]> git.proxmox.com Git - mirror_ovs.git/blame_incremental - ofproto/ofproto.c
ovsdb-server: Fix memory leak.
[mirror_ovs.git] / ofproto / ofproto.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2009, 2010, 2011 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18#include <config.h>
19#include "ofproto.h"
20#include <errno.h>
21#include <inttypes.h>
22#include <sys/socket.h>
23#include <net/if.h>
24#include <netinet/in.h>
25#include <stdbool.h>
26#include <stdlib.h>
27#include "byte-order.h"
28#include "classifier.h"
29#include "coverage.h"
30#include "discovery.h"
31#include "dpif.h"
32#include "dynamic-string.h"
33#include "fail-open.h"
34#include "hash.h"
35#include "hmap.h"
36#include "in-band.h"
37#include "mac-learning.h"
38#include "multipath.h"
39#include "netdev.h"
40#include "netflow.h"
41#include "netlink.h"
42#include "nx-match.h"
43#include "odp-util.h"
44#include "ofp-print.h"
45#include "ofp-util.h"
46#include "ofproto-sflow.h"
47#include "ofpbuf.h"
48#include "openflow/nicira-ext.h"
49#include "openflow/openflow.h"
50#include "openvswitch/datapath-protocol.h"
51#include "packets.h"
52#include "pinsched.h"
53#include "pktbuf.h"
54#include "poll-loop.h"
55#include "rconn.h"
56#include "shash.h"
57#include "status.h"
58#include "stream-ssl.h"
59#include "svec.h"
60#include "tag.h"
61#include "timeval.h"
62#include "unaligned.h"
63#include "unixctl.h"
64#include "vconn.h"
65#include "vlog.h"
66
67VLOG_DEFINE_THIS_MODULE(ofproto);
68
69COVERAGE_DEFINE(facet_changed_rule);
70COVERAGE_DEFINE(facet_revalidate);
71COVERAGE_DEFINE(odp_overflow);
72COVERAGE_DEFINE(ofproto_agg_request);
73COVERAGE_DEFINE(ofproto_costly_flags);
74COVERAGE_DEFINE(ofproto_ctlr_action);
75COVERAGE_DEFINE(ofproto_del_rule);
76COVERAGE_DEFINE(ofproto_error);
77COVERAGE_DEFINE(ofproto_expiration);
78COVERAGE_DEFINE(ofproto_expired);
79COVERAGE_DEFINE(ofproto_flows_req);
80COVERAGE_DEFINE(ofproto_flush);
81COVERAGE_DEFINE(ofproto_invalidated);
82COVERAGE_DEFINE(ofproto_no_packet_in);
83COVERAGE_DEFINE(ofproto_ofconn_stuck);
84COVERAGE_DEFINE(ofproto_ofp2odp);
85COVERAGE_DEFINE(ofproto_packet_in);
86COVERAGE_DEFINE(ofproto_packet_out);
87COVERAGE_DEFINE(ofproto_queue_req);
88COVERAGE_DEFINE(ofproto_recv_openflow);
89COVERAGE_DEFINE(ofproto_reinit_ports);
90COVERAGE_DEFINE(ofproto_unexpected_rule);
91COVERAGE_DEFINE(ofproto_uninstallable);
92COVERAGE_DEFINE(ofproto_update_port);
93
94#include "sflow_api.h"
95
96struct rule;
97
98struct ofport {
99 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
100 struct netdev *netdev;
101 struct ofp_phy_port opp; /* In host byte order. */
102 uint16_t odp_port;
103};
104
105static void ofport_free(struct ofport *);
106static void hton_ofp_phy_port(struct ofp_phy_port *);
107
108struct action_xlate_ctx {
109/* action_xlate_ctx_init() initializes these members. */
110
111 /* The ofproto. */
112 struct ofproto *ofproto;
113
114 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
115 * this flow when actions change header fields. */
116 struct flow flow;
117
118 /* The packet corresponding to 'flow', or a null pointer if we are
119 * revalidating without a packet to refer to. */
120 const struct ofpbuf *packet;
121
122 /* If nonnull, called just before executing a resubmit action.
123 *
124 * This is normally null so the client has to set it manually after
125 * calling action_xlate_ctx_init(). */
126 void (*resubmit_hook)(struct action_xlate_ctx *, const struct rule *);
127
128 /* If true, the speciality of 'flow' should be checked before executing
129 * its actions. If special_cb returns false on 'flow' rendered
130 * uninstallable and no actions will be executed. */
131 bool check_special;
132
133/* xlate_actions() initializes and uses these members. The client might want
134 * to look at them after it returns. */
135
136 struct ofpbuf *odp_actions; /* Datapath actions. */
137 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
138 bool may_set_up_flow; /* True ordinarily; false if the actions must
139 * be reassessed for every packet. */
140 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
141
142/* xlate_actions() initializes and uses these members, but the client has no
143 * reason to look at them. */
144
145 int recurse; /* Recursion level, via xlate_table_action. */
146 int last_pop_priority; /* Offset in 'odp_actions' just past most
147 * recent ODP_ACTION_ATTR_SET_PRIORITY. */
148};
149
150static void action_xlate_ctx_init(struct action_xlate_ctx *,
151 struct ofproto *, const struct flow *,
152 const struct ofpbuf *);
153static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
154 const union ofp_action *in, size_t n_in);
155
156/* An OpenFlow flow. */
157struct rule {
158 long long int used; /* Time last used; time created if not used. */
159 long long int created; /* Creation time. */
160
161 /* These statistics:
162 *
163 * - Do include packets and bytes from facets that have been deleted or
164 * whose own statistics have been folded into the rule.
165 *
166 * - Do include packets and bytes sent "by hand" that were accounted to
167 * the rule without any facet being involved (this is a rare corner
168 * case in rule_execute()).
169 *
170 * - Do not include packet or bytes that can be obtained from any facet's
171 * packet_count or byte_count member or that can be obtained from the
172 * datapath by, e.g., dpif_flow_get() for any facet.
173 */
174 uint64_t packet_count; /* Number of packets received. */
175 uint64_t byte_count; /* Number of bytes received. */
176
177 ovs_be64 flow_cookie; /* Controller-issued identifier. */
178
179 struct cls_rule cr; /* In owning ofproto's classifier. */
180 uint16_t idle_timeout; /* In seconds from time of last use. */
181 uint16_t hard_timeout; /* In seconds from time of creation. */
182 bool send_flow_removed; /* Send a flow removed message? */
183 int n_actions; /* Number of elements in actions[]. */
184 union ofp_action *actions; /* OpenFlow actions. */
185 struct list facets; /* List of "struct facet"s. */
186};
187
188static struct rule *rule_from_cls_rule(const struct cls_rule *);
189static bool rule_is_hidden(const struct rule *);
190
191static struct rule *rule_create(const struct cls_rule *,
192 const union ofp_action *, size_t n_actions,
193 uint16_t idle_timeout, uint16_t hard_timeout,
194 ovs_be64 flow_cookie, bool send_flow_removed);
195static void rule_destroy(struct ofproto *, struct rule *);
196static void rule_free(struct rule *);
197
198static struct rule *rule_lookup(struct ofproto *, const struct flow *);
199static void rule_insert(struct ofproto *, struct rule *);
200static void rule_remove(struct ofproto *, struct rule *);
201
202static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
203
204/* An exact-match instantiation of an OpenFlow flow. */
205struct facet {
206 long long int used; /* Time last used; time created if not used. */
207
208 /* These statistics:
209 *
210 * - Do include packets and bytes sent "by hand", e.g. with
211 * dpif_execute().
212 *
213 * - Do include packets and bytes that were obtained from the datapath
214 * when a flow was deleted (e.g. dpif_flow_del()) or when its
215 * statistics were reset (e.g. dpif_flow_put() with
216 * DPIF_FP_ZERO_STATS).
217 *
218 * - Do not include any packets or bytes that can currently be obtained
219 * from the datapath by, e.g., dpif_flow_get().
220 */
221 uint64_t packet_count; /* Number of packets received. */
222 uint64_t byte_count; /* Number of bytes received. */
223
224 /* Number of bytes passed to account_cb. This may include bytes that can
225 * currently obtained from the datapath (thus, it can be greater than
226 * byte_count). */
227 uint64_t accounted_bytes;
228
229 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
230 struct list list_node; /* In owning rule's 'facets' list. */
231 struct rule *rule; /* Owning rule. */
232 struct flow flow; /* Exact-match flow. */
233 bool installed; /* Installed in datapath? */
234 bool may_install; /* True ordinarily; false if actions must
235 * be reassessed for every packet. */
236 size_t actions_len; /* Number of bytes in actions[]. */
237 struct nlattr *actions; /* Datapath actions. */
238 tag_type tags; /* Tags (set only by hooks). */
239 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
240};
241
242static struct facet *facet_create(struct ofproto *, struct rule *,
243 const struct flow *,
244 const struct ofpbuf *packet);
245static void facet_remove(struct ofproto *, struct facet *);
246static void facet_free(struct facet *);
247
248static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
249static bool facet_revalidate(struct ofproto *, struct facet *);
250
251static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
252static void facet_uninstall(struct ofproto *, struct facet *);
253static void facet_flush_stats(struct ofproto *, struct facet *);
254
255static void facet_make_actions(struct ofproto *, struct facet *,
256 const struct ofpbuf *packet);
257static void facet_update_stats(struct ofproto *, struct facet *,
258 const struct dpif_flow_stats *);
259
260/* ofproto supports two kinds of OpenFlow connections:
261 *
262 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
263 * maintains persistent connections to these controllers and by default
264 * sends them asynchronous messages such as packet-ins.
265 *
266 * - "Service" connections, e.g. from ovs-ofctl. When these connections
267 * drop, it is the other side's responsibility to reconnect them if
268 * necessary. ofproto does not send them asynchronous messages by default.
269 *
270 * Currently, active (tcp, ssl, unix) connections are always "primary"
271 * connections and passive (ptcp, pssl, punix) connections are always "service"
272 * connections. There is no inherent reason for this, but it reflects the
273 * common case.
274 */
275enum ofconn_type {
276 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
277 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
278};
279
280/* A listener for incoming OpenFlow "service" connections. */
281struct ofservice {
282 struct hmap_node node; /* In struct ofproto's "services" hmap. */
283 struct pvconn *pvconn; /* OpenFlow connection listener. */
284
285 /* These are not used by ofservice directly. They are settings for
286 * accepted "struct ofconn"s from the pvconn. */
287 int probe_interval; /* Max idle time before probing, in seconds. */
288 int rate_limit; /* Max packet-in rate in packets per second. */
289 int burst_limit; /* Limit on accumulating packet credits. */
290};
291
292static struct ofservice *ofservice_lookup(struct ofproto *,
293 const char *target);
294static int ofservice_create(struct ofproto *,
295 const struct ofproto_controller *);
296static void ofservice_reconfigure(struct ofservice *,
297 const struct ofproto_controller *);
298static void ofservice_destroy(struct ofproto *, struct ofservice *);
299
300/* An OpenFlow connection. */
301struct ofconn {
302 struct ofproto *ofproto; /* The ofproto that owns this connection. */
303 struct list node; /* In struct ofproto's "all_conns" list. */
304 struct rconn *rconn; /* OpenFlow connection. */
305 enum ofconn_type type; /* Type. */
306 enum nx_flow_format flow_format; /* Currently selected flow format. */
307
308 /* OFPT_PACKET_IN related data. */
309 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
310#define N_SCHEDULERS 2
311 struct pinsched *schedulers[N_SCHEDULERS];
312 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
313 int miss_send_len; /* Bytes to send of buffered packets. */
314
315 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
316 * requests, and the maximum number before we stop reading OpenFlow
317 * requests. */
318#define OFCONN_REPLY_MAX 100
319 struct rconn_packet_counter *reply_counter;
320
321 /* type == OFCONN_PRIMARY only. */
322 enum nx_role role; /* Role. */
323 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
324 struct discovery *discovery; /* Controller discovery object, if enabled. */
325 struct status_category *ss; /* Switch status category. */
326 enum ofproto_band band; /* In-band or out-of-band? */
327};
328
329
330static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
331 enum ofconn_type);
332static void ofconn_destroy(struct ofconn *);
333static void ofconn_run(struct ofconn *);
334static void ofconn_wait(struct ofconn *);
335static bool ofconn_receives_async_msgs(const struct ofconn *);
336static char *ofconn_make_name(const struct ofproto *, const char *target);
337static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
338
339static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
340 struct rconn_packet_counter *counter);
341
342static void send_packet_in(struct ofproto *, struct dpif_upcall *,
343 const struct flow *, bool clone);
344static void do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn);
345
346struct ofproto {
347 /* Settings. */
348 uint64_t datapath_id; /* Datapath ID. */
349 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
350 char *mfr_desc; /* Manufacturer. */
351 char *hw_desc; /* Hardware. */
352 char *sw_desc; /* Software version. */
353 char *serial_desc; /* Serial number. */
354 char *dp_desc; /* Datapath description. */
355
356 /* Datapath. */
357 struct dpif *dpif;
358 struct netdev_monitor *netdev_monitor;
359 struct hmap ports; /* Contains "struct ofport"s. */
360 struct shash port_by_name;
361 uint32_t max_ports;
362
363 /* Configuration. */
364 struct switch_status *switch_status;
365 struct fail_open *fail_open;
366 struct netflow *netflow;
367 struct ofproto_sflow *sflow;
368
369 /* In-band control. */
370 struct in_band *in_band;
371 long long int next_in_band_update;
372 struct sockaddr_in *extra_in_band_remotes;
373 size_t n_extra_remotes;
374 int in_band_queue;
375
376 /* Flow table. */
377 struct classifier cls;
378 long long int next_expiration;
379
380 /* Facets. */
381 struct hmap facets;
382 bool need_revalidate;
383 struct tag_set revalidate_set;
384
385 /* OpenFlow connections. */
386 struct hmap controllers; /* Controller "struct ofconn"s. */
387 struct list all_conns; /* Contains "struct ofconn"s. */
388 enum ofproto_fail_mode fail_mode;
389
390 /* OpenFlow listeners. */
391 struct hmap services; /* Contains "struct ofservice"s. */
392 struct pvconn **snoops;
393 size_t n_snoops;
394
395 /* Hooks for ovs-vswitchd. */
396 const struct ofhooks *ofhooks;
397 void *aux;
398
399 /* Used by default ofhooks. */
400 struct mac_learning *ml;
401};
402
403/* Map from dpif name to struct ofproto, for use by unixctl commands. */
404static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos);
405
406static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
407
408static const struct ofhooks default_ofhooks;
409
410static uint64_t pick_datapath_id(const struct ofproto *);
411static uint64_t pick_fallback_dpid(void);
412
413static int ofproto_expire(struct ofproto *);
414
415static void handle_upcall(struct ofproto *, struct dpif_upcall *);
416
417static void handle_openflow(struct ofconn *, struct ofpbuf *);
418
419static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
420static void update_port(struct ofproto *, const char *devname);
421static int init_ports(struct ofproto *);
422static void reinit_ports(struct ofproto *);
423
424static void ofproto_unixctl_init(void);
425
426int
427ofproto_create(const char *datapath, const char *datapath_type,
428 const struct ofhooks *ofhooks, void *aux,
429 struct ofproto **ofprotop)
430{
431 struct ofproto *p;
432 struct dpif *dpif;
433 int error;
434
435 *ofprotop = NULL;
436
437 ofproto_unixctl_init();
438
439 /* Connect to datapath and start listening for messages. */
440 error = dpif_open(datapath, datapath_type, &dpif);
441 if (error) {
442 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
443 return error;
444 }
445 error = dpif_recv_set_mask(dpif,
446 ((1u << DPIF_UC_MISS) |
447 (1u << DPIF_UC_ACTION) |
448 (1u << DPIF_UC_SAMPLE)));
449 if (error) {
450 VLOG_ERR("failed to listen on datapath %s: %s",
451 datapath, strerror(error));
452 dpif_close(dpif);
453 return error;
454 }
455 dpif_flow_flush(dpif);
456 dpif_recv_purge(dpif);
457
458 /* Initialize settings. */
459 p = xzalloc(sizeof *p);
460 p->fallback_dpid = pick_fallback_dpid();
461 p->datapath_id = p->fallback_dpid;
462 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
463 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
464 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
465 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
466 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
467
468 /* Initialize datapath. */
469 p->dpif = dpif;
470 p->netdev_monitor = netdev_monitor_create();
471 hmap_init(&p->ports);
472 shash_init(&p->port_by_name);
473 p->max_ports = dpif_get_max_ports(dpif);
474
475 /* Initialize submodules. */
476 p->switch_status = switch_status_create(p);
477 p->fail_open = NULL;
478 p->netflow = NULL;
479 p->sflow = NULL;
480
481 /* Initialize in-band control. */
482 p->in_band = NULL;
483 p->in_band_queue = -1;
484
485 /* Initialize flow table. */
486 classifier_init(&p->cls);
487 p->next_expiration = time_msec() + 1000;
488
489 /* Initialize facet table. */
490 hmap_init(&p->facets);
491 p->need_revalidate = false;
492 tag_set_init(&p->revalidate_set);
493
494 /* Initialize OpenFlow connections. */
495 list_init(&p->all_conns);
496 hmap_init(&p->controllers);
497 hmap_init(&p->services);
498 p->snoops = NULL;
499 p->n_snoops = 0;
500
501 /* Initialize hooks. */
502 if (ofhooks) {
503 p->ofhooks = ofhooks;
504 p->aux = aux;
505 p->ml = NULL;
506 } else {
507 p->ofhooks = &default_ofhooks;
508 p->aux = p;
509 p->ml = mac_learning_create();
510 }
511
512 /* Pick final datapath ID. */
513 p->datapath_id = pick_datapath_id(p);
514 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
515
516 shash_add_once(&all_ofprotos, dpif_name(p->dpif), p);
517
518 *ofprotop = p;
519 return 0;
520}
521
522void
523ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
524{
525 uint64_t old_dpid = p->datapath_id;
526 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
527 if (p->datapath_id != old_dpid) {
528 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
529
530 /* Force all active connections to reconnect, since there is no way to
531 * notify a controller that the datapath ID has changed. */
532 ofproto_reconnect_controllers(p);
533 }
534}
535
536static bool
537is_discovery_controller(const struct ofproto_controller *c)
538{
539 return !strcmp(c->target, "discover");
540}
541
542static bool
543is_in_band_controller(const struct ofproto_controller *c)
544{
545 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
546}
547
548/* Creates a new controller in 'ofproto'. Some of the settings are initially
549 * drawn from 'c', but update_controller() needs to be called later to finish
550 * the new ofconn's configuration. */
551static void
552add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
553{
554 struct discovery *discovery;
555 struct ofconn *ofconn;
556
557 if (is_discovery_controller(c)) {
558 int error = discovery_create(c->accept_re, c->update_resolv_conf,
559 ofproto->dpif, ofproto->switch_status,
560 &discovery);
561 if (error) {
562 return;
563 }
564 } else {
565 discovery = NULL;
566 }
567
568 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
569 ofconn->pktbuf = pktbuf_create();
570 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
571 if (discovery) {
572 ofconn->discovery = discovery;
573 } else {
574 char *name = ofconn_make_name(ofproto, c->target);
575 rconn_connect(ofconn->rconn, c->target, name);
576 free(name);
577 }
578 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
579 hash_string(c->target, 0));
580}
581
582/* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
583 * target or turn discovery on or off (these are done by creating new ofconns
584 * and deleting old ones), but it can update the rest of an ofconn's
585 * settings. */
586static void
587update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
588{
589 int probe_interval;
590
591 ofconn->band = (is_in_band_controller(c)
592 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
593
594 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
595
596 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
597 rconn_set_probe_interval(ofconn->rconn, probe_interval);
598
599 if (ofconn->discovery) {
600 discovery_set_update_resolv_conf(ofconn->discovery,
601 c->update_resolv_conf);
602 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
603 }
604
605 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
606}
607
608static const char *
609ofconn_get_target(const struct ofconn *ofconn)
610{
611 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
612}
613
614static struct ofconn *
615find_controller_by_target(struct ofproto *ofproto, const char *target)
616{
617 struct ofconn *ofconn;
618
619 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
620 hash_string(target, 0), &ofproto->controllers) {
621 if (!strcmp(ofconn_get_target(ofconn), target)) {
622 return ofconn;
623 }
624 }
625 return NULL;
626}
627
628static void
629update_in_band_remotes(struct ofproto *ofproto)
630{
631 const struct ofconn *ofconn;
632 struct sockaddr_in *addrs;
633 size_t max_addrs, n_addrs;
634 bool discovery;
635 size_t i;
636
637 /* Allocate enough memory for as many remotes as we could possibly have. */
638 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
639 addrs = xmalloc(max_addrs * sizeof *addrs);
640 n_addrs = 0;
641
642 /* Add all the remotes. */
643 discovery = false;
644 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
645 struct sockaddr_in *sin = &addrs[n_addrs];
646
647 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
648 continue;
649 }
650
651 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
652 if (sin->sin_addr.s_addr) {
653 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
654 n_addrs++;
655 }
656 if (ofconn->discovery) {
657 discovery = true;
658 }
659 }
660 for (i = 0; i < ofproto->n_extra_remotes; i++) {
661 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
662 }
663
664 /* Create or update or destroy in-band.
665 *
666 * Ordinarily we only enable in-band if there's at least one remote
667 * address, but discovery needs the in-band rules for DHCP to be installed
668 * even before we know any remote addresses. */
669 if (n_addrs || discovery) {
670 if (!ofproto->in_band) {
671 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
672 &ofproto->in_band);
673 }
674 if (ofproto->in_band) {
675 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
676 }
677 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
678 ofproto->next_in_band_update = time_msec() + 1000;
679 } else {
680 in_band_destroy(ofproto->in_band);
681 ofproto->in_band = NULL;
682 }
683
684 /* Clean up. */
685 free(addrs);
686}
687
688static void
689update_fail_open(struct ofproto *p)
690{
691 struct ofconn *ofconn;
692
693 if (!hmap_is_empty(&p->controllers)
694 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
695 struct rconn **rconns;
696 size_t n;
697
698 if (!p->fail_open) {
699 p->fail_open = fail_open_create(p, p->switch_status);
700 }
701
702 n = 0;
703 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
704 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
705 rconns[n++] = ofconn->rconn;
706 }
707
708 fail_open_set_controllers(p->fail_open, rconns, n);
709 /* p->fail_open takes ownership of 'rconns'. */
710 } else {
711 fail_open_destroy(p->fail_open);
712 p->fail_open = NULL;
713 }
714}
715
716void
717ofproto_set_controllers(struct ofproto *p,
718 const struct ofproto_controller *controllers,
719 size_t n_controllers)
720{
721 struct shash new_controllers;
722 struct ofconn *ofconn, *next_ofconn;
723 struct ofservice *ofservice, *next_ofservice;
724 bool ss_exists;
725 size_t i;
726
727 /* Create newly configured controllers and services.
728 * Create a name to ofproto_controller mapping in 'new_controllers'. */
729 shash_init(&new_controllers);
730 for (i = 0; i < n_controllers; i++) {
731 const struct ofproto_controller *c = &controllers[i];
732
733 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
734 if (!find_controller_by_target(p, c->target)) {
735 add_controller(p, c);
736 }
737 } else if (!pvconn_verify_name(c->target)) {
738 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
739 continue;
740 }
741 } else {
742 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
743 dpif_name(p->dpif), c->target);
744 continue;
745 }
746
747 shash_add_once(&new_controllers, c->target, &controllers[i]);
748 }
749
750 /* Delete controllers that are no longer configured.
751 * Update configuration of all now-existing controllers. */
752 ss_exists = false;
753 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
754 struct ofproto_controller *c;
755
756 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
757 if (!c) {
758 ofconn_destroy(ofconn);
759 } else {
760 update_controller(ofconn, c);
761 if (ofconn->ss) {
762 ss_exists = true;
763 }
764 }
765 }
766
767 /* Delete services that are no longer configured.
768 * Update configuration of all now-existing services. */
769 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
770 struct ofproto_controller *c;
771
772 c = shash_find_data(&new_controllers,
773 pvconn_get_name(ofservice->pvconn));
774 if (!c) {
775 ofservice_destroy(p, ofservice);
776 } else {
777 ofservice_reconfigure(ofservice, c);
778 }
779 }
780
781 shash_destroy(&new_controllers);
782
783 update_in_band_remotes(p);
784 update_fail_open(p);
785
786 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
787 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
788 struct ofconn, hmap_node);
789 ofconn->ss = switch_status_register(p->switch_status, "remote",
790 rconn_status_cb, ofconn->rconn);
791 }
792}
793
794void
795ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
796{
797 p->fail_mode = fail_mode;
798 update_fail_open(p);
799}
800
801/* Drops the connections between 'ofproto' and all of its controllers, forcing
802 * them to reconnect. */
803void
804ofproto_reconnect_controllers(struct ofproto *ofproto)
805{
806 struct ofconn *ofconn;
807
808 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
809 rconn_reconnect(ofconn->rconn);
810 }
811}
812
813static bool
814any_extras_changed(const struct ofproto *ofproto,
815 const struct sockaddr_in *extras, size_t n)
816{
817 size_t i;
818
819 if (n != ofproto->n_extra_remotes) {
820 return true;
821 }
822
823 for (i = 0; i < n; i++) {
824 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
825 const struct sockaddr_in *new = &extras[i];
826
827 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
828 old->sin_port != new->sin_port) {
829 return true;
830 }
831 }
832
833 return false;
834}
835
836/* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
837 * in-band control should guarantee access, in the same way that in-band
838 * control guarantees access to OpenFlow controllers. */
839void
840ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
841 const struct sockaddr_in *extras, size_t n)
842{
843 if (!any_extras_changed(ofproto, extras, n)) {
844 return;
845 }
846
847 free(ofproto->extra_in_band_remotes);
848 ofproto->n_extra_remotes = n;
849 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
850
851 update_in_band_remotes(ofproto);
852}
853
854/* Sets the OpenFlow queue used by flows set up by in-band control on
855 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
856 * flows will use the default queue. */
857void
858ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
859{
860 if (queue_id != ofproto->in_band_queue) {
861 ofproto->in_band_queue = queue_id;
862 update_in_band_remotes(ofproto);
863 }
864}
865
866void
867ofproto_set_desc(struct ofproto *p,
868 const char *mfr_desc, const char *hw_desc,
869 const char *sw_desc, const char *serial_desc,
870 const char *dp_desc)
871{
872 struct ofp_desc_stats *ods;
873
874 if (mfr_desc) {
875 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
876 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
877 sizeof ods->mfr_desc);
878 }
879 free(p->mfr_desc);
880 p->mfr_desc = xstrdup(mfr_desc);
881 }
882 if (hw_desc) {
883 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
884 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
885 sizeof ods->hw_desc);
886 }
887 free(p->hw_desc);
888 p->hw_desc = xstrdup(hw_desc);
889 }
890 if (sw_desc) {
891 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
892 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
893 sizeof ods->sw_desc);
894 }
895 free(p->sw_desc);
896 p->sw_desc = xstrdup(sw_desc);
897 }
898 if (serial_desc) {
899 if (strlen(serial_desc) >= sizeof ods->serial_num) {
900 VLOG_WARN("truncating serial_desc, must be less than %zu "
901 "characters",
902 sizeof ods->serial_num);
903 }
904 free(p->serial_desc);
905 p->serial_desc = xstrdup(serial_desc);
906 }
907 if (dp_desc) {
908 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
909 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
910 sizeof ods->dp_desc);
911 }
912 free(p->dp_desc);
913 p->dp_desc = xstrdup(dp_desc);
914 }
915}
916
917static int
918set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
919 const struct svec *svec)
920{
921 struct pvconn **pvconns = *pvconnsp;
922 size_t n_pvconns = *n_pvconnsp;
923 int retval = 0;
924 size_t i;
925
926 for (i = 0; i < n_pvconns; i++) {
927 pvconn_close(pvconns[i]);
928 }
929 free(pvconns);
930
931 pvconns = xmalloc(svec->n * sizeof *pvconns);
932 n_pvconns = 0;
933 for (i = 0; i < svec->n; i++) {
934 const char *name = svec->names[i];
935 struct pvconn *pvconn;
936 int error;
937
938 error = pvconn_open(name, &pvconn);
939 if (!error) {
940 pvconns[n_pvconns++] = pvconn;
941 } else {
942 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
943 if (!retval) {
944 retval = error;
945 }
946 }
947 }
948
949 *pvconnsp = pvconns;
950 *n_pvconnsp = n_pvconns;
951
952 return retval;
953}
954
955int
956ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
957{
958 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
959}
960
961int
962ofproto_set_netflow(struct ofproto *ofproto,
963 const struct netflow_options *nf_options)
964{
965 if (nf_options && nf_options->collectors.n) {
966 if (!ofproto->netflow) {
967 ofproto->netflow = netflow_create();
968 }
969 return netflow_set_options(ofproto->netflow, nf_options);
970 } else {
971 netflow_destroy(ofproto->netflow);
972 ofproto->netflow = NULL;
973 return 0;
974 }
975}
976
977void
978ofproto_set_sflow(struct ofproto *ofproto,
979 const struct ofproto_sflow_options *oso)
980{
981 struct ofproto_sflow *os = ofproto->sflow;
982 if (oso) {
983 if (!os) {
984 struct ofport *ofport;
985
986 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
987 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
988 ofproto_sflow_add_port(os, ofport->odp_port,
989 netdev_get_name(ofport->netdev));
990 }
991 }
992 ofproto_sflow_set_options(os, oso);
993 } else {
994 ofproto_sflow_destroy(os);
995 ofproto->sflow = NULL;
996 }
997}
998
999uint64_t
1000ofproto_get_datapath_id(const struct ofproto *ofproto)
1001{
1002 return ofproto->datapath_id;
1003}
1004
1005bool
1006ofproto_has_primary_controller(const struct ofproto *ofproto)
1007{
1008 return !hmap_is_empty(&ofproto->controllers);
1009}
1010
1011enum ofproto_fail_mode
1012ofproto_get_fail_mode(const struct ofproto *p)
1013{
1014 return p->fail_mode;
1015}
1016
1017void
1018ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
1019{
1020 size_t i;
1021
1022 for (i = 0; i < ofproto->n_snoops; i++) {
1023 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
1024 }
1025}
1026
1027void
1028ofproto_destroy(struct ofproto *p)
1029{
1030 struct ofservice *ofservice, *next_ofservice;
1031 struct ofconn *ofconn, *next_ofconn;
1032 struct ofport *ofport, *next_ofport;
1033 size_t i;
1034
1035 if (!p) {
1036 return;
1037 }
1038
1039 shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif));
1040
1041 /* Destroy fail-open and in-band early, since they touch the classifier. */
1042 fail_open_destroy(p->fail_open);
1043 p->fail_open = NULL;
1044
1045 in_band_destroy(p->in_band);
1046 p->in_band = NULL;
1047 free(p->extra_in_band_remotes);
1048
1049 ofproto_flush_flows(p);
1050 classifier_destroy(&p->cls);
1051 hmap_destroy(&p->facets);
1052
1053 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1054 ofconn_destroy(ofconn);
1055 }
1056 hmap_destroy(&p->controllers);
1057
1058 dpif_close(p->dpif);
1059 netdev_monitor_destroy(p->netdev_monitor);
1060 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1061 hmap_remove(&p->ports, &ofport->hmap_node);
1062 ofport_free(ofport);
1063 }
1064 shash_destroy(&p->port_by_name);
1065
1066 switch_status_destroy(p->switch_status);
1067 netflow_destroy(p->netflow);
1068 ofproto_sflow_destroy(p->sflow);
1069
1070 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
1071 ofservice_destroy(p, ofservice);
1072 }
1073 hmap_destroy(&p->services);
1074
1075 for (i = 0; i < p->n_snoops; i++) {
1076 pvconn_close(p->snoops[i]);
1077 }
1078 free(p->snoops);
1079
1080 mac_learning_destroy(p->ml);
1081
1082 free(p->mfr_desc);
1083 free(p->hw_desc);
1084 free(p->sw_desc);
1085 free(p->serial_desc);
1086 free(p->dp_desc);
1087
1088 hmap_destroy(&p->ports);
1089
1090 free(p);
1091}
1092
1093int
1094ofproto_run(struct ofproto *p)
1095{
1096 int error = ofproto_run1(p);
1097 if (!error) {
1098 error = ofproto_run2(p, false);
1099 }
1100 return error;
1101}
1102
1103static void
1104process_port_change(struct ofproto *ofproto, int error, char *devname)
1105{
1106 if (error == ENOBUFS) {
1107 reinit_ports(ofproto);
1108 } else if (!error) {
1109 update_port(ofproto, devname);
1110 free(devname);
1111 }
1112}
1113
1114/* Returns a "preference level" for snooping 'ofconn'. A higher return value
1115 * means that 'ofconn' is more interesting for monitoring than a lower return
1116 * value. */
1117static int
1118snoop_preference(const struct ofconn *ofconn)
1119{
1120 switch (ofconn->role) {
1121 case NX_ROLE_MASTER:
1122 return 3;
1123 case NX_ROLE_OTHER:
1124 return 2;
1125 case NX_ROLE_SLAVE:
1126 return 1;
1127 default:
1128 /* Shouldn't happen. */
1129 return 0;
1130 }
1131}
1132
1133/* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1134 * Connects this vconn to a controller. */
1135static void
1136add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1137{
1138 struct ofconn *ofconn, *best;
1139
1140 /* Pick a controller for monitoring. */
1141 best = NULL;
1142 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1143 if (ofconn->type == OFCONN_PRIMARY
1144 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1145 best = ofconn;
1146 }
1147 }
1148
1149 if (best) {
1150 rconn_add_monitor(best->rconn, vconn);
1151 } else {
1152 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1153 vconn_close(vconn);
1154 }
1155}
1156
1157int
1158ofproto_run1(struct ofproto *p)
1159{
1160 struct ofconn *ofconn, *next_ofconn;
1161 struct ofservice *ofservice;
1162 char *devname;
1163 int error;
1164 int i;
1165
1166 if (shash_is_empty(&p->port_by_name)) {
1167 init_ports(p);
1168 }
1169
1170 for (i = 0; i < 50; i++) {
1171 struct dpif_upcall packet;
1172
1173 error = dpif_recv(p->dpif, &packet);
1174 if (error) {
1175 if (error == ENODEV) {
1176 /* Someone destroyed the datapath behind our back. The caller
1177 * better destroy us and give up, because we're just going to
1178 * spin from here on out. */
1179 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1180 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1181 dpif_name(p->dpif));
1182 return ENODEV;
1183 }
1184 break;
1185 }
1186
1187 handle_upcall(p, &packet);
1188 }
1189
1190 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1191 process_port_change(p, error, devname);
1192 }
1193 while ((error = netdev_monitor_poll(p->netdev_monitor,
1194 &devname)) != EAGAIN) {
1195 process_port_change(p, error, devname);
1196 }
1197
1198 if (p->in_band) {
1199 if (time_msec() >= p->next_in_band_update) {
1200 update_in_band_remotes(p);
1201 }
1202 in_band_run(p->in_band);
1203 }
1204
1205 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1206 ofconn_run(ofconn);
1207 }
1208
1209 /* Fail-open maintenance. Do this after processing the ofconns since
1210 * fail-open checks the status of the controller rconn. */
1211 if (p->fail_open) {
1212 fail_open_run(p->fail_open);
1213 }
1214
1215 HMAP_FOR_EACH (ofservice, node, &p->services) {
1216 struct vconn *vconn;
1217 int retval;
1218
1219 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1220 if (!retval) {
1221 struct rconn *rconn;
1222 char *name;
1223
1224 rconn = rconn_create(ofservice->probe_interval, 0);
1225 name = ofconn_make_name(p, vconn_get_name(vconn));
1226 rconn_connect_unreliably(rconn, vconn, name);
1227 free(name);
1228
1229 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1230 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1231 ofservice->burst_limit);
1232 } else if (retval != EAGAIN) {
1233 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1234 }
1235 }
1236
1237 for (i = 0; i < p->n_snoops; i++) {
1238 struct vconn *vconn;
1239 int retval;
1240
1241 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1242 if (!retval) {
1243 add_snooper(p, vconn);
1244 } else if (retval != EAGAIN) {
1245 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1246 }
1247 }
1248
1249 if (time_msec() >= p->next_expiration) {
1250 int delay = ofproto_expire(p);
1251 p->next_expiration = time_msec() + delay;
1252 COVERAGE_INC(ofproto_expiration);
1253 }
1254
1255 if (p->netflow) {
1256 netflow_run(p->netflow);
1257 }
1258 if (p->sflow) {
1259 ofproto_sflow_run(p->sflow);
1260 }
1261
1262 return 0;
1263}
1264
1265int
1266ofproto_run2(struct ofproto *p, bool revalidate_all)
1267{
1268 /* Figure out what we need to revalidate now, if anything. */
1269 struct tag_set revalidate_set = p->revalidate_set;
1270 if (p->need_revalidate) {
1271 revalidate_all = true;
1272 }
1273
1274 /* Clear the revalidation flags. */
1275 tag_set_init(&p->revalidate_set);
1276 p->need_revalidate = false;
1277
1278 /* Now revalidate if there's anything to do. */
1279 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1280 struct facet *facet, *next;
1281
1282 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1283 if (revalidate_all
1284 || tag_set_intersects(&revalidate_set, facet->tags)) {
1285 facet_revalidate(p, facet);
1286 }
1287 }
1288 }
1289
1290 return 0;
1291}
1292
1293void
1294ofproto_wait(struct ofproto *p)
1295{
1296 struct ofservice *ofservice;
1297 struct ofconn *ofconn;
1298 size_t i;
1299
1300 dpif_recv_wait(p->dpif);
1301 dpif_port_poll_wait(p->dpif);
1302 netdev_monitor_poll_wait(p->netdev_monitor);
1303 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1304 ofconn_wait(ofconn);
1305 }
1306 if (p->in_band) {
1307 poll_timer_wait_until(p->next_in_band_update);
1308 in_band_wait(p->in_band);
1309 }
1310 if (p->fail_open) {
1311 fail_open_wait(p->fail_open);
1312 }
1313 if (p->sflow) {
1314 ofproto_sflow_wait(p->sflow);
1315 }
1316 if (!tag_set_is_empty(&p->revalidate_set)) {
1317 poll_immediate_wake();
1318 }
1319 if (p->need_revalidate) {
1320 /* Shouldn't happen, but if it does just go around again. */
1321 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1322 poll_immediate_wake();
1323 } else if (p->next_expiration != LLONG_MAX) {
1324 poll_timer_wait_until(p->next_expiration);
1325 }
1326 HMAP_FOR_EACH (ofservice, node, &p->services) {
1327 pvconn_wait(ofservice->pvconn);
1328 }
1329 for (i = 0; i < p->n_snoops; i++) {
1330 pvconn_wait(p->snoops[i]);
1331 }
1332}
1333
1334void
1335ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1336{
1337 tag_set_add(&ofproto->revalidate_set, tag);
1338}
1339
1340struct tag_set *
1341ofproto_get_revalidate_set(struct ofproto *ofproto)
1342{
1343 return &ofproto->revalidate_set;
1344}
1345
1346bool
1347ofproto_is_alive(const struct ofproto *p)
1348{
1349 return !hmap_is_empty(&p->controllers);
1350}
1351
1352void
1353ofproto_get_ofproto_controller_info(const struct ofproto * ofproto,
1354 struct shash *info)
1355{
1356 const struct ofconn *ofconn;
1357
1358 shash_init(info);
1359
1360 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
1361 const struct rconn *rconn = ofconn->rconn;
1362 const int last_error = rconn_get_last_error(rconn);
1363 struct ofproto_controller_info *cinfo = xmalloc(sizeof *cinfo);
1364
1365 shash_add(info, rconn_get_target(rconn), cinfo);
1366
1367 cinfo->is_connected = rconn_is_connected(rconn);
1368 cinfo->role = ofconn->role;
1369
1370 cinfo->pairs.n = 0;
1371
1372 if (last_error) {
1373 cinfo->pairs.keys[cinfo->pairs.n] = "last_error";
1374 cinfo->pairs.values[cinfo->pairs.n++] =
1375 xstrdup(ovs_retval_to_string(last_error));
1376 }
1377
1378 cinfo->pairs.keys[cinfo->pairs.n] = "state";
1379 cinfo->pairs.values[cinfo->pairs.n++] =
1380 xstrdup(rconn_get_state(rconn));
1381
1382 cinfo->pairs.keys[cinfo->pairs.n] = "time_in_state";
1383 cinfo->pairs.values[cinfo->pairs.n++] =
1384 xasprintf("%u", rconn_get_state_elapsed(rconn));
1385 }
1386}
1387
1388void
1389ofproto_free_ofproto_controller_info(struct shash *info)
1390{
1391 struct shash_node *node;
1392
1393 SHASH_FOR_EACH (node, info) {
1394 struct ofproto_controller_info *cinfo = node->data;
1395 while (cinfo->pairs.n) {
1396 free((char *) cinfo->pairs.values[--cinfo->pairs.n]);
1397 }
1398 free(cinfo);
1399 }
1400 shash_destroy(info);
1401}
1402
1403/* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1404 *
1405 * This is almost the same as calling dpif_port_del() directly on the
1406 * datapath, but it also makes 'ofproto' close its open netdev for the port
1407 * (if any). This makes it possible to create a new netdev of a different
1408 * type under the same name, which otherwise the netdev library would refuse
1409 * to do because of the conflict. (The netdev would eventually get closed on
1410 * the next trip through ofproto_run(), but this interface is more direct.)
1411 *
1412 * Returns 0 if successful, otherwise a positive errno. */
1413int
1414ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1415{
1416 struct ofport *ofport = get_port(ofproto, odp_port);
1417 const char *name = ofport ? ofport->opp.name : "<unknown>";
1418 int error;
1419
1420 error = dpif_port_del(ofproto->dpif, odp_port);
1421 if (error) {
1422 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1423 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1424 } else if (ofport) {
1425 /* 'name' is ofport->opp.name and update_port() is going to destroy
1426 * 'ofport'. Just in case update_port() refers to 'name' after it
1427 * destroys 'ofport', make a copy of it around the update_port()
1428 * call. */
1429 char *devname = xstrdup(name);
1430 update_port(ofproto, devname);
1431 free(devname);
1432 }
1433 return error;
1434}
1435
1436/* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1437 * true if 'odp_port' exists and should be included, false otherwise. */
1438bool
1439ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1440{
1441 struct ofport *ofport = get_port(ofproto, odp_port);
1442 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1443}
1444
1445int
1446ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1447 const union ofp_action *actions, size_t n_actions,
1448 const struct ofpbuf *packet)
1449{
1450 struct action_xlate_ctx ctx;
1451 struct ofpbuf *odp_actions;
1452
1453 action_xlate_ctx_init(&ctx, p, flow, packet);
1454 /* Always xlate packets originated in this function. */
1455 ctx.check_special = false;
1456 odp_actions = xlate_actions(&ctx, actions, n_actions);
1457
1458 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1459 * error code? */
1460 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, packet);
1461
1462 ofpbuf_delete(odp_actions);
1463
1464 return 0;
1465}
1466
1467/* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1468 * performs the 'n_actions' actions in 'actions'. The new flow will not
1469 * timeout.
1470 *
1471 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1472 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1473 * controllers; otherwise, it will be hidden.
1474 *
1475 * The caller retains ownership of 'cls_rule' and 'actions'. */
1476void
1477ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1478 const union ofp_action *actions, size_t n_actions)
1479{
1480 struct rule *rule;
1481 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1482 rule_insert(p, rule);
1483}
1484
1485void
1486ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1487{
1488 struct rule *rule;
1489
1490 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1491 target));
1492 if (rule) {
1493 rule_remove(ofproto, rule);
1494 }
1495}
1496
1497void
1498ofproto_flush_flows(struct ofproto *ofproto)
1499{
1500 struct facet *facet, *next_facet;
1501 struct rule *rule, *next_rule;
1502 struct cls_cursor cursor;
1503
1504 COVERAGE_INC(ofproto_flush);
1505
1506 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1507 /* Mark the facet as not installed so that facet_remove() doesn't
1508 * bother trying to uninstall it. There is no point in uninstalling it
1509 * individually since we are about to blow away all the facets with
1510 * dpif_flow_flush(). */
1511 facet->installed = false;
1512 facet_remove(ofproto, facet);
1513 }
1514
1515 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1516 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1517 rule_remove(ofproto, rule);
1518 }
1519
1520 dpif_flow_flush(ofproto->dpif);
1521 if (ofproto->in_band) {
1522 in_band_flushed(ofproto->in_band);
1523 }
1524 if (ofproto->fail_open) {
1525 fail_open_flushed(ofproto->fail_open);
1526 }
1527}
1528\f
1529static void
1530reinit_ports(struct ofproto *p)
1531{
1532 struct dpif_port_dump dump;
1533 struct shash_node *node;
1534 struct shash devnames;
1535 struct ofport *ofport;
1536 struct dpif_port dpif_port;
1537
1538 COVERAGE_INC(ofproto_reinit_ports);
1539
1540 shash_init(&devnames);
1541 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1542 shash_add_once (&devnames, ofport->opp.name, NULL);
1543 }
1544 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1545 shash_add_once (&devnames, dpif_port.name, NULL);
1546 }
1547
1548 SHASH_FOR_EACH (node, &devnames) {
1549 update_port(p, node->name);
1550 }
1551 shash_destroy(&devnames);
1552}
1553
1554static struct ofport *
1555make_ofport(const struct dpif_port *dpif_port)
1556{
1557 struct netdev_options netdev_options;
1558 enum netdev_flags flags;
1559 struct ofport *ofport;
1560 struct netdev *netdev;
1561 int error;
1562
1563 memset(&netdev_options, 0, sizeof netdev_options);
1564 netdev_options.name = dpif_port->name;
1565 netdev_options.type = dpif_port->type;
1566 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1567
1568 error = netdev_open(&netdev_options, &netdev);
1569 if (error) {
1570 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1571 "cannot be opened (%s)",
1572 dpif_port->name, dpif_port->port_no,
1573 dpif_port->name, strerror(error));
1574 return NULL;
1575 }
1576
1577 ofport = xzalloc(sizeof *ofport);
1578 ofport->netdev = netdev;
1579 ofport->odp_port = dpif_port->port_no;
1580 ofport->opp.port_no = odp_port_to_ofp_port(dpif_port->port_no);
1581 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1582 ovs_strlcpy(ofport->opp.name, dpif_port->name, sizeof ofport->opp.name);
1583
1584 netdev_get_flags(netdev, &flags);
1585 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1586
1587 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1588
1589 netdev_get_features(netdev,
1590 &ofport->opp.curr, &ofport->opp.advertised,
1591 &ofport->opp.supported, &ofport->opp.peer);
1592 return ofport;
1593}
1594
1595static bool
1596ofport_conflicts(const struct ofproto *p, const struct dpif_port *dpif_port)
1597{
1598 if (get_port(p, dpif_port->port_no)) {
1599 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1600 dpif_port->port_no);
1601 return true;
1602 } else if (shash_find(&p->port_by_name, dpif_port->name)) {
1603 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1604 dpif_port->name);
1605 return true;
1606 } else {
1607 return false;
1608 }
1609}
1610
1611static int
1612ofport_equal(const struct ofport *a_, const struct ofport *b_)
1613{
1614 const struct ofp_phy_port *a = &a_->opp;
1615 const struct ofp_phy_port *b = &b_->opp;
1616
1617 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1618 return (a->port_no == b->port_no
1619 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1620 && !strcmp(a->name, b->name)
1621 && a->state == b->state
1622 && a->config == b->config
1623 && a->curr == b->curr
1624 && a->advertised == b->advertised
1625 && a->supported == b->supported
1626 && a->peer == b->peer);
1627}
1628
1629static void
1630send_port_status(struct ofproto *p, const struct ofport *ofport,
1631 uint8_t reason)
1632{
1633 /* XXX Should limit the number of queued port status change messages. */
1634 struct ofconn *ofconn;
1635 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1636 struct ofp_port_status *ops;
1637 struct ofpbuf *b;
1638
1639 /* Primary controllers, even slaves, should always get port status
1640 updates. Otherwise obey ofconn_receives_async_msgs(). */
1641 if (ofconn->type != OFCONN_PRIMARY
1642 && !ofconn_receives_async_msgs(ofconn)) {
1643 continue;
1644 }
1645
1646 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1647 ops->reason = reason;
1648 ops->desc = ofport->opp;
1649 hton_ofp_phy_port(&ops->desc);
1650 queue_tx(b, ofconn, NULL);
1651 }
1652}
1653
1654static void
1655ofport_install(struct ofproto *p, struct ofport *ofport)
1656{
1657 const char *netdev_name = ofport->opp.name;
1658
1659 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1660 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1661 shash_add(&p->port_by_name, netdev_name, ofport);
1662 if (p->sflow) {
1663 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1664 }
1665}
1666
1667static void
1668ofport_remove(struct ofproto *p, struct ofport *ofport)
1669{
1670 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1671 hmap_remove(&p->ports, &ofport->hmap_node);
1672 shash_delete(&p->port_by_name,
1673 shash_find(&p->port_by_name, ofport->opp.name));
1674 if (p->sflow) {
1675 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1676 }
1677}
1678
1679static void
1680ofport_free(struct ofport *ofport)
1681{
1682 if (ofport) {
1683 netdev_close(ofport->netdev);
1684 free(ofport);
1685 }
1686}
1687
1688static struct ofport *
1689get_port(const struct ofproto *ofproto, uint16_t odp_port)
1690{
1691 struct ofport *port;
1692
1693 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1694 hash_int(odp_port, 0), &ofproto->ports) {
1695 if (port->odp_port == odp_port) {
1696 return port;
1697 }
1698 }
1699 return NULL;
1700}
1701
1702static void
1703update_port(struct ofproto *p, const char *devname)
1704{
1705 struct dpif_port dpif_port;
1706 struct ofport *old_ofport;
1707 struct ofport *new_ofport;
1708 int error;
1709
1710 COVERAGE_INC(ofproto_update_port);
1711
1712 /* Query the datapath for port information. */
1713 error = dpif_port_query_by_name(p->dpif, devname, &dpif_port);
1714
1715 /* Find the old ofport. */
1716 old_ofport = shash_find_data(&p->port_by_name, devname);
1717 if (!error) {
1718 if (!old_ofport) {
1719 /* There's no port named 'devname' but there might be a port with
1720 * the same port number. This could happen if a port is deleted
1721 * and then a new one added in its place very quickly, or if a port
1722 * is renamed. In the former case we want to send an OFPPR_DELETE
1723 * and an OFPPR_ADD, and in the latter case we want to send a
1724 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1725 * the old port's ifindex against the new port, or perhaps less
1726 * reliably but more portably by comparing the old port's MAC
1727 * against the new port's MAC. However, this code isn't that smart
1728 * and always sends an OFPPR_MODIFY (XXX). */
1729 old_ofport = get_port(p, dpif_port.port_no);
1730 }
1731 } else if (error != ENOENT && error != ENODEV) {
1732 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1733 "%s", strerror(error));
1734 goto exit;
1735 }
1736
1737 /* Create a new ofport. */
1738 new_ofport = !error ? make_ofport(&dpif_port) : NULL;
1739
1740 /* Eliminate a few pathological cases. */
1741 if (!old_ofport && !new_ofport) {
1742 goto exit;
1743 } else if (old_ofport && new_ofport) {
1744 /* Most of the 'config' bits are OpenFlow soft state, but
1745 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1746 * OpenFlow bits from old_ofport. (make_ofport() only sets
1747 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1748 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1749
1750 if (ofport_equal(old_ofport, new_ofport)) {
1751 /* False alarm--no change. */
1752 ofport_free(new_ofport);
1753 goto exit;
1754 }
1755 }
1756
1757 /* Now deal with the normal cases. */
1758 if (old_ofport) {
1759 ofport_remove(p, old_ofport);
1760 }
1761 if (new_ofport) {
1762 ofport_install(p, new_ofport);
1763 }
1764 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1765 (!old_ofport ? OFPPR_ADD
1766 : !new_ofport ? OFPPR_DELETE
1767 : OFPPR_MODIFY));
1768 ofport_free(old_ofport);
1769
1770exit:
1771 dpif_port_destroy(&dpif_port);
1772}
1773
1774static int
1775init_ports(struct ofproto *p)
1776{
1777 struct dpif_port_dump dump;
1778 struct dpif_port dpif_port;
1779
1780 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1781 if (!ofport_conflicts(p, &dpif_port)) {
1782 struct ofport *ofport = make_ofport(&dpif_port);
1783 if (ofport) {
1784 ofport_install(p, ofport);
1785 }
1786 }
1787 }
1788
1789 return 0;
1790}
1791\f
1792static struct ofconn *
1793ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1794{
1795 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1796 ofconn->ofproto = p;
1797 list_push_back(&p->all_conns, &ofconn->node);
1798 ofconn->rconn = rconn;
1799 ofconn->type = type;
1800 ofconn->flow_format = NXFF_OPENFLOW10;
1801 ofconn->role = NX_ROLE_OTHER;
1802 ofconn->packet_in_counter = rconn_packet_counter_create ();
1803 ofconn->pktbuf = NULL;
1804 ofconn->miss_send_len = 0;
1805 ofconn->reply_counter = rconn_packet_counter_create ();
1806 return ofconn;
1807}
1808
1809static void
1810ofconn_destroy(struct ofconn *ofconn)
1811{
1812 if (ofconn->type == OFCONN_PRIMARY) {
1813 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1814 }
1815 discovery_destroy(ofconn->discovery);
1816
1817 list_remove(&ofconn->node);
1818 switch_status_unregister(ofconn->ss);
1819 rconn_destroy(ofconn->rconn);
1820 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1821 rconn_packet_counter_destroy(ofconn->reply_counter);
1822 pktbuf_destroy(ofconn->pktbuf);
1823 free(ofconn);
1824}
1825
1826static void
1827ofconn_run(struct ofconn *ofconn)
1828{
1829 struct ofproto *p = ofconn->ofproto;
1830 int iteration;
1831 size_t i;
1832
1833 if (ofconn->discovery) {
1834 char *controller_name;
1835 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1836 discovery_question_connectivity(ofconn->discovery);
1837 }
1838 if (discovery_run(ofconn->discovery, &controller_name)) {
1839 if (controller_name) {
1840 char *ofconn_name = ofconn_make_name(p, controller_name);
1841 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1842 free(ofconn_name);
1843 } else {
1844 rconn_disconnect(ofconn->rconn);
1845 }
1846 }
1847 }
1848
1849 for (i = 0; i < N_SCHEDULERS; i++) {
1850 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1851 }
1852
1853 rconn_run(ofconn->rconn);
1854
1855 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1856 /* Limit the number of iterations to prevent other tasks from
1857 * starving. */
1858 for (iteration = 0; iteration < 50; iteration++) {
1859 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1860 if (!of_msg) {
1861 break;
1862 }
1863 if (p->fail_open) {
1864 fail_open_maybe_recover(p->fail_open);
1865 }
1866 handle_openflow(ofconn, of_msg);
1867 ofpbuf_delete(of_msg);
1868 }
1869 }
1870
1871 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1872 ofconn_destroy(ofconn);
1873 }
1874}
1875
1876static void
1877ofconn_wait(struct ofconn *ofconn)
1878{
1879 int i;
1880
1881 if (ofconn->discovery) {
1882 discovery_wait(ofconn->discovery);
1883 }
1884 for (i = 0; i < N_SCHEDULERS; i++) {
1885 pinsched_wait(ofconn->schedulers[i]);
1886 }
1887 rconn_run_wait(ofconn->rconn);
1888 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1889 rconn_recv_wait(ofconn->rconn);
1890 } else {
1891 COVERAGE_INC(ofproto_ofconn_stuck);
1892 }
1893}
1894
1895/* Returns true if 'ofconn' should receive asynchronous messages. */
1896static bool
1897ofconn_receives_async_msgs(const struct ofconn *ofconn)
1898{
1899 if (ofconn->type == OFCONN_PRIMARY) {
1900 /* Primary controllers always get asynchronous messages unless they
1901 * have configured themselves as "slaves". */
1902 return ofconn->role != NX_ROLE_SLAVE;
1903 } else {
1904 /* Service connections don't get asynchronous messages unless they have
1905 * explicitly asked for them by setting a nonzero miss send length. */
1906 return ofconn->miss_send_len > 0;
1907 }
1908}
1909
1910/* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1911 * and 'target', suitable for use in log messages for identifying the
1912 * connection.
1913 *
1914 * The name is dynamically allocated. The caller should free it (with free())
1915 * when it is no longer needed. */
1916static char *
1917ofconn_make_name(const struct ofproto *ofproto, const char *target)
1918{
1919 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1920}
1921
1922static void
1923ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1924{
1925 int i;
1926
1927 for (i = 0; i < N_SCHEDULERS; i++) {
1928 struct pinsched **s = &ofconn->schedulers[i];
1929
1930 if (rate > 0) {
1931 if (!*s) {
1932 *s = pinsched_create(rate, burst,
1933 ofconn->ofproto->switch_status);
1934 } else {
1935 pinsched_set_limits(*s, rate, burst);
1936 }
1937 } else {
1938 pinsched_destroy(*s);
1939 *s = NULL;
1940 }
1941 }
1942}
1943\f
1944static void
1945ofservice_reconfigure(struct ofservice *ofservice,
1946 const struct ofproto_controller *c)
1947{
1948 ofservice->probe_interval = c->probe_interval;
1949 ofservice->rate_limit = c->rate_limit;
1950 ofservice->burst_limit = c->burst_limit;
1951}
1952
1953/* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1954 * positive errno value. */
1955static int
1956ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1957{
1958 struct ofservice *ofservice;
1959 struct pvconn *pvconn;
1960 int error;
1961
1962 error = pvconn_open(c->target, &pvconn);
1963 if (error) {
1964 return error;
1965 }
1966
1967 ofservice = xzalloc(sizeof *ofservice);
1968 hmap_insert(&ofproto->services, &ofservice->node,
1969 hash_string(c->target, 0));
1970 ofservice->pvconn = pvconn;
1971
1972 ofservice_reconfigure(ofservice, c);
1973
1974 return 0;
1975}
1976
1977static void
1978ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1979{
1980 hmap_remove(&ofproto->services, &ofservice->node);
1981 pvconn_close(ofservice->pvconn);
1982 free(ofservice);
1983}
1984
1985/* Finds and returns the ofservice within 'ofproto' that has the given
1986 * 'target', or a null pointer if none exists. */
1987static struct ofservice *
1988ofservice_lookup(struct ofproto *ofproto, const char *target)
1989{
1990 struct ofservice *ofservice;
1991
1992 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1993 &ofproto->services) {
1994 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1995 return ofservice;
1996 }
1997 }
1998 return NULL;
1999}
2000\f
2001/* Returns true if 'rule' should be hidden from the controller.
2002 *
2003 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
2004 * (e.g. by in-band control) and are intentionally hidden from the
2005 * controller. */
2006static bool
2007rule_is_hidden(const struct rule *rule)
2008{
2009 return rule->cr.priority > UINT16_MAX;
2010}
2011
2012/* Creates and returns a new rule initialized as specified.
2013 *
2014 * The caller is responsible for inserting the rule into the classifier (with
2015 * rule_insert()). */
2016static struct rule *
2017rule_create(const struct cls_rule *cls_rule,
2018 const union ofp_action *actions, size_t n_actions,
2019 uint16_t idle_timeout, uint16_t hard_timeout,
2020 ovs_be64 flow_cookie, bool send_flow_removed)
2021{
2022 struct rule *rule = xzalloc(sizeof *rule);
2023 rule->cr = *cls_rule;
2024 rule->idle_timeout = idle_timeout;
2025 rule->hard_timeout = hard_timeout;
2026 rule->flow_cookie = flow_cookie;
2027 rule->used = rule->created = time_msec();
2028 rule->send_flow_removed = send_flow_removed;
2029 list_init(&rule->facets);
2030 if (n_actions > 0) {
2031 rule->n_actions = n_actions;
2032 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
2033 }
2034
2035 return rule;
2036}
2037
2038static struct rule *
2039rule_from_cls_rule(const struct cls_rule *cls_rule)
2040{
2041 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
2042}
2043
2044static void
2045rule_free(struct rule *rule)
2046{
2047 free(rule->actions);
2048 free(rule);
2049}
2050
2051/* Destroys 'rule' and iterates through all of its facets and revalidates them,
2052 * destroying any that no longer has a rule (which is probably all of them).
2053 *
2054 * The caller must have already removed 'rule' from the classifier. */
2055static void
2056rule_destroy(struct ofproto *ofproto, struct rule *rule)
2057{
2058 struct facet *facet, *next_facet;
2059 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2060 facet_revalidate(ofproto, facet);
2061 }
2062 rule_free(rule);
2063}
2064
2065/* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2066 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
2067 * count). */
2068static bool
2069rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
2070{
2071 const union ofp_action *oa;
2072 struct actions_iterator i;
2073
2074 if (out_port == htons(OFPP_NONE)) {
2075 return true;
2076 }
2077 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
2078 oa = actions_next(&i)) {
2079 if (action_outputs_to_port(oa, out_port)) {
2080 return true;
2081 }
2082 }
2083 return false;
2084}
2085
2086/* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
2087 * 'packet', which arrived on 'in_port'.
2088 *
2089 * Takes ownership of 'packet'. */
2090static bool
2091execute_odp_actions(struct ofproto *ofproto, const struct flow *flow,
2092 const struct nlattr *odp_actions, size_t actions_len,
2093 struct ofpbuf *packet)
2094{
2095 if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t))
2096 && odp_actions->nla_type == ODP_ACTION_ATTR_CONTROLLER) {
2097 /* As an optimization, avoid a round-trip from userspace to kernel to
2098 * userspace. This also avoids possibly filling up kernel packet
2099 * buffers along the way. */
2100 struct dpif_upcall upcall;
2101
2102 upcall.type = DPIF_UC_ACTION;
2103 upcall.packet = packet;
2104 upcall.key = NULL;
2105 upcall.key_len = 0;
2106 upcall.userdata = nl_attr_get_u64(odp_actions);
2107 upcall.sample_pool = 0;
2108 upcall.actions = NULL;
2109 upcall.actions_len = 0;
2110
2111 send_packet_in(ofproto, &upcall, flow, false);
2112
2113 return true;
2114 } else {
2115 int error;
2116
2117 error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet);
2118 ofpbuf_delete(packet);
2119 return !error;
2120 }
2121}
2122
2123/* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2124 * statistics appropriately. 'packet' must have at least sizeof(struct
2125 * ofp_packet_in) bytes of headroom.
2126 *
2127 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2128 * applying flow_extract() to 'packet' would yield the same flow as
2129 * 'facet->flow'.
2130 *
2131 * 'facet' must have accurately composed ODP actions; that is, it must not be
2132 * in need of revalidation.
2133 *
2134 * Takes ownership of 'packet'. */
2135static void
2136facet_execute(struct ofproto *ofproto, struct facet *facet,
2137 struct ofpbuf *packet)
2138{
2139 struct dpif_flow_stats stats;
2140
2141 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2142
2143 flow_extract_stats(&facet->flow, packet, &stats);
2144 if (execute_odp_actions(ofproto, &facet->flow,
2145 facet->actions, facet->actions_len, packet)) {
2146 facet_update_stats(ofproto, facet, &stats);
2147 facet->used = time_msec();
2148 netflow_flow_update_time(ofproto->netflow,
2149 &facet->nf_flow, facet->used);
2150 }
2151}
2152
2153/* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2154 * statistics (or the statistics for one of its facets) appropriately.
2155 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2156 *
2157 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2158 * with statistics for 'packet' either way.
2159 *
2160 * Takes ownership of 'packet'. */
2161static void
2162rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2163 struct ofpbuf *packet)
2164{
2165 struct action_xlate_ctx ctx;
2166 struct ofpbuf *odp_actions;
2167 struct facet *facet;
2168 struct flow flow;
2169 size_t size;
2170
2171 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2172
2173 flow_extract(packet, 0, in_port, &flow);
2174
2175 /* First look for a related facet. If we find one, account it to that. */
2176 facet = facet_lookup_valid(ofproto, &flow);
2177 if (facet && facet->rule == rule) {
2178 facet_execute(ofproto, facet, packet);
2179 return;
2180 }
2181
2182 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2183 * create a new facet for it and use that. */
2184 if (rule_lookup(ofproto, &flow) == rule) {
2185 facet = facet_create(ofproto, rule, &flow, packet);
2186 facet_execute(ofproto, facet, packet);
2187 facet_install(ofproto, facet, true);
2188 return;
2189 }
2190
2191 /* We can't account anything to a facet. If we were to try, then that
2192 * facet would have a non-matching rule, busting our invariants. */
2193 action_xlate_ctx_init(&ctx, ofproto, &flow, packet);
2194 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2195 size = packet->size;
2196 if (execute_odp_actions(ofproto, &flow, odp_actions->data,
2197 odp_actions->size, packet)) {
2198 rule->used = time_msec();
2199 rule->packet_count++;
2200 rule->byte_count += size;
2201 }
2202 ofpbuf_delete(odp_actions);
2203}
2204
2205/* Inserts 'rule' into 'p''s flow table. */
2206static void
2207rule_insert(struct ofproto *p, struct rule *rule)
2208{
2209 struct rule *displaced_rule;
2210
2211 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2212 if (displaced_rule) {
2213 rule_destroy(p, displaced_rule);
2214 }
2215 p->need_revalidate = true;
2216}
2217
2218/* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2219 * 'flow' and an example 'packet' within that flow.
2220 *
2221 * The caller must already have determined that no facet with an identical
2222 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2223 * 'ofproto''s classifier table. */
2224static struct facet *
2225facet_create(struct ofproto *ofproto, struct rule *rule,
2226 const struct flow *flow, const struct ofpbuf *packet)
2227{
2228 struct facet *facet;
2229
2230 facet = xzalloc(sizeof *facet);
2231 facet->used = time_msec();
2232 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2233 list_push_back(&rule->facets, &facet->list_node);
2234 facet->rule = rule;
2235 facet->flow = *flow;
2236 netflow_flow_init(&facet->nf_flow);
2237 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2238
2239 facet_make_actions(ofproto, facet, packet);
2240
2241 return facet;
2242}
2243
2244static void
2245facet_free(struct facet *facet)
2246{
2247 free(facet->actions);
2248 free(facet);
2249}
2250
2251/* Remove 'rule' from 'ofproto' and free up the associated memory:
2252 *
2253 * - Removes 'rule' from the classifier.
2254 *
2255 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2256 * destroys them), via rule_destroy().
2257 */
2258static void
2259rule_remove(struct ofproto *ofproto, struct rule *rule)
2260{
2261 COVERAGE_INC(ofproto_del_rule);
2262 ofproto->need_revalidate = true;
2263 classifier_remove(&ofproto->cls, &rule->cr);
2264 rule_destroy(ofproto, rule);
2265}
2266
2267/* Remove 'facet' from 'ofproto' and free up the associated memory:
2268 *
2269 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2270 * rule's statistics, via facet_uninstall().
2271 *
2272 * - Removes 'facet' from its rule and from ofproto->facets.
2273 */
2274static void
2275facet_remove(struct ofproto *ofproto, struct facet *facet)
2276{
2277 facet_uninstall(ofproto, facet);
2278 facet_flush_stats(ofproto, facet);
2279 hmap_remove(&ofproto->facets, &facet->hmap_node);
2280 list_remove(&facet->list_node);
2281 facet_free(facet);
2282}
2283
2284/* Composes the ODP actions for 'facet' based on its rule's actions. */
2285static void
2286facet_make_actions(struct ofproto *p, struct facet *facet,
2287 const struct ofpbuf *packet)
2288{
2289 const struct rule *rule = facet->rule;
2290 struct ofpbuf *odp_actions;
2291 struct action_xlate_ctx ctx;
2292
2293 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2294 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2295 facet->tags = ctx.tags;
2296 facet->may_install = ctx.may_set_up_flow;
2297 facet->nf_flow.output_iface = ctx.nf_output_iface;
2298
2299 if (facet->actions_len != odp_actions->size
2300 || memcmp(facet->actions, odp_actions->data, odp_actions->size)) {
2301 free(facet->actions);
2302 facet->actions_len = odp_actions->size;
2303 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2304 }
2305
2306 ofpbuf_delete(odp_actions);
2307}
2308
2309static int
2310facet_put__(struct ofproto *ofproto, struct facet *facet,
2311 const struct nlattr *actions, size_t actions_len,
2312 struct dpif_flow_stats *stats)
2313{
2314 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2315 enum dpif_flow_put_flags flags;
2316 struct ofpbuf key;
2317
2318 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
2319 if (stats) {
2320 flags |= DPIF_FP_ZERO_STATS;
2321 }
2322
2323 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2324 odp_flow_key_from_flow(&key, &facet->flow);
2325 assert(key.base == keybuf);
2326
2327 return dpif_flow_put(ofproto->dpif, flags, key.data, key.size,
2328 actions, actions_len, stats);
2329}
2330
2331/* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2332 * 'zero_stats' is true, clears any existing statistics from the datapath for
2333 * 'facet'. */
2334static void
2335facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2336{
2337 struct dpif_flow_stats stats;
2338
2339 if (facet->may_install
2340 && !facet_put__(p, facet, facet->actions, facet->actions_len,
2341 zero_stats ? &stats : NULL)) {
2342 facet->installed = true;
2343 }
2344}
2345
2346/* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2347 * to the accounting hook function in the ofhooks structure. */
2348static void
2349facet_account(struct ofproto *ofproto,
2350 struct facet *facet, uint64_t extra_bytes)
2351{
2352 uint64_t total_bytes = facet->byte_count + extra_bytes;
2353
2354 if (ofproto->ofhooks->account_flow_cb
2355 && total_bytes > facet->accounted_bytes)
2356 {
2357 ofproto->ofhooks->account_flow_cb(
2358 &facet->flow, facet->tags, facet->actions, facet->actions_len,
2359 total_bytes - facet->accounted_bytes, ofproto->aux);
2360 facet->accounted_bytes = total_bytes;
2361 }
2362}
2363
2364/* If 'rule' is installed in the datapath, uninstalls it. */
2365static void
2366facet_uninstall(struct ofproto *p, struct facet *facet)
2367{
2368 if (facet->installed) {
2369 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2370 struct dpif_flow_stats stats;
2371 struct ofpbuf key;
2372
2373 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2374 odp_flow_key_from_flow(&key, &facet->flow);
2375 assert(key.base == keybuf);
2376
2377 if (!dpif_flow_del(p->dpif, key.data, key.size, &stats)) {
2378 facet_update_stats(p, facet, &stats);
2379 }
2380 facet->installed = false;
2381 }
2382}
2383
2384/* Returns true if the only action for 'facet' is to send to the controller.
2385 * (We don't report NetFlow expiration messages for such facets because they
2386 * are just part of the control logic for the network, not real traffic). */
2387static bool
2388facet_is_controller_flow(struct facet *facet)
2389{
2390 return (facet
2391 && facet->rule->n_actions == 1
2392 && action_outputs_to_port(&facet->rule->actions[0],
2393 htons(OFPP_CONTROLLER)));
2394}
2395
2396/* Folds all of 'facet''s statistics into its rule. Also updates the
2397 * accounting ofhook and emits a NetFlow expiration if appropriate. */
2398static void
2399facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2400{
2401 facet_account(ofproto, facet, 0);
2402
2403 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2404 struct ofexpired expired;
2405 expired.flow = facet->flow;
2406 expired.packet_count = facet->packet_count;
2407 expired.byte_count = facet->byte_count;
2408 expired.used = facet->used;
2409 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2410 }
2411
2412 facet->rule->packet_count += facet->packet_count;
2413 facet->rule->byte_count += facet->byte_count;
2414
2415 /* Reset counters to prevent double counting if 'facet' ever gets
2416 * reinstalled. */
2417 facet->packet_count = 0;
2418 facet->byte_count = 0;
2419 facet->accounted_bytes = 0;
2420
2421 netflow_flow_clear(&facet->nf_flow);
2422}
2423
2424/* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2425 * Returns it if found, otherwise a null pointer.
2426 *
2427 * The returned facet might need revalidation; use facet_lookup_valid()
2428 * instead if that is important. */
2429static struct facet *
2430facet_find(struct ofproto *ofproto, const struct flow *flow)
2431{
2432 struct facet *facet;
2433
2434 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2435 &ofproto->facets) {
2436 if (flow_equal(flow, &facet->flow)) {
2437 return facet;
2438 }
2439 }
2440
2441 return NULL;
2442}
2443
2444/* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2445 * Returns it if found, otherwise a null pointer.
2446 *
2447 * The returned facet is guaranteed to be valid. */
2448static struct facet *
2449facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2450{
2451 struct facet *facet = facet_find(ofproto, flow);
2452
2453 /* The facet we found might not be valid, since we could be in need of
2454 * revalidation. If it is not valid, don't return it. */
2455 if (facet
2456 && ofproto->need_revalidate
2457 && !facet_revalidate(ofproto, facet)) {
2458 COVERAGE_INC(ofproto_invalidated);
2459 return NULL;
2460 }
2461
2462 return facet;
2463}
2464
2465/* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2466 *
2467 * - If the rule found is different from 'facet''s current rule, moves
2468 * 'facet' to the new rule and recompiles its actions.
2469 *
2470 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2471 * where it is and recompiles its actions anyway.
2472 *
2473 * - If there is none, destroys 'facet'.
2474 *
2475 * Returns true if 'facet' still exists, false if it has been destroyed. */
2476static bool
2477facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2478{
2479 struct action_xlate_ctx ctx;
2480 struct ofpbuf *odp_actions;
2481 struct rule *new_rule;
2482 bool actions_changed;
2483
2484 COVERAGE_INC(facet_revalidate);
2485
2486 /* Determine the new rule. */
2487 new_rule = rule_lookup(ofproto, &facet->flow);
2488 if (!new_rule) {
2489 /* No new rule, so delete the facet. */
2490 facet_remove(ofproto, facet);
2491 return false;
2492 }
2493
2494 /* Calculate new ODP actions.
2495 *
2496 * We do not modify any 'facet' state yet, because we might need to, e.g.,
2497 * emit a NetFlow expiration and, if so, we need to have the old state
2498 * around to properly compose it. */
2499 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2500 odp_actions = xlate_actions(&ctx, new_rule->actions, new_rule->n_actions);
2501 actions_changed = (facet->actions_len != odp_actions->size
2502 || memcmp(facet->actions, odp_actions->data,
2503 facet->actions_len));
2504
2505 /* If the ODP actions changed or the installability changed, then we need
2506 * to talk to the datapath. */
2507 if (actions_changed || ctx.may_set_up_flow != facet->installed) {
2508 if (ctx.may_set_up_flow) {
2509 struct dpif_flow_stats stats;
2510
2511 facet_put__(ofproto, facet,
2512 odp_actions->data, odp_actions->size, &stats);
2513 facet_update_stats(ofproto, facet, &stats);
2514 } else {
2515 facet_uninstall(ofproto, facet);
2516 }
2517
2518 /* The datapath flow is gone or has zeroed stats, so push stats out of
2519 * 'facet' into 'rule'. */
2520 facet_flush_stats(ofproto, facet);
2521 }
2522
2523 /* Update 'facet' now that we've taken care of all the old state. */
2524 facet->tags = ctx.tags;
2525 facet->nf_flow.output_iface = ctx.nf_output_iface;
2526 facet->may_install = ctx.may_set_up_flow;
2527 if (actions_changed) {
2528 free(facet->actions);
2529 facet->actions_len = odp_actions->size;
2530 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2531 }
2532 if (facet->rule != new_rule) {
2533 COVERAGE_INC(facet_changed_rule);
2534 list_remove(&facet->list_node);
2535 list_push_back(&new_rule->facets, &facet->list_node);
2536 facet->rule = new_rule;
2537 facet->used = new_rule->created;
2538 }
2539
2540 ofpbuf_delete(odp_actions);
2541
2542 return true;
2543}
2544\f
2545static void
2546queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2547 struct rconn_packet_counter *counter)
2548{
2549 update_openflow_length(msg);
2550 if (rconn_send(ofconn->rconn, msg, counter)) {
2551 ofpbuf_delete(msg);
2552 }
2553}
2554
2555static void
2556send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2557 int error)
2558{
2559 struct ofpbuf *buf = ofputil_encode_error_msg(error, oh);
2560 if (buf) {
2561 COVERAGE_INC(ofproto_error);
2562 queue_tx(buf, ofconn, ofconn->reply_counter);
2563 }
2564}
2565
2566static void
2567hton_ofp_phy_port(struct ofp_phy_port *opp)
2568{
2569 opp->port_no = htons(opp->port_no);
2570 opp->config = htonl(opp->config);
2571 opp->state = htonl(opp->state);
2572 opp->curr = htonl(opp->curr);
2573 opp->advertised = htonl(opp->advertised);
2574 opp->supported = htonl(opp->supported);
2575 opp->peer = htonl(opp->peer);
2576}
2577
2578static int
2579handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2580{
2581 queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter);
2582 return 0;
2583}
2584
2585static int
2586handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2587{
2588 struct ofp_switch_features *osf;
2589 struct ofpbuf *buf;
2590 struct ofport *port;
2591
2592 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2593 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2594 osf->n_buffers = htonl(pktbuf_capacity());
2595 osf->n_tables = 2;
2596 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2597 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2598 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2599 (1u << OFPAT_SET_VLAN_VID) |
2600 (1u << OFPAT_SET_VLAN_PCP) |
2601 (1u << OFPAT_STRIP_VLAN) |
2602 (1u << OFPAT_SET_DL_SRC) |
2603 (1u << OFPAT_SET_DL_DST) |
2604 (1u << OFPAT_SET_NW_SRC) |
2605 (1u << OFPAT_SET_NW_DST) |
2606 (1u << OFPAT_SET_NW_TOS) |
2607 (1u << OFPAT_SET_TP_SRC) |
2608 (1u << OFPAT_SET_TP_DST) |
2609 (1u << OFPAT_ENQUEUE));
2610
2611 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2612 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2613 }
2614
2615 queue_tx(buf, ofconn, ofconn->reply_counter);
2616 return 0;
2617}
2618
2619static int
2620handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2621{
2622 struct ofpbuf *buf;
2623 struct ofp_switch_config *osc;
2624 uint16_t flags;
2625 bool drop_frags;
2626
2627 /* Figure out flags. */
2628 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2629 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2630
2631 /* Send reply. */
2632 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2633 osc->flags = htons(flags);
2634 osc->miss_send_len = htons(ofconn->miss_send_len);
2635 queue_tx(buf, ofconn, ofconn->reply_counter);
2636
2637 return 0;
2638}
2639
2640static int
2641handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc)
2642{
2643 uint16_t flags = ntohs(osc->flags);
2644
2645 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2646 switch (flags & OFPC_FRAG_MASK) {
2647 case OFPC_FRAG_NORMAL:
2648 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2649 break;
2650 case OFPC_FRAG_DROP:
2651 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2652 break;
2653 default:
2654 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2655 osc->flags);
2656 break;
2657 }
2658 }
2659
2660 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2661
2662 return 0;
2663}
2664
2665/* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2666 * flow translation. */
2667#define MAX_RESUBMIT_RECURSION 16
2668
2669static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2670 struct action_xlate_ctx *ctx);
2671
2672static void
2673add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2674{
2675 const struct ofport *ofport = get_port(ctx->ofproto, port);
2676
2677 if (ofport) {
2678 if (ofport->opp.config & OFPPC_NO_FWD) {
2679 /* Forwarding disabled on port. */
2680 return;
2681 }
2682 } else {
2683 /*
2684 * We don't have an ofport record for this port, but it doesn't hurt to
2685 * allow forwarding to it anyhow. Maybe such a port will appear later
2686 * and we're pre-populating the flow table.
2687 */
2688 }
2689
2690 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, port);
2691 ctx->nf_output_iface = port;
2692}
2693
2694static struct rule *
2695rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2696{
2697 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2698}
2699
2700static void
2701xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2702{
2703 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2704 uint16_t old_in_port;
2705 struct rule *rule;
2706
2707 /* Look up a flow with 'in_port' as the input port. Then restore the
2708 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2709 * have surprising behavior). */
2710 old_in_port = ctx->flow.in_port;
2711 ctx->flow.in_port = in_port;
2712 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2713 ctx->flow.in_port = old_in_port;
2714
2715 if (ctx->resubmit_hook) {
2716 ctx->resubmit_hook(ctx, rule);
2717 }
2718
2719 if (rule) {
2720 ctx->recurse++;
2721 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2722 ctx->recurse--;
2723 }
2724 } else {
2725 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2726
2727 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2728 MAX_RESUBMIT_RECURSION);
2729 }
2730}
2731
2732static void
2733flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2734 uint16_t *nf_output_iface, struct ofpbuf *odp_actions)
2735{
2736 struct ofport *ofport;
2737
2738 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2739 uint16_t odp_port = ofport->odp_port;
2740 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2741 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port);
2742 }
2743 }
2744 *nf_output_iface = NF_OUT_FLOOD;
2745}
2746
2747static void
2748xlate_output_action__(struct action_xlate_ctx *ctx,
2749 uint16_t port, uint16_t max_len)
2750{
2751 uint16_t odp_port;
2752 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2753
2754 ctx->nf_output_iface = NF_OUT_DROP;
2755
2756 switch (port) {
2757 case OFPP_IN_PORT:
2758 add_output_action(ctx, ctx->flow.in_port);
2759 break;
2760 case OFPP_TABLE:
2761 xlate_table_action(ctx, ctx->flow.in_port);
2762 break;
2763 case OFPP_NORMAL:
2764 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2765 ctx->odp_actions, &ctx->tags,
2766 &ctx->nf_output_iface,
2767 ctx->ofproto->aux)) {
2768 COVERAGE_INC(ofproto_uninstallable);
2769 ctx->may_set_up_flow = false;
2770 }
2771 break;
2772 case OFPP_FLOOD:
2773 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2774 &ctx->nf_output_iface, ctx->odp_actions);
2775 break;
2776 case OFPP_ALL:
2777 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2778 &ctx->nf_output_iface, ctx->odp_actions);
2779 break;
2780 case OFPP_CONTROLLER:
2781 nl_msg_put_u64(ctx->odp_actions, ODP_ACTION_ATTR_CONTROLLER, max_len);
2782 break;
2783 case OFPP_LOCAL:
2784 add_output_action(ctx, ODPP_LOCAL);
2785 break;
2786 default:
2787 odp_port = ofp_port_to_odp_port(port);
2788 if (odp_port != ctx->flow.in_port) {
2789 add_output_action(ctx, odp_port);
2790 }
2791 break;
2792 }
2793
2794 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2795 ctx->nf_output_iface = NF_OUT_FLOOD;
2796 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2797 ctx->nf_output_iface = prev_nf_output_iface;
2798 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2799 ctx->nf_output_iface != NF_OUT_FLOOD) {
2800 ctx->nf_output_iface = NF_OUT_MULTI;
2801 }
2802}
2803
2804static void
2805xlate_output_action(struct action_xlate_ctx *ctx,
2806 const struct ofp_action_output *oao)
2807{
2808 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2809}
2810
2811/* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2812 * optimization, because we're going to add another action that sets the
2813 * priority immediately after, or because there are no actions following the
2814 * pop. */
2815static void
2816remove_pop_action(struct action_xlate_ctx *ctx)
2817{
2818 if (ctx->odp_actions->size == ctx->last_pop_priority) {
2819 ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN);
2820 ctx->last_pop_priority = -1;
2821 }
2822}
2823
2824static void
2825add_pop_action(struct action_xlate_ctx *ctx)
2826{
2827 if (ctx->odp_actions->size != ctx->last_pop_priority) {
2828 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_POP_PRIORITY);
2829 ctx->last_pop_priority = ctx->odp_actions->size;
2830 }
2831}
2832
2833static void
2834xlate_enqueue_action(struct action_xlate_ctx *ctx,
2835 const struct ofp_action_enqueue *oae)
2836{
2837 uint16_t ofp_port, odp_port;
2838 uint32_t priority;
2839 int error;
2840
2841 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2842 &priority);
2843 if (error) {
2844 /* Fall back to ordinary output action. */
2845 xlate_output_action__(ctx, ntohs(oae->port), 0);
2846 return;
2847 }
2848
2849 /* Figure out ODP output port. */
2850 ofp_port = ntohs(oae->port);
2851 if (ofp_port != OFPP_IN_PORT) {
2852 odp_port = ofp_port_to_odp_port(ofp_port);
2853 } else {
2854 odp_port = ctx->flow.in_port;
2855 }
2856
2857 /* Add ODP actions. */
2858 remove_pop_action(ctx);
2859 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2860 add_output_action(ctx, odp_port);
2861 add_pop_action(ctx);
2862
2863 /* Update NetFlow output port. */
2864 if (ctx->nf_output_iface == NF_OUT_DROP) {
2865 ctx->nf_output_iface = odp_port;
2866 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2867 ctx->nf_output_iface = NF_OUT_MULTI;
2868 }
2869}
2870
2871static void
2872xlate_set_queue_action(struct action_xlate_ctx *ctx,
2873 const struct nx_action_set_queue *nasq)
2874{
2875 uint32_t priority;
2876 int error;
2877
2878 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2879 &priority);
2880 if (error) {
2881 /* Couldn't translate queue to a priority, so ignore. A warning
2882 * has already been logged. */
2883 return;
2884 }
2885
2886 remove_pop_action(ctx);
2887 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2888}
2889
2890static void
2891xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2892{
2893 ovs_be16 tci = ctx->flow.vlan_tci;
2894 if (!(tci & htons(VLAN_CFI))) {
2895 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN);
2896 } else {
2897 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
2898 tci & ~htons(VLAN_CFI));
2899 }
2900}
2901
2902struct xlate_reg_state {
2903 ovs_be16 vlan_tci;
2904 ovs_be64 tun_id;
2905};
2906
2907static void
2908save_reg_state(const struct action_xlate_ctx *ctx,
2909 struct xlate_reg_state *state)
2910{
2911 state->vlan_tci = ctx->flow.vlan_tci;
2912 state->tun_id = ctx->flow.tun_id;
2913}
2914
2915static void
2916update_reg_state(struct action_xlate_ctx *ctx,
2917 const struct xlate_reg_state *state)
2918{
2919 if (ctx->flow.vlan_tci != state->vlan_tci) {
2920 xlate_set_dl_tci(ctx);
2921 }
2922 if (ctx->flow.tun_id != state->tun_id) {
2923 nl_msg_put_be64(ctx->odp_actions,
2924 ODP_ACTION_ATTR_SET_TUNNEL, ctx->flow.tun_id);
2925 }
2926}
2927
2928static void
2929xlate_nicira_action(struct action_xlate_ctx *ctx,
2930 const struct nx_action_header *nah)
2931{
2932 const struct nx_action_resubmit *nar;
2933 const struct nx_action_set_tunnel *nast;
2934 const struct nx_action_set_queue *nasq;
2935 const struct nx_action_multipath *nam;
2936 enum nx_action_subtype subtype = ntohs(nah->subtype);
2937 struct xlate_reg_state state;
2938 ovs_be64 tun_id;
2939
2940 assert(nah->vendor == htonl(NX_VENDOR_ID));
2941 switch (subtype) {
2942 case NXAST_RESUBMIT:
2943 nar = (const struct nx_action_resubmit *) nah;
2944 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2945 break;
2946
2947 case NXAST_SET_TUNNEL:
2948 nast = (const struct nx_action_set_tunnel *) nah;
2949 tun_id = htonll(ntohl(nast->tun_id));
2950 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2951 ctx->flow.tun_id = tun_id;
2952 break;
2953
2954 case NXAST_DROP_SPOOFED_ARP:
2955 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2956 nl_msg_put_flag(ctx->odp_actions,
2957 ODP_ACTION_ATTR_DROP_SPOOFED_ARP);
2958 }
2959 break;
2960
2961 case NXAST_SET_QUEUE:
2962 nasq = (const struct nx_action_set_queue *) nah;
2963 xlate_set_queue_action(ctx, nasq);
2964 break;
2965
2966 case NXAST_POP_QUEUE:
2967 add_pop_action(ctx);
2968 break;
2969
2970 case NXAST_REG_MOVE:
2971 save_reg_state(ctx, &state);
2972 nxm_execute_reg_move((const struct nx_action_reg_move *) nah,
2973 &ctx->flow);
2974 update_reg_state(ctx, &state);
2975 break;
2976
2977 case NXAST_REG_LOAD:
2978 save_reg_state(ctx, &state);
2979 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
2980 &ctx->flow);
2981 update_reg_state(ctx, &state);
2982 break;
2983
2984 case NXAST_NOTE:
2985 /* Nothing to do. */
2986 break;
2987
2988 case NXAST_SET_TUNNEL64:
2989 tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id;
2990 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2991 ctx->flow.tun_id = tun_id;
2992 break;
2993
2994 case NXAST_MULTIPATH:
2995 nam = (const struct nx_action_multipath *) nah;
2996 multipath_execute(nam, &ctx->flow);
2997 break;
2998
2999 /* If you add a new action here that modifies flow data, don't forget to
3000 * update the flow key in ctx->flow at the same time. */
3001
3002 case NXAST_SNAT__OBSOLETE:
3003 default:
3004 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
3005 break;
3006 }
3007}
3008
3009static void
3010do_xlate_actions(const union ofp_action *in, size_t n_in,
3011 struct action_xlate_ctx *ctx)
3012{
3013 struct actions_iterator iter;
3014 const union ofp_action *ia;
3015 const struct ofport *port;
3016
3017 port = get_port(ctx->ofproto, ctx->flow.in_port);
3018 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
3019 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
3020 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
3021 /* Drop this flow. */
3022 return;
3023 }
3024
3025 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
3026 enum ofp_action_type type = ntohs(ia->type);
3027 const struct ofp_action_dl_addr *oada;
3028
3029 switch (type) {
3030 case OFPAT_OUTPUT:
3031 xlate_output_action(ctx, &ia->output);
3032 break;
3033
3034 case OFPAT_SET_VLAN_VID:
3035 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
3036 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
3037 xlate_set_dl_tci(ctx);
3038 break;
3039
3040 case OFPAT_SET_VLAN_PCP:
3041 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
3042 ctx->flow.vlan_tci |= htons(
3043 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
3044 xlate_set_dl_tci(ctx);
3045 break;
3046
3047 case OFPAT_STRIP_VLAN:
3048 ctx->flow.vlan_tci = htons(0);
3049 xlate_set_dl_tci(ctx);
3050 break;
3051
3052 case OFPAT_SET_DL_SRC:
3053 oada = ((struct ofp_action_dl_addr *) ia);
3054 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_SRC,
3055 oada->dl_addr, ETH_ADDR_LEN);
3056 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
3057 break;
3058
3059 case OFPAT_SET_DL_DST:
3060 oada = ((struct ofp_action_dl_addr *) ia);
3061 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_DST,
3062 oada->dl_addr, ETH_ADDR_LEN);
3063 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
3064 break;
3065
3066 case OFPAT_SET_NW_SRC:
3067 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_SRC,
3068 ia->nw_addr.nw_addr);
3069 ctx->flow.nw_src = ia->nw_addr.nw_addr;
3070 break;
3071
3072 case OFPAT_SET_NW_DST:
3073 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_DST,
3074 ia->nw_addr.nw_addr);
3075 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
3076 break;
3077
3078 case OFPAT_SET_NW_TOS:
3079 nl_msg_put_u8(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_TOS,
3080 ia->nw_tos.nw_tos);
3081 ctx->flow.nw_tos = ia->nw_tos.nw_tos;
3082 break;
3083
3084 case OFPAT_SET_TP_SRC:
3085 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_SRC,
3086 ia->tp_port.tp_port);
3087 ctx->flow.tp_src = ia->tp_port.tp_port;
3088 break;
3089
3090 case OFPAT_SET_TP_DST:
3091 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_DST,
3092 ia->tp_port.tp_port);
3093 ctx->flow.tp_dst = ia->tp_port.tp_port;
3094 break;
3095
3096 case OFPAT_VENDOR:
3097 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3098 break;
3099
3100 case OFPAT_ENQUEUE:
3101 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3102 break;
3103
3104 default:
3105 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3106 break;
3107 }
3108 }
3109}
3110
3111static void
3112action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3113 struct ofproto *ofproto, const struct flow *flow,
3114 const struct ofpbuf *packet)
3115{
3116 ctx->ofproto = ofproto;
3117 ctx->flow = *flow;
3118 ctx->packet = packet;
3119 ctx->resubmit_hook = NULL;
3120 ctx->check_special = true;
3121}
3122
3123static struct ofpbuf *
3124xlate_actions(struct action_xlate_ctx *ctx,
3125 const union ofp_action *in, size_t n_in)
3126{
3127 COVERAGE_INC(ofproto_ofp2odp);
3128
3129 ctx->odp_actions = ofpbuf_new(512);
3130 ctx->tags = 0;
3131 ctx->may_set_up_flow = true;
3132 ctx->nf_output_iface = NF_OUT_DROP;
3133 ctx->recurse = 0;
3134 ctx->last_pop_priority = -1;
3135
3136 if (!ctx->check_special
3137 || (ctx->ofproto->ofhooks->special_cb
3138 && ctx->ofproto->ofhooks->special_cb(&ctx->flow, ctx->packet,
3139 ctx->ofproto->aux))) {
3140 do_xlate_actions(in, n_in, ctx);
3141 } else {
3142 ctx->may_set_up_flow = false;
3143 }
3144
3145 remove_pop_action(ctx);
3146
3147 /* Check with in-band control to see if we're allowed to set up this
3148 * flow. */
3149 if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow,
3150 ctx->odp_actions->data, ctx->odp_actions->size)) {
3151 ctx->may_set_up_flow = false;
3152 }
3153
3154 return ctx->odp_actions;
3155}
3156
3157/* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3158 * error message code (composed with ofp_mkerr()) for the caller to propagate
3159 * upward. Otherwise, returns 0.
3160 *
3161 * The log message mentions 'msg_type'. */
3162static int
3163reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3164{
3165 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3166 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3167 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3168 msg_type);
3169
3170 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3171 } else {
3172 return 0;
3173 }
3174}
3175
3176static int
3177handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
3178{
3179 struct ofproto *p = ofconn->ofproto;
3180 struct ofp_packet_out *opo;
3181 struct ofpbuf payload, *buffer;
3182 union ofp_action *ofp_actions;
3183 struct action_xlate_ctx ctx;
3184 struct ofpbuf *odp_actions;
3185 struct ofpbuf request;
3186 struct flow flow;
3187 size_t n_ofp_actions;
3188 uint16_t in_port;
3189 int error;
3190
3191 COVERAGE_INC(ofproto_packet_out);
3192
3193 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3194 if (error) {
3195 return error;
3196 }
3197
3198 /* Get ofp_packet_out. */
3199 ofpbuf_use_const(&request, oh, ntohs(oh->length));
3200 opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions));
3201
3202 /* Get actions. */
3203 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3204 &ofp_actions, &n_ofp_actions);
3205 if (error) {
3206 return error;
3207 }
3208
3209 /* Get payload. */
3210 if (opo->buffer_id != htonl(UINT32_MAX)) {
3211 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3212 &buffer, &in_port);
3213 if (error || !buffer) {
3214 return error;
3215 }
3216 payload = *buffer;
3217 } else {
3218 payload = request;
3219 buffer = NULL;
3220 }
3221
3222 /* Extract flow, check actions. */
3223 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3224 &flow);
3225 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3226 if (error) {
3227 goto exit;
3228 }
3229
3230 /* Send. */
3231 action_xlate_ctx_init(&ctx, p, &flow, &payload);
3232 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3233 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, &payload);
3234 ofpbuf_delete(odp_actions);
3235
3236exit:
3237 ofpbuf_delete(buffer);
3238 return 0;
3239}
3240
3241static void
3242update_port_config(struct ofproto *p, struct ofport *port,
3243 uint32_t config, uint32_t mask)
3244{
3245 mask &= config ^ port->opp.config;
3246 if (mask & OFPPC_PORT_DOWN) {
3247 if (config & OFPPC_PORT_DOWN) {
3248 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3249 } else {
3250 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3251 }
3252 }
3253#define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3254 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3255 if (mask & REVALIDATE_BITS) {
3256 COVERAGE_INC(ofproto_costly_flags);
3257 port->opp.config ^= mask & REVALIDATE_BITS;
3258 p->need_revalidate = true;
3259 }
3260#undef REVALIDATE_BITS
3261 if (mask & OFPPC_NO_PACKET_IN) {
3262 port->opp.config ^= OFPPC_NO_PACKET_IN;
3263 }
3264}
3265
3266static int
3267handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3268{
3269 struct ofproto *p = ofconn->ofproto;
3270 const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh;
3271 struct ofport *port;
3272 int error;
3273
3274 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3275 if (error) {
3276 return error;
3277 }
3278
3279 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3280 if (!port) {
3281 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3282 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3283 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3284 } else {
3285 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3286 if (opm->advertise) {
3287 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3288 }
3289 }
3290 return 0;
3291}
3292
3293static struct ofpbuf *
3294make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3295{
3296 struct ofp_stats_reply *osr;
3297 struct ofpbuf *msg;
3298
3299 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3300 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3301 osr->type = type;
3302 osr->flags = htons(0);
3303 return msg;
3304}
3305
3306static struct ofpbuf *
3307start_ofp_stats_reply(const struct ofp_header *request, size_t body_len)
3308{
3309 const struct ofp_stats_request *osr
3310 = (const struct ofp_stats_request *) request;
3311 return make_ofp_stats_reply(osr->header.xid, osr->type, body_len);
3312}
3313
3314static void *
3315append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3316 struct ofpbuf **msgp)
3317{
3318 struct ofpbuf *msg = *msgp;
3319 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3320 if (nbytes + msg->size > UINT16_MAX) {
3321 struct ofp_stats_reply *reply = msg->data;
3322 reply->flags = htons(OFPSF_REPLY_MORE);
3323 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3324 queue_tx(msg, ofconn, ofconn->reply_counter);
3325 }
3326 return ofpbuf_put_uninit(*msgp, nbytes);
3327}
3328
3329static struct ofpbuf *
3330make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3331{
3332 struct nicira_stats_msg *nsm;
3333 struct ofpbuf *msg;
3334
3335 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3336 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3337 nsm->type = htons(OFPST_VENDOR);
3338 nsm->flags = htons(0);
3339 nsm->vendor = htonl(NX_VENDOR_ID);
3340 nsm->subtype = subtype;
3341 return msg;
3342}
3343
3344static struct ofpbuf *
3345start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3346{
3347 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3348}
3349
3350static void
3351append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3352 struct ofpbuf **msgp)
3353{
3354 struct ofpbuf *msg = *msgp;
3355 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3356 if (nbytes + msg->size > UINT16_MAX) {
3357 struct nicira_stats_msg *reply = msg->data;
3358 reply->flags = htons(OFPSF_REPLY_MORE);
3359 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3360 queue_tx(msg, ofconn, ofconn->reply_counter);
3361 }
3362 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3363}
3364
3365static int
3366handle_desc_stats_request(struct ofconn *ofconn,
3367 const struct ofp_header *request)
3368{
3369 struct ofproto *p = ofconn->ofproto;
3370 struct ofp_desc_stats *ods;
3371 struct ofpbuf *msg;
3372
3373 msg = start_ofp_stats_reply(request, sizeof *ods);
3374 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3375 memset(ods, 0, sizeof *ods);
3376 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3377 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3378 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3379 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3380 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3381 queue_tx(msg, ofconn, ofconn->reply_counter);
3382
3383 return 0;
3384}
3385
3386static int
3387handle_table_stats_request(struct ofconn *ofconn,
3388 const struct ofp_header *request)
3389{
3390 struct ofproto *p = ofconn->ofproto;
3391 struct ofp_table_stats *ots;
3392 struct ofpbuf *msg;
3393
3394 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3395
3396 /* Classifier table. */
3397 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3398 memset(ots, 0, sizeof *ots);
3399 strcpy(ots->name, "classifier");
3400 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3401 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3402 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3403 ots->active_count = htonl(classifier_count(&p->cls));
3404 put_32aligned_be64(&ots->lookup_count, htonll(0)); /* XXX */
3405 put_32aligned_be64(&ots->matched_count, htonll(0)); /* XXX */
3406
3407 queue_tx(msg, ofconn, ofconn->reply_counter);
3408 return 0;
3409}
3410
3411static void
3412append_port_stat(struct ofport *port, struct ofconn *ofconn,
3413 struct ofpbuf **msgp)
3414{
3415 struct netdev_stats stats;
3416 struct ofp_port_stats *ops;
3417
3418 /* Intentionally ignore return value, since errors will set
3419 * 'stats' to all-1s, which is correct for OpenFlow, and
3420 * netdev_get_stats() will log errors. */
3421 netdev_get_stats(port->netdev, &stats);
3422
3423 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3424 ops->port_no = htons(port->opp.port_no);
3425 memset(ops->pad, 0, sizeof ops->pad);
3426 put_32aligned_be64(&ops->rx_packets, htonll(stats.rx_packets));
3427 put_32aligned_be64(&ops->tx_packets, htonll(stats.tx_packets));
3428 put_32aligned_be64(&ops->rx_bytes, htonll(stats.rx_bytes));
3429 put_32aligned_be64(&ops->tx_bytes, htonll(stats.tx_bytes));
3430 put_32aligned_be64(&ops->rx_dropped, htonll(stats.rx_dropped));
3431 put_32aligned_be64(&ops->tx_dropped, htonll(stats.tx_dropped));
3432 put_32aligned_be64(&ops->rx_errors, htonll(stats.rx_errors));
3433 put_32aligned_be64(&ops->tx_errors, htonll(stats.tx_errors));
3434 put_32aligned_be64(&ops->rx_frame_err, htonll(stats.rx_frame_errors));
3435 put_32aligned_be64(&ops->rx_over_err, htonll(stats.rx_over_errors));
3436 put_32aligned_be64(&ops->rx_crc_err, htonll(stats.rx_crc_errors));
3437 put_32aligned_be64(&ops->collisions, htonll(stats.collisions));
3438}
3439
3440static int
3441handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3442{
3443 struct ofproto *p = ofconn->ofproto;
3444 const struct ofp_port_stats_request *psr = ofputil_stats_body(oh);
3445 struct ofp_port_stats *ops;
3446 struct ofpbuf *msg;
3447 struct ofport *port;
3448
3449 msg = start_ofp_stats_reply(oh, sizeof *ops * 16);
3450 if (psr->port_no != htons(OFPP_NONE)) {
3451 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3452 if (port) {
3453 append_port_stat(port, ofconn, &msg);
3454 }
3455 } else {
3456 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3457 append_port_stat(port, ofconn, &msg);
3458 }
3459 }
3460
3461 queue_tx(msg, ofconn, ofconn->reply_counter);
3462 return 0;
3463}
3464
3465/* Obtains statistic counters for 'rule' within 'p' and stores them into
3466 * '*packet_countp' and '*byte_countp'. The returned statistics include
3467 * statistics for all of 'rule''s facets. */
3468static void
3469query_stats(struct ofproto *p, struct rule *rule,
3470 uint64_t *packet_countp, uint64_t *byte_countp)
3471{
3472 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
3473 uint64_t packet_count, byte_count;
3474 struct facet *facet;
3475 struct ofpbuf key;
3476
3477 /* Start from historical data for 'rule' itself that are no longer tracked
3478 * by the datapath. This counts, for example, facets that have expired. */
3479 packet_count = rule->packet_count;
3480 byte_count = rule->byte_count;
3481
3482 /* Ask the datapath for statistics on all of the rule's facets.
3483 *
3484 * Also, add any statistics that are not tracked by the datapath for each
3485 * facet. This includes, for example, statistics for packets that were
3486 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3487 * to a rule. */
3488 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
3489 LIST_FOR_EACH (facet, list_node, &rule->facets) {
3490 struct dpif_flow_stats stats;
3491
3492 ofpbuf_clear(&key);
3493 odp_flow_key_from_flow(&key, &facet->flow);
3494 dpif_flow_get(p->dpif, key.data, key.size, NULL, &stats);
3495
3496 packet_count += stats.n_packets + facet->packet_count;
3497 byte_count += stats.n_bytes + facet->byte_count;
3498 }
3499
3500 /* Return the stats to the caller. */
3501 *packet_countp = packet_count;
3502 *byte_countp = byte_count;
3503}
3504
3505static void
3506calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3507{
3508 long long int msecs = time_msec() - start;
3509 *sec = htonl(msecs / 1000);
3510 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3511}
3512
3513static void
3514put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3515 ovs_be16 out_port, struct ofpbuf **replyp)
3516{
3517 struct ofp_flow_stats *ofs;
3518 uint64_t packet_count, byte_count;
3519 ovs_be64 cookie;
3520 size_t act_len, len;
3521
3522 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3523 return;
3524 }
3525
3526 act_len = sizeof *rule->actions * rule->n_actions;
3527 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3528
3529 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3530
3531 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3532 ofs->length = htons(len);
3533 ofs->table_id = 0;
3534 ofs->pad = 0;
3535 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match,
3536 rule->flow_cookie, &cookie);
3537 put_32aligned_be64(&ofs->cookie, cookie);
3538 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3539 ofs->priority = htons(rule->cr.priority);
3540 ofs->idle_timeout = htons(rule->idle_timeout);
3541 ofs->hard_timeout = htons(rule->hard_timeout);
3542 memset(ofs->pad2, 0, sizeof ofs->pad2);
3543 put_32aligned_be64(&ofs->packet_count, htonll(packet_count));
3544 put_32aligned_be64(&ofs->byte_count, htonll(byte_count));
3545 if (rule->n_actions > 0) {
3546 memcpy(ofs->actions, rule->actions, act_len);
3547 }
3548}
3549
3550static bool
3551is_valid_table(uint8_t table_id)
3552{
3553 return table_id == 0 || table_id == 0xff;
3554}
3555
3556static int
3557handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3558{
3559 const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh);
3560 struct ofpbuf *reply;
3561
3562 COVERAGE_INC(ofproto_flows_req);
3563 reply = start_ofp_stats_reply(oh, 1024);
3564 if (is_valid_table(fsr->table_id)) {
3565 struct cls_cursor cursor;
3566 struct cls_rule target;
3567 struct rule *rule;
3568
3569 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3570 &target);
3571 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3572 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3573 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3574 }
3575 }
3576 queue_tx(reply, ofconn, ofconn->reply_counter);
3577
3578 return 0;
3579}
3580
3581static void
3582put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3583 ovs_be16 out_port, struct ofpbuf **replyp)
3584{
3585 struct nx_flow_stats *nfs;
3586 uint64_t packet_count, byte_count;
3587 size_t act_len, start_len;
3588 struct ofpbuf *reply;
3589
3590 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3591 return;
3592 }
3593
3594 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3595
3596 act_len = sizeof *rule->actions * rule->n_actions;
3597
3598 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3599 start_len = (*replyp)->size;
3600 reply = *replyp;
3601
3602 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3603 nfs->table_id = 0;
3604 nfs->pad = 0;
3605 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3606 nfs->cookie = rule->flow_cookie;
3607 nfs->priority = htons(rule->cr.priority);
3608 nfs->idle_timeout = htons(rule->idle_timeout);
3609 nfs->hard_timeout = htons(rule->hard_timeout);
3610 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3611 memset(nfs->pad2, 0, sizeof nfs->pad2);
3612 nfs->packet_count = htonll(packet_count);
3613 nfs->byte_count = htonll(byte_count);
3614 if (rule->n_actions > 0) {
3615 ofpbuf_put(reply, rule->actions, act_len);
3616 }
3617 nfs->length = htons(reply->size - start_len);
3618}
3619
3620static int
3621handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh)
3622{
3623 struct nx_flow_stats_request *nfsr;
3624 struct cls_rule target;
3625 struct ofpbuf *reply;
3626 struct ofpbuf b;
3627 int error;
3628
3629 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3630
3631 /* Dissect the message. */
3632 nfsr = ofpbuf_pull(&b, sizeof *nfsr);
3633 error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target);
3634 if (error) {
3635 return error;
3636 }
3637 if (b.size) {
3638 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3639 }
3640
3641 COVERAGE_INC(ofproto_flows_req);
3642 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3643 if (is_valid_table(nfsr->table_id)) {
3644 struct cls_cursor cursor;
3645 struct rule *rule;
3646
3647 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3648 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3649 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3650 }
3651 }
3652 queue_tx(reply, ofconn, ofconn->reply_counter);
3653
3654 return 0;
3655}
3656
3657static void
3658flow_stats_ds(struct ofproto *ofproto, struct rule *rule, struct ds *results)
3659{
3660 uint64_t packet_count, byte_count;
3661 size_t act_len = sizeof *rule->actions * rule->n_actions;
3662
3663 query_stats(ofproto, rule, &packet_count, &byte_count);
3664
3665 ds_put_format(results, "duration=%llds, ",
3666 (time_msec() - rule->created) / 1000);
3667 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3668 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3669 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3670 cls_rule_format(&rule->cr, results);
3671 if (act_len > 0) {
3672 ofp_print_actions(results, &rule->actions->header, act_len);
3673 } else {
3674 ds_put_cstr(results, "drop");
3675 }
3676 ds_put_cstr(results, "\n");
3677}
3678
3679/* Adds a pretty-printed description of all flows to 'results', including
3680 * those marked hidden by secchan (e.g., by in-band control). */
3681void
3682ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3683{
3684 struct cls_cursor cursor;
3685 struct rule *rule;
3686
3687 cls_cursor_init(&cursor, &p->cls, NULL);
3688 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3689 flow_stats_ds(p, rule, results);
3690 }
3691}
3692
3693static void
3694query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3695 ovs_be16 out_port, uint8_t table_id,
3696 struct ofp_aggregate_stats_reply *oasr)
3697{
3698 uint64_t total_packets = 0;
3699 uint64_t total_bytes = 0;
3700 int n_flows = 0;
3701
3702 COVERAGE_INC(ofproto_agg_request);
3703
3704 if (is_valid_table(table_id)) {
3705 struct cls_cursor cursor;
3706 struct rule *rule;
3707
3708 cls_cursor_init(&cursor, &ofproto->cls, target);
3709 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3710 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3711 uint64_t packet_count;
3712 uint64_t byte_count;
3713
3714 query_stats(ofproto, rule, &packet_count, &byte_count);
3715
3716 total_packets += packet_count;
3717 total_bytes += byte_count;
3718 n_flows++;
3719 }
3720 }
3721 }
3722
3723 oasr->flow_count = htonl(n_flows);
3724 put_32aligned_be64(&oasr->packet_count, htonll(total_packets));
3725 put_32aligned_be64(&oasr->byte_count, htonll(total_bytes));
3726 memset(oasr->pad, 0, sizeof oasr->pad);
3727}
3728
3729static int
3730handle_aggregate_stats_request(struct ofconn *ofconn,
3731 const struct ofp_header *oh)
3732{
3733 const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh);
3734 struct ofp_aggregate_stats_reply *reply;
3735 struct cls_rule target;
3736 struct ofpbuf *msg;
3737
3738 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3739 &target);
3740
3741 msg = start_ofp_stats_reply(oh, sizeof *reply);
3742 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3743 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3744 request->table_id, reply);
3745 queue_tx(msg, ofconn, ofconn->reply_counter);
3746 return 0;
3747}
3748
3749static int
3750handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh)
3751{
3752 struct nx_aggregate_stats_request *request;
3753 struct ofp_aggregate_stats_reply *reply;
3754 struct cls_rule target;
3755 struct ofpbuf b;
3756 struct ofpbuf *buf;
3757 int error;
3758
3759 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3760
3761 /* Dissect the message. */
3762 request = ofpbuf_pull(&b, sizeof *request);
3763 error = nx_pull_match(&b, ntohs(request->match_len), 0, &target);
3764 if (error) {
3765 return error;
3766 }
3767 if (b.size) {
3768 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3769 }
3770
3771 /* Reply. */
3772 COVERAGE_INC(ofproto_flows_req);
3773 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3774 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3775 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3776 request->table_id, reply);
3777 queue_tx(buf, ofconn, ofconn->reply_counter);
3778
3779 return 0;
3780}
3781
3782struct queue_stats_cbdata {
3783 struct ofconn *ofconn;
3784 struct ofport *ofport;
3785 struct ofpbuf *msg;
3786};
3787
3788static void
3789put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3790 const struct netdev_queue_stats *stats)
3791{
3792 struct ofp_queue_stats *reply;
3793
3794 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3795 reply->port_no = htons(cbdata->ofport->opp.port_no);
3796 memset(reply->pad, 0, sizeof reply->pad);
3797 reply->queue_id = htonl(queue_id);
3798 put_32aligned_be64(&reply->tx_bytes, htonll(stats->tx_bytes));
3799 put_32aligned_be64(&reply->tx_packets, htonll(stats->tx_packets));
3800 put_32aligned_be64(&reply->tx_errors, htonll(stats->tx_errors));
3801}
3802
3803static void
3804handle_queue_stats_dump_cb(uint32_t queue_id,
3805 struct netdev_queue_stats *stats,
3806 void *cbdata_)
3807{
3808 struct queue_stats_cbdata *cbdata = cbdata_;
3809
3810 put_queue_stats(cbdata, queue_id, stats);
3811}
3812
3813static void
3814handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3815 struct queue_stats_cbdata *cbdata)
3816{
3817 cbdata->ofport = port;
3818 if (queue_id == OFPQ_ALL) {
3819 netdev_dump_queue_stats(port->netdev,
3820 handle_queue_stats_dump_cb, cbdata);
3821 } else {
3822 struct netdev_queue_stats stats;
3823
3824 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3825 put_queue_stats(cbdata, queue_id, &stats);
3826 }
3827 }
3828}
3829
3830static int
3831handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3832{
3833 struct ofproto *ofproto = ofconn->ofproto;
3834 const struct ofp_queue_stats_request *qsr;
3835 struct queue_stats_cbdata cbdata;
3836 struct ofport *port;
3837 unsigned int port_no;
3838 uint32_t queue_id;
3839
3840 qsr = ofputil_stats_body(oh);
3841 if (!qsr) {
3842 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3843 }
3844
3845 COVERAGE_INC(ofproto_queue_req);
3846
3847 cbdata.ofconn = ofconn;
3848 cbdata.msg = start_ofp_stats_reply(oh, 128);
3849
3850 port_no = ntohs(qsr->port_no);
3851 queue_id = ntohl(qsr->queue_id);
3852 if (port_no == OFPP_ALL) {
3853 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3854 handle_queue_stats_for_port(port, queue_id, &cbdata);
3855 }
3856 } else if (port_no < ofproto->max_ports) {
3857 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3858 if (port) {
3859 handle_queue_stats_for_port(port, queue_id, &cbdata);
3860 }
3861 } else {
3862 ofpbuf_delete(cbdata.msg);
3863 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3864 }
3865 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3866
3867 return 0;
3868}
3869
3870static void
3871facet_update_time(struct ofproto *ofproto, struct facet *facet,
3872 const struct dpif_flow_stats *stats)
3873{
3874 long long int used = stats->used;
3875 if (used > facet->used) {
3876 facet->used = used;
3877 if (used > facet->rule->used) {
3878 facet->rule->used = used;
3879 }
3880 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3881 }
3882}
3883
3884/* Folds the statistics from 'stats' into the counters in 'facet'.
3885 *
3886 * Because of the meaning of a facet's counters, it only makes sense to do this
3887 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3888 * packet that was sent by hand or if it represents statistics that have been
3889 * cleared out of the datapath. */
3890static void
3891facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3892 const struct dpif_flow_stats *stats)
3893{
3894 if (stats->n_packets) {
3895 facet_update_time(ofproto, facet, stats);
3896 facet->packet_count += stats->n_packets;
3897 facet->byte_count += stats->n_bytes;
3898 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3899 }
3900}
3901
3902/* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3903 * in which no matching flow already exists in the flow table.
3904 *
3905 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3906 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3907 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3908 *
3909 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3910 * if any. */
3911static int
3912add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3913{
3914 struct ofproto *p = ofconn->ofproto;
3915 struct ofpbuf *packet;
3916 struct rule *rule;
3917 uint16_t in_port;
3918 int error;
3919
3920 if (fm->flags & OFPFF_CHECK_OVERLAP
3921 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3922 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3923 }
3924
3925 error = 0;
3926 if (fm->buffer_id != UINT32_MAX) {
3927 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3928 &packet, &in_port);
3929 } else {
3930 packet = NULL;
3931 in_port = UINT16_MAX;
3932 }
3933
3934 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
3935 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3936 fm->flags & OFPFF_SEND_FLOW_REM);
3937 rule_insert(p, rule);
3938 if (packet) {
3939 rule_execute(p, rule, in_port, packet);
3940 }
3941 return error;
3942}
3943
3944static struct rule *
3945find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3946{
3947 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3948}
3949
3950static int
3951send_buffered_packet(struct ofconn *ofconn,
3952 struct rule *rule, uint32_t buffer_id)
3953{
3954 struct ofpbuf *packet;
3955 uint16_t in_port;
3956 int error;
3957
3958 if (buffer_id == UINT32_MAX) {
3959 return 0;
3960 }
3961
3962 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
3963 if (error) {
3964 return error;
3965 }
3966
3967 rule_execute(ofconn->ofproto, rule, in_port, packet);
3968
3969 return 0;
3970}
3971\f
3972/* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3973
3974struct modify_flows_cbdata {
3975 struct ofproto *ofproto;
3976 const struct flow_mod *fm;
3977 struct rule *match;
3978};
3979
3980static int modify_flow(struct ofproto *, const struct flow_mod *,
3981 struct rule *);
3982
3983/* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3984 * encoded by ofp_mkerr() on failure.
3985 *
3986 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3987 * if any. */
3988static int
3989modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
3990{
3991 struct ofproto *p = ofconn->ofproto;
3992 struct rule *match = NULL;
3993 struct cls_cursor cursor;
3994 struct rule *rule;
3995
3996 cls_cursor_init(&cursor, &p->cls, &fm->cr);
3997 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3998 if (!rule_is_hidden(rule)) {
3999 match = rule;
4000 modify_flow(p, fm, rule);
4001 }
4002 }
4003
4004 if (match) {
4005 /* This credits the packet to whichever flow happened to match last.
4006 * That's weird. Maybe we should do a lookup for the flow that
4007 * actually matches the packet? Who knows. */
4008 send_buffered_packet(ofconn, match, fm->buffer_id);
4009 return 0;
4010 } else {
4011 return add_flow(ofconn, fm);
4012 }
4013}
4014
4015/* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
4016 * code as encoded by ofp_mkerr() on failure.
4017 *
4018 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4019 * if any. */
4020static int
4021modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
4022{
4023 struct ofproto *p = ofconn->ofproto;
4024 struct rule *rule = find_flow_strict(p, fm);
4025 if (rule && !rule_is_hidden(rule)) {
4026 modify_flow(p, fm, rule);
4027 return send_buffered_packet(ofconn, rule, fm->buffer_id);
4028 } else {
4029 return add_flow(ofconn, fm);
4030 }
4031}
4032
4033/* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
4034 * been identified as a flow in 'p''s flow table to be modified, by changing
4035 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
4036 * ofp_action[] structures). */
4037static int
4038modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
4039{
4040 size_t actions_len = fm->n_actions * sizeof *rule->actions;
4041
4042 rule->flow_cookie = fm->cookie;
4043
4044 /* If the actions are the same, do nothing. */
4045 if (fm->n_actions == rule->n_actions
4046 && (!fm->n_actions
4047 || !memcmp(fm->actions, rule->actions, actions_len))) {
4048 return 0;
4049 }
4050
4051 /* Replace actions. */
4052 free(rule->actions);
4053 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
4054 rule->n_actions = fm->n_actions;
4055
4056 p->need_revalidate = true;
4057
4058 return 0;
4059}
4060\f
4061/* OFPFC_DELETE implementation. */
4062
4063static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
4064
4065/* Implements OFPFC_DELETE. */
4066static void
4067delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
4068{
4069 struct rule *rule, *next_rule;
4070 struct cls_cursor cursor;
4071
4072 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4073 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4074 delete_flow(p, rule, htons(fm->out_port));
4075 }
4076}
4077
4078/* Implements OFPFC_DELETE_STRICT. */
4079static void
4080delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4081{
4082 struct rule *rule = find_flow_strict(p, fm);
4083 if (rule) {
4084 delete_flow(p, rule, htons(fm->out_port));
4085 }
4086}
4087
4088/* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4089 * been identified as a flow to delete from 'p''s flow table, by deleting the
4090 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4091 * controller.
4092 *
4093 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4094 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4095 * specified 'out_port'. */
4096static void
4097delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4098{
4099 if (rule_is_hidden(rule)) {
4100 return;
4101 }
4102
4103 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4104 return;
4105 }
4106
4107 rule_send_removed(p, rule, OFPRR_DELETE);
4108 rule_remove(p, rule);
4109}
4110\f
4111static int
4112handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
4113{
4114 struct ofproto *p = ofconn->ofproto;
4115 struct flow_mod fm;
4116 int error;
4117
4118 error = reject_slave_controller(ofconn, "flow_mod");
4119 if (error) {
4120 return error;
4121 }
4122
4123 error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format);
4124 if (error) {
4125 return error;
4126 }
4127
4128 /* We do not support the emergency flow cache. It will hopefully get
4129 * dropped from OpenFlow in the near future. */
4130 if (fm.flags & OFPFF_EMERG) {
4131 /* There isn't a good fit for an error code, so just state that the
4132 * flow table is full. */
4133 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4134 }
4135
4136 error = validate_actions(fm.actions, fm.n_actions,
4137 &fm.cr.flow, p->max_ports);
4138 if (error) {
4139 return error;
4140 }
4141
4142 switch (fm.command) {
4143 case OFPFC_ADD:
4144 return add_flow(ofconn, &fm);
4145
4146 case OFPFC_MODIFY:
4147 return modify_flows_loose(ofconn, &fm);
4148
4149 case OFPFC_MODIFY_STRICT:
4150 return modify_flow_strict(ofconn, &fm);
4151
4152 case OFPFC_DELETE:
4153 delete_flows_loose(p, &fm);
4154 return 0;
4155
4156 case OFPFC_DELETE_STRICT:
4157 delete_flow_strict(p, &fm);
4158 return 0;
4159
4160 default:
4161 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4162 }
4163}
4164
4165static int
4166handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh)
4167{
4168 const struct nxt_tun_id_cookie *msg
4169 = (const struct nxt_tun_id_cookie *) oh;
4170
4171 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4172 return 0;
4173}
4174
4175static int
4176handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
4177{
4178 struct nx_role_request *nrr = (struct nx_role_request *) oh;
4179 struct nx_role_request *reply;
4180 struct ofpbuf *buf;
4181 uint32_t role;
4182
4183 if (ofconn->type != OFCONN_PRIMARY) {
4184 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4185 "connection");
4186 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4187 }
4188
4189 role = ntohl(nrr->role);
4190 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4191 && role != NX_ROLE_SLAVE) {
4192 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4193
4194 /* There's no good error code for this. */
4195 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4196 }
4197
4198 if (role == NX_ROLE_MASTER) {
4199 struct ofconn *other;
4200
4201 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4202 if (other->role == NX_ROLE_MASTER) {
4203 other->role = NX_ROLE_SLAVE;
4204 }
4205 }
4206 }
4207 ofconn->role = role;
4208
4209 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf);
4210 reply->role = htonl(role);
4211 queue_tx(buf, ofconn, ofconn->reply_counter);
4212
4213 return 0;
4214}
4215
4216static int
4217handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
4218{
4219 const struct nxt_set_flow_format *msg
4220 = (const struct nxt_set_flow_format *) oh;
4221 uint32_t format;
4222
4223 format = ntohl(msg->format);
4224 if (format == NXFF_OPENFLOW10
4225 || format == NXFF_TUN_ID_FROM_COOKIE
4226 || format == NXFF_NXM) {
4227 ofconn->flow_format = format;
4228 return 0;
4229 } else {
4230 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4231 }
4232}
4233
4234static int
4235handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
4236{
4237 struct ofp_header *ob;
4238 struct ofpbuf *buf;
4239
4240 /* Currently, everything executes synchronously, so we can just
4241 * immediately send the barrier reply. */
4242 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4243 queue_tx(buf, ofconn, ofconn->reply_counter);
4244 return 0;
4245}
4246
4247static int
4248handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
4249{
4250 const struct ofp_header *oh = msg->data;
4251 const struct ofputil_msg_type *type;
4252 int error;
4253
4254 error = ofputil_decode_msg_type(oh, &type);
4255 if (error) {
4256 return error;
4257 }
4258
4259 switch (ofputil_msg_type_code(type)) {
4260 /* OpenFlow requests. */
4261 case OFPUTIL_OFPT_ECHO_REQUEST:
4262 return handle_echo_request(ofconn, oh);
4263
4264 case OFPUTIL_OFPT_FEATURES_REQUEST:
4265 return handle_features_request(ofconn, oh);
4266
4267 case OFPUTIL_OFPT_GET_CONFIG_REQUEST:
4268 return handle_get_config_request(ofconn, oh);
4269
4270 case OFPUTIL_OFPT_SET_CONFIG:
4271 return handle_set_config(ofconn, msg->data);
4272
4273 case OFPUTIL_OFPT_PACKET_OUT:
4274 return handle_packet_out(ofconn, oh);
4275
4276 case OFPUTIL_OFPT_PORT_MOD:
4277 return handle_port_mod(ofconn, oh);
4278
4279 case OFPUTIL_OFPT_FLOW_MOD:
4280 return handle_flow_mod(ofconn, oh);
4281
4282 case OFPUTIL_OFPT_BARRIER_REQUEST:
4283 return handle_barrier_request(ofconn, oh);
4284
4285 /* OpenFlow replies. */
4286 case OFPUTIL_OFPT_ECHO_REPLY:
4287 return 0;
4288
4289 /* Nicira extension requests. */
4290 case OFPUTIL_NXT_STATUS_REQUEST:
4291 return switch_status_handle_request(
4292 ofconn->ofproto->switch_status, ofconn->rconn, oh);
4293
4294 case OFPUTIL_NXT_TUN_ID_FROM_COOKIE:
4295 return handle_tun_id_from_cookie(ofconn, oh);
4296
4297 case OFPUTIL_NXT_ROLE_REQUEST:
4298 return handle_role_request(ofconn, oh);
4299
4300 case OFPUTIL_NXT_SET_FLOW_FORMAT:
4301 return handle_nxt_set_flow_format(ofconn, oh);
4302
4303 case OFPUTIL_NXT_FLOW_MOD:
4304 return handle_flow_mod(ofconn, oh);
4305
4306 /* OpenFlow statistics requests. */
4307 case OFPUTIL_OFPST_DESC_REQUEST:
4308 return handle_desc_stats_request(ofconn, oh);
4309
4310 case OFPUTIL_OFPST_FLOW_REQUEST:
4311 return handle_flow_stats_request(ofconn, oh);
4312
4313 case OFPUTIL_OFPST_AGGREGATE_REQUEST:
4314 return handle_aggregate_stats_request(ofconn, oh);
4315
4316 case OFPUTIL_OFPST_TABLE_REQUEST:
4317 return handle_table_stats_request(ofconn, oh);
4318
4319 case OFPUTIL_OFPST_PORT_REQUEST:
4320 return handle_port_stats_request(ofconn, oh);
4321
4322 case OFPUTIL_OFPST_QUEUE_REQUEST:
4323 return handle_queue_stats_request(ofconn, oh);
4324
4325 /* Nicira extension statistics requests. */
4326 case OFPUTIL_NXST_FLOW_REQUEST:
4327 return handle_nxst_flow(ofconn, oh);
4328
4329 case OFPUTIL_NXST_AGGREGATE_REQUEST:
4330 return handle_nxst_aggregate(ofconn, oh);
4331
4332 case OFPUTIL_INVALID:
4333 case OFPUTIL_OFPT_HELLO:
4334 case OFPUTIL_OFPT_ERROR:
4335 case OFPUTIL_OFPT_FEATURES_REPLY:
4336 case OFPUTIL_OFPT_GET_CONFIG_REPLY:
4337 case OFPUTIL_OFPT_PACKET_IN:
4338 case OFPUTIL_OFPT_FLOW_REMOVED:
4339 case OFPUTIL_OFPT_PORT_STATUS:
4340 case OFPUTIL_OFPT_BARRIER_REPLY:
4341 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST:
4342 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY:
4343 case OFPUTIL_OFPST_DESC_REPLY:
4344 case OFPUTIL_OFPST_FLOW_REPLY:
4345 case OFPUTIL_OFPST_QUEUE_REPLY:
4346 case OFPUTIL_OFPST_PORT_REPLY:
4347 case OFPUTIL_OFPST_TABLE_REPLY:
4348 case OFPUTIL_OFPST_AGGREGATE_REPLY:
4349 case OFPUTIL_NXT_STATUS_REPLY:
4350 case OFPUTIL_NXT_ROLE_REPLY:
4351 case OFPUTIL_NXT_FLOW_REMOVED:
4352 case OFPUTIL_NXST_FLOW_REPLY:
4353 case OFPUTIL_NXST_AGGREGATE_REPLY:
4354 default:
4355 if (VLOG_IS_WARN_ENABLED()) {
4356 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4357 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4358 free(s);
4359 }
4360 if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) {
4361 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
4362 } else {
4363 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4364 }
4365 }
4366}
4367
4368static void
4369handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4370{
4371 int error = handle_openflow__(ofconn, ofp_msg);
4372 if (error) {
4373 send_error_oh(ofconn, ofp_msg->data, error);
4374 }
4375 COVERAGE_INC(ofproto_recv_openflow);
4376}
4377\f
4378static void
4379handle_miss_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4380{
4381 struct facet *facet;
4382 struct flow flow;
4383
4384 /* Obtain in_port and tun_id, at least. */
4385 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4386
4387 /* Set header pointers in 'flow'. */
4388 flow_extract(upcall->packet, flow.tun_id, flow.in_port, &flow);
4389
4390 if (p->ofhooks->special_cb
4391 && !p->ofhooks->special_cb(&flow, upcall->packet, p->aux)) {
4392 ofpbuf_delete(upcall->packet);
4393 return;
4394 }
4395
4396 /* Check with in-band control to see if this packet should be sent
4397 * to the local port regardless of the flow table. */
4398 if (in_band_msg_in_hook(p->in_band, &flow, upcall->packet)) {
4399 struct ofpbuf odp_actions;
4400
4401 ofpbuf_init(&odp_actions, 32);
4402 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_OUTPUT, ODPP_LOCAL);
4403 dpif_execute(p->dpif, odp_actions.data, odp_actions.size,
4404 upcall->packet);
4405 ofpbuf_uninit(&odp_actions);
4406 }
4407
4408 facet = facet_lookup_valid(p, &flow);
4409 if (!facet) {
4410 struct rule *rule = rule_lookup(p, &flow);
4411 if (!rule) {
4412 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4413 struct ofport *port = get_port(p, flow.in_port);
4414 if (port) {
4415 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4416 COVERAGE_INC(ofproto_no_packet_in);
4417 /* XXX install 'drop' flow entry */
4418 ofpbuf_delete(upcall->packet);
4419 return;
4420 }
4421 } else {
4422 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4423 flow.in_port);
4424 }
4425
4426 COVERAGE_INC(ofproto_packet_in);
4427 send_packet_in(p, upcall, &flow, false);
4428 return;
4429 }
4430
4431 facet = facet_create(p, rule, &flow, upcall->packet);
4432 } else if (!facet->may_install) {
4433 /* The facet is not installable, that is, we need to process every
4434 * packet, so process the current packet's actions into 'facet'. */
4435 facet_make_actions(p, facet, upcall->packet);
4436 }
4437
4438 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4439 /*
4440 * Extra-special case for fail-open mode.
4441 *
4442 * We are in fail-open mode and the packet matched the fail-open rule,
4443 * but we are connected to a controller too. We should send the packet
4444 * up to the controller in the hope that it will try to set up a flow
4445 * and thereby allow us to exit fail-open.
4446 *
4447 * See the top-level comment in fail-open.c for more information.
4448 */
4449 send_packet_in(p, upcall, &flow, true);
4450 }
4451
4452 facet_execute(p, facet, upcall->packet);
4453 facet_install(p, facet, false);
4454}
4455
4456static void
4457handle_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4458{
4459 struct flow flow;
4460
4461 switch (upcall->type) {
4462 case DPIF_UC_ACTION:
4463 COVERAGE_INC(ofproto_ctlr_action);
4464 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4465 send_packet_in(p, upcall, &flow, false);
4466 break;
4467
4468 case DPIF_UC_SAMPLE:
4469 if (p->sflow) {
4470 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4471 ofproto_sflow_received(p->sflow, upcall, &flow);
4472 }
4473 ofpbuf_delete(upcall->packet);
4474 break;
4475
4476 case DPIF_UC_MISS:
4477 handle_miss_upcall(p, upcall);
4478 break;
4479
4480 case DPIF_N_UC_TYPES:
4481 default:
4482 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4483 break;
4484 }
4485}
4486\f
4487/* Flow expiration. */
4488
4489static int ofproto_dp_max_idle(const struct ofproto *);
4490static void ofproto_update_used(struct ofproto *);
4491static void rule_expire(struct ofproto *, struct rule *);
4492static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4493
4494/* This function is called periodically by ofproto_run(). Its job is to
4495 * collect updates for the flows that have been installed into the datapath,
4496 * most importantly when they last were used, and then use that information to
4497 * expire flows that have not been used recently.
4498 *
4499 * Returns the number of milliseconds after which it should be called again. */
4500static int
4501ofproto_expire(struct ofproto *ofproto)
4502{
4503 struct rule *rule, *next_rule;
4504 struct cls_cursor cursor;
4505 int dp_max_idle;
4506
4507 /* Update 'used' for each flow in the datapath. */
4508 ofproto_update_used(ofproto);
4509
4510 /* Expire facets that have been idle too long. */
4511 dp_max_idle = ofproto_dp_max_idle(ofproto);
4512 ofproto_expire_facets(ofproto, dp_max_idle);
4513
4514 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4515 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4516 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4517 rule_expire(ofproto, rule);
4518 }
4519
4520 /* Let the hook know that we're at a stable point: all outstanding data
4521 * in existing flows has been accounted to the account_cb. Thus, the
4522 * hook can now reasonably do operations that depend on having accurate
4523 * flow volume accounting (currently, that's just bond rebalancing). */
4524 if (ofproto->ofhooks->account_checkpoint_cb) {
4525 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4526 }
4527
4528 return MIN(dp_max_idle, 1000);
4529}
4530
4531/* Update 'used' member of installed facets. */
4532static void
4533ofproto_update_used(struct ofproto *p)
4534{
4535 const struct dpif_flow_stats *stats;
4536 struct dpif_flow_dump dump;
4537 const struct nlattr *key;
4538 size_t key_len;
4539
4540 dpif_flow_dump_start(&dump, p->dpif);
4541 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4542 struct facet *facet;
4543 struct flow flow;
4544
4545 if (odp_flow_key_to_flow(key, key_len, &flow)) {
4546 struct ds s;
4547
4548 ds_init(&s);
4549 odp_flow_key_format(key, key_len, &s);
4550 VLOG_WARN_RL(&rl, "failed to convert ODP flow key to flow: %s",
4551 ds_cstr(&s));
4552 ds_destroy(&s);
4553
4554 continue;
4555 }
4556 facet = facet_find(p, &flow);
4557
4558 if (facet && facet->installed) {
4559 facet_update_time(p, facet, stats);
4560 facet_account(p, facet, stats->n_bytes);
4561 } else {
4562 /* There's a flow in the datapath that we know nothing about.
4563 * Delete it. */
4564 COVERAGE_INC(ofproto_unexpected_rule);
4565 dpif_flow_del(p->dpif, key, key_len, NULL);
4566 }
4567 }
4568 dpif_flow_dump_done(&dump);
4569}
4570
4571/* Calculates and returns the number of milliseconds of idle time after which
4572 * facets should expire from the datapath and we should fold their statistics
4573 * into their parent rules in userspace. */
4574static int
4575ofproto_dp_max_idle(const struct ofproto *ofproto)
4576{
4577 /*
4578 * Idle time histogram.
4579 *
4580 * Most of the time a switch has a relatively small number of facets. When
4581 * this is the case we might as well keep statistics for all of them in
4582 * userspace and to cache them in the kernel datapath for performance as
4583 * well.
4584 *
4585 * As the number of facets increases, the memory required to maintain
4586 * statistics about them in userspace and in the kernel becomes
4587 * significant. However, with a large number of facets it is likely that
4588 * only a few of them are "heavy hitters" that consume a large amount of
4589 * bandwidth. At this point, only heavy hitters are worth caching in the
4590 * kernel and maintaining in userspaces; other facets we can discard.
4591 *
4592 * The technique used to compute the idle time is to build a histogram with
4593 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4594 * that is installed in the kernel gets dropped in the appropriate bucket.
4595 * After the histogram has been built, we compute the cutoff so that only
4596 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4597 * cached. At least the most-recently-used bucket of facets is kept, so
4598 * actually an arbitrary number of facets can be kept in any given
4599 * expiration run (though the next run will delete most of those unless
4600 * they receive additional data).
4601 *
4602 * This requires a second pass through the facets, in addition to the pass
4603 * made by ofproto_update_used(), because the former function never looks
4604 * at uninstallable facets.
4605 */
4606 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4607 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4608 int buckets[N_BUCKETS] = { 0 };
4609 struct facet *facet;
4610 int total, bucket;
4611 long long int now;
4612 int i;
4613
4614 total = hmap_count(&ofproto->facets);
4615 if (total <= 1000) {
4616 return N_BUCKETS * BUCKET_WIDTH;
4617 }
4618
4619 /* Build histogram. */
4620 now = time_msec();
4621 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4622 long long int idle = now - facet->used;
4623 int bucket = (idle <= 0 ? 0
4624 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4625 : (unsigned int) idle / BUCKET_WIDTH);
4626 buckets[bucket]++;
4627 }
4628
4629 /* Find the first bucket whose flows should be expired. */
4630 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4631 if (buckets[bucket]) {
4632 int subtotal = 0;
4633 do {
4634 subtotal += buckets[bucket++];
4635 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4636 break;
4637 }
4638 }
4639
4640 if (VLOG_IS_DBG_ENABLED()) {
4641 struct ds s;
4642
4643 ds_init(&s);
4644 ds_put_cstr(&s, "keep");
4645 for (i = 0; i < N_BUCKETS; i++) {
4646 if (i == bucket) {
4647 ds_put_cstr(&s, ", drop");
4648 }
4649 if (buckets[i]) {
4650 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4651 }
4652 }
4653 VLOG_INFO("%s: %s (msec:count)",
4654 dpif_name(ofproto->dpif), ds_cstr(&s));
4655 ds_destroy(&s);
4656 }
4657
4658 return bucket * BUCKET_WIDTH;
4659}
4660
4661static void
4662facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4663{
4664 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4665 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4666 struct ofexpired expired;
4667
4668 if (facet->installed) {
4669 struct dpif_flow_stats stats;
4670
4671 facet_put__(ofproto, facet, facet->actions, facet->actions_len,
4672 &stats);
4673 facet_update_stats(ofproto, facet, &stats);
4674 }
4675
4676 expired.flow = facet->flow;
4677 expired.packet_count = facet->packet_count;
4678 expired.byte_count = facet->byte_count;
4679 expired.used = facet->used;
4680 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4681 }
4682}
4683
4684static void
4685ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4686{
4687 long long int cutoff = time_msec() - dp_max_idle;
4688 struct facet *facet, *next_facet;
4689
4690 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4691 facet_active_timeout(ofproto, facet);
4692 if (facet->used < cutoff) {
4693 facet_remove(ofproto, facet);
4694 }
4695 }
4696}
4697
4698/* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4699 * then delete it entirely. */
4700static void
4701rule_expire(struct ofproto *ofproto, struct rule *rule)
4702{
4703 struct facet *facet, *next_facet;
4704 long long int now;
4705 uint8_t reason;
4706
4707 /* Has 'rule' expired? */
4708 now = time_msec();
4709 if (rule->hard_timeout
4710 && now > rule->created + rule->hard_timeout * 1000) {
4711 reason = OFPRR_HARD_TIMEOUT;
4712 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4713 && now >rule->used + rule->idle_timeout * 1000) {
4714 reason = OFPRR_IDLE_TIMEOUT;
4715 } else {
4716 return;
4717 }
4718
4719 COVERAGE_INC(ofproto_expired);
4720
4721 /* Update stats. (This is a no-op if the rule expired due to an idle
4722 * timeout, because that only happens when the rule has no facets left.) */
4723 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4724 facet_remove(ofproto, facet);
4725 }
4726
4727 /* Get rid of the rule. */
4728 if (!rule_is_hidden(rule)) {
4729 rule_send_removed(ofproto, rule, reason);
4730 }
4731 rule_remove(ofproto, rule);
4732}
4733\f
4734static struct ofpbuf *
4735compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4736 uint8_t reason)
4737{
4738 struct ofp_flow_removed *ofr;
4739 struct ofpbuf *buf;
4740
4741 ofr = make_openflow_xid(sizeof *ofr, OFPT_FLOW_REMOVED, htonl(0), &buf);
4742 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match,
4743 rule->flow_cookie, &ofr->cookie);
4744 ofr->priority = htons(rule->cr.priority);
4745 ofr->reason = reason;
4746 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4747 ofr->idle_timeout = htons(rule->idle_timeout);
4748 ofr->packet_count = htonll(rule->packet_count);
4749 ofr->byte_count = htonll(rule->byte_count);
4750
4751 return buf;
4752}
4753
4754static struct ofpbuf *
4755compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4756{
4757 struct nx_flow_removed *nfr;
4758 struct ofpbuf *buf;
4759 int match_len;
4760
4761 make_nxmsg_xid(sizeof *nfr, NXT_FLOW_REMOVED, htonl(0), &buf);
4762 match_len = nx_put_match(buf, &rule->cr);
4763
4764 nfr = buf->data;
4765 nfr->cookie = rule->flow_cookie;
4766 nfr->priority = htons(rule->cr.priority);
4767 nfr->reason = reason;
4768 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4769 nfr->idle_timeout = htons(rule->idle_timeout);
4770 nfr->match_len = htons(match_len);
4771 nfr->packet_count = htonll(rule->packet_count);
4772 nfr->byte_count = htonll(rule->byte_count);
4773
4774 return buf;
4775}
4776
4777static void
4778rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4779{
4780 struct ofconn *ofconn;
4781
4782 if (!rule->send_flow_removed) {
4783 return;
4784 }
4785
4786 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4787 struct ofpbuf *msg;
4788
4789 if (!rconn_is_connected(ofconn->rconn)
4790 || !ofconn_receives_async_msgs(ofconn)) {
4791 continue;
4792 }
4793
4794 msg = (ofconn->flow_format == NXFF_NXM
4795 ? compose_nx_flow_removed(rule, reason)
4796 : compose_ofp_flow_removed(ofconn, rule, reason));
4797
4798 /* Account flow expirations under ofconn->reply_counter, the counter
4799 * for replies to OpenFlow requests. That works because preventing
4800 * OpenFlow requests from being processed also prevents new flows from
4801 * being added (and expiring). (It also prevents processing OpenFlow
4802 * requests that would not add new flows, so it is imperfect.) */
4803 queue_tx(msg, ofconn, ofconn->reply_counter);
4804 }
4805}
4806
4807/* pinsched callback for sending 'ofp_packet_in' on 'ofconn'. */
4808static void
4809do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn_)
4810{
4811 struct ofconn *ofconn = ofconn_;
4812
4813 rconn_send_with_limit(ofconn->rconn, ofp_packet_in,
4814 ofconn->packet_in_counter, 100);
4815}
4816
4817/* Takes 'upcall', whose packet has the flow specified by 'flow', composes an
4818 * OpenFlow packet-in message from it, and passes it to 'ofconn''s packet
4819 * scheduler for sending.
4820 *
4821 * If 'clone' is true, the caller retains ownership of 'upcall->packet'.
4822 * Otherwise, ownership is transferred to this function. */
4823static void
4824schedule_packet_in(struct ofconn *ofconn, struct dpif_upcall *upcall,
4825 const struct flow *flow, bool clone)
4826{
4827 enum { OPI_SIZE = offsetof(struct ofp_packet_in, data) };
4828 struct ofproto *ofproto = ofconn->ofproto;
4829 struct ofp_packet_in *opi;
4830 int total_len, send_len;
4831 struct ofpbuf *packet;
4832 uint32_t buffer_id;
4833 int idx;
4834
4835 /* Get OpenFlow buffer_id. */
4836 if (upcall->type == DPIF_UC_ACTION) {
4837 buffer_id = UINT32_MAX;
4838 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4839 buffer_id = pktbuf_get_null();
4840 } else if (!ofconn->pktbuf) {
4841 buffer_id = UINT32_MAX;
4842 } else {
4843 buffer_id = pktbuf_save(ofconn->pktbuf, upcall->packet, flow->in_port);
4844 }
4845
4846 /* Figure out how much of the packet to send. */
4847 total_len = send_len = upcall->packet->size;
4848 if (buffer_id != UINT32_MAX) {
4849 send_len = MIN(send_len, ofconn->miss_send_len);
4850 }
4851 if (upcall->type == DPIF_UC_ACTION) {
4852 send_len = MIN(send_len, upcall->userdata);
4853 }
4854
4855 /* Copy or steal buffer for OFPT_PACKET_IN. */
4856 if (clone) {
4857 packet = ofpbuf_clone_data_with_headroom(upcall->packet->data,
4858 send_len, OPI_SIZE);
4859 } else {
4860 packet = upcall->packet;
4861 packet->size = send_len;
4862 }
4863
4864 /* Add OFPT_PACKET_IN. */
4865 opi = ofpbuf_push_zeros(packet, OPI_SIZE);
4866 opi->header.version = OFP_VERSION;
4867 opi->header.type = OFPT_PACKET_IN;
4868 opi->total_len = htons(total_len);
4869 opi->in_port = htons(odp_port_to_ofp_port(flow->in_port));
4870 opi->reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION;
4871 opi->buffer_id = htonl(buffer_id);
4872 update_openflow_length(packet);
4873
4874 /* Hand over to packet scheduler. It might immediately call into
4875 * do_send_packet_in() or it might buffer it for a while (until a later
4876 * call to pinsched_run()). */
4877 idx = upcall->type == DPIF_UC_MISS ? 0 : 1;
4878 pinsched_send(ofconn->schedulers[idx], flow->in_port,
4879 packet, do_send_packet_in, ofconn);
4880}
4881
4882/* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an
4883 * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to
4884 * their individual configurations.
4885 *
4886 * Takes ownership of 'packet'. */
4887static void
4888send_packet_in(struct ofproto *ofproto, struct dpif_upcall *upcall,
4889 const struct flow *flow, bool clone)
4890{
4891 struct ofconn *ofconn, *prev;
4892
4893 prev = NULL;
4894 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4895 if (ofconn_receives_async_msgs(ofconn)) {
4896 if (prev) {
4897 schedule_packet_in(prev, upcall, flow, true);
4898 }
4899 prev = ofconn;
4900 }
4901 }
4902 if (prev) {
4903 schedule_packet_in(prev, upcall, flow, clone);
4904 } else if (!clone) {
4905 ofpbuf_delete(upcall->packet);
4906 }
4907}
4908
4909static uint64_t
4910pick_datapath_id(const struct ofproto *ofproto)
4911{
4912 const struct ofport *port;
4913
4914 port = get_port(ofproto, ODPP_LOCAL);
4915 if (port) {
4916 uint8_t ea[ETH_ADDR_LEN];
4917 int error;
4918
4919 error = netdev_get_etheraddr(port->netdev, ea);
4920 if (!error) {
4921 return eth_addr_to_uint64(ea);
4922 }
4923 VLOG_WARN("could not get MAC address for %s (%s)",
4924 netdev_get_name(port->netdev), strerror(error));
4925 }
4926 return ofproto->fallback_dpid;
4927}
4928
4929static uint64_t
4930pick_fallback_dpid(void)
4931{
4932 uint8_t ea[ETH_ADDR_LEN];
4933 eth_addr_nicira_random(ea);
4934 return eth_addr_to_uint64(ea);
4935}
4936\f
4937static void
4938ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED,
4939 void *aux OVS_UNUSED)
4940{
4941 const struct shash_node *node;
4942 struct ds results;
4943
4944 ds_init(&results);
4945 SHASH_FOR_EACH (node, &all_ofprotos) {
4946 ds_put_format(&results, "%s\n", node->name);
4947 }
4948 unixctl_command_reply(conn, 200, ds_cstr(&results));
4949 ds_destroy(&results);
4950}
4951
4952struct ofproto_trace {
4953 struct action_xlate_ctx ctx;
4954 struct flow flow;
4955 struct ds *result;
4956};
4957
4958static void
4959trace_format_rule(struct ds *result, int level, const struct rule *rule)
4960{
4961 ds_put_char_multiple(result, '\t', level);
4962 if (!rule) {
4963 ds_put_cstr(result, "No match\n");
4964 return;
4965 }
4966
4967 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
4968 ntohll(rule->flow_cookie));
4969 cls_rule_format(&rule->cr, result);
4970 ds_put_char(result, '\n');
4971
4972 ds_put_char_multiple(result, '\t', level);
4973 ds_put_cstr(result, "OpenFlow ");
4974 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
4975 rule->n_actions * sizeof *rule->actions);
4976 ds_put_char(result, '\n');
4977}
4978
4979static void
4980trace_format_flow(struct ds *result, int level, const char *title,
4981 struct ofproto_trace *trace)
4982{
4983 ds_put_char_multiple(result, '\t', level);
4984 ds_put_format(result, "%s: ", title);
4985 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
4986 ds_put_cstr(result, "unchanged");
4987 } else {
4988 flow_format(result, &trace->ctx.flow);
4989 trace->flow = trace->ctx.flow;
4990 }
4991 ds_put_char(result, '\n');
4992}
4993
4994static void
4995trace_resubmit(struct action_xlate_ctx *ctx, const struct rule *rule)
4996{
4997 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
4998 struct ds *result = trace->result;
4999
5000 ds_put_char(result, '\n');
5001 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
5002 trace_format_rule(result, ctx->recurse + 1, rule);
5003}
5004
5005static void
5006ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
5007 void *aux OVS_UNUSED)
5008{
5009 char *dpname, *in_port_s, *tun_id_s, *packet_s;
5010 char *args = xstrdup(args_);
5011 char *save_ptr = NULL;
5012 struct ofproto *ofproto;
5013 struct ofpbuf packet;
5014 struct rule *rule;
5015 struct ds result;
5016 struct flow flow;
5017 uint16_t in_port;
5018 ovs_be64 tun_id;
5019 char *s;
5020
5021 ofpbuf_init(&packet, strlen(args) / 2);
5022 ds_init(&result);
5023
5024 dpname = strtok_r(args, " ", &save_ptr);
5025 tun_id_s = strtok_r(NULL, " ", &save_ptr);
5026 in_port_s = strtok_r(NULL, " ", &save_ptr);
5027 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
5028 if (!dpname || !in_port_s || !packet_s) {
5029 unixctl_command_reply(conn, 501, "Bad command syntax");
5030 goto exit;
5031 }
5032
5033 ofproto = shash_find_data(&all_ofprotos, dpname);
5034 if (!ofproto) {
5035 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5036 "for help)");
5037 goto exit;
5038 }
5039
5040 tun_id = htonll(strtoull(tun_id_s, NULL, 10));
5041 in_port = ofp_port_to_odp_port(atoi(in_port_s));
5042
5043 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
5044 packet_s += strspn(packet_s, " ");
5045 if (*packet_s != '\0') {
5046 unixctl_command_reply(conn, 501, "Trailing garbage in command");
5047 goto exit;
5048 }
5049 if (packet.size < ETH_HEADER_LEN) {
5050 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
5051 goto exit;
5052 }
5053
5054 ds_put_cstr(&result, "Packet: ");
5055 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
5056 ds_put_cstr(&result, s);
5057 free(s);
5058
5059 flow_extract(&packet, tun_id, in_port, &flow);
5060 ds_put_cstr(&result, "Flow: ");
5061 flow_format(&result, &flow);
5062 ds_put_char(&result, '\n');
5063
5064 rule = rule_lookup(ofproto, &flow);
5065 trace_format_rule(&result, 0, rule);
5066 if (rule) {
5067 struct ofproto_trace trace;
5068 struct ofpbuf *odp_actions;
5069
5070 trace.result = &result;
5071 trace.flow = flow;
5072 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
5073 trace.ctx.resubmit_hook = trace_resubmit;
5074 odp_actions = xlate_actions(&trace.ctx,
5075 rule->actions, rule->n_actions);
5076
5077 ds_put_char(&result, '\n');
5078 trace_format_flow(&result, 0, "Final flow", &trace);
5079 ds_put_cstr(&result, "Datapath actions: ");
5080 format_odp_actions(&result, odp_actions->data, odp_actions->size);
5081 ofpbuf_delete(odp_actions);
5082 }
5083
5084 unixctl_command_reply(conn, 200, ds_cstr(&result));
5085
5086exit:
5087 ds_destroy(&result);
5088 ofpbuf_uninit(&packet);
5089 free(args);
5090}
5091
5092static void
5093ofproto_unixctl_init(void)
5094{
5095 static bool registered;
5096 if (registered) {
5097 return;
5098 }
5099 registered = true;
5100
5101 unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL);
5102 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
5103}
5104\f
5105static bool
5106default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5107 struct ofpbuf *odp_actions, tag_type *tags,
5108 uint16_t *nf_output_iface, void *ofproto_)
5109{
5110 struct ofproto *ofproto = ofproto_;
5111 int out_port;
5112
5113 /* Drop frames for reserved multicast addresses. */
5114 if (eth_addr_is_reserved(flow->dl_dst)) {
5115 return true;
5116 }
5117
5118 /* Learn source MAC (but don't try to learn from revalidation). */
5119 if (packet != NULL) {
5120 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5121 0, flow->in_port,
5122 GRAT_ARP_LOCK_NONE);
5123 if (rev_tag) {
5124 /* The log messages here could actually be useful in debugging,
5125 * so keep the rate limit relatively high. */
5126 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5127 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5128 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5129 ofproto_revalidate(ofproto, rev_tag);
5130 }
5131 }
5132
5133 /* Determine output port. */
5134 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5135 NULL);
5136 if (out_port < 0) {
5137 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5138 nf_output_iface, odp_actions);
5139 } else if (out_port != flow->in_port) {
5140 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, out_port);
5141 *nf_output_iface = out_port;
5142 } else {
5143 /* Drop. */
5144 }
5145
5146 return true;
5147}
5148
5149static const struct ofhooks default_ofhooks = {
5150 default_normal_ofhook_cb,
5151 NULL,
5152 NULL,
5153 NULL
5154};