_count = 0;
4559 subfacet->dp_byte_count = 0;
4560}
4561
4562/* Folds the statistics from 'stats' into the counters in 'subfacet'.
4563 *
4564 * Because of the meaning of a subfacet's counters, it only makes sense to do
4565 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
4566 * represents a packet that was sent by hand or if it represents statistics
4567 * that have been cleared out of the datapath. */
4568static void
4569subfacet_update_stats(struct subfacet *subfacet,
4570 const struct dpif_flow_stats *stats)
4571{
4572 if (stats->n_packets || stats->used > subfacet->used) {
4573 struct facet *facet = subfacet->facet;
4574
4575 subfacet->used = MAX(subfacet->used, stats->used);
4576 facet->used = MAX(facet->used, stats->used);
4577 facet->packet_count += stats->n_packets;
4578 facet->byte_count += stats->n_bytes;
4579 facet->tcp_flags |= stats->tcp_flags;
4580 }
4581}
4582\f
4583/* Rules. */
4584
4585/* Lookup 'flow' in 'ofproto''s classifier. If 'wc' is non-null, sets
4586 * the fields that were relevant as part of the lookup. */
4587void
4588rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow,
4589 struct flow_wildcards *wc, struct rule_dpif **rule)
4590{
4591 struct ofport_dpif *port;
4592
4593 if (rule_dpif_lookup_in_table(ofproto, flow, wc, 0, rule)) {
4594 return;
4595 }
4596 port = get_ofp_port(ofproto, flow->in_port.ofp_port);
4597 if (!port) {
4598 VLOG_WARN_RL(&rl, "packet-in on unknown OpenFlow port %"PRIu16,
4599 flow->in_port.ofp_port);
4600 }
4601
4602 choose_miss_rule(port ? port->up.pp.config : 0, ofproto->miss_rule,
4603 ofproto->no_packet_in_rule, rule);
4604}
4605
4606bool
4607rule_dpif_lookup_in_table(struct ofproto_dpif *ofproto,
4608 const struct flow *flow, struct flow_wildcards *wc,
4609 uint8_t table_id, struct rule_dpif **rule)
4610{
4611 const struct cls_rule *cls_rule;
4612 struct classifier *cls;
4613 bool frag;
4614
4615 *rule = NULL;
4616 if (table_id >= N_TABLES) {
4617 return false;
4618 }
4619
4620 if (wc) {
4621 memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type);
4622 wc->masks.nw_frag |= FLOW_NW_FRAG_MASK;
4623 }
4624
4625 cls = &ofproto->up.tables[table_id].cls;
4626 ovs_rwlock_rdlock(&cls->rwlock);
4627 frag = (flow->nw_frag & FLOW_NW_FRAG_ANY) != 0;
4628 if (frag && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
4629 /* We must pretend that transport ports are unavailable. */
4630 struct flow ofpc_normal_flow = *flow;
4631 ofpc_normal_flow.tp_src = htons(0);
4632 ofpc_normal_flow.tp_dst = htons(0);
4633 cls_rule = classifier_lookup(cls, &ofpc_normal_flow, wc);
4634 } else if (frag && ofproto->up.frag_handling == OFPC_FRAG_DROP) {
4635 cls_rule = &ofproto->drop_frags_rule->up.cr;
4636 if (wc) {
4637 flow_wildcards_init_exact(wc);
4638 }
4639 } else {
4640 cls_rule = classifier_lookup(cls, flow, wc);
4641 }
4642
4643 *rule = rule_dpif_cast(rule_from_cls_rule(cls_rule));
4644 rule_dpif_ref(*rule);
4645 ovs_rwlock_unlock(&cls->rwlock);
4646
4647 return *rule != NULL;
4648}
4649
4650/* Given a port configuration (specified as zero if there's no port), chooses
4651 * which of 'miss_rule' and 'no_packet_in_rule' should be used in case of a
4652 * flow table miss. */
4653void
4654choose_miss_rule(enum ofputil_port_config config, struct rule_dpif *miss_rule,
4655 struct rule_dpif *no_packet_in_rule, struct rule_dpif **rule)
4656{
4657 *rule = config & OFPUTIL_PC_NO_PACKET_IN ? no_packet_in_rule : miss_rule;
4658 rule_dpif_ref(*rule);
4659}
4660
4661void
4662rule_dpif_ref(struct rule_dpif *rule)
4663{
4664 if (rule) {
4665 ofproto_rule_ref(&rule->up);
4666 }
4667}
4668
4669void
4670rule_dpif_unref(struct rule_dpif *rule)
4671{
4672 if (rule) {
4673 ofproto_rule_unref(&rule->up);
4674 }
4675}
4676
4677static void
4678complete_operation(struct rule_dpif *rule)
4679 OVS_REQUIRES(ofproto_mutex)
4680{
4681 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4682
4683 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
4684 ofoperation_complete(rule->up.pending, 0);
4685}
4686
4687static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
4688{
4689 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
4690}
4691
4692static struct rule *
4693rule_alloc(void)
4694{
4695 struct rule_dpif *rule = xmalloc(sizeof *rule);
4696 return &rule->up;
4697}
4698
4699static void
4700rule_dealloc(struct rule *rule_)
4701{
4702 struct rule_dpif *rule = rule_dpif_cast(rule_);
4703 free(rule);
4704}
4705
4706static enum ofperr
4707rule_construct(struct rule *rule_)
4708{
4709 struct rule_dpif *rule = rule_dpif_cast(rule_);
4710 ovs_mutex_init(&rule->stats_mutex);
4711 ovs_mutex_lock(&rule->stats_mutex);
4712 rule->packet_count = 0;
4713 rule->byte_count = 0;
4714 ovs_mutex_unlock(&rule->stats_mutex);
4715 return 0;
4716}
4717
4718static void
4719rule_insert(struct rule *rule_)
4720 OVS_REQUIRES(ofproto_mutex)
4721{
4722 struct rule_dpif *rule = rule_dpif_cast(rule_);
4723 complete_operation(rule);
4724}
4725
4726static void
4727rule_delete(struct rule *rule_)
4728 OVS_REQUIRES(ofproto_mutex)
4729{
4730 struct rule_dpif *rule = rule_dpif_cast(rule_);
4731 complete_operation(rule);
4732}
4733
4734static void
4735rule_destruct(struct rule *rule_)
4736{
4737 struct rule_dpif *rule = rule_dpif_cast(rule_);
4738 ovs_mutex_destroy(&rule->stats_mutex);
4739}
4740
4741static void
4742rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
4743{
4744 struct rule_dpif *rule = rule_dpif_cast(rule_);
4745
4746 /* push_all_stats() can handle flow misses which, when using the learn
4747 * action, can cause rules to be added and deleted. This can corrupt our
4748 * caller's datastructures which assume that rule_get_stats() doesn't have
4749 * an impact on the flow table. To be safe, we disable miss handling. */
4750 push_all_stats__(false);
4751
4752 /* Start from historical data for 'rule' itself that are no longer tracked
4753 * in facets. This counts, for example, facets that have expired. */
4754 ovs_mutex_lock(&rule->stats_mutex);
4755 *packets = rule->packet_count;
4756 *bytes = rule->byte_count;
4757 ovs_mutex_unlock(&rule->stats_mutex);
4758}
4759
4760static void
4761rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
4762 struct ofpbuf *packet)
4763{
4764 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4765
4766 ofproto_dpif_execute_actions(ofproto, flow, rule, NULL, 0, packet);
4767}
4768
4769static enum ofperr
4770rule_execute(struct rule *rule, const struct flow *flow,
4771 struct ofpbuf *packet)
4772{
4773 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
4774 ofpbuf_delete(packet);
4775 return 0;
4776}
4777
4778static void
4779rule_modify_actions(struct rule *rule_, bool reset_counters)
4780 OVS_REQUIRES(ofproto_mutex)
4781{
4782 struct rule_dpif *rule = rule_dpif_cast(rule_);
4783
4784 if (reset_counters) {
4785 ovs_mutex_lock(&rule->stats_mutex);
4786 rule->packet_count = 0;
4787 rule->byte_count = 0;
4788 ovs_mutex_unlock(&rule->stats_mutex);
4789 }
4790
4791 complete_operation(rule);
4792}
4793\f
4794/* Sends 'packet' out 'ofport'.
4795 * May modify 'packet'.
4796 * Returns 0 if successful, otherwise a positive errno value. */
4797int
4798ofproto_dpif_send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
4799{
4800 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
4801 int error;
4802
4803 error = xlate_send_packet(ofport, packet);
4804
4805 ovs_mutex_lock(&ofproto->stats_mutex);
4806 ofproto->stats.tx_packets++;
4807 ofproto->stats.tx_bytes += packet->size;
4808 ovs_mutex_unlock(&ofproto->stats_mutex);
4809 return error;
4810}
4811
4812/* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
4813 * The action will state 'slow' as the reason that the action is in the slow
4814 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
4815 * dump-flows" output to see why a flow is in the slow path.)
4816 *
4817 * The 'stub_size' bytes in 'stub' will be used to store the action.
4818 * 'stub_size' must be large enough for the action.
4819 *
4820 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
4821 * respectively. */
4822static void
4823compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
4824 enum slow_path_reason slow,
4825 uint64_t *stub, size_t stub_size,
4826 const struct nlattr **actionsp, size_t *actions_lenp)
4827{
4828 union user_action_cookie cookie;
4829 struct ofpbuf buf;
4830
4831 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
4832 cookie.slow_path.unused = 0;
4833 cookie.slow_path.reason = slow;
4834
4835 ofpbuf_use_stack(&buf, stub, stub_size);
4836 if (slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)) {
4837 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif,
4838 ODPP_NONE);
4839 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
4840 } else {
4841 odp_port_t odp_port;
4842 uint32_t pid;
4843
4844 odp_port = ofp_port_to_odp_port(ofproto, flow->in_port.ofp_port);
4845 pid = dpif_port_get_pid(ofproto->backer->dpif, odp_port);
4846 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
4847 }
4848 *actionsp = buf.data;
4849 *actions_lenp = buf.size;
4850}
4851\f
4852static bool
4853set_frag_handling(struct ofproto *ofproto_,
4854 enum ofp_config_flags frag_handling)
4855{
4856 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4857 if (frag_handling != OFPC_FRAG_REASM) {
4858 ofproto->backer->need_revalidate = REV_RECONFIGURE;
4859 return true;
4860 } else {
4861 return false;
4862 }
4863}
4864
4865static enum ofperr
4866packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
4867 const struct flow *flow,
4868 const struct ofpact *ofpacts, size_t ofpacts_len)
4869{
4870 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4871
4872 ofproto_dpif_execute_actions(ofproto, flow, NULL, ofpacts,
4873 ofpacts_len, packet);
4874 return 0;
4875}
4876\f
4877/* NetFlow. */
4878
4879static int
4880set_netflow(struct ofproto *ofproto_,
4881 const struct netflow_options *netflow_options)
4882{
4883 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4884
4885 if (netflow_options) {
4886 if (!ofproto->netflow) {
4887 ofproto->netflow = netflow_create();
4888 ofproto->backer->need_revalidate = REV_RECONFIGURE;
4889 }
4890 return netflow_set_options(ofproto->netflow, netflow_options);
4891 } else if (ofproto->netflow) {
4892 ofproto->backer->need_revalidate = REV_RECONFIGURE;
4893 netflow_destroy(ofproto->netflow);
4894 ofproto->netflow = NULL;
4895 }
4896
4897 return 0;
4898}
4899
4900static void
4901get_netflow_ids(const struct ofproto *ofproto_,
4902 uint8_t *engine_type, uint8_t *engine_id)
4903{
4904 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4905
4906 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
4907}
4908
4909static void
4910send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
4911{
4912 if (!facet_is_controller_flow(facet) &&
4913 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4914 struct subfacet *subfacet;
4915 struct ofexpired expired;
4916
4917 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4918 if (subfacet->path == SF_FAST_PATH) {
4919 struct dpif_flow_stats stats;
4920
4921 subfacet_install(subfacet, &facet->xout.odp_actions,
4922 &stats);
4923 subfacet_update_stats(subfacet, &stats);
4924 }
4925 }
4926
4927 expired.flow = facet->flow;
4928 expired.packet_count = facet->packet_count;
4929 expired.byte_count = facet->byte_count;
4930 expired.used = facet->used;
4931 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4932 }
4933}
4934
4935static void
4936send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
4937{
4938 struct cls_cursor cursor;
4939 struct facet *facet;
4940
4941 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
4942 cls_cursor_init(&cursor, &ofproto->facets, NULL);
4943 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
4944 send_active_timeout(ofproto, facet);
4945 }
4946 ovs_rwlock_unlock(&ofproto->facets.rwlock);
4947}
4948\f
4949static struct ofproto_dpif *
4950ofproto_dpif_lookup(const char *name)
4951{
4952 struct ofproto_dpif *ofproto;
4953
4954 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
4955 hash_string(name, 0), &all_ofproto_dpifs) {
4956 if (!strcmp(ofproto->up.name, name)) {
4957 return ofproto;
4958 }
4959 }
4960 return NULL;
4961}
4962
4963static void
4964ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
4965 const char *argv[], void *aux OVS_UNUSED)
4966{
4967 struct ofproto_dpif *ofproto;
4968
4969 if (argc > 1) {
4970 ofproto = ofproto_dpif_lookup(argv[1]);
4971 if (!ofproto) {
4972 unixctl_command_reply_error(conn, "no such bridge");
4973 return;
4974 }
4975 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
4976 mac_learning_flush(ofproto->ml);
4977 ovs_rwlock_unlock(&ofproto->ml->rwlock);
4978 } else {
4979 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4980 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
4981 mac_learning_flush(ofproto->ml);
4982 ovs_rwlock_unlock(&ofproto->ml->rwlock);
4983 }
4984 }
4985
4986 unixctl_command_reply(conn, "table successfully flushed");
4987}
4988
4989static struct ofport_dpif *
4990ofbundle_get_a_port(const struct ofbundle *bundle)
4991{
4992 return CONTAINER_OF(list_front(&bundle->ports), struct ofport_dpif,
4993 bundle_node);
4994}
4995
4996static void
4997ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
4998 const char *argv[], void *aux OVS_UNUSED)
4999{
5000 struct ds ds = DS_EMPTY_INITIALIZER;
5001 const struct ofproto_dpif *ofproto;
5002 const struct mac_entry *e;
5003
5004 ofproto = ofproto_dpif_lookup(argv[1]);
5005 if (!ofproto) {
5006 unixctl_command_reply_error(conn, "no such bridge");
5007 return;
5008 }
5009
5010 ds_put_cstr(&ds, " port VLAN MAC Age\n");
5011 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
5012 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
5013 struct ofbundle *bundle = e->port.p;
5014 char name[OFP_MAX_PORT_NAME_LEN];
5015
5016 ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port,
5017 name, sizeof name);
5018 ds_put_format(&ds, "%5s %4d "ETH_ADDR_FMT" %3d\n",
5019 name, e->vlan, ETH_ADDR_ARGS(e->mac),
5020 mac_entry_age(ofproto->ml, e));
5021 }
5022 ovs_rwlock_unlock(&ofproto->ml->rwlock);
5023 unixctl_command_reply(conn, ds_cstr(&ds));
5024 ds_destroy(&ds);
5025}
5026
5027struct trace_ctx {
5028 struct xlate_out xout;
5029 struct xlate_in xin;
5030 struct flow flow;
5031 struct ds *result;
5032};
5033
5034static void
5035trace_format_rule(struct ds *result, int level, const struct rule_dpif *rule)
5036{
5037 struct rule_actions *actions;
5038 ovs_be64 cookie;
5039
5040 ds_put_char_multiple(result, '\t', level);
5041 if (!rule) {
5042 ds_put_cstr(result, "No match\n");
5043 return;
5044 }
5045
5046 ovs_mutex_lock(&rule->up.mutex);
5047 cookie = rule->up.flow_cookie;
5048 ovs_mutex_unlock(&rule->up.mutex);
5049
5050 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
5051 rule ? rule->up.table_id : 0, ntohll(cookie));
5052 cls_rule_format(&rule->up.cr, result);
5053 ds_put_char(result, '\n');
5054
5055 actions = rule_dpif_get_actions(rule);
5056
5057 ds_put_char_multiple(result, '\t', level);
5058 ds_put_cstr(result, "OpenFlow ");
5059 ofpacts_format(actions->ofpacts, actions->ofpacts_len, result);
5060 ds_put_char(result, '\n');
5061
5062 rule_actions_unref(actions);
5063}
5064
5065static void
5066trace_format_flow(struct ds *result, int level, const char *title,
5067 struct trace_ctx *trace)
5068{
5069 ds_put_char_multiple(result, '\t', level);
5070 ds_put_format(result, "%s: ", title);
5071 if (flow_equal(&trace->xin.flow, &trace->flow)) {
5072 ds_put_cstr(result, "unchanged");
5073 } else {
5074 flow_format(result, &trace->xin.flow);
5075 trace->flow = trace->xin.flow;
5076 }
5077 ds_put_char(result, '\n');
5078}
5079
5080static void
5081trace_format_regs(struct ds *result, int level, const char *title,
5082 struct trace_ctx *trace)
5083{
5084 size_t i;
5085
5086 ds_put_char_multiple(result, '\t', level);
5087 ds_put_format(result, "%s:", title);
5088 for (i = 0; i < FLOW_N_REGS; i++) {
5089 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
5090 }
5091 ds_put_char(result, '\n');
5092}
5093
5094static void
5095trace_format_odp(struct ds *result, int level, const char *title,
5096 struct trace_ctx *trace)
5097{
5098 struct ofpbuf *odp_actions = &trace->xout.odp_actions;
5099
5100 ds_put_char_multiple(result, '\t', level);
5101 ds_put_format(result, "%s: ", title);
5102 format_odp_actions(result, odp_actions->data, odp_actions->size);
5103 ds_put_char(result, '\n');
5104}
5105
5106static void
5107trace_resubmit(struct xlate_in *xin, struct rule_dpif *rule, int recurse)
5108{
5109 struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin);
5110 struct ds *result = trace->result;
5111
5112 ds_put_char(result, '\n');
5113 trace_format_flow(result, recurse + 1, "Resubmitted flow", trace);
5114 trace_format_regs(result, recurse + 1, "Resubmitted regs", trace);
5115 trace_format_odp(result, recurse + 1, "Resubmitted odp", trace);
5116 trace_format_rule(result, recurse + 1, rule);
5117}
5118
5119static void
5120trace_report(struct xlate_in *xin, const char *s, int recurse)
5121{
5122 struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin);
5123 struct ds *result = trace->result;
5124
5125 ds_put_char_multiple(result, '\t', recurse);
5126 ds_put_cstr(result, s);
5127 ds_put_char(result, '\n');
5128}
5129
5130static void
5131ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
5132 void *aux OVS_UNUSED)
5133{
5134 const struct dpif_backer *backer = NULL;
5135 struct ofproto_dpif *ofproto;
5136 struct ofpbuf odp_key, odp_mask;
5137 struct ofpbuf *packet;
5138 struct ds result;
5139 struct flow flow;
5140 struct simap port_names;
5141 char *s;
5142
5143 packet = NULL;
5144 backer = NULL;
5145 ds_init(&result);
5146 ofpbuf_init(&odp_key, 0);
5147 ofpbuf_init(&odp_mask, 0);
5148 simap_init(&port_names);
5149
5150 /* Handle "-generate" or a hex string as the last argument. */
5151 if (!strcmp(argv[argc - 1], "-generate")) {
5152 packet = ofpbuf_new(0);
5153 argc--;
5154 } else {
5155 const char *error = eth_from_hex(argv[argc - 1], &packet);
5156 if (!error) {
5157 argc--;
5158 } else if (argc == 4) {
5159 /* The 3-argument form must end in "-generate' or a hex string. */
5160 unixctl_command_reply_error(conn, error);
5161 goto exit;
5162 }
5163 }
5164
5165 /* odp_flow can have its in_port specified as a name instead of port no.
5166 * We do not yet know whether a given flow is a odp_flow or a br_flow.
5167 * But, to know whether a flow is odp_flow through odp_flow_from_string(),
5168 * we need to create a simap of name to port no. */
5169 if (argc == 3) {
5170 const char *dp_type;
5171 if (!strncmp(argv[1], "ovs-", 4)) {
5172 dp_type = argv[1] + 4;
5173 } else {
5174 dp_type = argv[1];
5175 }
5176 backer = shash_find_data(&all_dpif_backers, dp_type);
5177 } else {
5178 struct shash_node *node;
5179 if (shash_count(&all_dpif_backers) == 1) {
5180 node = shash_first(&all_dpif_backers);
5181 backer = node->data;
5182 }
5183 }
5184 if (backer && backer->dpif) {
5185 struct dpif_port dpif_port;
5186 struct dpif_port_dump port_dump;
5187 DPIF_PORT_FOR_EACH (&dpif_port, &port_dump, backer->dpif) {
5188 simap_put(&port_names, dpif_port.name,
5189 odp_to_u32(dpif_port.port_no));
5190 }
5191 }
5192
5193 /* Parse the flow and determine whether a datapath or
5194 * bridge is specified. If function odp_flow_key_from_string()
5195 * returns 0, the flow is a odp_flow. If function
5196 * parse_ofp_exact_flow() returns 0, the flow is a br_flow. */
5197 if (!odp_flow_from_string(argv[argc - 1], &port_names, &odp_key, &odp_mask)) {
5198 if (!backer) {
5199 unixctl_command_reply_error(conn, "Cannot find the datapath");
5200 goto exit;
5201 }
5202
5203 if (xlate_receive(backer, NULL, odp_key.data, odp_key.size, &flow,
5204 NULL, &ofproto, NULL)) {
5205 unixctl_command_reply_error(conn, "Invalid datapath flow");
5206 goto exit;
5207 }
5208 ds_put_format(&result, "Bridge: %s\n", ofproto->up.name);
5209 } else if (!parse_ofp_exact_flow(&flow, argv[argc - 1])) {
5210 if (argc != 3) {
5211 unixctl_command_reply_error(conn, "Must specify bridge name");
5212 goto exit;
5213 }
5214
5215 ofproto = ofproto_dpif_lookup(argv[1]);
5216 if (!ofproto) {
5217 unixctl_command_reply_error(conn, "Unknown bridge name");
5218 goto exit;
5219 }
5220 } else {
5221 unixctl_command_reply_error(conn, "Bad flow syntax");
5222 goto exit;
5223 }
5224
5225 /* Generate a packet, if requested. */
5226 if (packet) {
5227 if (!packet->size) {
5228 flow_compose(packet, &flow);
5229 } else {
5230 union flow_in_port in_port_;
5231
5232 in_port_ = flow.in_port;
5233 ds_put_cstr(&result, "Packet: ");
5234 s = ofp_packet_to_string(packet->data, packet->size);
5235 ds_put_cstr(&result, s);
5236 free(s);
5237
5238 /* Use the metadata from the flow and the packet argument
5239 * to reconstruct the flow. */
5240 flow_extract(packet, flow.skb_priority, flow.pkt_mark, NULL,
5241 &in_port_, &flow);
5242 }
5243 }
5244
5245 ofproto_trace(ofproto, &flow, packet, &result);
5246 unixctl_command_reply(conn, ds_cstr(&result));
5247
5248exit:
5249 ds_destroy(&result);
5250 ofpbuf_delete(packet);
5251 ofpbuf_uninit(&odp_key);
5252 ofpbuf_uninit(&odp_mask);
5253 simap_destroy(&port_names);
5254}
5255
5256static void
5257ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
5258 const struct ofpbuf *packet, struct ds *ds)
5259{
5260 struct rule_dpif *rule;
5261 struct flow_wildcards wc;
5262
5263 ds_put_cstr(ds, "Flow: ");
5264 flow_format(ds, flow);
5265 ds_put_char(ds, '\n');
5266
5267 flow_wildcards_init_catchall(&wc);
5268 rule_dpif_lookup(ofproto, flow, &wc, &rule);
5269
5270 trace_format_rule(ds, 0, rule);
5271 if (rule == ofproto->miss_rule) {
5272 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
5273 } else if (rule == ofproto->no_packet_in_rule) {
5274 ds_put_cstr(ds, "\nNo match, packets dropped because "
5275 "OFPPC_NO_PACKET_IN is set on in_port.\n");
5276 } else if (rule == ofproto->drop_frags_rule) {
5277 ds_put_cstr(ds, "\nPackets dropped because they are IP fragments "
5278 "and the fragment handling mode is \"drop\".\n");
5279 }
5280
5281 if (rule) {
5282 uint64_t odp_actions_stub[1024 / 8];
5283 struct ofpbuf odp_actions;
5284 struct trace_ctx trace;
5285 struct match match;
5286 uint8_t tcp_flags;
5287
5288 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
5289 trace.result = ds;
5290 trace.flow = *flow;
5291 ofpbuf_use_stub(&odp_actions,
5292 odp_actions_stub, sizeof odp_actions_stub);
5293 xlate_in_init(&trace.xin, ofproto, flow, rule, tcp_flags, packet);
5294 trace.xin.resubmit_hook = trace_resubmit;
5295 trace.xin.report_hook = trace_report;
5296
5297 xlate_actions(&trace.xin, &trace.xout);
5298 flow_wildcards_or(&trace.xout.wc, &trace.xout.wc, &wc);
5299
5300 ds_put_char(ds, '\n');
5301 trace_format_flow(ds, 0, "Final flow", &trace);
5302
5303 match_init(&match, flow, &trace.xout.wc);
5304 ds_put_cstr(ds, "Relevant fields: ");
5305 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
5306 ds_put_char(ds, '\n');
5307
5308 ds_put_cstr(ds, "Datapath actions: ");
5309 format_odp_actions(ds, trace.xout.odp_actions.data,
5310 trace.xout.odp_actions.size);
5311
5312 if (trace.xout.slow) {
5313 enum slow_path_reason slow;
5314
5315 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
5316 "slow path because it:");
5317
5318 slow = trace.xout.slow;
5319 while (slow) {
5320 enum slow_path_reason bit = rightmost_1bit(slow);
5321
5322 ds_put_format(ds, "\n\t- %s.",
5323 slow_path_reason_to_explanation(bit));
5324
5325 slow &= ~bit;
5326 }
5327 }
5328
5329 xlate_out_uninit(&trace.xout);
5330 }
5331
5332 rule_dpif_unref(rule);
5333}
5334
5335/* Runs a self-check of flow translations in 'ofproto'. Appends a message to
5336 * 'reply' describing the results. */
5337static void
5338ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
5339{
5340 struct cls_cursor cursor;
5341 struct facet *facet;
5342 int errors;
5343
5344 errors = 0;
5345 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
5346 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5347 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5348 if (!facet_check_consistency(facet)) {
5349 errors++;
5350 }
5351 }
5352 ovs_rwlock_unlock(&ofproto->facets.rwlock);
5353 if (errors) {
5354 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
5355 }
5356
5357 if (errors) {
5358 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
5359 ofproto->up.name, errors);
5360 } else {
5361 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
5362 }
5363}
5364
5365static void
5366ofproto_dpif_self_check(struct unixctl_conn *conn,
5367 int argc, const char *argv[], void *aux OVS_UNUSED)
5368{
5369 struct ds reply = DS_EMPTY_INITIALIZER;
5370 struct ofproto_dpif *ofproto;
5371
5372 if (argc > 1) {
5373 ofproto = ofproto_dpif_lookup(argv[1]);
5374 if (!ofproto) {
5375 unixctl_command_reply_error(conn, "Unknown ofproto (use "
5376 "ofproto/list for help)");
5377 return;
5378 }
5379 ofproto_dpif_self_check__(ofproto, &reply);
5380 } else {
5381 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5382 ofproto_dpif_self_check__(ofproto, &reply);
5383 }
5384 }
5385
5386 unixctl_command_reply(conn, ds_cstr(&reply));
5387 ds_destroy(&reply);
5388}
5389
5390/* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
5391 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
5392 * to destroy 'ofproto_shash' and free the returned value. */
5393static const struct shash_node **
5394get_ofprotos(struct shash *ofproto_shash)
5395{
5396 const struct ofproto_dpif *ofproto;
5397
5398 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5399 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
5400 shash_add_nocopy(ofproto_shash, name, ofproto);
5401 }
5402
5403 return shash_sort(ofproto_shash);
5404}
5405
5406static void
5407ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
5408 const char *argv[] OVS_UNUSED,
5409 void *aux OVS_UNUSED)
5410{
5411 struct ds ds = DS_EMPTY_INITIALIZER;
5412 struct shash ofproto_shash;
5413 const struct shash_node **sorted_ofprotos;
5414 int i;
5415
5416 shash_init(&ofproto_shash);
5417 sorted_ofprotos = get_ofprotos(&ofproto_shash);
5418 for (i = 0; i < shash_count(&ofproto_shash); i++) {
5419 const struct shash_node *node = sorted_ofprotos[i];
5420 ds_put_format(&ds, "%s\n", node->name);
5421 }
5422
5423 shash_destroy(&ofproto_shash);
5424 free(sorted_ofprotos);
5425
5426 unixctl_command_reply(conn, ds_cstr(&ds));
5427 ds_destroy(&ds);
5428}
5429
5430static void
5431dpif_show_backer(const struct dpif_backer *backer, struct ds *ds)
5432{
5433 const struct shash_node **ofprotos;
5434 struct ofproto_dpif *ofproto;
5435 struct shash ofproto_shash;
5436 uint64_t n_hit, n_missed;
5437 size_t i;
5438
5439 n_hit = n_missed = 0;
5440 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5441 if (ofproto->backer == backer) {
5442 n_missed += ofproto->n_missed;
5443 n_hit += ofproto->n_hit;
5444 }
5445 }
5446
5447 ds_put_format(ds, "%s: hit:%"PRIu64" missed:%"PRIu64"\n",
5448 dpif_name(backer->dpif), n_hit, n_missed);
5449 ds_put_format(ds, "\tflows: cur: %zu, avg: %u, max: %u,"
5450 " life span: %lldms\n", hmap_count(&backer->subfacets),
5451 backer->avg_n_subfacet, backer->max_n_subfacet,
5452 backer->avg_subfacet_life);
5453
5454 shash_init(&ofproto_shash);
5455 ofprotos = get_ofprotos(&ofproto_shash);
5456 for (i = 0; i < shash_count(&ofproto_shash); i++) {
5457 struct ofproto_dpif *ofproto = ofprotos[i]->data;
5458 const struct shash_node **ports;
5459 size_t j;
5460
5461 if (ofproto->backer != backer) {
5462 continue;
5463 }
5464
5465 ds_put_format(ds, "\t%s: hit:%"PRIu64" missed:%"PRIu64"\n",
5466 ofproto->up.name, ofproto->n_hit, ofproto->n_missed);
5467
5468 ports = shash_sort(&ofproto->up.port_by_name);
5469 for (j = 0; j < shash_count(&ofproto->up.port_by_name); j++) {
5470 const struct shash_node *node = ports[j];
5471 struct ofport *ofport = node->data;
5472 struct smap config;
5473 odp_port_t odp_port;
5474
5475 ds_put_format(ds, "\t\t%s %u/", netdev_get_name(ofport->netdev),
5476 ofport->ofp_port);
5477
5478 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
5479 if (odp_port != ODPP_NONE) {
5480 ds_put_format(ds, "%"PRIu32":", odp_port);
5481 } else {
5482 ds_put_cstr(ds, "none:");
5483 }
5484
5485 ds_put_format(ds, " (%s", netdev_get_type(ofport->netdev));
5486
5487 smap_init(&config);
5488 if (!netdev_get_config(ofport->netdev, &config)) {
5489 const struct smap_node **nodes;
5490 size_t i;
5491
5492 nodes = smap_sort(&config);
5493 for (i = 0; i < smap_count(&config); i++) {
5494 const struct smap_node *node = nodes[i];
5495 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
5496 node->key, node->value);
5497 }
5498 free(nodes);
5499 }
5500 smap_destroy(&config);
5501
5502 ds_put_char(ds, ')');
5503 ds_put_char(ds, '\n');
5504 }
5505 free(ports);
5506 }
5507 shash_destroy(&ofproto_shash);
5508 free(ofprotos);
5509}
5510
5511static void
5512ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
5513 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
5514{
5515 struct ds ds = DS_EMPTY_INITIALIZER;
5516 const struct shash_node **backers;
5517 int i;
5518
5519 backers = shash_sort(&all_dpif_backers);
5520 for (i = 0; i < shash_count(&all_dpif_backers); i++) {
5521 dpif_show_backer(backers[i]->data, &ds);
5522 }
5523 free(backers);
5524
5525 unixctl_command_reply(conn, ds_cstr(&ds));
5526 ds_destroy(&ds);
5527}
5528
5529/* Dump the megaflow (facet) cache. This is useful to check the
5530 * correctness of flow wildcarding, since the same mechanism is used for
5531 * both xlate caching and kernel wildcarding.
5532 *
5533 * It's important to note that in the output the flow description uses
5534 * OpenFlow (OFP) ports, but the actions use datapath (ODP) ports.
5535 *
5536 * This command is only needed for advanced debugging, so it's not
5537 * documented in the man page. */
5538static void
5539ofproto_unixctl_dpif_dump_megaflows(struct unixctl_conn *conn,
5540 int argc OVS_UNUSED, const char *argv[],
5541 void *aux OVS_UNUSED)
5542{
5543 struct ds ds = DS_EMPTY_INITIALIZER;
5544 const struct ofproto_dpif *ofproto;
5545 long long int now = time_msec();
5546 struct cls_cursor cursor;
5547 struct facet *facet;
5548
5549 ofproto = ofproto_dpif_lookup(argv[1]);
5550 if (!ofproto) {
5551 unixctl_command_reply_error(conn, "no such bridge");
5552 return;
5553 }
5554
5555 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
5556 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5557 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5558 cls_rule_format(&facet->cr, &ds);
5559 ds_put_cstr(&ds, ", ");
5560 ds_put_format(&ds, "n_subfacets:%zu, ", list_size(&facet->subfacets));
5561 ds_put_format(&ds, "used:%.3fs, ", (now - facet->used) / 1000.0);
5562 ds_put_cstr(&ds, "Datapath actions: ");
5563 if (facet->xout.slow) {
5564 uint64_t slow_path_stub[128 / 8];
5565 const struct nlattr *actions;
5566 size_t actions_len;
5567
5568 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5569 slow_path_stub, sizeof slow_path_stub,
5570 &actions, &actions_len);
5571 format_odp_actions(&ds, actions, actions_len);
5572 } else {
5573 format_odp_actions(&ds, facet->xout.odp_actions.data,
5574 facet->xout.odp_actions.size);
5575 }
5576 ds_put_cstr(&ds, "\n");
5577 }
5578 ovs_rwlock_unlock(&ofproto->facets.rwlock);
5579
5580 ds_chomp(&ds, '\n');
5581 unixctl_command_reply(conn, ds_cstr(&ds));
5582 ds_destroy(&ds);
5583}
5584
5585/* Disable using the megaflows.
5586 *
5587 * This command is only needed for advanced debugging, so it's not
5588 * documented in the man page. */
5589static void
5590ofproto_unixctl_dpif_disable_megaflows(struct unixctl_conn *conn,
5591 int argc OVS_UNUSED,
5592 const char *argv[] OVS_UNUSED,
5593 void *aux OVS_UNUSED)
5594{
5595 struct ofproto_dpif *ofproto;
5596
5597 enable_megaflows = false;
5598
5599 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5600 flush(&ofproto->up);
5601 }
5602
5603 unixctl_command_reply(conn, "megaflows disabled");
5604}
5605
5606/* Re-enable using megaflows.
5607 *
5608 * This command is only needed for advanced debugging, so it's not
5609 * documented in the man page. */
5610static void
5611ofproto_unixctl_dpif_enable_megaflows(struct unixctl_conn *conn,
5612 int argc OVS_UNUSED,
5613 const char *argv[] OVS_UNUSED,
5614 void *aux OVS_UNUSED)
5615{
5616 struct ofproto_dpif *ofproto;
5617
5618 enable_megaflows = true;
5619
5620 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5621 flush(&ofproto->up);
5622 }
5623
5624 unixctl_command_reply(conn, "megaflows enabled");
5625}
5626
5627static void
5628ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
5629 int argc OVS_UNUSED, const char *argv[],
5630 void *aux OVS_UNUSED)
5631{
5632 struct ds ds = DS_EMPTY_INITIALIZER;
5633 const struct ofproto_dpif *ofproto;
5634 struct subfacet *subfacet;
5635
5636 ofproto = ofproto_dpif_lookup(argv[1]);
5637 if (!ofproto) {
5638 unixctl_command_reply_error(conn, "no such bridge");
5639 return;
5640 }
5641
5642 update_stats(ofproto->backer);
5643
5644 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->backer->subfacets) {
5645 struct facet *facet = subfacet->facet;
5646 struct odputil_keybuf maskbuf;
5647 struct ofpbuf mask;
5648
5649 if (facet->ofproto != ofproto) {
5650 continue;
5651 }
5652
5653 ofpbuf_use_stack(&mask, &maskbuf, sizeof maskbuf);
5654 if (enable_megaflows) {
5655 odp_flow_key_from_mask(&mask, &facet->xout.wc.masks,
5656 &facet->flow, UINT32_MAX);
5657 }
5658
5659 odp_flow_format(subfacet->key, subfacet->key_len,
5660 mask.data, mask.size, NULL, &ds, false);
5661
5662 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
5663 subfacet->dp_packet_count, subfacet->dp_byte_count);
5664 if (subfacet->used) {
5665 ds_put_format(&ds, "%.3fs",
5666 (time_msec() - subfacet->used) / 1000.0);
5667 } else {
5668 ds_put_format(&ds, "never");
5669 }
5670 if (subfacet->facet->tcp_flags) {
5671 ds_put_cstr(&ds, ", flags:");
5672 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
5673 }
5674
5675 ds_put_cstr(&ds, ", actions:");
5676 if (facet->xout.slow) {
5677 uint64_t slow_path_stub[128 / 8];
5678 const struct nlattr *actions;
5679 size_t actions_len;
5680
5681 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5682 slow_path_stub, sizeof slow_path_stub,
5683 &actions, &actions_len);
5684 format_odp_actions(&ds, actions, actions_len);
5685 } else {
5686 format_odp_actions(&ds, facet->xout.odp_actions.data,
5687 facet->xout.odp_actions.size);
5688 }
5689 ds_put_char(&ds, '\n');
5690 }
5691
5692 unixctl_command_reply(conn, ds_cstr(&ds));
5693 ds_destroy(&ds);
5694}
5695
5696static void
5697ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
5698 int argc OVS_UNUSED, const char *argv[],
5699 void *aux OVS_UNUSED)
5700{
5701 struct ds ds = DS_EMPTY_INITIALIZER;
5702 struct ofproto_dpif *ofproto;
5703
5704 ofproto = ofproto_dpif_lookup(argv[1]);
5705 if (!ofproto) {
5706 unixctl_command_reply_error(conn, "no such bridge");
5707 return;
5708 }
5709
5710 flush(&ofproto->up);
5711
5712 unixctl_command_reply(conn, ds_cstr(&ds));
5713 ds_destroy(&ds);
5714}
5715
5716static void
5717ofproto_dpif_unixctl_init(void)
5718{
5719 static bool registered;
5720 if (registered) {
5721 return;
5722 }
5723 registered = true;
5724
5725 unixctl_command_register(
5726 "ofproto/trace",
5727 "[dp_name]|bridge odp_flow|br_flow [-generate|packet]",
5728 1, 3, ofproto_unixctl_trace, NULL);
5729 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
5730 ofproto_unixctl_fdb_flush, NULL);
5731 unixctl_command_register("fdb/show", "bridge", 1, 1,
5732 ofproto_unixctl_fdb_show, NULL);
5733 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
5734 ofproto_dpif_self_check, NULL);
5735 unixctl_command_register("dpif/dump-dps", "", 0, 0,
5736 ofproto_unixctl_dpif_dump_dps, NULL);
5737 unixctl_command_register("dpif/show", "", 0, 0, ofproto_unixctl_dpif_show,
5738 NULL);
5739 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
5740 ofproto_unixctl_dpif_dump_flows, NULL);
5741 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
5742 ofproto_unixctl_dpif_del_flows, NULL);
5743 unixctl_command_register("dpif/dump-megaflows", "bridge", 1, 1,
5744 ofproto_unixctl_dpif_dump_megaflows, NULL);
5745 unixctl_command_register("dpif/disable-megaflows", "", 0, 0,
5746 ofproto_unixctl_dpif_disable_megaflows, NULL);
5747 unixctl_command_register("dpif/enable-megaflows", "", 0, 0,
5748 ofproto_unixctl_dpif_enable_megaflows, NULL);
5749}
5750\f
5751/* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
5752 *
5753 * This is deprecated. It is only for compatibility with broken device drivers
5754 * in old versions of Linux that do not properly support VLANs when VLAN
5755 * devices are not used. When broken device drivers are no longer in
5756 * widespread use, we will delete these interfaces. */
5757
5758static int
5759set_realdev(struct ofport *ofport_, ofp_port_t realdev_ofp_port, int vid)
5760{
5761 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
5762 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
5763
5764 if (realdev_ofp_port == ofport->realdev_ofp_port
5765 && vid == ofport->vlandev_vid) {
5766 return 0;
5767 }
5768
5769 ofproto->backer->need_revalidate = REV_RECONFIGURE;
5770
5771 if (ofport->realdev_ofp_port) {
5772 vsp_remove(ofport);
5773 }
5774 if (realdev_ofp_port && ofport->bundle) {
5775 /* vlandevs are enslaved to their realdevs, so they are not allowed to
5776 * themselves be part of a bundle. */
5777 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
5778 }
5779
5780 ofport->realdev_ofp_port = realdev_ofp_port;
5781 ofport->vlandev_vid = vid;
5782
5783 if (realdev_ofp_port) {
5784 vsp_add(ofport, realdev_ofp_port, vid);
5785 }
5786
5787 return 0;
5788}
5789
5790static uint32_t
5791hash_realdev_vid(ofp_port_t realdev_ofp_port, int vid)
5792{
5793 return hash_2words(ofp_to_u16(realdev_ofp_port), vid);
5794}
5795
5796bool
5797ofproto_has_vlan_splinters(const struct ofproto_dpif *ofproto)
5798 OVS_EXCLUDED(ofproto->vsp_mutex)
5799{
5800 bool ret;
5801
5802 ovs_mutex_lock(&ofproto->vsp_mutex);
5803 ret = !hmap_is_empty(&ofproto->realdev_vid_map);
5804 ovs_mutex_unlock(&ofproto->vsp_mutex);
5805 return ret;
5806}
5807
5808static ofp_port_t
5809vsp_realdev_to_vlandev__(const struct ofproto_dpif *ofproto,
5810 ofp_port_t realdev_ofp_port, ovs_be16 vlan_tci)
5811 OVS_REQUIRES(ofproto->vsp_mutex)
5812{
5813 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
5814 int vid = vlan_tci_to_vid(vlan_tci);
5815 const struct vlan_splinter *vsp;
5816
5817 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
5818 hash_realdev_vid(realdev_ofp_port, vid),
5819 &ofproto->realdev_vid_map) {
5820 if (vsp->realdev_ofp_port == realdev_ofp_port
5821 && vsp->vid == vid) {
5822 return vsp->vlandev_ofp_port;
5823 }
5824 }
5825 }
5826 return realdev_ofp_port;
5827}
5828
5829/* Returns the OFP port number of the Linux VLAN device that corresponds to
5830 * 'vlan_tci' on the network device with port number 'realdev_ofp_port' in
5831 * 'struct ofport_dpif'. For example, given 'realdev_ofp_port' of eth0 and
5832 * 'vlan_tci' 9, it would return the port number of eth0.9.
5833 *
5834 * Unless VLAN splinters are enabled for port 'realdev_ofp_port', this
5835 * function just returns its 'realdev_ofp_port' argument. */
5836ofp_port_t
5837vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
5838 ofp_port_t realdev_ofp_port, ovs_be16 vlan_tci)
5839 OVS_EXCLUDED(ofproto->vsp_mutex)
5840{
5841 ofp_port_t ret;
5842
5843 ovs_mutex_lock(&ofproto->vsp_mutex);
5844 ret = vsp_realdev_to_vlandev__(ofproto, realdev_ofp_port, vlan_tci);
5845 ovs_mutex_unlock(&ofproto->vsp_mutex);
5846 return ret;
5847}
5848
5849static struct vlan_splinter *
5850vlandev_find(const struct ofproto_dpif *ofproto, ofp_port_t vlandev_ofp_port)
5851{
5852 struct vlan_splinter *vsp;
5853
5854 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node,
5855 hash_ofp_port(vlandev_ofp_port),
5856 &ofproto->vlandev_map) {
5857 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
5858 return vsp;
5859 }
5860 }
5861
5862 return NULL;
5863}
5864
5865/* Returns the OpenFlow port number of the "real" device underlying the Linux
5866 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
5867 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
5868 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
5869 * eth0 and store 9 in '*vid'.
5870 *
5871 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
5872 * VLAN device. Unless VLAN splinters are enabled, this is what this function
5873 * always does.*/
5874static ofp_port_t
5875vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
5876 ofp_port_t vlandev_ofp_port, int *vid)
5877 OVS_REQUIRES(ofproto->vsp_mutex)
5878{
5879 if (!hmap_is_empty(&ofproto->vlandev_map)) {
5880 const struct vlan_splinter *vsp;
5881
5882 vsp = vlandev_find(ofproto, vlandev_ofp_port);
5883 if (vsp) {
5884 if (vid) {
5885 *vid = vsp->vid;
5886 }
5887 return vsp->realdev_ofp_port;
5888 }
5889 }
5890 return 0;
5891}
5892
5893/* Given 'flow', a flow representing a packet received on 'ofproto', checks
5894 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
5895 * 'flow->in_port' to the "real" device backing the VLAN device, sets
5896 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
5897 * always the case unless VLAN splinters are enabled), returns false without
5898 * making any changes. */
5899bool
5900vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
5901 OVS_EXCLUDED(ofproto->vsp_mutex)
5902{
5903 ofp_port_t realdev;
5904 int vid;
5905
5906 ovs_mutex_lock(&ofproto->vsp_mutex);
5907 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port.ofp_port, &vid);
5908 ovs_mutex_unlock(&ofproto->vsp_mutex);
5909 if (!realdev) {
5910 return false;
5911 }
5912
5913 /* Cause the flow to be processed as if it came in on the real device with
5914 * the VLAN device's VLAN ID. */
5915 flow->in_port.ofp_port = realdev;
5916 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
5917 return true;
5918}
5919
5920static void
5921vsp_remove(struct ofport_dpif *port)
5922{
5923 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
5924 struct vlan_splinter *vsp;
5925
5926 ovs_mutex_lock(&ofproto->vsp_mutex);
5927 vsp = vlandev_find(ofproto, port->up.ofp_port);
5928 if (vsp) {
5929 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
5930 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
5931 free(vsp);
5932
5933 port->realdev_ofp_port = 0;
5934 } else {
5935 VLOG_ERR("missing vlan device record");
5936 }
5937 ovs_mutex_unlock(&ofproto->vsp_mutex);
5938}
5939
5940static void
5941vsp_add(struct ofport_dpif *port, ofp_port_t realdev_ofp_port, int vid)
5942{
5943 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
5944
5945 ovs_mutex_lock(&ofproto->vsp_mutex);
5946 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
5947 && (vsp_realdev_to_vlandev__(ofproto, realdev_ofp_port, htons(vid))
5948 == realdev_ofp_port)) {
5949 struct vlan_splinter *vsp;
5950
5951 vsp = xmalloc(sizeof *vsp);
5952 vsp->realdev_ofp_port = realdev_ofp_port;
5953 vsp->vlandev_ofp_port = port->up.ofp_port;
5954 vsp->vid = vid;
5955
5956 port->realdev_ofp_port = realdev_ofp_port;
5957
5958 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
5959 hash_ofp_port(port->up.ofp_port));
5960 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
5961 hash_realdev_vid(realdev_ofp_port, vid));
5962 } else {
5963 VLOG_ERR("duplicate vlan device record");
5964 }
5965 ovs_mutex_unlock(&ofproto->vsp_mutex);
5966}
5967
5968static odp_port_t
5969ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
5970{
5971 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
5972 return ofport ? ofport->odp_port : ODPP_NONE;
5973}
5974
5975struct ofport_dpif *
5976odp_port_to_ofport(const struct dpif_backer *backer, odp_port_t odp_port)
5977{
5978 struct ofport_dpif *port;
5979
5980 ovs_rwlock_rdlock(&backer->odp_to_ofport_lock);
5981 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node, hash_odp_port(odp_port),
5982 &backer->odp_to_ofport_map) {
5983 if (port->odp_port == odp_port) {
5984 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
5985 return port;
5986 }
5987 }
5988
5989 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
5990 return NULL;
5991}
5992
5993static ofp_port_t
5994odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port)
5995{
5996 struct ofport_dpif *port;
5997
5998 port = odp_port_to_ofport(ofproto->backer, odp_port);
5999 if (port && &ofproto->up == port->up.ofproto) {
6000 return port->up.ofp_port;
6001 } else {
6002 return OFPP_NONE;
6003 }
6004}
6005
6006const struct ofproto_class ofproto_dpif_class = {
6007 init,
6008 enumerate_types,
6009 enumerate_names,
6010 del,
6011 port_open_type,
6012 type_run,
6013 type_run_fast,
6014 type_wait,
6015 alloc,
6016 construct,
6017 destruct,
6018 dealloc,
6019 run,
6020 run_fast,
6021 wait,
6022 get_memory_usage,
6023 flush,
6024 get_features,
6025 get_tables,
6026 port_alloc,
6027 port_construct,
6028 port_destruct,
6029 port_dealloc,
6030 port_modified,
6031 port_reconfigured,
6032 port_query_by_name,
6033 port_add,
6034 port_del,
6035 port_get_stats,
6036 port_dump_start,
6037 port_dump_next,
6038 port_dump_done,
6039 port_poll,
6040 port_poll_wait,
6041 port_is_lacp_current,
6042 NULL, /* rule_choose_table */
6043 rule_alloc,
6044 rule_construct,
6045 rule_insert,
6046 rule_delete,
6047 rule_destruct,
6048 rule_dealloc,
6049 rule_get_stats,
6050 rule_execute,
6051 rule_modify_actions,
6052 set_frag_handling,
6053 packet_out,
6054 set_netflow,
6055 get_netflow_ids,
6056 set_sflow,
6057 set_ipfix,
6058 set_cfm,
6059 get_cfm_status,
6060 set_bfd,
6061 get_bfd_status,
6062 set_stp,
6063 get_stp_status,
6064 set_stp_port,
6065 get_stp_port_status,
6066 set_queues,
6067 bundle_set,
6068 bundle_remove,
6069 mirror_set__,
6070 mirror_get_stats__,
6071 set_flood_vlans,
6072 is_mirror_output_bundle,
6073 forward_bpdu_changed,
6074 set_mac_table_config,
6075 set_realdev,
6076 NULL, /* meter_get_features */
6077 NULL, /* meter_set */
6078 NULL, /* meter_get */
6079 NULL, /* meter_del */
6080 NULL, /* group_alloc */
6081 NULL, /* group_construct */
6082 NULL, /* group_destruct */
6083 NULL, /* group_dealloc */
6084 NULL, /* group_modify */
6085 NULL, /* group_get_stats */
6086};