]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qapi/migration.json
Merge tag 'pull-tcg-20231106' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / qapi / migration.json
... / ...
CommitLineData
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20# target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27# compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34# (since 1.3)
35#
36# @mbps: throughput in megabits/sec. (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39# (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42# destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45# statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50# (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53# (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56# (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59# (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62# synchronization could not avoid copying dirty pages. This is
63# between 0 and @dirty-sync-count * @multifd-channels. (since
64# 7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75 'duplicate': 'int',
76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77 'normal': 'int',
78 'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79 'mbps': 'number', 'dirty-sync-count': 'int',
80 'postcopy-requests': 'int', 'page-size': 'int',
81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83 'postcopy-bytes': 'uint64',
84 'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109 'cache-miss': 'int', 'cache-miss-rate': 'number',
110 'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120# data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132 'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode. (since
150# 2.5)
151#
152# @postcopy-paused: during postcopy but paused. (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy. (since
155# 3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162# this state unless colo capability is enabled for migration.
163# (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation. (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168# enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171# completed. (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177 'active', 'postcopy-active', 'postcopy-paused',
178 'postcopy-recover', 'completed', 'failed', 'colo',
179 'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186# devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191 'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199# If this field is not returned, no migration process has been
200# initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203# returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206# only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209# migration statistics, only returned if XBZRLE feature is on and
210# status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213# If migration has ended, it returns the total migration time.
214# (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217# downtime in milliseconds for the guest. (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220# downtime in milliseconds for the guest in last walk of the dirty
221# bitmap. (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224# iterations begin but *after* the QMP command is issued. This is
225# designed to provide an accounting of any activities (such as
226# RDMA pinning) which may be expensive, but do not actually occur
227# during the iterative migration rounds themselves. (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230# throttled during auto-converge. This is only present when
231# auto-converge has started throttling guest cpus. (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234# should not attempt to parse the error strings. (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237# postcopy live migration. This is only present when the
238# postcopy-blocktime migration capability is enabled. (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241# This is only present when the postcopy-blocktime migration
242# capability is enabled. (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245# compression feature is on and status is 'active' or 'completed'
246# (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249# (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252# statistics, only returned if VFIO device is present, migration
253# is supported by all VFIO devices and status is 'active' or
254# 'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257# blocked. Present and non-empty when migration is blocked.
258# (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261# (in microseconds) of virtual CPUs each dirty ring full round,
262# which shows how MigrationCapability dirty-limit affects the
263# guest during live migration. (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266# (in microseconds) for each dirty ring full round. The value
267# equals the dirty ring memory size divided by the average dirty
268# page rate of the virtual CPU, which can be used to observe the
269# average memory load of the virtual CPU indirectly. Note that
270# zero means guest doesn't dirty memory. (Since 8.1)
271#
272# Features:
273#
274# @deprecated: Member @disk is deprecated because block migration is.
275# Member @compression is deprecated because it is unreliable and
276# untested. It is recommended to use multifd migration, which
277# offers an alternative compression implementation that is
278# reliable and tested.
279#
280# Since: 0.14
281##
282{ 'struct': 'MigrationInfo',
283 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284 '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285 '*vfio': 'VfioStats',
286 '*xbzrle-cache': 'XBZRLECacheStats',
287 '*total-time': 'int',
288 '*expected-downtime': 'int',
289 '*downtime': 'int',
290 '*setup-time': 'int',
291 '*cpu-throttle-percentage': 'int',
292 '*error-desc': 'str',
293 '*blocked-reasons': ['str'],
294 '*postcopy-blocktime': 'uint32',
295 '*postcopy-vcpu-blocktime': ['uint32'],
296 '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297 '*socket-address': ['SocketAddress'],
298 '*dirty-limit-throttle-time-per-round': 'uint64',
299 '*dirty-limit-ring-full-time': 'uint64'} }
300
301##
302# @query-migrate:
303#
304# Returns information about current migration process. If migration
305# is active there will be another json-object with RAM migration
306# status and if block migration is active another one with block
307# migration status.
308#
309# Returns: @MigrationInfo
310#
311# Since: 0.14
312#
313# Examples:
314#
315# 1. Before the first migration
316#
317# -> { "execute": "query-migrate" }
318# <- { "return": {} }
319#
320# 2. Migration is done and has succeeded
321#
322# -> { "execute": "query-migrate" }
323# <- { "return": {
324# "status": "completed",
325# "total-time":12345,
326# "setup-time":12345,
327# "downtime":12345,
328# "ram":{
329# "transferred":123,
330# "remaining":123,
331# "total":246,
332# "duplicate":123,
333# "normal":123,
334# "normal-bytes":123456,
335# "dirty-sync-count":15
336# }
337# }
338# }
339#
340# 3. Migration is done and has failed
341#
342# -> { "execute": "query-migrate" }
343# <- { "return": { "status": "failed" } }
344#
345# 4. Migration is being performed and is not a block migration:
346#
347# -> { "execute": "query-migrate" }
348# <- {
349# "return":{
350# "status":"active",
351# "total-time":12345,
352# "setup-time":12345,
353# "expected-downtime":12345,
354# "ram":{
355# "transferred":123,
356# "remaining":123,
357# "total":246,
358# "duplicate":123,
359# "normal":123,
360# "normal-bytes":123456,
361# "dirty-sync-count":15
362# }
363# }
364# }
365#
366# 5. Migration is being performed and is a block migration:
367#
368# -> { "execute": "query-migrate" }
369# <- {
370# "return":{
371# "status":"active",
372# "total-time":12345,
373# "setup-time":12345,
374# "expected-downtime":12345,
375# "ram":{
376# "total":1057024,
377# "remaining":1053304,
378# "transferred":3720,
379# "duplicate":123,
380# "normal":123,
381# "normal-bytes":123456,
382# "dirty-sync-count":15
383# },
384# "disk":{
385# "total":20971520,
386# "remaining":20880384,
387# "transferred":91136
388# }
389# }
390# }
391#
392# 6. Migration is being performed and XBZRLE is active:
393#
394# -> { "execute": "query-migrate" }
395# <- {
396# "return":{
397# "status":"active",
398# "total-time":12345,
399# "setup-time":12345,
400# "expected-downtime":12345,
401# "ram":{
402# "total":1057024,
403# "remaining":1053304,
404# "transferred":3720,
405# "duplicate":10,
406# "normal":3333,
407# "normal-bytes":3412992,
408# "dirty-sync-count":15
409# },
410# "xbzrle-cache":{
411# "cache-size":67108864,
412# "bytes":20971520,
413# "pages":2444343,
414# "cache-miss":2244,
415# "cache-miss-rate":0.123,
416# "encoding-rate":80.1,
417# "overflow":34434
418# }
419# }
420# }
421##
422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424##
425# @MigrationCapability:
426#
427# Migration capabilities enumeration
428#
429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430# Encoding). This feature allows us to minimize migration traffic
431# for certain work loads, by sending compressed difference of the
432# pages
433#
434# @rdma-pin-all: Controls whether or not the entire VM memory
435# footprint is mlock()'d on demand or all at once. Refer to
436# docs/rdma.txt for usage. Disabled by default. (since 2.0)
437#
438# @zero-blocks: During storage migration encode blocks of zeroes
439# efficiently. This essentially saves 1MB of zeroes per block on
440# the wire. Enabling requires source and target VM to support
441# this feature. To enable it is sufficient to enable the
442# capability on the source VM. The feature is disabled by default.
443# (since 1.6)
444#
445# @compress: Use multiple compression threads to accelerate live
446# migration. This feature can help to reduce the migration
447# traffic, by sending compressed pages. Please note that if
448# compress and xbzrle are both on, compress only takes effect in
449# the ram bulk stage, after that, it will be disabled and only
450# xbzrle takes effect, this can help to minimize migration
451# traffic. The feature is disabled by default. (since 2.4)
452#
453# @events: generate events for each migration state change (since 2.4)
454#
455# @auto-converge: If enabled, QEMU will automatically throttle down
456# the guest to speed up convergence of RAM migration. (since 1.6)
457#
458# @postcopy-ram: Start executing on the migration target before all of
459# RAM has been migrated, pulling the remaining pages along as
460# needed. The capacity must have the same setting on both source
461# and target or migration will not even start. NOTE: If the
462# migration fails during postcopy the VM will fail. (since 2.6)
463#
464# @x-colo: If enabled, migration will never end, and the state of the
465# VM on the primary side will be migrated continuously to the VM
466# on secondary side, this process is called COarse-Grain LOck
467# Stepping (COLO) for Non-stop Service. (since 2.8)
468#
469# @release-ram: if enabled, qemu will free the migrated ram pages on
470# the source during postcopy-ram migration. (since 2.9)
471#
472# @block: If enabled, QEMU will also migrate the contents of all block
473# devices. Default is disabled. A possible alternative uses
474# mirror jobs to a builtin NBD server on the destination, which
475# offers more flexibility. (Since 2.10)
476#
477# @return-path: If enabled, migration will use the return path even
478# for precopy. (since 2.10)
479#
480# @pause-before-switchover: Pause outgoing migration before
481# serialising device state and before disabling block IO (since
482# 2.11)
483#
484# @multifd: Use more than one fd for migration (since 4.0)
485#
486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487# (since 2.12)
488#
489# @postcopy-blocktime: Calculate downtime for postcopy live migration
490# (since 3.0)
491#
492# @late-block-activate: If enabled, the destination will not activate
493# block devices (and thus take locks) immediately at the end of
494# migration. (since 3.0)
495#
496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497# that is accessible on the destination machine. (since 4.0)
498#
499# @validate-uuid: Send the UUID of the source to allow the destination
500# to ensure it is the same. (since 4.2)
501#
502# @background-snapshot: If enabled, the migration stream will be a
503# snapshot of the VM exactly at the point when the migration
504# procedure starts. The VM RAM is saved with running VM. (since
505# 6.0)
506#
507# @zero-copy-send: Controls behavior on sending memory pages on
508# migration. When true, enables a zero-copy mechanism for sending
509# memory pages, if host supports it. Requires that QEMU be
510# permitted to use locked memory for guest RAM pages. (since 7.1)
511#
512# @postcopy-preempt: If enabled, the migration process will allow
513# postcopy requests to preempt precopy stream, so postcopy
514# requests will be handled faster. This is a performance feature
515# and should not affect the correctness of postcopy migration.
516# (since 7.1)
517#
518# @switchover-ack: If enabled, migration will not stop the source VM
519# and complete the migration until an ACK is received from the
520# destination that it's OK to do so. Exactly when this ACK is
521# sent depends on the migrated devices that use this feature. For
522# example, a device can use it to make sure some of its data is
523# sent and loaded in the destination before doing switchover.
524# This can reduce downtime if devices that support this capability
525# are present. 'return-path' capability must be enabled to use
526# it. (since 8.1)
527#
528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529# keep their dirty page rate within @vcpu-dirty-limit. This can
530# improve responsiveness of large guests during live migration,
531# and can result in more stable read performance. Requires KVM
532# with accelerator property "dirty-ring-size" set. (Since 8.1)
533#
534# Features:
535#
536# @deprecated: Member @block is deprecated. Use blockdev-mirror with
537# NBD instead. Member @compression is deprecated because it is
538# unreliable and untested. It is recommended to use multifd
539# migration, which offers an alternative compression
540# implementation that is reliable and tested.
541#
542# @unstable: Members @x-colo and @x-ignore-shared are experimental.
543#
544# Since: 1.2
545##
546{ 'enum': 'MigrationCapability',
547 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
548 { 'name': 'compress', 'features': [ 'deprecated' ] },
549 'events', 'postcopy-ram',
550 { 'name': 'x-colo', 'features': [ 'unstable' ] },
551 'release-ram',
552 { 'name': 'block', 'features': [ 'deprecated' ] },
553 'return-path', 'pause-before-switchover', 'multifd',
554 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
555 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
556 'validate-uuid', 'background-snapshot',
557 'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
558 'dirty-limit'] }
559
560##
561# @MigrationCapabilityStatus:
562#
563# Migration capability information
564#
565# @capability: capability enum
566#
567# @state: capability state bool
568#
569# Since: 1.2
570##
571{ 'struct': 'MigrationCapabilityStatus',
572 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
573
574##
575# @migrate-set-capabilities:
576#
577# Enable/Disable the following migration capabilities (like xbzrle)
578#
579# @capabilities: json array of capability modifications to make
580#
581# Since: 1.2
582#
583# Example:
584#
585# -> { "execute": "migrate-set-capabilities" , "arguments":
586# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
587# <- { "return": {} }
588##
589{ 'command': 'migrate-set-capabilities',
590 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
591
592##
593# @query-migrate-capabilities:
594#
595# Returns information about the current migration capabilities status
596#
597# Returns: @MigrationCapabilityStatus
598#
599# Since: 1.2
600#
601# Example:
602#
603# -> { "execute": "query-migrate-capabilities" }
604# <- { "return": [
605# {"state": false, "capability": "xbzrle"},
606# {"state": false, "capability": "rdma-pin-all"},
607# {"state": false, "capability": "auto-converge"},
608# {"state": false, "capability": "zero-blocks"},
609# {"state": false, "capability": "compress"},
610# {"state": true, "capability": "events"},
611# {"state": false, "capability": "postcopy-ram"},
612# {"state": false, "capability": "x-colo"}
613# ]}
614##
615{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
616
617##
618# @MultiFDCompression:
619#
620# An enumeration of multifd compression methods.
621#
622# @none: no compression.
623#
624# @zlib: use zlib compression method.
625#
626# @zstd: use zstd compression method.
627#
628# Since: 5.0
629##
630{ 'enum': 'MultiFDCompression',
631 'data': [ 'none', 'zlib',
632 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
633
634##
635# @MigMode:
636#
637# @normal: the original form of migration. (since 8.2)
638#
639# @cpr-reboot: The migrate command saves state to a file, allowing one to
640# quit qemu, reboot to an updated kernel, and restart an updated
641# version of qemu. The caller must specify a migration URI
642# that writes to and reads from a file. Unlike normal mode,
643# the use of certain local storage options does not block the
644# migration, but the caller must not modify guest block devices
645# between the quit and restart. To avoid saving guest RAM to the
646# file, the memory backend must be shared, and the @x-ignore-shared
647# migration capability must be set. Guest RAM must be non-volatile
648# across reboot, such as by backing it with a dax device, but this
649# is not enforced. The restarted qemu arguments must match those
650# used to initially start qemu, plus the -incoming option.
651# (since 8.2)
652##
653{ 'enum': 'MigMode',
654 'data': [ 'normal', 'cpr-reboot' ] }
655
656##
657# @BitmapMigrationBitmapAliasTransform:
658#
659# @persistent: If present, the bitmap will be made persistent or
660# transient depending on this parameter.
661#
662# Since: 6.0
663##
664{ 'struct': 'BitmapMigrationBitmapAliasTransform',
665 'data': {
666 '*persistent': 'bool'
667 } }
668
669##
670# @BitmapMigrationBitmapAlias:
671#
672# @name: The name of the bitmap.
673#
674# @alias: An alias name for migration (for example the bitmap name on
675# the opposite site).
676#
677# @transform: Allows the modification of the migrated bitmap. (since
678# 6.0)
679#
680# Since: 5.2
681##
682{ 'struct': 'BitmapMigrationBitmapAlias',
683 'data': {
684 'name': 'str',
685 'alias': 'str',
686 '*transform': 'BitmapMigrationBitmapAliasTransform'
687 } }
688
689##
690# @BitmapMigrationNodeAlias:
691#
692# Maps a block node name and the bitmaps it has to aliases for dirty
693# bitmap migration.
694#
695# @node-name: A block node name.
696#
697# @alias: An alias block node name for migration (for example the node
698# name on the opposite site).
699#
700# @bitmaps: Mappings for the bitmaps on this node.
701#
702# Since: 5.2
703##
704{ 'struct': 'BitmapMigrationNodeAlias',
705 'data': {
706 'node-name': 'str',
707 'alias': 'str',
708 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
709 } }
710
711##
712# @MigrationParameter:
713#
714# Migration parameters enumeration
715#
716# @announce-initial: Initial delay (in milliseconds) before sending
717# the first announce (Since 4.0)
718#
719# @announce-max: Maximum delay (in milliseconds) between packets in
720# the announcement (Since 4.0)
721#
722# @announce-rounds: Number of self-announce packets sent after
723# migration (Since 4.0)
724#
725# @announce-step: Increase in delay (in milliseconds) between
726# subsequent packets in the announcement (Since 4.0)
727#
728# @compress-level: Set the compression level to be used in live
729# migration, the compression level is an integer between 0 and 9,
730# where 0 means no compression, 1 means the best compression
731# speed, and 9 means best compression ratio which will consume
732# more CPU.
733#
734# @compress-threads: Set compression thread count to be used in live
735# migration, the compression thread count is an integer between 1
736# and 255.
737#
738# @compress-wait-thread: Controls behavior when all compression
739# threads are currently busy. If true (default), wait for a free
740# compression thread to become available; otherwise, send the page
741# uncompressed. (Since 3.1)
742#
743# @decompress-threads: Set decompression thread count to be used in
744# live migration, the decompression thread count is an integer
745# between 1 and 255. Usually, decompression is at least 4 times as
746# fast as compression, so set the decompress-threads to the number
747# about 1/4 of compress-threads is adequate.
748#
749# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
750# bytes_xfer_period to trigger throttling. It is expressed as
751# percentage. The default value is 50. (Since 5.0)
752#
753# @cpu-throttle-initial: Initial percentage of time guest cpus are
754# throttled when migration auto-converge is activated. The
755# default value is 20. (Since 2.7)
756#
757# @cpu-throttle-increment: throttle percentage increase each time
758# auto-converge detects that migration is not making progress.
759# The default value is 10. (Since 2.7)
760#
761# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
762# the tail stage of throttling, the Guest is very sensitive to CPU
763# percentage while the @cpu-throttle -increment is excessive
764# usually at tail stage. If this parameter is true, we will
765# compute the ideal CPU percentage used by the Guest, which may
766# exactly make the dirty rate match the dirty rate threshold.
767# Then we will choose a smaller throttle increment between the one
768# specified by @cpu-throttle-increment and the one generated by
769# ideal CPU percentage. Therefore, it is compatible to
770# traditional throttling, meanwhile the throttle increment won't
771# be excessive at tail stage. The default value is false. (Since
772# 5.1)
773#
774# @tls-creds: ID of the 'tls-creds' object that provides credentials
775# for establishing a TLS connection over the migration data
776# channel. On the outgoing side of the migration, the credentials
777# must be for a 'client' endpoint, while for the incoming side the
778# credentials must be for a 'server' endpoint. Setting this will
779# enable TLS for all migrations. The default is unset, resulting
780# in unsecured migration at the QEMU level. (Since 2.7)
781#
782# @tls-hostname: hostname of the target host for the migration. This
783# is required when using x509 based TLS credentials and the
784# migration URI does not already include a hostname. For example
785# if using fd: or exec: based migration, the hostname must be
786# provided so that the server's x509 certificate identity can be
787# validated. (Since 2.7)
788#
789# @tls-authz: ID of the 'authz' object subclass that provides access
790# control checking of the TLS x509 certificate distinguished name.
791# This object is only resolved at time of use, so can be deleted
792# and recreated on the fly while the migration server is active.
793# If missing, it will default to denying access (Since 4.0)
794#
795# @max-bandwidth: to set maximum speed for migration. maximum speed
796# in bytes per second. (Since 2.8)
797#
798# @avail-switchover-bandwidth: to set the available bandwidth that
799# migration can use during switchover phase. NOTE! This does not
800# limit the bandwidth during switchover, but only for calculations when
801# making decisions to switchover. By default, this value is zero,
802# which means QEMU will estimate the bandwidth automatically. This can
803# be set when the estimated value is not accurate, while the user is
804# able to guarantee such bandwidth is available when switching over.
805# When specified correctly, this can make the switchover decision much
806# more accurate. (Since 8.2)
807#
808# @downtime-limit: set maximum tolerated downtime for migration.
809# maximum downtime in milliseconds (Since 2.8)
810#
811# @x-checkpoint-delay: The delay time (in ms) between two COLO
812# checkpoints in periodic mode. (Since 2.8)
813#
814# @block-incremental: Affects how much storage is migrated when the
815# block migration capability is enabled. When false, the entire
816# storage backing chain is migrated into a flattened image at the
817# destination; when true, only the active qcow2 layer is migrated
818# and the destination must already have access to the same backing
819# chain as was used on the source. (since 2.10)
820#
821# @multifd-channels: Number of channels used to migrate data in
822# parallel. This is the same number that the number of sockets
823# used for migration. The default value is 2 (since 4.0)
824#
825# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
826# needs to be a multiple of the target page size and a power of 2
827# (Since 2.11)
828#
829# @max-postcopy-bandwidth: Background transfer bandwidth during
830# postcopy. Defaults to 0 (unlimited). In bytes per second.
831# (Since 3.0)
832#
833# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
834# (Since 3.1)
835#
836# @multifd-compression: Which compression method to use. Defaults to
837# none. (Since 5.0)
838#
839# @multifd-zlib-level: Set the compression level to be used in live
840# migration, the compression level is an integer between 0 and 9,
841# where 0 means no compression, 1 means the best compression
842# speed, and 9 means best compression ratio which will consume
843# more CPU. Defaults to 1. (Since 5.0)
844#
845# @multifd-zstd-level: Set the compression level to be used in live
846# migration, the compression level is an integer between 0 and 20,
847# where 0 means no compression, 1 means the best compression
848# speed, and 20 means best compression ratio which will consume
849# more CPU. Defaults to 1. (Since 5.0)
850#
851# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
852# aliases for the purpose of dirty bitmap migration. Such aliases
853# may for example be the corresponding names on the opposite site.
854# The mapping must be one-to-one, but not necessarily complete: On
855# the source, unmapped bitmaps and all bitmaps on unmapped nodes
856# will be ignored. On the destination, encountering an unmapped
857# alias in the incoming migration stream will result in a report,
858# and all further bitmap migration data will then be discarded.
859# Note that the destination does not know about bitmaps it does
860# not receive, so there is no limitation or requirement regarding
861# the number of bitmaps received, or how they are named, or on
862# which nodes they are placed. By default (when this parameter
863# has never been set), bitmap names are mapped to themselves.
864# Nodes are mapped to their block device name if there is one, and
865# to their node name otherwise. (Since 5.2)
866#
867# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
868# limit during live migration. Should be in the range 1 to 1000ms.
869# Defaults to 1000ms. (Since 8.1)
870#
871# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
872# Defaults to 1. (Since 8.1)
873#
874# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
875# (Since 8.2)
876#
877# Features:
878#
879# @deprecated: Member @block-incremental is deprecated. Use
880# blockdev-mirror with NBD instead. Members @compress-level,
881# @compress-threads, @decompress-threads and @compress-wait-thread
882# are deprecated because @compression is deprecated.
883#
884# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
885# are experimental.
886#
887# Since: 2.4
888##
889{ 'enum': 'MigrationParameter',
890 'data': ['announce-initial', 'announce-max',
891 'announce-rounds', 'announce-step',
892 { 'name': 'compress-level', 'features': [ 'deprecated' ] },
893 { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
894 { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
895 { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
896 'throttle-trigger-threshold',
897 'cpu-throttle-initial', 'cpu-throttle-increment',
898 'cpu-throttle-tailslow',
899 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
900 'avail-switchover-bandwidth', 'downtime-limit',
901 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
902 { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
903 'multifd-channels',
904 'xbzrle-cache-size', 'max-postcopy-bandwidth',
905 'max-cpu-throttle', 'multifd-compression',
906 'multifd-zlib-level', 'multifd-zstd-level',
907 'block-bitmap-mapping',
908 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
909 'vcpu-dirty-limit',
910 'mode'] }
911
912##
913# @MigrateSetParameters:
914#
915# @announce-initial: Initial delay (in milliseconds) before sending
916# the first announce (Since 4.0)
917#
918# @announce-max: Maximum delay (in milliseconds) between packets in
919# the announcement (Since 4.0)
920#
921# @announce-rounds: Number of self-announce packets sent after
922# migration (Since 4.0)
923#
924# @announce-step: Increase in delay (in milliseconds) between
925# subsequent packets in the announcement (Since 4.0)
926#
927# @compress-level: compression level
928#
929# @compress-threads: compression thread count
930#
931# @compress-wait-thread: Controls behavior when all compression
932# threads are currently busy. If true (default), wait for a free
933# compression thread to become available; otherwise, send the page
934# uncompressed. (Since 3.1)
935#
936# @decompress-threads: decompression thread count
937#
938# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
939# bytes_xfer_period to trigger throttling. It is expressed as
940# percentage. The default value is 50. (Since 5.0)
941#
942# @cpu-throttle-initial: Initial percentage of time guest cpus are
943# throttled when migration auto-converge is activated. The
944# default value is 20. (Since 2.7)
945#
946# @cpu-throttle-increment: throttle percentage increase each time
947# auto-converge detects that migration is not making progress.
948# The default value is 10. (Since 2.7)
949#
950# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
951# the tail stage of throttling, the Guest is very sensitive to CPU
952# percentage while the @cpu-throttle -increment is excessive
953# usually at tail stage. If this parameter is true, we will
954# compute the ideal CPU percentage used by the Guest, which may
955# exactly make the dirty rate match the dirty rate threshold.
956# Then we will choose a smaller throttle increment between the one
957# specified by @cpu-throttle-increment and the one generated by
958# ideal CPU percentage. Therefore, it is compatible to
959# traditional throttling, meanwhile the throttle increment won't
960# be excessive at tail stage. The default value is false. (Since
961# 5.1)
962#
963# @tls-creds: ID of the 'tls-creds' object that provides credentials
964# for establishing a TLS connection over the migration data
965# channel. On the outgoing side of the migration, the credentials
966# must be for a 'client' endpoint, while for the incoming side the
967# credentials must be for a 'server' endpoint. Setting this to a
968# non-empty string enables TLS for all migrations. An empty
969# string means that QEMU will use plain text mode for migration,
970# rather than TLS (Since 2.9) Previously (since 2.7), this was
971# reported by omitting tls-creds instead.
972#
973# @tls-hostname: hostname of the target host for the migration. This
974# is required when using x509 based TLS credentials and the
975# migration URI does not already include a hostname. For example
976# if using fd: or exec: based migration, the hostname must be
977# provided so that the server's x509 certificate identity can be
978# validated. (Since 2.7) An empty string means that QEMU will use
979# the hostname associated with the migration URI, if any. (Since
980# 2.9) Previously (since 2.7), this was reported by omitting
981# tls-hostname instead.
982#
983# @max-bandwidth: to set maximum speed for migration. maximum speed
984# in bytes per second. (Since 2.8)
985#
986# @avail-switchover-bandwidth: to set the available bandwidth that
987# migration can use during switchover phase. NOTE! This does not
988# limit the bandwidth during switchover, but only for calculations when
989# making decisions to switchover. By default, this value is zero,
990# which means QEMU will estimate the bandwidth automatically. This can
991# be set when the estimated value is not accurate, while the user is
992# able to guarantee such bandwidth is available when switching over.
993# When specified correctly, this can make the switchover decision much
994# more accurate. (Since 8.2)
995#
996# @downtime-limit: set maximum tolerated downtime for migration.
997# maximum downtime in milliseconds (Since 2.8)
998#
999# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1000# (Since 2.8)
1001#
1002# @block-incremental: Affects how much storage is migrated when the
1003# block migration capability is enabled. When false, the entire
1004# storage backing chain is migrated into a flattened image at the
1005# destination; when true, only the active qcow2 layer is migrated
1006# and the destination must already have access to the same backing
1007# chain as was used on the source. (since 2.10)
1008#
1009# @multifd-channels: Number of channels used to migrate data in
1010# parallel. This is the same number that the number of sockets
1011# used for migration. The default value is 2 (since 4.0)
1012#
1013# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1014# needs to be a multiple of the target page size and a power of 2
1015# (Since 2.11)
1016#
1017# @max-postcopy-bandwidth: Background transfer bandwidth during
1018# postcopy. Defaults to 0 (unlimited). In bytes per second.
1019# (Since 3.0)
1020#
1021# @max-cpu-throttle: maximum cpu throttle percentage. The default
1022# value is 99. (Since 3.1)
1023#
1024# @multifd-compression: Which compression method to use. Defaults to
1025# none. (Since 5.0)
1026#
1027# @multifd-zlib-level: Set the compression level to be used in live
1028# migration, the compression level is an integer between 0 and 9,
1029# where 0 means no compression, 1 means the best compression
1030# speed, and 9 means best compression ratio which will consume
1031# more CPU. Defaults to 1. (Since 5.0)
1032#
1033# @multifd-zstd-level: Set the compression level to be used in live
1034# migration, the compression level is an integer between 0 and 20,
1035# where 0 means no compression, 1 means the best compression
1036# speed, and 20 means best compression ratio which will consume
1037# more CPU. Defaults to 1. (Since 5.0)
1038#
1039# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1040# aliases for the purpose of dirty bitmap migration. Such aliases
1041# may for example be the corresponding names on the opposite site.
1042# The mapping must be one-to-one, but not necessarily complete: On
1043# the source, unmapped bitmaps and all bitmaps on unmapped nodes
1044# will be ignored. On the destination, encountering an unmapped
1045# alias in the incoming migration stream will result in a report,
1046# and all further bitmap migration data will then be discarded.
1047# Note that the destination does not know about bitmaps it does
1048# not receive, so there is no limitation or requirement regarding
1049# the number of bitmaps received, or how they are named, or on
1050# which nodes they are placed. By default (when this parameter
1051# has never been set), bitmap names are mapped to themselves.
1052# Nodes are mapped to their block device name if there is one, and
1053# to their node name otherwise. (Since 5.2)
1054#
1055# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1056# limit during live migration. Should be in the range 1 to 1000ms.
1057# Defaults to 1000ms. (Since 8.1)
1058#
1059# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1060# Defaults to 1. (Since 8.1)
1061#
1062# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1063# (Since 8.2)
1064#
1065# Features:
1066#
1067# @deprecated: Member @block-incremental is deprecated. Use
1068# blockdev-mirror with NBD instead. Members @compress-level,
1069# @compress-threads, @decompress-threads and @compress-wait-thread
1070# are deprecated because @compression is deprecated.
1071#
1072# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1073# are experimental.
1074#
1075# TODO: either fuse back into MigrationParameters, or make
1076# MigrationParameters members mandatory
1077#
1078# Since: 2.4
1079##
1080{ 'struct': 'MigrateSetParameters',
1081 'data': { '*announce-initial': 'size',
1082 '*announce-max': 'size',
1083 '*announce-rounds': 'size',
1084 '*announce-step': 'size',
1085 '*compress-level': { 'type': 'uint8',
1086 'features': [ 'deprecated' ] },
1087 '*compress-threads': { 'type': 'uint8',
1088 'features': [ 'deprecated' ] },
1089 '*compress-wait-thread': { 'type': 'bool',
1090 'features': [ 'deprecated' ] },
1091 '*decompress-threads': { 'type': 'uint8',
1092 'features': [ 'deprecated' ] },
1093 '*throttle-trigger-threshold': 'uint8',
1094 '*cpu-throttle-initial': 'uint8',
1095 '*cpu-throttle-increment': 'uint8',
1096 '*cpu-throttle-tailslow': 'bool',
1097 '*tls-creds': 'StrOrNull',
1098 '*tls-hostname': 'StrOrNull',
1099 '*tls-authz': 'StrOrNull',
1100 '*max-bandwidth': 'size',
1101 '*avail-switchover-bandwidth': 'size',
1102 '*downtime-limit': 'uint64',
1103 '*x-checkpoint-delay': { 'type': 'uint32',
1104 'features': [ 'unstable' ] },
1105 '*block-incremental': { 'type': 'bool',
1106 'features': [ 'deprecated' ] },
1107 '*multifd-channels': 'uint8',
1108 '*xbzrle-cache-size': 'size',
1109 '*max-postcopy-bandwidth': 'size',
1110 '*max-cpu-throttle': 'uint8',
1111 '*multifd-compression': 'MultiFDCompression',
1112 '*multifd-zlib-level': 'uint8',
1113 '*multifd-zstd-level': 'uint8',
1114 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1115 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1116 'features': [ 'unstable' ] },
1117 '*vcpu-dirty-limit': 'uint64',
1118 '*mode': 'MigMode'} }
1119
1120##
1121# @migrate-set-parameters:
1122#
1123# Set various migration parameters.
1124#
1125# Since: 2.4
1126#
1127# Example:
1128#
1129# -> { "execute": "migrate-set-parameters" ,
1130# "arguments": { "multifd-channels": 5 } }
1131# <- { "return": {} }
1132##
1133{ 'command': 'migrate-set-parameters', 'boxed': true,
1134 'data': 'MigrateSetParameters' }
1135
1136##
1137# @MigrationParameters:
1138#
1139# The optional members aren't actually optional.
1140#
1141# @announce-initial: Initial delay (in milliseconds) before sending
1142# the first announce (Since 4.0)
1143#
1144# @announce-max: Maximum delay (in milliseconds) between packets in
1145# the announcement (Since 4.0)
1146#
1147# @announce-rounds: Number of self-announce packets sent after
1148# migration (Since 4.0)
1149#
1150# @announce-step: Increase in delay (in milliseconds) between
1151# subsequent packets in the announcement (Since 4.0)
1152#
1153# @compress-level: compression level
1154#
1155# @compress-threads: compression thread count
1156#
1157# @compress-wait-thread: Controls behavior when all compression
1158# threads are currently busy. If true (default), wait for a free
1159# compression thread to become available; otherwise, send the page
1160# uncompressed. (Since 3.1)
1161#
1162# @decompress-threads: decompression thread count
1163#
1164# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1165# bytes_xfer_period to trigger throttling. It is expressed as
1166# percentage. The default value is 50. (Since 5.0)
1167#
1168# @cpu-throttle-initial: Initial percentage of time guest cpus are
1169# throttled when migration auto-converge is activated. (Since
1170# 2.7)
1171#
1172# @cpu-throttle-increment: throttle percentage increase each time
1173# auto-converge detects that migration is not making progress.
1174# (Since 2.7)
1175#
1176# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1177# the tail stage of throttling, the Guest is very sensitive to CPU
1178# percentage while the @cpu-throttle -increment is excessive
1179# usually at tail stage. If this parameter is true, we will
1180# compute the ideal CPU percentage used by the Guest, which may
1181# exactly make the dirty rate match the dirty rate threshold.
1182# Then we will choose a smaller throttle increment between the one
1183# specified by @cpu-throttle-increment and the one generated by
1184# ideal CPU percentage. Therefore, it is compatible to
1185# traditional throttling, meanwhile the throttle increment won't
1186# be excessive at tail stage. The default value is false. (Since
1187# 5.1)
1188#
1189# @tls-creds: ID of the 'tls-creds' object that provides credentials
1190# for establishing a TLS connection over the migration data
1191# channel. On the outgoing side of the migration, the credentials
1192# must be for a 'client' endpoint, while for the incoming side the
1193# credentials must be for a 'server' endpoint. An empty string
1194# means that QEMU will use plain text mode for migration, rather
1195# than TLS (Since 2.7) Note: 2.8 reports this by omitting
1196# tls-creds instead.
1197#
1198# @tls-hostname: hostname of the target host for the migration. This
1199# is required when using x509 based TLS credentials and the
1200# migration URI does not already include a hostname. For example
1201# if using fd: or exec: based migration, the hostname must be
1202# provided so that the server's x509 certificate identity can be
1203# validated. (Since 2.7) An empty string means that QEMU will use
1204# the hostname associated with the migration URI, if any. (Since
1205# 2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1206#
1207# @tls-authz: ID of the 'authz' object subclass that provides access
1208# control checking of the TLS x509 certificate distinguished name.
1209# (Since 4.0)
1210#
1211# @max-bandwidth: to set maximum speed for migration. maximum speed
1212# in bytes per second. (Since 2.8)
1213#
1214# @avail-switchover-bandwidth: to set the available bandwidth that
1215# migration can use during switchover phase. NOTE! This does not
1216# limit the bandwidth during switchover, but only for calculations when
1217# making decisions to switchover. By default, this value is zero,
1218# which means QEMU will estimate the bandwidth automatically. This can
1219# be set when the estimated value is not accurate, while the user is
1220# able to guarantee such bandwidth is available when switching over.
1221# When specified correctly, this can make the switchover decision much
1222# more accurate. (Since 8.2)
1223#
1224# @downtime-limit: set maximum tolerated downtime for migration.
1225# maximum downtime in milliseconds (Since 2.8)
1226#
1227# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1228# (Since 2.8)
1229#
1230# @block-incremental: Affects how much storage is migrated when the
1231# block migration capability is enabled. When false, the entire
1232# storage backing chain is migrated into a flattened image at the
1233# destination; when true, only the active qcow2 layer is migrated
1234# and the destination must already have access to the same backing
1235# chain as was used on the source. (since 2.10)
1236#
1237# @multifd-channels: Number of channels used to migrate data in
1238# parallel. This is the same number that the number of sockets
1239# used for migration. The default value is 2 (since 4.0)
1240#
1241# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1242# needs to be a multiple of the target page size and a power of 2
1243# (Since 2.11)
1244#
1245# @max-postcopy-bandwidth: Background transfer bandwidth during
1246# postcopy. Defaults to 0 (unlimited). In bytes per second.
1247# (Since 3.0)
1248#
1249# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
1250# (Since 3.1)
1251#
1252# @multifd-compression: Which compression method to use. Defaults to
1253# none. (Since 5.0)
1254#
1255# @multifd-zlib-level: Set the compression level to be used in live
1256# migration, the compression level is an integer between 0 and 9,
1257# where 0 means no compression, 1 means the best compression
1258# speed, and 9 means best compression ratio which will consume
1259# more CPU. Defaults to 1. (Since 5.0)
1260#
1261# @multifd-zstd-level: Set the compression level to be used in live
1262# migration, the compression level is an integer between 0 and 20,
1263# where 0 means no compression, 1 means the best compression
1264# speed, and 20 means best compression ratio which will consume
1265# more CPU. Defaults to 1. (Since 5.0)
1266#
1267# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1268# aliases for the purpose of dirty bitmap migration. Such aliases
1269# may for example be the corresponding names on the opposite site.
1270# The mapping must be one-to-one, but not necessarily complete: On
1271# the source, unmapped bitmaps and all bitmaps on unmapped nodes
1272# will be ignored. On the destination, encountering an unmapped
1273# alias in the incoming migration stream will result in a report,
1274# and all further bitmap migration data will then be discarded.
1275# Note that the destination does not know about bitmaps it does
1276# not receive, so there is no limitation or requirement regarding
1277# the number of bitmaps received, or how they are named, or on
1278# which nodes they are placed. By default (when this parameter
1279# has never been set), bitmap names are mapped to themselves.
1280# Nodes are mapped to their block device name if there is one, and
1281# to their node name otherwise. (Since 5.2)
1282#
1283# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1284# limit during live migration. Should be in the range 1 to 1000ms.
1285# Defaults to 1000ms. (Since 8.1)
1286#
1287# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1288# Defaults to 1. (Since 8.1)
1289#
1290# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1291# (Since 8.2)
1292#
1293# Features:
1294#
1295# @deprecated: Member @block-incremental is deprecated. Use
1296# blockdev-mirror with NBD instead. Members @compress-level,
1297# @compress-threads, @decompress-threads and @compress-wait-thread
1298# are deprecated because @compression is deprecated.
1299#
1300# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1301# are experimental.
1302#
1303# Since: 2.4
1304##
1305{ 'struct': 'MigrationParameters',
1306 'data': { '*announce-initial': 'size',
1307 '*announce-max': 'size',
1308 '*announce-rounds': 'size',
1309 '*announce-step': 'size',
1310 '*compress-level': { 'type': 'uint8',
1311 'features': [ 'deprecated' ] },
1312 '*compress-threads': { 'type': 'uint8',
1313 'features': [ 'deprecated' ] },
1314 '*compress-wait-thread': { 'type': 'bool',
1315 'features': [ 'deprecated' ] },
1316 '*decompress-threads': { 'type': 'uint8',
1317 'features': [ 'deprecated' ] },
1318 '*throttle-trigger-threshold': 'uint8',
1319 '*cpu-throttle-initial': 'uint8',
1320 '*cpu-throttle-increment': 'uint8',
1321 '*cpu-throttle-tailslow': 'bool',
1322 '*tls-creds': 'str',
1323 '*tls-hostname': 'str',
1324 '*tls-authz': 'str',
1325 '*max-bandwidth': 'size',
1326 '*avail-switchover-bandwidth': 'size',
1327 '*downtime-limit': 'uint64',
1328 '*x-checkpoint-delay': { 'type': 'uint32',
1329 'features': [ 'unstable' ] },
1330 '*block-incremental': { 'type': 'bool',
1331 'features': [ 'deprecated' ] },
1332 '*multifd-channels': 'uint8',
1333 '*xbzrle-cache-size': 'size',
1334 '*max-postcopy-bandwidth': 'size',
1335 '*max-cpu-throttle': 'uint8',
1336 '*multifd-compression': 'MultiFDCompression',
1337 '*multifd-zlib-level': 'uint8',
1338 '*multifd-zstd-level': 'uint8',
1339 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1340 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1341 'features': [ 'unstable' ] },
1342 '*vcpu-dirty-limit': 'uint64',
1343 '*mode': 'MigMode'} }
1344
1345##
1346# @query-migrate-parameters:
1347#
1348# Returns information about the current migration parameters
1349#
1350# Returns: @MigrationParameters
1351#
1352# Since: 2.4
1353#
1354# Example:
1355#
1356# -> { "execute": "query-migrate-parameters" }
1357# <- { "return": {
1358# "multifd-channels": 2,
1359# "cpu-throttle-increment": 10,
1360# "cpu-throttle-initial": 20,
1361# "max-bandwidth": 33554432,
1362# "downtime-limit": 300
1363# }
1364# }
1365##
1366{ 'command': 'query-migrate-parameters',
1367 'returns': 'MigrationParameters' }
1368
1369##
1370# @migrate-start-postcopy:
1371#
1372# Followup to a migration command to switch the migration to postcopy
1373# mode. The postcopy-ram capability must be set on both source and
1374# destination before the original migration command.
1375#
1376# Since: 2.5
1377#
1378# Example:
1379#
1380# -> { "execute": "migrate-start-postcopy" }
1381# <- { "return": {} }
1382##
1383{ 'command': 'migrate-start-postcopy' }
1384
1385##
1386# @MIGRATION:
1387#
1388# Emitted when a migration event happens
1389#
1390# @status: @MigrationStatus describing the current migration status.
1391#
1392# Since: 2.4
1393#
1394# Example:
1395#
1396# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1397# "event": "MIGRATION",
1398# "data": {"status": "completed"} }
1399##
1400{ 'event': 'MIGRATION',
1401 'data': {'status': 'MigrationStatus'}}
1402
1403##
1404# @MIGRATION_PASS:
1405#
1406# Emitted from the source side of a migration at the start of each
1407# pass (when it syncs the dirty bitmap)
1408#
1409# @pass: An incrementing count (starting at 1 on the first pass)
1410#
1411# Since: 2.6
1412#
1413# Example:
1414#
1415# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1416# "event": "MIGRATION_PASS", "data": {"pass": 2} }
1417##
1418{ 'event': 'MIGRATION_PASS',
1419 'data': { 'pass': 'int' } }
1420
1421##
1422# @COLOMessage:
1423#
1424# The message transmission between Primary side and Secondary side.
1425#
1426# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1427#
1428# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1429# checkpointing
1430#
1431# @checkpoint-reply: SVM gets PVM's checkpoint request
1432#
1433# @vmstate-send: VM's state will be sent by PVM.
1434#
1435# @vmstate-size: The total size of VMstate.
1436#
1437# @vmstate-received: VM's state has been received by SVM.
1438#
1439# @vmstate-loaded: VM's state has been loaded by SVM.
1440#
1441# Since: 2.8
1442##
1443{ 'enum': 'COLOMessage',
1444 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1445 'vmstate-send', 'vmstate-size', 'vmstate-received',
1446 'vmstate-loaded' ] }
1447
1448##
1449# @COLOMode:
1450#
1451# The COLO current mode.
1452#
1453# @none: COLO is disabled.
1454#
1455# @primary: COLO node in primary side.
1456#
1457# @secondary: COLO node in slave side.
1458#
1459# Since: 2.8
1460##
1461{ 'enum': 'COLOMode',
1462 'data': [ 'none', 'primary', 'secondary'] }
1463
1464##
1465# @FailoverStatus:
1466#
1467# An enumeration of COLO failover status
1468#
1469# @none: no failover has ever happened
1470#
1471# @require: got failover requirement but not handled
1472#
1473# @active: in the process of doing failover
1474#
1475# @completed: finish the process of failover
1476#
1477# @relaunch: restart the failover process, from 'none' -> 'completed'
1478# (Since 2.9)
1479#
1480# Since: 2.8
1481##
1482{ 'enum': 'FailoverStatus',
1483 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1484
1485##
1486# @COLO_EXIT:
1487#
1488# Emitted when VM finishes COLO mode due to some errors happening or
1489# at the request of users.
1490#
1491# @mode: report COLO mode when COLO exited.
1492#
1493# @reason: describes the reason for the COLO exit.
1494#
1495# Since: 3.1
1496#
1497# Example:
1498#
1499# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1500# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1501##
1502{ 'event': 'COLO_EXIT',
1503 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1504
1505##
1506# @COLOExitReason:
1507#
1508# The reason for a COLO exit.
1509#
1510# @none: failover has never happened. This state does not occur in
1511# the COLO_EXIT event, and is only visible in the result of
1512# query-colo-status.
1513#
1514# @request: COLO exit is due to an external request.
1515#
1516# @error: COLO exit is due to an internal error.
1517#
1518# @processing: COLO is currently handling a failover (since 4.0).
1519#
1520# Since: 3.1
1521##
1522{ 'enum': 'COLOExitReason',
1523 'data': [ 'none', 'request', 'error' , 'processing' ] }
1524
1525##
1526# @x-colo-lost-heartbeat:
1527#
1528# Tell qemu that heartbeat is lost, request it to do takeover
1529# procedures. If this command is sent to the PVM, the Primary side
1530# will exit COLO mode. If sent to the Secondary, the Secondary side
1531# will run failover work, then takes over server operation to become
1532# the service VM.
1533#
1534# Features:
1535#
1536# @unstable: This command is experimental.
1537#
1538# Since: 2.8
1539#
1540# Example:
1541#
1542# -> { "execute": "x-colo-lost-heartbeat" }
1543# <- { "return": {} }
1544##
1545{ 'command': 'x-colo-lost-heartbeat',
1546 'features': [ 'unstable' ],
1547 'if': 'CONFIG_REPLICATION' }
1548
1549##
1550# @migrate_cancel:
1551#
1552# Cancel the current executing migration process.
1553#
1554# Returns: nothing on success
1555#
1556# Notes: This command succeeds even if there is no migration process
1557# running.
1558#
1559# Since: 0.14
1560#
1561# Example:
1562#
1563# -> { "execute": "migrate_cancel" }
1564# <- { "return": {} }
1565##
1566{ 'command': 'migrate_cancel' }
1567
1568##
1569# @migrate-continue:
1570#
1571# Continue migration when it's in a paused state.
1572#
1573# @state: The state the migration is currently expected to be in
1574#
1575# Returns: nothing on success
1576#
1577# Since: 2.11
1578#
1579# Example:
1580#
1581# -> { "execute": "migrate-continue" , "arguments":
1582# { "state": "pre-switchover" } }
1583# <- { "return": {} }
1584##
1585{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1586
1587##
1588# @MigrationAddressType:
1589#
1590# The migration stream transport mechanisms.
1591#
1592# @socket: Migrate via socket.
1593#
1594# @exec: Direct the migration stream to another process.
1595#
1596# @rdma: Migrate via RDMA.
1597#
1598# @file: Direct the migration stream to a file.
1599#
1600# Since 8.2
1601##
1602{ 'enum': 'MigrationAddressType',
1603 'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1604
1605##
1606# @FileMigrationArgs:
1607#
1608# @filename: The file to receive the migration stream
1609#
1610# @offset: The file offset where the migration stream will start
1611#
1612# Since 8.2
1613##
1614{ 'struct': 'FileMigrationArgs',
1615 'data': { 'filename': 'str',
1616 'offset': 'uint64' } }
1617
1618##
1619# @MigrationExecCommand:
1620#
1621# @args: command (list head) and arguments to execute.
1622#
1623# Since 8.2
1624##
1625{ 'struct': 'MigrationExecCommand',
1626 'data': {'args': [ 'str' ] } }
1627
1628##
1629# @MigrationAddress:
1630#
1631# Migration endpoint configuration.
1632#
1633# Since 8.2
1634##
1635{ 'union': 'MigrationAddress',
1636 'base': { 'transport' : 'MigrationAddressType'},
1637 'discriminator': 'transport',
1638 'data': {
1639 'socket': 'SocketAddress',
1640 'exec': 'MigrationExecCommand',
1641 'rdma': 'InetSocketAddress',
1642 'file': 'FileMigrationArgs' } }
1643
1644##
1645# @MigrationChannelType:
1646#
1647# The migration channel-type request options.
1648#
1649# @main: Main outbound migration channel.
1650#
1651# Since 8.1
1652##
1653{ 'enum': 'MigrationChannelType',
1654 'data': [ 'main' ] }
1655
1656##
1657# @MigrationChannel:
1658#
1659# Migration stream channel parameters.
1660#
1661# @channel-type: Channel type for transfering packet information.
1662#
1663# @addr: Migration endpoint configuration on destination interface.
1664#
1665# Since 8.1
1666##
1667{ 'struct': 'MigrationChannel',
1668 'data': {
1669 'channel-type': 'MigrationChannelType',
1670 'addr': 'MigrationAddress' } }
1671
1672##
1673# @migrate:
1674#
1675# Migrates the current running guest to another Virtual Machine.
1676#
1677# @uri: the Uniform Resource Identifier of the destination VM
1678#
1679# @channels: list of migration stream channels with each stream in the
1680# list connected to a destination interface endpoint.
1681#
1682# @blk: do block migration (full disk copy)
1683#
1684# @inc: incremental disk copy migration
1685#
1686# @detach: this argument exists only for compatibility reasons and is
1687# ignored by QEMU
1688#
1689# @resume: resume one paused migration, default "off". (since 3.0)
1690#
1691# Features:
1692#
1693# @deprecated: Members @inc and @blk are deprecated. Use
1694# blockdev-mirror with NBD instead.
1695#
1696# Returns: nothing on success
1697#
1698# Since: 0.14
1699#
1700# Notes:
1701#
1702# 1. The 'query-migrate' command should be used to check migration's
1703# progress and final result (this information is provided by the
1704# 'status' member)
1705#
1706# 2. All boolean arguments default to false
1707#
1708# 3. The user Monitor's "detach" argument is invalid in QMP and should
1709# not be used
1710#
1711# 4. The uri argument should have the Uniform Resource Identifier of
1712# default destination VM. This connection will be bound to default
1713# network.
1714#
1715# 5. For now, number of migration streams is restricted to one, i.e
1716# number of items in 'channels' list is just 1.
1717#
1718# 6. The 'uri' and 'channels' arguments are mutually exclusive;
1719# exactly one of the two should be present.
1720#
1721# Example:
1722#
1723# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1724# <- { "return": {} }
1725# -> { "execute": "migrate",
1726# "arguments": {
1727# "channels": [ { "channel-type": "main",
1728# "addr": { "transport": "socket",
1729# "type": "inet",
1730# "host": "10.12.34.9",
1731# "port": "1050" } } ] } }
1732# <- { "return": {} }
1733#
1734# -> { "execute": "migrate",
1735# "arguments": {
1736# "channels": [ { "channel-type": "main",
1737# "addr": { "transport": "exec",
1738# "args": [ "/bin/nc", "-p", "6000",
1739# "/some/sock" ] } } ] } }
1740# <- { "return": {} }
1741#
1742# -> { "execute": "migrate",
1743# "arguments": {
1744# "channels": [ { "channel-type": "main",
1745# "addr": { "transport": "rdma",
1746# "host": "10.12.34.9",
1747# "port": "1050" } } ] } }
1748# <- { "return": {} }
1749#
1750# -> { "execute": "migrate",
1751# "arguments": {
1752# "channels": [ { "channel-type": "main",
1753# "addr": { "transport": "file",
1754# "filename": "/tmp/migfile",
1755# "offset": "0x1000" } } ] } }
1756# <- { "return": {} }
1757#
1758##
1759{ 'command': 'migrate',
1760 'data': {'uri': 'str',
1761 '*channels': [ 'MigrationChannel' ],
1762 '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1763 '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1764 '*detach': 'bool', '*resume': 'bool' } }
1765
1766##
1767# @migrate-incoming:
1768#
1769# Start an incoming migration, the qemu must have been started with
1770# -incoming defer
1771#
1772# @uri: The Uniform Resource Identifier identifying the source or
1773# address to listen on
1774#
1775# @channels: list of migration stream channels with each stream in the
1776# list connected to a destination interface endpoint.
1777#
1778# Returns: nothing on success
1779#
1780# Since: 2.3
1781#
1782# Notes:
1783#
1784# 1. It's a bad idea to use a string for the uri, but it needs
1785# to stay compatible with -incoming and the format of the uri
1786# is already exposed above libvirt.
1787#
1788# 2. QEMU must be started with -incoming defer to allow
1789# migrate-incoming to be used.
1790#
1791# 3. The uri format is the same as for -incoming
1792#
1793# 5. For now, number of migration streams is restricted to one, i.e
1794# number of items in 'channels' list is just 1.
1795#
1796# 4. The 'uri' and 'channels' arguments are mutually exclusive;
1797# exactly one of the two should be present.
1798#
1799# Example:
1800#
1801# -> { "execute": "migrate-incoming",
1802# "arguments": { "uri": "tcp::4446" } }
1803# <- { "return": {} }
1804#
1805# -> { "execute": "migrate",
1806# "arguments": {
1807# "channels": [ { "channel-type": "main",
1808# "addr": { "transport": "socket",
1809# "type": "inet",
1810# "host": "10.12.34.9",
1811# "port": "1050" } } ] } }
1812# <- { "return": {} }
1813#
1814# -> { "execute": "migrate",
1815# "arguments": {
1816# "channels": [ { "channel-type": "main",
1817# "addr": { "transport": "exec",
1818# "args": [ "/bin/nc", "-p", "6000",
1819# "/some/sock" ] } } ] } }
1820# <- { "return": {} }
1821#
1822# -> { "execute": "migrate",
1823# "arguments": {
1824# "channels": [ { "channel-type": "main",
1825# "addr": { "transport": "rdma",
1826# "host": "10.12.34.9",
1827# "port": "1050" } } ] } }
1828# <- { "return": {} }
1829##
1830{ 'command': 'migrate-incoming',
1831 'data': {'*uri': 'str',
1832 '*channels': [ 'MigrationChannel' ] } }
1833
1834##
1835# @xen-save-devices-state:
1836#
1837# Save the state of all devices to file. The RAM and the block
1838# devices of the VM are not saved by this command.
1839#
1840# @filename: the file to save the state of the devices to as binary
1841# data. See xen-save-devices-state.txt for a description of the
1842# binary format.
1843#
1844# @live: Optional argument to ask QEMU to treat this command as part
1845# of a live migration. Default to true. (since 2.11)
1846#
1847# Returns: Nothing on success
1848#
1849# Since: 1.1
1850#
1851# Example:
1852#
1853# -> { "execute": "xen-save-devices-state",
1854# "arguments": { "filename": "/tmp/save" } }
1855# <- { "return": {} }
1856##
1857{ 'command': 'xen-save-devices-state',
1858 'data': {'filename': 'str', '*live':'bool' } }
1859
1860##
1861# @xen-set-global-dirty-log:
1862#
1863# Enable or disable the global dirty log mode.
1864#
1865# @enable: true to enable, false to disable.
1866#
1867# Returns: nothing
1868#
1869# Since: 1.3
1870#
1871# Example:
1872#
1873# -> { "execute": "xen-set-global-dirty-log",
1874# "arguments": { "enable": true } }
1875# <- { "return": {} }
1876##
1877{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1878
1879##
1880# @xen-load-devices-state:
1881#
1882# Load the state of all devices from file. The RAM and the block
1883# devices of the VM are not loaded by this command.
1884#
1885# @filename: the file to load the state of the devices from as binary
1886# data. See xen-save-devices-state.txt for a description of the
1887# binary format.
1888#
1889# Since: 2.7
1890#
1891# Example:
1892#
1893# -> { "execute": "xen-load-devices-state",
1894# "arguments": { "filename": "/tmp/resume" } }
1895# <- { "return": {} }
1896##
1897{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1898
1899##
1900# @xen-set-replication:
1901#
1902# Enable or disable replication.
1903#
1904# @enable: true to enable, false to disable.
1905#
1906# @primary: true for primary or false for secondary.
1907#
1908# @failover: true to do failover, false to stop. but cannot be
1909# specified if 'enable' is true. default value is false.
1910#
1911# Returns: nothing.
1912#
1913# Example:
1914#
1915# -> { "execute": "xen-set-replication",
1916# "arguments": {"enable": true, "primary": false} }
1917# <- { "return": {} }
1918#
1919# Since: 2.9
1920##
1921{ 'command': 'xen-set-replication',
1922 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1923 'if': 'CONFIG_REPLICATION' }
1924
1925##
1926# @ReplicationStatus:
1927#
1928# The result format for 'query-xen-replication-status'.
1929#
1930# @error: true if an error happened, false if replication is normal.
1931#
1932# @desc: the human readable error description string, when @error is
1933# 'true'.
1934#
1935# Since: 2.9
1936##
1937{ 'struct': 'ReplicationStatus',
1938 'data': { 'error': 'bool', '*desc': 'str' },
1939 'if': 'CONFIG_REPLICATION' }
1940
1941##
1942# @query-xen-replication-status:
1943#
1944# Query replication status while the vm is running.
1945#
1946# Returns: A @ReplicationStatus object showing the status.
1947#
1948# Example:
1949#
1950# -> { "execute": "query-xen-replication-status" }
1951# <- { "return": { "error": false } }
1952#
1953# Since: 2.9
1954##
1955{ 'command': 'query-xen-replication-status',
1956 'returns': 'ReplicationStatus',
1957 'if': 'CONFIG_REPLICATION' }
1958
1959##
1960# @xen-colo-do-checkpoint:
1961#
1962# Xen uses this command to notify replication to trigger a checkpoint.
1963#
1964# Returns: nothing.
1965#
1966# Example:
1967#
1968# -> { "execute": "xen-colo-do-checkpoint" }
1969# <- { "return": {} }
1970#
1971# Since: 2.9
1972##
1973{ 'command': 'xen-colo-do-checkpoint',
1974 'if': 'CONFIG_REPLICATION' }
1975
1976##
1977# @COLOStatus:
1978#
1979# The result format for 'query-colo-status'.
1980#
1981# @mode: COLO running mode. If COLO is running, this field will
1982# return 'primary' or 'secondary'.
1983#
1984# @last-mode: COLO last running mode. If COLO is running, this field
1985# will return same like mode field, after failover we can use this
1986# field to get last colo mode. (since 4.0)
1987#
1988# @reason: describes the reason for the COLO exit.
1989#
1990# Since: 3.1
1991##
1992{ 'struct': 'COLOStatus',
1993 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1994 'reason': 'COLOExitReason' },
1995 'if': 'CONFIG_REPLICATION' }
1996
1997##
1998# @query-colo-status:
1999#
2000# Query COLO status while the vm is running.
2001#
2002# Returns: A @COLOStatus object showing the status.
2003#
2004# Example:
2005#
2006# -> { "execute": "query-colo-status" }
2007# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
2008#
2009# Since: 3.1
2010##
2011{ 'command': 'query-colo-status',
2012 'returns': 'COLOStatus',
2013 'if': 'CONFIG_REPLICATION' }
2014
2015##
2016# @migrate-recover:
2017#
2018# Provide a recovery migration stream URI.
2019#
2020# @uri: the URI to be used for the recovery of migration stream.
2021#
2022# Returns: nothing.
2023#
2024# Example:
2025#
2026# -> { "execute": "migrate-recover",
2027# "arguments": { "uri": "tcp:192.168.1.200:12345" } }
2028# <- { "return": {} }
2029#
2030# Since: 3.0
2031##
2032{ 'command': 'migrate-recover',
2033 'data': { 'uri': 'str' },
2034 'allow-oob': true }
2035
2036##
2037# @migrate-pause:
2038#
2039# Pause a migration. Currently it only supports postcopy.
2040#
2041# Returns: nothing.
2042#
2043# Example:
2044#
2045# -> { "execute": "migrate-pause" }
2046# <- { "return": {} }
2047#
2048# Since: 3.0
2049##
2050{ 'command': 'migrate-pause', 'allow-oob': true }
2051
2052##
2053# @UNPLUG_PRIMARY:
2054#
2055# Emitted from source side of a migration when migration state is
2056# WAIT_UNPLUG. Device was unplugged by guest operating system. Device
2057# resources in QEMU are kept on standby to be able to re-plug it in
2058# case of migration failure.
2059#
2060# @device-id: QEMU device id of the unplugged device
2061#
2062# Since: 4.2
2063#
2064# Example:
2065#
2066# <- { "event": "UNPLUG_PRIMARY",
2067# "data": { "device-id": "hostdev0" },
2068# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2069##
2070{ 'event': 'UNPLUG_PRIMARY',
2071 'data': { 'device-id': 'str' } }
2072
2073##
2074# @DirtyRateVcpu:
2075#
2076# Dirty rate of vcpu.
2077#
2078# @id: vcpu index.
2079#
2080# @dirty-rate: dirty rate.
2081#
2082# Since: 6.2
2083##
2084{ 'struct': 'DirtyRateVcpu',
2085 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
2086
2087##
2088# @DirtyRateStatus:
2089#
2090# Dirty page rate measurement status.
2091#
2092# @unstarted: measuring thread has not been started yet
2093#
2094# @measuring: measuring thread is running
2095#
2096# @measured: dirty page rate is measured and the results are available
2097#
2098# Since: 5.2
2099##
2100{ 'enum': 'DirtyRateStatus',
2101 'data': [ 'unstarted', 'measuring', 'measured'] }
2102
2103##
2104# @DirtyRateMeasureMode:
2105#
2106# Method used to measure dirty page rate. Differences between
2107# available methods are explained in @calc-dirty-rate.
2108#
2109# @page-sampling: use page sampling
2110#
2111# @dirty-ring: use dirty ring
2112#
2113# @dirty-bitmap: use dirty bitmap
2114#
2115# Since: 6.2
2116##
2117{ 'enum': 'DirtyRateMeasureMode',
2118 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2119
2120##
2121# @TimeUnit:
2122#
2123# Specifies unit in which time-related value is specified.
2124#
2125# @second: value is in seconds
2126#
2127# @millisecond: value is in milliseconds
2128#
2129# Since 8.2
2130#
2131##
2132{ 'enum': 'TimeUnit',
2133 'data': ['second', 'millisecond'] }
2134
2135##
2136# @DirtyRateInfo:
2137#
2138# Information about measured dirty page rate.
2139#
2140# @dirty-rate: an estimate of the dirty page rate of the VM in units
2141# of MiB/s. Value is present only when @status is 'measured'.
2142#
2143# @status: current status of dirty page rate measurements
2144#
2145# @start-time: start time in units of second for calculation
2146#
2147# @calc-time: time period for which dirty page rate was measured,
2148# expressed and rounded down to @calc-time-unit.
2149#
2150# @calc-time-unit: time unit of @calc-time (Since 8.2)
2151#
2152# @sample-pages: number of sampled pages per GiB of guest memory.
2153# Valid only in page-sampling mode (Since 6.1)
2154#
2155# @mode: mode that was used to measure dirty page rate (Since 6.2)
2156#
2157# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2158# specified (Since 6.2)
2159#
2160# Since: 5.2
2161##
2162{ 'struct': 'DirtyRateInfo',
2163 'data': {'*dirty-rate': 'int64',
2164 'status': 'DirtyRateStatus',
2165 'start-time': 'int64',
2166 'calc-time': 'int64',
2167 'calc-time-unit': 'TimeUnit',
2168 'sample-pages': 'uint64',
2169 'mode': 'DirtyRateMeasureMode',
2170 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2171
2172##
2173# @calc-dirty-rate:
2174#
2175# Start measuring dirty page rate of the VM. Results can be retrieved
2176# with @query-dirty-rate after measurements are completed.
2177#
2178# Dirty page rate is the number of pages changed in a given time
2179# period expressed in MiB/s. The following methods of calculation are
2180# available:
2181#
2182# 1. In page sampling mode, a random subset of pages are selected and
2183# hashed twice: once at the beginning of measurement time period,
2184# and once again at the end. If two hashes for some page are
2185# different, the page is counted as changed. Since this method
2186# relies on sampling and hashing, calculated dirty page rate is
2187# only an estimate of its true value. Increasing @sample-pages
2188# improves estimation quality at the cost of higher computational
2189# overhead.
2190#
2191# 2. Dirty bitmap mode captures writes to memory (for example by
2192# temporarily revoking write access to all pages) and counting page
2193# faults. Information about modified pages is collected into a
2194# bitmap, where each bit corresponds to one guest page. This mode
2195# requires that KVM accelerator property "dirty-ring-size" is *not*
2196# set.
2197#
2198# 3. Dirty ring mode is similar to dirty bitmap mode, but the
2199# information about modified pages is collected into ring buffer.
2200# This mode tracks page modification per each vCPU separately. It
2201# requires that KVM accelerator property "dirty-ring-size" is set.
2202#
2203# @calc-time: time period for which dirty page rate is calculated.
2204# By default it is specified in seconds, but the unit can be set
2205# explicitly with @calc-time-unit. Note that larger @calc-time
2206# values will typically result in smaller dirty page rates because
2207# page dirtying is a one-time event. Once some page is counted
2208# as dirty during @calc-time period, further writes to this page
2209# will not increase dirty page rate anymore.
2210#
2211# @calc-time-unit: time unit in which @calc-time is specified.
2212# By default it is seconds. (Since 8.2)
2213#
2214# @sample-pages: number of sampled pages per each GiB of guest memory.
2215# Default value is 512. For 4KiB guest pages this corresponds to
2216# sampling ratio of 0.2%. This argument is used only in page
2217# sampling mode. (Since 6.1)
2218#
2219# @mode: mechanism for tracking dirty pages. Default value is
2220# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'.
2221# (Since 6.1)
2222#
2223# Since: 5.2
2224#
2225# Example:
2226#
2227# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2228# 'sample-pages': 512} }
2229# <- { "return": {} }
2230#
2231# Measure dirty rate using dirty bitmap for 500 milliseconds:
2232#
2233# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2234# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2235#
2236# <- { "return": {} }
2237##
2238{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2239 '*calc-time-unit': 'TimeUnit',
2240 '*sample-pages': 'int',
2241 '*mode': 'DirtyRateMeasureMode'} }
2242
2243##
2244# @query-dirty-rate:
2245#
2246# Query results of the most recent invocation of @calc-dirty-rate.
2247#
2248# @calc-time-unit: time unit in which to report calculation time.
2249# By default it is reported in seconds. (Since 8.2)
2250#
2251# Since: 5.2
2252#
2253# Examples:
2254#
2255# 1. Measurement is in progress:
2256#
2257# <- {"status": "measuring", "sample-pages": 512,
2258# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2259# "calc-time-unit": "second"}
2260#
2261# 2. Measurement has been completed:
2262#
2263# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2264# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2265# "calc-time-unit": "second"}
2266##
2267{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2268 'returns': 'DirtyRateInfo' }
2269
2270##
2271# @DirtyLimitInfo:
2272#
2273# Dirty page rate limit information of a virtual CPU.
2274#
2275# @cpu-index: index of a virtual CPU.
2276#
2277# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2278# CPU, 0 means unlimited.
2279#
2280# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2281#
2282# Since: 7.1
2283##
2284{ 'struct': 'DirtyLimitInfo',
2285 'data': { 'cpu-index': 'int',
2286 'limit-rate': 'uint64',
2287 'current-rate': 'uint64' } }
2288
2289##
2290# @set-vcpu-dirty-limit:
2291#
2292# Set the upper limit of dirty page rate for virtual CPUs.
2293#
2294# Requires KVM with accelerator property "dirty-ring-size" set. A
2295# virtual CPU's dirty page rate is a measure of its memory load. To
2296# observe dirty page rates, use @calc-dirty-rate.
2297#
2298# @cpu-index: index of a virtual CPU, default is all.
2299#
2300# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2301#
2302# Since: 7.1
2303#
2304# Example:
2305#
2306# -> {"execute": "set-vcpu-dirty-limit"}
2307# "arguments": { "dirty-rate": 200,
2308# "cpu-index": 1 } }
2309# <- { "return": {} }
2310##
2311{ 'command': 'set-vcpu-dirty-limit',
2312 'data': { '*cpu-index': 'int',
2313 'dirty-rate': 'uint64' } }
2314
2315##
2316# @cancel-vcpu-dirty-limit:
2317#
2318# Cancel the upper limit of dirty page rate for virtual CPUs.
2319#
2320# Cancel the dirty page limit for the vCPU which has been set with
2321# set-vcpu-dirty-limit command. Note that this command requires
2322# support from dirty ring, same as the "set-vcpu-dirty-limit".
2323#
2324# @cpu-index: index of a virtual CPU, default is all.
2325#
2326# Since: 7.1
2327#
2328# Example:
2329#
2330# -> {"execute": "cancel-vcpu-dirty-limit"},
2331# "arguments": { "cpu-index": 1 } }
2332# <- { "return": {} }
2333##
2334{ 'command': 'cancel-vcpu-dirty-limit',
2335 'data': { '*cpu-index': 'int'} }
2336
2337##
2338# @query-vcpu-dirty-limit:
2339#
2340# Returns information about virtual CPU dirty page rate limits, if
2341# any.
2342#
2343# Since: 7.1
2344#
2345# Example:
2346#
2347# -> {"execute": "query-vcpu-dirty-limit"}
2348# <- {"return": [
2349# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2350# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2351##
2352{ 'command': 'query-vcpu-dirty-limit',
2353 'returns': [ 'DirtyLimitInfo' ] }
2354
2355##
2356# @MigrationThreadInfo:
2357#
2358# Information about migrationthreads
2359#
2360# @name: the name of migration thread
2361#
2362# @thread-id: ID of the underlying host thread
2363#
2364# Since: 7.2
2365##
2366{ 'struct': 'MigrationThreadInfo',
2367 'data': {'name': 'str',
2368 'thread-id': 'int'} }
2369
2370##
2371# @query-migrationthreads:
2372#
2373# Returns information of migration threads
2374#
2375# data: migration thread name
2376#
2377# Returns: information about migration threads
2378#
2379# Since: 7.2
2380##
2381{ 'command': 'query-migrationthreads',
2382 'returns': ['MigrationThreadInfo'] }
2383
2384##
2385# @snapshot-save:
2386#
2387# Save a VM snapshot
2388#
2389# @job-id: identifier for the newly created job
2390#
2391# @tag: name of the snapshot to create
2392#
2393# @vmstate: block device node name to save vmstate to
2394#
2395# @devices: list of block device node names to save a snapshot to
2396#
2397# Applications should not assume that the snapshot save is complete
2398# when this command returns. The job commands / events must be used
2399# to determine completion and to fetch details of any errors that
2400# arise.
2401#
2402# Note that execution of the guest CPUs may be stopped during the time
2403# it takes to save the snapshot. A future version of QEMU may ensure
2404# CPUs are executing continuously.
2405#
2406# It is strongly recommended that @devices contain all writable block
2407# device nodes if a consistent snapshot is required.
2408#
2409# If @tag already exists, an error will be reported
2410#
2411# Returns: nothing
2412#
2413# Example:
2414#
2415# -> { "execute": "snapshot-save",
2416# "arguments": {
2417# "job-id": "snapsave0",
2418# "tag": "my-snap",
2419# "vmstate": "disk0",
2420# "devices": ["disk0", "disk1"]
2421# }
2422# }
2423# <- { "return": { } }
2424# <- {"event": "JOB_STATUS_CHANGE",
2425# "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2426# "data": {"status": "created", "id": "snapsave0"}}
2427# <- {"event": "JOB_STATUS_CHANGE",
2428# "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2429# "data": {"status": "running", "id": "snapsave0"}}
2430# <- {"event": "STOP",
2431# "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2432# <- {"event": "RESUME",
2433# "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2434# <- {"event": "JOB_STATUS_CHANGE",
2435# "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2436# "data": {"status": "waiting", "id": "snapsave0"}}
2437# <- {"event": "JOB_STATUS_CHANGE",
2438# "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2439# "data": {"status": "pending", "id": "snapsave0"}}
2440# <- {"event": "JOB_STATUS_CHANGE",
2441# "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2442# "data": {"status": "concluded", "id": "snapsave0"}}
2443# -> {"execute": "query-jobs"}
2444# <- {"return": [{"current-progress": 1,
2445# "status": "concluded",
2446# "total-progress": 1,
2447# "type": "snapshot-save",
2448# "id": "snapsave0"}]}
2449#
2450# Since: 6.0
2451##
2452{ 'command': 'snapshot-save',
2453 'data': { 'job-id': 'str',
2454 'tag': 'str',
2455 'vmstate': 'str',
2456 'devices': ['str'] } }
2457
2458##
2459# @snapshot-load:
2460#
2461# Load a VM snapshot
2462#
2463# @job-id: identifier for the newly created job
2464#
2465# @tag: name of the snapshot to load.
2466#
2467# @vmstate: block device node name to load vmstate from
2468#
2469# @devices: list of block device node names to load a snapshot from
2470#
2471# Applications should not assume that the snapshot load is complete
2472# when this command returns. The job commands / events must be used
2473# to determine completion and to fetch details of any errors that
2474# arise.
2475#
2476# Note that execution of the guest CPUs will be stopped during the
2477# time it takes to load the snapshot.
2478#
2479# It is strongly recommended that @devices contain all writable block
2480# device nodes that can have changed since the original @snapshot-save
2481# command execution.
2482#
2483# Returns: nothing
2484#
2485# Example:
2486#
2487# -> { "execute": "snapshot-load",
2488# "arguments": {
2489# "job-id": "snapload0",
2490# "tag": "my-snap",
2491# "vmstate": "disk0",
2492# "devices": ["disk0", "disk1"]
2493# }
2494# }
2495# <- { "return": { } }
2496# <- {"event": "JOB_STATUS_CHANGE",
2497# "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2498# "data": {"status": "created", "id": "snapload0"}}
2499# <- {"event": "JOB_STATUS_CHANGE",
2500# "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2501# "data": {"status": "running", "id": "snapload0"}}
2502# <- {"event": "STOP",
2503# "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2504# <- {"event": "RESUME",
2505# "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2506# <- {"event": "JOB_STATUS_CHANGE",
2507# "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2508# "data": {"status": "waiting", "id": "snapload0"}}
2509# <- {"event": "JOB_STATUS_CHANGE",
2510# "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2511# "data": {"status": "pending", "id": "snapload0"}}
2512# <- {"event": "JOB_STATUS_CHANGE",
2513# "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2514# "data": {"status": "concluded", "id": "snapload0"}}
2515# -> {"execute": "query-jobs"}
2516# <- {"return": [{"current-progress": 1,
2517# "status": "concluded",
2518# "total-progress": 1,
2519# "type": "snapshot-load",
2520# "id": "snapload0"}]}
2521#
2522# Since: 6.0
2523##
2524{ 'command': 'snapshot-load',
2525 'data': { 'job-id': 'str',
2526 'tag': 'str',
2527 'vmstate': 'str',
2528 'devices': ['str'] } }
2529
2530##
2531# @snapshot-delete:
2532#
2533# Delete a VM snapshot
2534#
2535# @job-id: identifier for the newly created job
2536#
2537# @tag: name of the snapshot to delete.
2538#
2539# @devices: list of block device node names to delete a snapshot from
2540#
2541# Applications should not assume that the snapshot delete is complete
2542# when this command returns. The job commands / events must be used
2543# to determine completion and to fetch details of any errors that
2544# arise.
2545#
2546# Returns: nothing
2547#
2548# Example:
2549#
2550# -> { "execute": "snapshot-delete",
2551# "arguments": {
2552# "job-id": "snapdelete0",
2553# "tag": "my-snap",
2554# "devices": ["disk0", "disk1"]
2555# }
2556# }
2557# <- { "return": { } }
2558# <- {"event": "JOB_STATUS_CHANGE",
2559# "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2560# "data": {"status": "created", "id": "snapdelete0"}}
2561# <- {"event": "JOB_STATUS_CHANGE",
2562# "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2563# "data": {"status": "running", "id": "snapdelete0"}}
2564# <- {"event": "JOB_STATUS_CHANGE",
2565# "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2566# "data": {"status": "waiting", "id": "snapdelete0"}}
2567# <- {"event": "JOB_STATUS_CHANGE",
2568# "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2569# "data": {"status": "pending", "id": "snapdelete0"}}
2570# <- {"event": "JOB_STATUS_CHANGE",
2571# "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2572# "data": {"status": "concluded", "id": "snapdelete0"}}
2573# -> {"execute": "query-jobs"}
2574# <- {"return": [{"current-progress": 1,
2575# "status": "concluded",
2576# "total-progress": 1,
2577# "type": "snapshot-delete",
2578# "id": "snapdelete0"}]}
2579#
2580# Since: 6.0
2581##
2582{ 'command': 'snapshot-delete',
2583 'data': { 'job-id': 'str',
2584 'tag': 'str',
2585 'devices': ['str'] } }