]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qapi-schema.json
target/i386/cpu.h: declare TCG_GUEST_DEFAULT_MO
[mirror_qemu.git] / qapi-schema.json
... / ...
CommitLineData
1# -*- Mode: Python -*-
2##
3# = Introduction
4#
5# This document describes all commands currently supported by QMP.
6#
7# Most of the time their usage is exactly the same as in the user Monitor, this
8# means that any other document which also describe commands (the manpage,
9# QEMU's manual, etc) can and should be consulted.
10#
11# QMP has two types of commands: regular and query commands. Regular commands
12# usually change the Virtual Machine's state someway, while query commands just
13# return information. The sections below are divided accordingly.
14#
15# It's important to observe that all communication examples are formatted in
16# a reader-friendly way, so that they're easier to understand. However, in real
17# protocol usage, they're emitted as a single line.
18#
19# Also, the following notation is used to denote data flow:
20#
21# Example:
22#
23# | -> data issued by the Client
24# | <- Server data response
25#
26# Please, refer to the QMP specification (docs/qmp-spec.txt) for
27# detailed information on the Server command and response formats.
28#
29# = Stability Considerations
30#
31# The current QMP command set (described in this file) may be useful for a
32# number of use cases, however it's limited and several commands have bad
33# defined semantics, specially with regard to command completion.
34#
35# These problems are going to be solved incrementally in the next QEMU releases
36# and we're going to establish a deprecation policy for badly defined commands.
37#
38# If you're planning to adopt QMP, please observe the following:
39#
40# 1. The deprecation policy will take effect and be documented soon, please
41# check the documentation of each used command as soon as a new release of
42# QEMU is available
43#
44# 2. DO NOT rely on anything which is not explicit documented
45#
46# 3. Errors, in special, are not documented. Applications should NOT check
47# for specific errors classes or data (it's strongly recommended to only
48# check for the "error" key)
49#
50##
51
52# QAPI common definitions
53{ 'include': 'qapi/common.json' }
54
55# QAPI crypto definitions
56{ 'include': 'qapi/crypto.json' }
57
58# QAPI block definitions
59{ 'include': 'qapi/block.json' }
60
61# QAPI event definitions
62{ 'include': 'qapi/event.json' }
63
64# Tracing commands
65{ 'include': 'qapi/trace.json' }
66
67# QAPI introspection
68{ 'include': 'qapi/introspect.json' }
69
70##
71# = QMP commands
72##
73
74##
75# @qmp_capabilities:
76#
77# Enable QMP capabilities.
78#
79# Arguments: None.
80#
81# Example:
82#
83# -> { "execute": "qmp_capabilities" }
84# <- { "return": {} }
85#
86# Notes: This command is valid exactly when first connecting: it must be
87# issued before any other command will be accepted, and will fail once the
88# monitor is accepting other commands. (see qemu docs/qmp-spec.txt)
89#
90# Since: 0.13
91#
92##
93{ 'command': 'qmp_capabilities' }
94
95##
96# @LostTickPolicy:
97#
98# Policy for handling lost ticks in timer devices.
99#
100# @discard: throw away the missed tick(s) and continue with future injection
101# normally. Guest time may be delayed, unless the OS has explicit
102# handling of lost ticks
103#
104# @delay: continue to deliver ticks at the normal rate. Guest time will be
105# delayed due to the late tick
106#
107# @merge: merge the missed tick(s) into one tick and inject. Guest time
108# may be delayed, depending on how the OS reacts to the merging
109# of ticks
110#
111# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
112# guest time should not be delayed once catchup is complete.
113#
114# Since: 2.0
115##
116{ 'enum': 'LostTickPolicy',
117 'data': ['discard', 'delay', 'merge', 'slew' ] }
118
119##
120# @add_client:
121#
122# Allow client connections for VNC, Spice and socket based
123# character devices to be passed in to QEMU via SCM_RIGHTS.
124#
125# @protocol: protocol name. Valid names are "vnc", "spice" or the
126# name of a character device (eg. from -chardev id=XXXX)
127#
128# @fdname: file descriptor name previously passed via 'getfd' command
129#
130# @skipauth: #optional whether to skip authentication. Only applies
131# to "vnc" and "spice" protocols
132#
133# @tls: #optional whether to perform TLS. Only applies to the "spice"
134# protocol
135#
136# Returns: nothing on success.
137#
138# Since: 0.14.0
139#
140# Example:
141#
142# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
143# "fdname": "myclient" } }
144# <- { "return": {} }
145#
146##
147{ 'command': 'add_client',
148 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
149 '*tls': 'bool' } }
150
151##
152# @NameInfo:
153#
154# Guest name information.
155#
156# @name: #optional The name of the guest
157#
158# Since: 0.14.0
159##
160{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
161
162##
163# @query-name:
164#
165# Return the name information of a guest.
166#
167# Returns: @NameInfo of the guest
168#
169# Since: 0.14.0
170#
171# Example:
172#
173# -> { "execute": "query-name" }
174# <- { "return": { "name": "qemu-name" } }
175#
176##
177{ 'command': 'query-name', 'returns': 'NameInfo' }
178
179##
180# @KvmInfo:
181#
182# Information about support for KVM acceleration
183#
184# @enabled: true if KVM acceleration is active
185#
186# @present: true if KVM acceleration is built into this executable
187#
188# Since: 0.14.0
189##
190{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
191
192##
193# @query-kvm:
194#
195# Returns information about KVM acceleration
196#
197# Returns: @KvmInfo
198#
199# Since: 0.14.0
200#
201# Example:
202#
203# -> { "execute": "query-kvm" }
204# <- { "return": { "enabled": true, "present": true } }
205#
206##
207{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
208
209##
210# @RunState:
211#
212# An enumeration of VM run states.
213#
214# @debug: QEMU is running on a debugger
215#
216# @finish-migrate: guest is paused to finish the migration process
217#
218# @inmigrate: guest is paused waiting for an incoming migration. Note
219# that this state does not tell whether the machine will start at the
220# end of the migration. This depends on the command-line -S option and
221# any invocation of 'stop' or 'cont' that has happened since QEMU was
222# started.
223#
224# @internal-error: An internal error that prevents further guest execution
225# has occurred
226#
227# @io-error: the last IOP has failed and the device is configured to pause
228# on I/O errors
229#
230# @paused: guest has been paused via the 'stop' command
231#
232# @postmigrate: guest is paused following a successful 'migrate'
233#
234# @prelaunch: QEMU was started with -S and guest has not started
235#
236# @restore-vm: guest is paused to restore VM state
237#
238# @running: guest is actively running
239#
240# @save-vm: guest is paused to save the VM state
241#
242# @shutdown: guest is shut down (and -no-shutdown is in use)
243#
244# @suspended: guest is suspended (ACPI S3)
245#
246# @watchdog: the watchdog action is configured to pause and has been triggered
247#
248# @guest-panicked: guest has been panicked as a result of guest OS panic
249#
250# @colo: guest is paused to save/restore VM state under colo checkpoint,
251# VM can not get into this state unless colo capability is enabled
252# for migration. (since 2.8)
253##
254{ 'enum': 'RunState',
255 'data': [ 'debug', 'inmigrate', 'internal-error', 'io-error', 'paused',
256 'postmigrate', 'prelaunch', 'finish-migrate', 'restore-vm',
257 'running', 'save-vm', 'shutdown', 'suspended', 'watchdog',
258 'guest-panicked', 'colo' ] }
259
260##
261# @StatusInfo:
262#
263# Information about VCPU run state
264#
265# @running: true if all VCPUs are runnable, false if not runnable
266#
267# @singlestep: true if VCPUs are in single-step mode
268#
269# @status: the virtual machine @RunState
270#
271# Since: 0.14.0
272#
273# Notes: @singlestep is enabled through the GDB stub
274##
275{ 'struct': 'StatusInfo',
276 'data': {'running': 'bool', 'singlestep': 'bool', 'status': 'RunState'} }
277
278##
279# @query-status:
280#
281# Query the run status of all VCPUs
282#
283# Returns: @StatusInfo reflecting all VCPUs
284#
285# Since: 0.14.0
286#
287# Example:
288#
289# -> { "execute": "query-status" }
290# <- { "return": { "running": true,
291# "singlestep": false,
292# "status": "running" } }
293#
294##
295{ 'command': 'query-status', 'returns': 'StatusInfo' }
296
297##
298# @UuidInfo:
299#
300# Guest UUID information (Universally Unique Identifier).
301#
302# @UUID: the UUID of the guest
303#
304# Since: 0.14.0
305#
306# Notes: If no UUID was specified for the guest, a null UUID is returned.
307##
308{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
309
310##
311# @query-uuid:
312#
313# Query the guest UUID information.
314#
315# Returns: The @UuidInfo for the guest
316#
317# Since: 0.14.0
318#
319# Example:
320#
321# -> { "execute": "query-uuid" }
322# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
323#
324##
325{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
326
327##
328# @ChardevInfo:
329#
330# Information about a character device.
331#
332# @label: the label of the character device
333#
334# @filename: the filename of the character device
335#
336# @frontend-open: shows whether the frontend device attached to this backend
337# (eg. with the chardev=... option) is in open or closed state
338# (since 2.1)
339#
340# Notes: @filename is encoded using the QEMU command line character device
341# encoding. See the QEMU man page for details.
342#
343# Since: 0.14.0
344##
345{ 'struct': 'ChardevInfo', 'data': {'label': 'str',
346 'filename': 'str',
347 'frontend-open': 'bool'} }
348
349##
350# @query-chardev:
351#
352# Returns information about current character devices.
353#
354# Returns: a list of @ChardevInfo
355#
356# Since: 0.14.0
357#
358# Example:
359#
360# -> { "execute": "query-chardev" }
361# <- {
362# "return": [
363# {
364# "label": "charchannel0",
365# "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.agent,server",
366# "frontend-open": false
367# },
368# {
369# "label": "charmonitor",
370# "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.monitor,server",
371# "frontend-open": true
372# },
373# {
374# "label": "charserial0",
375# "filename": "pty:/dev/pts/2",
376# "frontend-open": true
377# }
378# ]
379# }
380#
381##
382{ 'command': 'query-chardev', 'returns': ['ChardevInfo'] }
383
384##
385# @ChardevBackendInfo:
386#
387# Information about a character device backend
388#
389# @name: The backend name
390#
391# Since: 2.0
392##
393{ 'struct': 'ChardevBackendInfo', 'data': {'name': 'str'} }
394
395##
396# @query-chardev-backends:
397#
398# Returns information about character device backends.
399#
400# Returns: a list of @ChardevBackendInfo
401#
402# Since: 2.0
403#
404# Example:
405#
406# -> { "execute": "query-chardev-backends" }
407# <- {
408# "return":[
409# {
410# "name":"udp"
411# },
412# {
413# "name":"tcp"
414# },
415# {
416# "name":"unix"
417# },
418# {
419# "name":"spiceport"
420# }
421# ]
422# }
423#
424##
425{ 'command': 'query-chardev-backends', 'returns': ['ChardevBackendInfo'] }
426
427##
428# @DataFormat:
429#
430# An enumeration of data format.
431#
432# @utf8: Data is a UTF-8 string (RFC 3629)
433#
434# @base64: Data is Base64 encoded binary (RFC 3548)
435#
436# Since: 1.4
437##
438{ 'enum': 'DataFormat',
439 'data': [ 'utf8', 'base64' ] }
440
441##
442# @ringbuf-write:
443#
444# Write to a ring buffer character device.
445#
446# @device: the ring buffer character device name
447#
448# @data: data to write
449#
450# @format: #optional data encoding (default 'utf8').
451# - base64: data must be base64 encoded text. Its binary
452# decoding gets written.
453# - utf8: data's UTF-8 encoding is written
454# - data itself is always Unicode regardless of format, like
455# any other string.
456#
457# Returns: Nothing on success
458#
459# Since: 1.4
460#
461# Example:
462#
463# -> { "execute": "ringbuf-write",
464# "arguments": { "device": "foo",
465# "data": "abcdefgh",
466# "format": "utf8" } }
467# <- { "return": {} }
468#
469##
470{ 'command': 'ringbuf-write',
471 'data': {'device': 'str', 'data': 'str',
472 '*format': 'DataFormat'} }
473
474##
475# @ringbuf-read:
476#
477# Read from a ring buffer character device.
478#
479# @device: the ring buffer character device name
480#
481# @size: how many bytes to read at most
482#
483# @format: #optional data encoding (default 'utf8').
484# - base64: the data read is returned in base64 encoding.
485# - utf8: the data read is interpreted as UTF-8.
486# Bug: can screw up when the buffer contains invalid UTF-8
487# sequences, NUL characters, after the ring buffer lost
488# data, and when reading stops because the size limit is
489# reached.
490# - The return value is always Unicode regardless of format,
491# like any other string.
492#
493# Returns: data read from the device
494#
495# Since: 1.4
496#
497# Example:
498#
499# -> { "execute": "ringbuf-read",
500# "arguments": { "device": "foo",
501# "size": 1000,
502# "format": "utf8" } }
503# <- { "return": "abcdefgh" }
504#
505##
506{ 'command': 'ringbuf-read',
507 'data': {'device': 'str', 'size': 'int', '*format': 'DataFormat'},
508 'returns': 'str' }
509
510##
511# @EventInfo:
512#
513# Information about a QMP event
514#
515# @name: The event name
516#
517# Since: 1.2.0
518##
519{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
520
521##
522# @query-events:
523#
524# Return a list of supported QMP events by this server
525#
526# Returns: A list of @EventInfo for all supported events
527#
528# Since: 1.2.0
529#
530# Example:
531#
532# -> { "execute": "query-events" }
533# <- {
534# "return": [
535# {
536# "name":"SHUTDOWN"
537# },
538# {
539# "name":"RESET"
540# }
541# ]
542# }
543#
544# Note: This example has been shortened as the real response is too long.
545#
546##
547{ 'command': 'query-events', 'returns': ['EventInfo'] }
548
549##
550# @MigrationStats:
551#
552# Detailed migration status.
553#
554# @transferred: amount of bytes already transferred to the target VM
555#
556# @remaining: amount of bytes remaining to be transferred to the target VM
557#
558# @total: total amount of bytes involved in the migration process
559#
560# @duplicate: number of duplicate (zero) pages (since 1.2)
561#
562# @skipped: number of skipped zero pages (since 1.5)
563#
564# @normal: number of normal pages (since 1.2)
565#
566# @normal-bytes: number of normal bytes sent (since 1.2)
567#
568# @dirty-pages-rate: number of pages dirtied by second by the
569# guest (since 1.3)
570#
571# @mbps: throughput in megabits/sec. (since 1.6)
572#
573# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
574#
575# @postcopy-requests: The number of page requests received from the destination
576# (since 2.7)
577#
578# Since: 0.14.0
579##
580{ 'struct': 'MigrationStats',
581 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
582 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
583 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
584 'mbps' : 'number', 'dirty-sync-count' : 'int',
585 'postcopy-requests' : 'int' } }
586
587##
588# @XBZRLECacheStats:
589#
590# Detailed XBZRLE migration cache statistics
591#
592# @cache-size: XBZRLE cache size
593#
594# @bytes: amount of bytes already transferred to the target VM
595#
596# @pages: amount of pages transferred to the target VM
597#
598# @cache-miss: number of cache miss
599#
600# @cache-miss-rate: rate of cache miss (since 2.1)
601#
602# @overflow: number of overflows
603#
604# Since: 1.2
605##
606{ 'struct': 'XBZRLECacheStats',
607 'data': {'cache-size': 'int', 'bytes': 'int', 'pages': 'int',
608 'cache-miss': 'int', 'cache-miss-rate': 'number',
609 'overflow': 'int' } }
610
611##
612# @MigrationStatus:
613#
614# An enumeration of migration status.
615#
616# @none: no migration has ever happened.
617#
618# @setup: migration process has been initiated.
619#
620# @cancelling: in the process of cancelling migration.
621#
622# @cancelled: cancelling migration is finished.
623#
624# @active: in the process of doing migration.
625#
626# @postcopy-active: like active, but now in postcopy mode. (since 2.5)
627#
628# @completed: migration is finished.
629#
630# @failed: some error occurred during migration process.
631#
632# @colo: VM is in the process of fault tolerance, VM can not get into this
633# state unless colo capability is enabled for migration. (since 2.8)
634#
635# Since: 2.3
636#
637##
638{ 'enum': 'MigrationStatus',
639 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
640 'active', 'postcopy-active', 'completed', 'failed', 'colo' ] }
641
642##
643# @MigrationInfo:
644#
645# Information about current migration process.
646#
647# @status: #optional @MigrationStatus describing the current migration status.
648# If this field is not returned, no migration process
649# has been initiated
650#
651# @ram: #optional @MigrationStats containing detailed migration
652# status, only returned if status is 'active' or
653# 'completed'(since 1.2)
654#
655# @disk: #optional @MigrationStats containing detailed disk migration
656# status, only returned if status is 'active' and it is a block
657# migration
658#
659# @xbzrle-cache: #optional @XBZRLECacheStats containing detailed XBZRLE
660# migration statistics, only returned if XBZRLE feature is on and
661# status is 'active' or 'completed' (since 1.2)
662#
663# @total-time: #optional total amount of milliseconds since migration started.
664# If migration has ended, it returns the total migration
665# time. (since 1.2)
666#
667# @downtime: #optional only present when migration finishes correctly
668# total downtime in milliseconds for the guest.
669# (since 1.3)
670#
671# @expected-downtime: #optional only present while migration is active
672# expected downtime in milliseconds for the guest in last walk
673# of the dirty bitmap. (since 1.3)
674#
675# @setup-time: #optional amount of setup time in milliseconds _before_ the
676# iterations begin but _after_ the QMP command is issued. This is designed
677# to provide an accounting of any activities (such as RDMA pinning) which
678# may be expensive, but do not actually occur during the iterative
679# migration rounds themselves. (since 1.6)
680#
681# @cpu-throttle-percentage: #optional percentage of time guest cpus are being
682# throttled during auto-converge. This is only present when auto-converge
683# has started throttling guest cpus. (Since 2.7)
684#
685# @error-desc: #optional the human readable error description string, when
686# @status is 'failed'. Clients should not attempt to parse the
687# error strings. (Since 2.7)
688#
689# Since: 0.14.0
690##
691{ 'struct': 'MigrationInfo',
692 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
693 '*disk': 'MigrationStats',
694 '*xbzrle-cache': 'XBZRLECacheStats',
695 '*total-time': 'int',
696 '*expected-downtime': 'int',
697 '*downtime': 'int',
698 '*setup-time': 'int',
699 '*cpu-throttle-percentage': 'int',
700 '*error-desc': 'str'} }
701
702##
703# @query-migrate:
704#
705# Returns information about current migration process. If migration
706# is active there will be another json-object with RAM migration
707# status and if block migration is active another one with block
708# migration status.
709#
710# Returns: @MigrationInfo
711#
712# Since: 0.14.0
713#
714# Example:
715#
716# 1. Before the first migration
717#
718# -> { "execute": "query-migrate" }
719# <- { "return": {} }
720#
721# 2. Migration is done and has succeeded
722#
723# -> { "execute": "query-migrate" }
724# <- { "return": {
725# "status": "completed",
726# "ram":{
727# "transferred":123,
728# "remaining":123,
729# "total":246,
730# "total-time":12345,
731# "setup-time":12345,
732# "downtime":12345,
733# "duplicate":123,
734# "normal":123,
735# "normal-bytes":123456,
736# "dirty-sync-count":15
737# }
738# }
739# }
740#
741# 3. Migration is done and has failed
742#
743# -> { "execute": "query-migrate" }
744# <- { "return": { "status": "failed" } }
745#
746# 4. Migration is being performed and is not a block migration:
747#
748# -> { "execute": "query-migrate" }
749# <- {
750# "return":{
751# "status":"active",
752# "ram":{
753# "transferred":123,
754# "remaining":123,
755# "total":246,
756# "total-time":12345,
757# "setup-time":12345,
758# "expected-downtime":12345,
759# "duplicate":123,
760# "normal":123,
761# "normal-bytes":123456,
762# "dirty-sync-count":15
763# }
764# }
765# }
766#
767# 5. Migration is being performed and is a block migration:
768#
769# -> { "execute": "query-migrate" }
770# <- {
771# "return":{
772# "status":"active",
773# "ram":{
774# "total":1057024,
775# "remaining":1053304,
776# "transferred":3720,
777# "total-time":12345,
778# "setup-time":12345,
779# "expected-downtime":12345,
780# "duplicate":123,
781# "normal":123,
782# "normal-bytes":123456,
783# "dirty-sync-count":15
784# },
785# "disk":{
786# "total":20971520,
787# "remaining":20880384,
788# "transferred":91136
789# }
790# }
791# }
792#
793# 6. Migration is being performed and XBZRLE is active:
794#
795# -> { "execute": "query-migrate" }
796# <- {
797# "return":{
798# "status":"active",
799# "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
800# "ram":{
801# "total":1057024,
802# "remaining":1053304,
803# "transferred":3720,
804# "total-time":12345,
805# "setup-time":12345,
806# "expected-downtime":12345,
807# "duplicate":10,
808# "normal":3333,
809# "normal-bytes":3412992,
810# "dirty-sync-count":15
811# },
812# "xbzrle-cache":{
813# "cache-size":67108864,
814# "bytes":20971520,
815# "pages":2444343,
816# "cache-miss":2244,
817# "cache-miss-rate":0.123,
818# "overflow":34434
819# }
820# }
821# }
822#
823##
824{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
825
826##
827# @MigrationCapability:
828#
829# Migration capabilities enumeration
830#
831# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
832# This feature allows us to minimize migration traffic for certain work
833# loads, by sending compressed difference of the pages
834#
835# @rdma-pin-all: Controls whether or not the entire VM memory footprint is
836# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
837# Disabled by default. (since 2.0)
838#
839# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
840# essentially saves 1MB of zeroes per block on the wire. Enabling requires
841# source and target VM to support this feature. To enable it is sufficient
842# to enable the capability on the source VM. The feature is disabled by
843# default. (since 1.6)
844#
845# @compress: Use multiple compression threads to accelerate live migration.
846# This feature can help to reduce the migration traffic, by sending
847# compressed pages. Please note that if compress and xbzrle are both
848# on, compress only takes effect in the ram bulk stage, after that,
849# it will be disabled and only xbzrle takes effect, this can help to
850# minimize migration traffic. The feature is disabled by default.
851# (since 2.4 )
852#
853# @events: generate events for each migration state change
854# (since 2.4 )
855#
856# @auto-converge: If enabled, QEMU will automatically throttle down the guest
857# to speed up convergence of RAM migration. (since 1.6)
858#
859# @postcopy-ram: Start executing on the migration target before all of RAM has
860# been migrated, pulling the remaining pages along as needed. NOTE: If
861# the migration fails during postcopy the VM will fail. (since 2.6)
862#
863# @x-colo: If enabled, migration will never end, and the state of the VM on the
864# primary side will be migrated continuously to the VM on secondary
865# side, this process is called COarse-Grain LOck Stepping (COLO) for
866# Non-stop Service. (since 2.8)
867#
868# @release-ram: if enabled, qemu will free the migrated ram pages on the source
869# during postcopy-ram migration. (since 2.9)
870#
871# Since: 1.2
872##
873{ 'enum': 'MigrationCapability',
874 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
875 'compress', 'events', 'postcopy-ram', 'x-colo', 'release-ram'] }
876
877##
878# @MigrationCapabilityStatus:
879#
880# Migration capability information
881#
882# @capability: capability enum
883#
884# @state: capability state bool
885#
886# Since: 1.2
887##
888{ 'struct': 'MigrationCapabilityStatus',
889 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
890
891##
892# @migrate-set-capabilities:
893#
894# Enable/Disable the following migration capabilities (like xbzrle)
895#
896# @capabilities: json array of capability modifications to make
897#
898# Since: 1.2
899#
900# Example:
901#
902# -> { "execute": "migrate-set-capabilities" , "arguments":
903# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
904#
905##
906{ 'command': 'migrate-set-capabilities',
907 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
908
909##
910# @query-migrate-capabilities:
911#
912# Returns information about the current migration capabilities status
913#
914# Returns: @MigrationCapabilitiesStatus
915#
916# Since: 1.2
917#
918# Example:
919#
920# -> { "execute": "query-migrate-capabilities" }
921# <- { "return": [
922# {"state": false, "capability": "xbzrle"},
923# {"state": false, "capability": "rdma-pin-all"},
924# {"state": false, "capability": "auto-converge"},
925# {"state": false, "capability": "zero-blocks"},
926# {"state": false, "capability": "compress"},
927# {"state": true, "capability": "events"},
928# {"state": false, "capability": "postcopy-ram"},
929# {"state": false, "capability": "x-colo"}
930# ]}
931#
932##
933{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
934
935##
936# @MigrationParameter:
937#
938# Migration parameters enumeration
939#
940# @compress-level: Set the compression level to be used in live migration,
941# the compression level is an integer between 0 and 9, where 0 means
942# no compression, 1 means the best compression speed, and 9 means best
943# compression ratio which will consume more CPU.
944#
945# @compress-threads: Set compression thread count to be used in live migration,
946# the compression thread count is an integer between 1 and 255.
947#
948# @decompress-threads: Set decompression thread count to be used in live
949# migration, the decompression thread count is an integer between 1
950# and 255. Usually, decompression is at least 4 times as fast as
951# compression, so set the decompress-threads to the number about 1/4
952# of compress-threads is adequate.
953#
954# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
955# when migration auto-converge is activated. The
956# default value is 20. (Since 2.7)
957#
958# @cpu-throttle-increment: throttle percentage increase each time
959# auto-converge detects that migration is not making
960# progress. The default value is 10. (Since 2.7)
961#
962# @tls-creds: ID of the 'tls-creds' object that provides credentials for
963# establishing a TLS connection over the migration data channel.
964# On the outgoing side of the migration, the credentials must
965# be for a 'client' endpoint, while for the incoming side the
966# credentials must be for a 'server' endpoint. Setting this
967# will enable TLS for all migrations. The default is unset,
968# resulting in unsecured migration at the QEMU level. (Since 2.7)
969#
970# @tls-hostname: hostname of the target host for the migration. This is
971# required when using x509 based TLS credentials and the
972# migration URI does not already include a hostname. For
973# example if using fd: or exec: based migration, the
974# hostname must be provided so that the server's x509
975# certificate identity can be validated. (Since 2.7)
976#
977# @max-bandwidth: to set maximum speed for migration. maximum speed in
978# bytes per second. (Since 2.8)
979#
980# @downtime-limit: set maximum tolerated downtime for migration. maximum
981# downtime in milliseconds (Since 2.8)
982#
983# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
984# periodic mode. (Since 2.8)
985#
986# Since: 2.4
987##
988{ 'enum': 'MigrationParameter',
989 'data': ['compress-level', 'compress-threads', 'decompress-threads',
990 'cpu-throttle-initial', 'cpu-throttle-increment',
991 'tls-creds', 'tls-hostname', 'max-bandwidth',
992 'downtime-limit', 'x-checkpoint-delay' ] }
993
994##
995# @migrate-set-parameters:
996#
997# Set various migration parameters. See MigrationParameters for details.
998#
999# Since: 2.4
1000#
1001# Example:
1002#
1003# -> { "execute": "migrate-set-parameters" ,
1004# "arguments": { "compress-level": 1 } }
1005#
1006##
1007{ 'command': 'migrate-set-parameters', 'boxed': true,
1008 'data': 'MigrationParameters' }
1009
1010##
1011# @MigrationParameters:
1012#
1013# Optional members can be omitted on input ('migrate-set-parameters')
1014# but most members will always be present on output
1015# ('query-migrate-parameters'), with the exception of tls-creds and
1016# tls-hostname.
1017#
1018# @compress-level: #optional compression level
1019#
1020# @compress-threads: #optional compression thread count
1021#
1022# @decompress-threads: #optional decompression thread count
1023#
1024# @cpu-throttle-initial: #optional Initial percentage of time guest cpus are
1025# throttledwhen migration auto-converge is activated.
1026# The default value is 20. (Since 2.7)
1027#
1028# @cpu-throttle-increment: #optional throttle percentage increase each time
1029# auto-converge detects that migration is not making
1030# progress. The default value is 10. (Since 2.7)
1031#
1032# @tls-creds: #optional ID of the 'tls-creds' object that provides credentials
1033# for establishing a TLS connection over the migration data
1034# channel. On the outgoing side of the migration, the credentials
1035# must be for a 'client' endpoint, while for the incoming side the
1036# credentials must be for a 'server' endpoint. Setting this
1037# will enable TLS for all migrations. The default is unset,
1038# resulting in unsecured migration at the QEMU level. (Since 2.7)
1039#
1040# @tls-hostname: #optional hostname of the target host for the migration. This
1041# is required when using x509 based TLS credentials and the
1042# migration URI does not already include a hostname. For
1043# example if using fd: or exec: based migration, the
1044# hostname must be provided so that the server's x509
1045# certificate identity can be validated. (Since 2.7)
1046#
1047# @max-bandwidth: to set maximum speed for migration. maximum speed in
1048# bytes per second. (Since 2.8)
1049#
1050# @downtime-limit: set maximum tolerated downtime for migration. maximum
1051# downtime in milliseconds (Since 2.8)
1052#
1053# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1054#
1055# Since: 2.4
1056##
1057{ 'struct': 'MigrationParameters',
1058 'data': { '*compress-level': 'int',
1059 '*compress-threads': 'int',
1060 '*decompress-threads': 'int',
1061 '*cpu-throttle-initial': 'int',
1062 '*cpu-throttle-increment': 'int',
1063 '*tls-creds': 'str',
1064 '*tls-hostname': 'str',
1065 '*max-bandwidth': 'int',
1066 '*downtime-limit': 'int',
1067 '*x-checkpoint-delay': 'int'} }
1068
1069##
1070# @query-migrate-parameters:
1071#
1072# Returns information about the current migration parameters
1073#
1074# Returns: @MigrationParameters
1075#
1076# Since: 2.4
1077#
1078# Example:
1079#
1080# -> { "execute": "query-migrate-parameters" }
1081# <- { "return": {
1082# "decompress-threads": 2,
1083# "cpu-throttle-increment": 10,
1084# "compress-threads": 8,
1085# "compress-level": 1,
1086# "cpu-throttle-initial": 20,
1087# "max-bandwidth": 33554432,
1088# "downtime-limit": 300
1089# }
1090# }
1091#
1092##
1093{ 'command': 'query-migrate-parameters',
1094 'returns': 'MigrationParameters' }
1095
1096##
1097# @client_migrate_info:
1098#
1099# Set migration information for remote display. This makes the server
1100# ask the client to automatically reconnect using the new parameters
1101# once migration finished successfully. Only implemented for SPICE.
1102#
1103# @protocol: must be "spice"
1104# @hostname: migration target hostname
1105# @port: #optional spice tcp port for plaintext channels
1106# @tls-port: #optional spice tcp port for tls-secured channels
1107# @cert-subject: #optional server certificate subject
1108#
1109# Since: 0.14.0
1110#
1111# Example:
1112#
1113# -> { "execute": "client_migrate_info",
1114# "arguments": { "protocol": "spice",
1115# "hostname": "virt42.lab.kraxel.org",
1116# "port": 1234 } }
1117# <- { "return": {} }
1118#
1119##
1120{ 'command': 'client_migrate_info',
1121 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int',
1122 '*tls-port': 'int', '*cert-subject': 'str' } }
1123
1124##
1125# @migrate-start-postcopy:
1126#
1127# Followup to a migration command to switch the migration to postcopy mode.
1128# The postcopy-ram capability must be set before the original migration
1129# command.
1130#
1131# Since: 2.5
1132#
1133# Example:
1134#
1135# -> { "execute": "migrate-start-postcopy" }
1136# <- { "return": {} }
1137#
1138##
1139{ 'command': 'migrate-start-postcopy' }
1140
1141##
1142# @COLOMessage:
1143#
1144# The message transmission between Primary side and Secondary side.
1145#
1146# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1147#
1148# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1149#
1150# @checkpoint-reply: SVM gets PVM's checkpoint request
1151#
1152# @vmstate-send: VM's state will be sent by PVM.
1153#
1154# @vmstate-size: The total size of VMstate.
1155#
1156# @vmstate-received: VM's state has been received by SVM.
1157#
1158# @vmstate-loaded: VM's state has been loaded by SVM.
1159#
1160# Since: 2.8
1161##
1162{ 'enum': 'COLOMessage',
1163 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1164 'vmstate-send', 'vmstate-size', 'vmstate-received',
1165 'vmstate-loaded' ] }
1166
1167##
1168# @COLOMode:
1169#
1170# The colo mode
1171#
1172# @unknown: unknown mode
1173#
1174# @primary: master side
1175#
1176# @secondary: slave side
1177#
1178# Since: 2.8
1179##
1180{ 'enum': 'COLOMode',
1181 'data': [ 'unknown', 'primary', 'secondary'] }
1182
1183##
1184# @FailoverStatus:
1185#
1186# An enumeration of COLO failover status
1187#
1188# @none: no failover has ever happened
1189#
1190# @require: got failover requirement but not handled
1191#
1192# @active: in the process of doing failover
1193#
1194# @completed: finish the process of failover
1195#
1196# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1197#
1198# Since: 2.8
1199##
1200{ 'enum': 'FailoverStatus',
1201 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1202
1203##
1204# @x-colo-lost-heartbeat:
1205#
1206# Tell qemu that heartbeat is lost, request it to do takeover procedures.
1207# If this command is sent to the PVM, the Primary side will exit COLO mode.
1208# If sent to the Secondary, the Secondary side will run failover work,
1209# then takes over server operation to become the service VM.
1210#
1211# Since: 2.8
1212#
1213# Example:
1214#
1215# -> { "execute": "x-colo-lost-heartbeat" }
1216# <- { "return": {} }
1217#
1218##
1219{ 'command': 'x-colo-lost-heartbeat' }
1220
1221##
1222# @MouseInfo:
1223#
1224# Information about a mouse device.
1225#
1226# @name: the name of the mouse device
1227#
1228# @index: the index of the mouse device
1229#
1230# @current: true if this device is currently receiving mouse events
1231#
1232# @absolute: true if this device supports absolute coordinates as input
1233#
1234# Since: 0.14.0
1235##
1236{ 'struct': 'MouseInfo',
1237 'data': {'name': 'str', 'index': 'int', 'current': 'bool',
1238 'absolute': 'bool'} }
1239
1240##
1241# @query-mice:
1242#
1243# Returns information about each active mouse device
1244#
1245# Returns: a list of @MouseInfo for each device
1246#
1247# Since: 0.14.0
1248#
1249# Example:
1250#
1251# -> { "execute": "query-mice" }
1252# <- { "return": [
1253# {
1254# "name":"QEMU Microsoft Mouse",
1255# "index":0,
1256# "current":false,
1257# "absolute":false
1258# },
1259# {
1260# "name":"QEMU PS/2 Mouse",
1261# "index":1,
1262# "current":true,
1263# "absolute":true
1264# }
1265# ]
1266# }
1267#
1268##
1269{ 'command': 'query-mice', 'returns': ['MouseInfo'] }
1270
1271##
1272# @CpuInfoArch:
1273#
1274# An enumeration of cpu types that enable additional information during
1275# @query-cpus.
1276#
1277# Since: 2.6
1278##
1279{ 'enum': 'CpuInfoArch',
1280 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
1281
1282##
1283# @CpuInfo:
1284#
1285# Information about a virtual CPU
1286#
1287# @CPU: the index of the virtual CPU
1288#
1289# @current: this only exists for backwards compatibility and should be ignored
1290#
1291# @halted: true if the virtual CPU is in the halt state. Halt usually refers
1292# to a processor specific low power mode.
1293#
1294# @qom_path: path to the CPU object in the QOM tree (since 2.4)
1295#
1296# @thread_id: ID of the underlying host thread
1297#
1298# @arch: architecture of the cpu, which determines which additional fields
1299# will be listed (since 2.6)
1300#
1301# Since: 0.14.0
1302#
1303# Notes: @halted is a transient state that changes frequently. By the time the
1304# data is sent to the client, the guest may no longer be halted.
1305##
1306{ 'union': 'CpuInfo',
1307 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
1308 'qom_path': 'str', 'thread_id': 'int', 'arch': 'CpuInfoArch' },
1309 'discriminator': 'arch',
1310 'data': { 'x86': 'CpuInfoX86',
1311 'sparc': 'CpuInfoSPARC',
1312 'ppc': 'CpuInfoPPC',
1313 'mips': 'CpuInfoMIPS',
1314 'tricore': 'CpuInfoTricore',
1315 'other': 'CpuInfoOther' } }
1316
1317##
1318# @CpuInfoX86:
1319#
1320# Additional information about a virtual i386 or x86_64 CPU
1321#
1322# @pc: the 64-bit instruction pointer
1323#
1324# Since: 2.6
1325##
1326{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
1327
1328##
1329# @CpuInfoSPARC:
1330#
1331# Additional information about a virtual SPARC CPU
1332#
1333# @pc: the PC component of the instruction pointer
1334#
1335# @npc: the NPC component of the instruction pointer
1336#
1337# Since: 2.6
1338##
1339{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
1340
1341##
1342# @CpuInfoPPC:
1343#
1344# Additional information about a virtual PPC CPU
1345#
1346# @nip: the instruction pointer
1347#
1348# Since: 2.6
1349##
1350{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
1351
1352##
1353# @CpuInfoMIPS:
1354#
1355# Additional information about a virtual MIPS CPU
1356#
1357# @PC: the instruction pointer
1358#
1359# Since: 2.6
1360##
1361{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
1362
1363##
1364# @CpuInfoTricore:
1365#
1366# Additional information about a virtual Tricore CPU
1367#
1368# @PC: the instruction pointer
1369#
1370# Since: 2.6
1371##
1372{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
1373
1374##
1375# @CpuInfoOther:
1376#
1377# No additional information is available about the virtual CPU
1378#
1379# Since: 2.6
1380#
1381##
1382{ 'struct': 'CpuInfoOther', 'data': { } }
1383
1384##
1385# @query-cpus:
1386#
1387# Returns a list of information about each virtual CPU.
1388#
1389# Returns: a list of @CpuInfo for each virtual CPU
1390#
1391# Since: 0.14.0
1392#
1393# Example:
1394#
1395# -> { "execute": "query-cpus" }
1396# <- { "return": [
1397# {
1398# "CPU":0,
1399# "current":true,
1400# "halted":false,
1401# "qom_path":"/machine/unattached/device[0]",
1402# "arch":"x86",
1403# "pc":3227107138,
1404# "thread_id":3134
1405# },
1406# {
1407# "CPU":1,
1408# "current":false,
1409# "halted":true,
1410# "qom_path":"/machine/unattached/device[2]",
1411# "arch":"x86",
1412# "pc":7108165,
1413# "thread_id":3135
1414# }
1415# ]
1416# }
1417#
1418##
1419{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
1420
1421##
1422# @IOThreadInfo:
1423#
1424# Information about an iothread
1425#
1426# @id: the identifier of the iothread
1427#
1428# @thread-id: ID of the underlying host thread
1429#
1430# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
1431# (since 2.9)
1432#
1433# @poll-grow: how many ns will be added to polling time, 0 means that it's not
1434# configured (since 2.9)
1435#
1436# @poll-shrink: how many ns will be removed from polling time, 0 means that
1437# it's not configured (since 2.9)
1438#
1439# Since: 2.0
1440##
1441{ 'struct': 'IOThreadInfo',
1442 'data': {'id': 'str',
1443 'thread-id': 'int',
1444 'poll-max-ns': 'int',
1445 'poll-grow': 'int',
1446 'poll-shrink': 'int' } }
1447
1448##
1449# @query-iothreads:
1450#
1451# Returns a list of information about each iothread.
1452#
1453# Note: this list excludes the QEMU main loop thread, which is not declared
1454# using the -object iothread command-line option. It is always the main thread
1455# of the process.
1456#
1457# Returns: a list of @IOThreadInfo for each iothread
1458#
1459# Since: 2.0
1460#
1461# Example:
1462#
1463# -> { "execute": "query-iothreads" }
1464# <- { "return": [
1465# {
1466# "id":"iothread0",
1467# "thread-id":3134
1468# },
1469# {
1470# "id":"iothread1",
1471# "thread-id":3135
1472# }
1473# ]
1474# }
1475#
1476##
1477{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
1478
1479##
1480# @NetworkAddressFamily:
1481#
1482# The network address family
1483#
1484# @ipv4: IPV4 family
1485#
1486# @ipv6: IPV6 family
1487#
1488# @unix: unix socket
1489#
1490# @vsock: vsock family (since 2.8)
1491#
1492# @unknown: otherwise
1493#
1494# Since: 2.1
1495##
1496{ 'enum': 'NetworkAddressFamily',
1497 'data': [ 'ipv4', 'ipv6', 'unix', 'vsock', 'unknown' ] }
1498
1499##
1500# @VncBasicInfo:
1501#
1502# The basic information for vnc network connection
1503#
1504# @host: IP address
1505#
1506# @service: The service name of the vnc port. This may depend on the host
1507# system's service database so symbolic names should not be relied
1508# on.
1509#
1510# @family: address family
1511#
1512# @websocket: true in case the socket is a websocket (since 2.3).
1513#
1514# Since: 2.1
1515##
1516{ 'struct': 'VncBasicInfo',
1517 'data': { 'host': 'str',
1518 'service': 'str',
1519 'family': 'NetworkAddressFamily',
1520 'websocket': 'bool' } }
1521
1522##
1523# @VncServerInfo:
1524#
1525# The network connection information for server
1526#
1527# @auth: #optional authentication method used for
1528# the plain (non-websocket) VNC server
1529#
1530# Since: 2.1
1531##
1532{ 'struct': 'VncServerInfo',
1533 'base': 'VncBasicInfo',
1534 'data': { '*auth': 'str' } }
1535
1536##
1537# @VncClientInfo:
1538#
1539# Information about a connected VNC client.
1540#
1541# @x509_dname: #optional If x509 authentication is in use, the Distinguished
1542# Name of the client.
1543#
1544# @sasl_username: #optional If SASL authentication is in use, the SASL username
1545# used for authentication.
1546#
1547# Since: 0.14.0
1548##
1549{ 'struct': 'VncClientInfo',
1550 'base': 'VncBasicInfo',
1551 'data': { '*x509_dname': 'str', '*sasl_username': 'str' } }
1552
1553##
1554# @VncInfo:
1555#
1556# Information about the VNC session.
1557#
1558# @enabled: true if the VNC server is enabled, false otherwise
1559#
1560# @host: #optional The hostname the VNC server is bound to. This depends on
1561# the name resolution on the host and may be an IP address.
1562#
1563# @family: #optional 'ipv6' if the host is listening for IPv6 connections
1564# 'ipv4' if the host is listening for IPv4 connections
1565# 'unix' if the host is listening on a unix domain socket
1566# 'unknown' otherwise
1567#
1568# @service: #optional The service name of the server's port. This may depends
1569# on the host system's service database so symbolic names should not
1570# be relied on.
1571#
1572# @auth: #optional the current authentication type used by the server
1573# 'none' if no authentication is being used
1574# 'vnc' if VNC authentication is being used
1575# 'vencrypt+plain' if VEncrypt is used with plain text authentication
1576# 'vencrypt+tls+none' if VEncrypt is used with TLS and no authentication
1577# 'vencrypt+tls+vnc' if VEncrypt is used with TLS and VNC authentication
1578# 'vencrypt+tls+plain' if VEncrypt is used with TLS and plain text auth
1579# 'vencrypt+x509+none' if VEncrypt is used with x509 and no auth
1580# 'vencrypt+x509+vnc' if VEncrypt is used with x509 and VNC auth
1581# 'vencrypt+x509+plain' if VEncrypt is used with x509 and plain text auth
1582# 'vencrypt+tls+sasl' if VEncrypt is used with TLS and SASL auth
1583# 'vencrypt+x509+sasl' if VEncrypt is used with x509 and SASL auth
1584#
1585# @clients: a list of @VncClientInfo of all currently connected clients
1586#
1587# Since: 0.14.0
1588##
1589{ 'struct': 'VncInfo',
1590 'data': {'enabled': 'bool', '*host': 'str',
1591 '*family': 'NetworkAddressFamily',
1592 '*service': 'str', '*auth': 'str', '*clients': ['VncClientInfo']} }
1593
1594##
1595# @VncPrimaryAuth:
1596#
1597# vnc primary authentication method.
1598#
1599# Since: 2.3
1600##
1601{ 'enum': 'VncPrimaryAuth',
1602 'data': [ 'none', 'vnc', 'ra2', 'ra2ne', 'tight', 'ultra',
1603 'tls', 'vencrypt', 'sasl' ] }
1604
1605##
1606# @VncVencryptSubAuth:
1607#
1608# vnc sub authentication method with vencrypt.
1609#
1610# Since: 2.3
1611##
1612{ 'enum': 'VncVencryptSubAuth',
1613 'data': [ 'plain',
1614 'tls-none', 'x509-none',
1615 'tls-vnc', 'x509-vnc',
1616 'tls-plain', 'x509-plain',
1617 'tls-sasl', 'x509-sasl' ] }
1618
1619
1620##
1621# @VncServerInfo2:
1622#
1623# The network connection information for server
1624#
1625# @auth: The current authentication type used by the servers
1626#
1627# @vencrypt: #optional The vencrypt sub authentication type used by the
1628# servers, only specified in case auth == vencrypt.
1629#
1630# Since: 2.9
1631##
1632{ 'struct': 'VncServerInfo2',
1633 'base': 'VncBasicInfo',
1634 'data': { 'auth' : 'VncPrimaryAuth',
1635 '*vencrypt' : 'VncVencryptSubAuth' } }
1636
1637
1638##
1639# @VncInfo2:
1640#
1641# Information about a vnc server
1642#
1643# @id: vnc server name.
1644#
1645# @server: A list of @VncBasincInfo describing all listening sockets.
1646# The list can be empty (in case the vnc server is disabled).
1647# It also may have multiple entries: normal + websocket,
1648# possibly also ipv4 + ipv6 in the future.
1649#
1650# @clients: A list of @VncClientInfo of all currently connected clients.
1651# The list can be empty, for obvious reasons.
1652#
1653# @auth: The current authentication type used by the non-websockets servers
1654#
1655# @vencrypt: #optional The vencrypt authentication type used by the servers,
1656# only specified in case auth == vencrypt.
1657#
1658# @display: #optional The display device the vnc server is linked to.
1659#
1660# Since: 2.3
1661##
1662{ 'struct': 'VncInfo2',
1663 'data': { 'id' : 'str',
1664 'server' : ['VncServerInfo2'],
1665 'clients' : ['VncClientInfo'],
1666 'auth' : 'VncPrimaryAuth',
1667 '*vencrypt' : 'VncVencryptSubAuth',
1668 '*display' : 'str' } }
1669
1670##
1671# @query-vnc:
1672#
1673# Returns information about the current VNC server
1674#
1675# Returns: @VncInfo
1676#
1677# Since: 0.14.0
1678#
1679# Example:
1680#
1681# -> { "execute": "query-vnc" }
1682# <- { "return": {
1683# "enabled":true,
1684# "host":"0.0.0.0",
1685# "service":"50402",
1686# "auth":"vnc",
1687# "family":"ipv4",
1688# "clients":[
1689# {
1690# "host":"127.0.0.1",
1691# "service":"50401",
1692# "family":"ipv4"
1693# }
1694# ]
1695# }
1696# }
1697#
1698##
1699{ 'command': 'query-vnc', 'returns': 'VncInfo' }
1700
1701##
1702# @query-vnc-servers:
1703#
1704# Returns a list of vnc servers. The list can be empty.
1705#
1706# Returns: a list of @VncInfo2
1707#
1708# Since: 2.3
1709##
1710{ 'command': 'query-vnc-servers', 'returns': ['VncInfo2'] }
1711
1712##
1713# @SpiceBasicInfo:
1714#
1715# The basic information for SPICE network connection
1716#
1717# @host: IP address
1718#
1719# @port: port number
1720#
1721# @family: address family
1722#
1723# Since: 2.1
1724##
1725{ 'struct': 'SpiceBasicInfo',
1726 'data': { 'host': 'str',
1727 'port': 'str',
1728 'family': 'NetworkAddressFamily' } }
1729
1730##
1731# @SpiceServerInfo:
1732#
1733# Information about a SPICE server
1734#
1735# @auth: #optional authentication method
1736#
1737# Since: 2.1
1738##
1739{ 'struct': 'SpiceServerInfo',
1740 'base': 'SpiceBasicInfo',
1741 'data': { '*auth': 'str' } }
1742
1743##
1744# @SpiceChannel:
1745#
1746# Information about a SPICE client channel.
1747#
1748# @connection-id: SPICE connection id number. All channels with the same id
1749# belong to the same SPICE session.
1750#
1751# @channel-type: SPICE channel type number. "1" is the main control
1752# channel, filter for this one if you want to track spice
1753# sessions only
1754#
1755# @channel-id: SPICE channel ID number. Usually "0", might be different when
1756# multiple channels of the same type exist, such as multiple
1757# display channels in a multihead setup
1758#
1759# @tls: true if the channel is encrypted, false otherwise.
1760#
1761# Since: 0.14.0
1762##
1763{ 'struct': 'SpiceChannel',
1764 'base': 'SpiceBasicInfo',
1765 'data': {'connection-id': 'int', 'channel-type': 'int', 'channel-id': 'int',
1766 'tls': 'bool'} }
1767
1768##
1769# @SpiceQueryMouseMode:
1770#
1771# An enumeration of Spice mouse states.
1772#
1773# @client: Mouse cursor position is determined by the client.
1774#
1775# @server: Mouse cursor position is determined by the server.
1776#
1777# @unknown: No information is available about mouse mode used by
1778# the spice server.
1779#
1780# Note: spice/enums.h has a SpiceMouseMode already, hence the name.
1781#
1782# Since: 1.1
1783##
1784{ 'enum': 'SpiceQueryMouseMode',
1785 'data': [ 'client', 'server', 'unknown' ] }
1786
1787##
1788# @SpiceInfo:
1789#
1790# Information about the SPICE session.
1791#
1792# @enabled: true if the SPICE server is enabled, false otherwise
1793#
1794# @migrated: true if the last guest migration completed and spice
1795# migration had completed as well. false otherwise. (since 1.4)
1796#
1797# @host: #optional The hostname the SPICE server is bound to. This depends on
1798# the name resolution on the host and may be an IP address.
1799#
1800# @port: #optional The SPICE server's port number.
1801#
1802# @compiled-version: #optional SPICE server version.
1803#
1804# @tls-port: #optional The SPICE server's TLS port number.
1805#
1806# @auth: #optional the current authentication type used by the server
1807# 'none' if no authentication is being used
1808# 'spice' uses SASL or direct TLS authentication, depending on command
1809# line options
1810#
1811# @mouse-mode: The mode in which the mouse cursor is displayed currently. Can
1812# be determined by the client or the server, or unknown if spice
1813# server doesn't provide this information. (since: 1.1)
1814#
1815# @channels: a list of @SpiceChannel for each active spice channel
1816#
1817# Since: 0.14.0
1818##
1819{ 'struct': 'SpiceInfo',
1820 'data': {'enabled': 'bool', 'migrated': 'bool', '*host': 'str', '*port': 'int',
1821 '*tls-port': 'int', '*auth': 'str', '*compiled-version': 'str',
1822 'mouse-mode': 'SpiceQueryMouseMode', '*channels': ['SpiceChannel']} }
1823
1824##
1825# @query-spice:
1826#
1827# Returns information about the current SPICE server
1828#
1829# Returns: @SpiceInfo
1830#
1831# Since: 0.14.0
1832#
1833# Example:
1834#
1835# -> { "execute": "query-spice" }
1836# <- { "return": {
1837# "enabled": true,
1838# "auth": "spice",
1839# "port": 5920,
1840# "tls-port": 5921,
1841# "host": "0.0.0.0",
1842# "channels": [
1843# {
1844# "port": "54924",
1845# "family": "ipv4",
1846# "channel-type": 1,
1847# "connection-id": 1804289383,
1848# "host": "127.0.0.1",
1849# "channel-id": 0,
1850# "tls": true
1851# },
1852# {
1853# "port": "36710",
1854# "family": "ipv4",
1855# "channel-type": 4,
1856# "connection-id": 1804289383,
1857# "host": "127.0.0.1",
1858# "channel-id": 0,
1859# "tls": false
1860# },
1861# [ ... more channels follow ... ]
1862# ]
1863# }
1864# }
1865#
1866##
1867{ 'command': 'query-spice', 'returns': 'SpiceInfo' }
1868
1869##
1870# @BalloonInfo:
1871#
1872# Information about the guest balloon device.
1873#
1874# @actual: the number of bytes the balloon currently contains
1875#
1876# Since: 0.14.0
1877#
1878##
1879{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1880
1881##
1882# @query-balloon:
1883#
1884# Return information about the balloon device.
1885#
1886# Returns: @BalloonInfo on success
1887#
1888# If the balloon driver is enabled but not functional because the KVM
1889# kernel module cannot support it, KvmMissingCap
1890#
1891# If no balloon device is present, DeviceNotActive
1892#
1893# Since: 0.14.0
1894#
1895# Example:
1896#
1897# -> { "execute": "query-balloon" }
1898# <- { "return": {
1899# "actual": 1073741824,
1900# }
1901# }
1902#
1903##
1904{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1905
1906##
1907# @PciMemoryRange:
1908#
1909# A PCI device memory region
1910#
1911# @base: the starting address (guest physical)
1912#
1913# @limit: the ending address (guest physical)
1914#
1915# Since: 0.14.0
1916##
1917{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
1918
1919##
1920# @PciMemoryRegion:
1921#
1922# Information about a PCI device I/O region.
1923#
1924# @bar: the index of the Base Address Register for this region
1925#
1926# @type: 'io' if the region is a PIO region
1927# 'memory' if the region is a MMIO region
1928#
1929# @size: memory size
1930#
1931# @prefetch: #optional if @type is 'memory', true if the memory is prefetchable
1932#
1933# @mem_type_64: #optional if @type is 'memory', true if the BAR is 64-bit
1934#
1935# Since: 0.14.0
1936##
1937{ 'struct': 'PciMemoryRegion',
1938 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
1939 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
1940
1941##
1942# @PciBusInfo:
1943#
1944# Information about a bus of a PCI Bridge device
1945#
1946# @number: primary bus interface number. This should be the number of the
1947# bus the device resides on.
1948#
1949# @secondary: secondary bus interface number. This is the number of the
1950# main bus for the bridge
1951#
1952# @subordinate: This is the highest number bus that resides below the
1953# bridge.
1954#
1955# @io_range: The PIO range for all devices on this bridge
1956#
1957# @memory_range: The MMIO range for all devices on this bridge
1958#
1959# @prefetchable_range: The range of prefetchable MMIO for all devices on
1960# this bridge
1961#
1962# Since: 2.4
1963##
1964{ 'struct': 'PciBusInfo',
1965 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
1966 'io_range': 'PciMemoryRange',
1967 'memory_range': 'PciMemoryRange',
1968 'prefetchable_range': 'PciMemoryRange' } }
1969
1970##
1971# @PciBridgeInfo:
1972#
1973# Information about a PCI Bridge device
1974#
1975# @bus: information about the bus the device resides on
1976#
1977# @devices: a list of @PciDeviceInfo for each device on this bridge
1978#
1979# Since: 0.14.0
1980##
1981{ 'struct': 'PciBridgeInfo',
1982 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
1983
1984##
1985# @PciDeviceClass:
1986#
1987# Information about the Class of a PCI device
1988#
1989# @desc: #optional a string description of the device's class
1990#
1991# @class: the class code of the device
1992#
1993# Since: 2.4
1994##
1995{ 'struct': 'PciDeviceClass',
1996 'data': {'*desc': 'str', 'class': 'int'} }
1997
1998##
1999# @PciDeviceId:
2000#
2001# Information about the Id of a PCI device
2002#
2003# @device: the PCI device id
2004#
2005# @vendor: the PCI vendor id
2006#
2007# Since: 2.4
2008##
2009{ 'struct': 'PciDeviceId',
2010 'data': {'device': 'int', 'vendor': 'int'} }
2011
2012##
2013# @PciDeviceInfo:
2014#
2015# Information about a PCI device
2016#
2017# @bus: the bus number of the device
2018#
2019# @slot: the slot the device is located in
2020#
2021# @function: the function of the slot used by the device
2022#
2023# @class_info: the class of the device
2024#
2025# @id: the PCI device id
2026#
2027# @irq: #optional if an IRQ is assigned to the device, the IRQ number
2028#
2029# @qdev_id: the device name of the PCI device
2030#
2031# @pci_bridge: if the device is a PCI bridge, the bridge information
2032#
2033# @regions: a list of the PCI I/O regions associated with the device
2034#
2035# Notes: the contents of @class_info.desc are not stable and should only be
2036# treated as informational.
2037#
2038# Since: 0.14.0
2039##
2040{ 'struct': 'PciDeviceInfo',
2041 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
2042 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
2043 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
2044 'regions': ['PciMemoryRegion']} }
2045
2046##
2047# @PciInfo:
2048#
2049# Information about a PCI bus
2050#
2051# @bus: the bus index
2052#
2053# @devices: a list of devices on this bus
2054#
2055# Since: 0.14.0
2056##
2057{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
2058
2059##
2060# @query-pci:
2061#
2062# Return information about the PCI bus topology of the guest.
2063#
2064# Returns: a list of @PciInfo for each PCI bus. Each bus is
2065# represented by a json-object, which has a key with a json-array of
2066# all PCI devices attached to it. Each device is represented by a
2067# json-object.
2068#
2069# Since: 0.14.0
2070#
2071# Example:
2072#
2073# -> { "execute": "query-pci" }
2074# <- { "return": [
2075# {
2076# "bus": 0,
2077# "devices": [
2078# {
2079# "bus": 0,
2080# "qdev_id": "",
2081# "slot": 0,
2082# "class_info": {
2083# "class": 1536,
2084# "desc": "Host bridge"
2085# },
2086# "id": {
2087# "device": 32902,
2088# "vendor": 4663
2089# },
2090# "function": 0,
2091# "regions": [
2092# ]
2093# },
2094# {
2095# "bus": 0,
2096# "qdev_id": "",
2097# "slot": 1,
2098# "class_info": {
2099# "class": 1537,
2100# "desc": "ISA bridge"
2101# },
2102# "id": {
2103# "device": 32902,
2104# "vendor": 28672
2105# },
2106# "function": 0,
2107# "regions": [
2108# ]
2109# },
2110# {
2111# "bus": 0,
2112# "qdev_id": "",
2113# "slot": 1,
2114# "class_info": {
2115# "class": 257,
2116# "desc": "IDE controller"
2117# },
2118# "id": {
2119# "device": 32902,
2120# "vendor": 28688
2121# },
2122# "function": 1,
2123# "regions": [
2124# {
2125# "bar": 4,
2126# "size": 16,
2127# "address": 49152,
2128# "type": "io"
2129# }
2130# ]
2131# },
2132# {
2133# "bus": 0,
2134# "qdev_id": "",
2135# "slot": 2,
2136# "class_info": {
2137# "class": 768,
2138# "desc": "VGA controller"
2139# },
2140# "id": {
2141# "device": 4115,
2142# "vendor": 184
2143# },
2144# "function": 0,
2145# "regions": [
2146# {
2147# "prefetch": true,
2148# "mem_type_64": false,
2149# "bar": 0,
2150# "size": 33554432,
2151# "address": 4026531840,
2152# "type": "memory"
2153# },
2154# {
2155# "prefetch": false,
2156# "mem_type_64": false,
2157# "bar": 1,
2158# "size": 4096,
2159# "address": 4060086272,
2160# "type": "memory"
2161# },
2162# {
2163# "prefetch": false,
2164# "mem_type_64": false,
2165# "bar": 6,
2166# "size": 65536,
2167# "address": -1,
2168# "type": "memory"
2169# }
2170# ]
2171# },
2172# {
2173# "bus": 0,
2174# "qdev_id": "",
2175# "irq": 11,
2176# "slot": 4,
2177# "class_info": {
2178# "class": 1280,
2179# "desc": "RAM controller"
2180# },
2181# "id": {
2182# "device": 6900,
2183# "vendor": 4098
2184# },
2185# "function": 0,
2186# "regions": [
2187# {
2188# "bar": 0,
2189# "size": 32,
2190# "address": 49280,
2191# "type": "io"
2192# }
2193# ]
2194# }
2195# ]
2196# }
2197# ]
2198# }
2199#
2200# Note: This example has been shortened as the real response is too long.
2201#
2202##
2203{ 'command': 'query-pci', 'returns': ['PciInfo'] }
2204
2205##
2206# @quit:
2207#
2208# This command will cause the QEMU process to exit gracefully. While every
2209# attempt is made to send the QMP response before terminating, this is not
2210# guaranteed. When using this interface, a premature EOF would not be
2211# unexpected.
2212#
2213# Since: 0.14.0
2214#
2215# Example:
2216#
2217# -> { "execute": "quit" }
2218# <- { "return": {} }
2219##
2220{ 'command': 'quit' }
2221
2222##
2223# @stop:
2224#
2225# Stop all guest VCPU execution.
2226#
2227# Since: 0.14.0
2228#
2229# Notes: This function will succeed even if the guest is already in the stopped
2230# state. In "inmigrate" state, it will ensure that the guest
2231# remains paused once migration finishes, as if the -S option was
2232# passed on the command line.
2233#
2234# Example:
2235#
2236# -> { "execute": "stop" }
2237# <- { "return": {} }
2238#
2239##
2240{ 'command': 'stop' }
2241
2242##
2243# @system_reset:
2244#
2245# Performs a hard reset of a guest.
2246#
2247# Since: 0.14.0
2248#
2249# Example:
2250#
2251# -> { "execute": "system_reset" }
2252# <- { "return": {} }
2253#
2254##
2255{ 'command': 'system_reset' }
2256
2257##
2258# @system_powerdown:
2259#
2260# Requests that a guest perform a powerdown operation.
2261#
2262# Since: 0.14.0
2263#
2264# Notes: A guest may or may not respond to this command. This command
2265# returning does not indicate that a guest has accepted the request or
2266# that it has shut down. Many guests will respond to this command by
2267# prompting the user in some way.
2268# Example:
2269#
2270# -> { "execute": "system_powerdown" }
2271# <- { "return": {} }
2272#
2273##
2274{ 'command': 'system_powerdown' }
2275
2276##
2277# @cpu:
2278#
2279# This command is a nop that is only provided for the purposes of compatibility.
2280#
2281# Since: 0.14.0
2282#
2283# Notes: Do not use this command.
2284##
2285{ 'command': 'cpu', 'data': {'index': 'int'} }
2286
2287##
2288# @cpu-add:
2289#
2290# Adds CPU with specified ID
2291#
2292# @id: ID of CPU to be created, valid values [0..max_cpus)
2293#
2294# Returns: Nothing on success
2295#
2296# Since: 1.5
2297#
2298# Example:
2299#
2300# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
2301# <- { "return": {} }
2302#
2303##
2304{ 'command': 'cpu-add', 'data': {'id': 'int'} }
2305
2306##
2307# @memsave:
2308#
2309# Save a portion of guest memory to a file.
2310#
2311# @val: the virtual address of the guest to start from
2312#
2313# @size: the size of memory region to save
2314#
2315# @filename: the file to save the memory to as binary data
2316#
2317# @cpu-index: #optional the index of the virtual CPU to use for translating the
2318# virtual address (defaults to CPU 0)
2319#
2320# Returns: Nothing on success
2321#
2322# Since: 0.14.0
2323#
2324# Notes: Errors were not reliably returned until 1.1
2325#
2326# Example:
2327#
2328# -> { "execute": "memsave",
2329# "arguments": { "val": 10,
2330# "size": 100,
2331# "filename": "/tmp/virtual-mem-dump" } }
2332# <- { "return": {} }
2333#
2334##
2335{ 'command': 'memsave',
2336 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
2337
2338##
2339# @pmemsave:
2340#
2341# Save a portion of guest physical memory to a file.
2342#
2343# @val: the physical address of the guest to start from
2344#
2345# @size: the size of memory region to save
2346#
2347# @filename: the file to save the memory to as binary data
2348#
2349# Returns: Nothing on success
2350#
2351# Since: 0.14.0
2352#
2353# Notes: Errors were not reliably returned until 1.1
2354#
2355# Example:
2356#
2357# -> { "execute": "pmemsave",
2358# "arguments": { "val": 10,
2359# "size": 100,
2360# "filename": "/tmp/physical-mem-dump" } }
2361# <- { "return": {} }
2362#
2363##
2364{ 'command': 'pmemsave',
2365 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
2366
2367##
2368# @cont:
2369#
2370# Resume guest VCPU execution.
2371#
2372# Since: 0.14.0
2373#
2374# Returns: If successful, nothing
2375# If QEMU was started with an encrypted block device and a key has
2376# not yet been set, DeviceEncrypted.
2377#
2378# Notes: This command will succeed if the guest is currently running. It
2379# will also succeed if the guest is in the "inmigrate" state; in
2380# this case, the effect of the command is to make sure the guest
2381# starts once migration finishes, removing the effect of the -S
2382# command line option if it was passed.
2383#
2384# Example:
2385#
2386# -> { "execute": "cont" }
2387# <- { "return": {} }
2388#
2389##
2390{ 'command': 'cont' }
2391
2392##
2393# @system_wakeup:
2394#
2395# Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
2396#
2397# Since: 1.1
2398#
2399# Returns: nothing.
2400#
2401# Example:
2402#
2403# -> { "execute": "system_wakeup" }
2404# <- { "return": {} }
2405#
2406##
2407{ 'command': 'system_wakeup' }
2408
2409##
2410# @inject-nmi:
2411#
2412# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
2413# The command fails when the guest doesn't support injecting.
2414#
2415# Returns: If successful, nothing
2416#
2417# Since: 0.14.0
2418#
2419# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
2420#
2421# Example:
2422#
2423# -> { "execute": "inject-nmi" }
2424# <- { "return": {} }
2425#
2426##
2427{ 'command': 'inject-nmi' }
2428
2429##
2430# @set_link:
2431#
2432# Sets the link status of a virtual network adapter.
2433#
2434# @name: the device name of the virtual network adapter
2435#
2436# @up: true to set the link status to be up
2437#
2438# Returns: Nothing on success
2439# If @name is not a valid network device, DeviceNotFound
2440#
2441# Since: 0.14.0
2442#
2443# Notes: Not all network adapters support setting link status. This command
2444# will succeed even if the network adapter does not support link status
2445# notification.
2446#
2447# Example:
2448#
2449# -> { "execute": "set_link",
2450# "arguments": { "name": "e1000.0", "up": false } }
2451# <- { "return": {} }
2452#
2453##
2454{ 'command': 'set_link', 'data': {'name': 'str', 'up': 'bool'} }
2455
2456##
2457# @balloon:
2458#
2459# Request the balloon driver to change its balloon size.
2460#
2461# @value: the target size of the balloon in bytes
2462#
2463# Returns: Nothing on success
2464# If the balloon driver is enabled but not functional because the KVM
2465# kernel module cannot support it, KvmMissingCap
2466# If no balloon device is present, DeviceNotActive
2467#
2468# Notes: This command just issues a request to the guest. When it returns,
2469# the balloon size may not have changed. A guest can change the balloon
2470# size independent of this command.
2471#
2472# Since: 0.14.0
2473#
2474# Example:
2475#
2476# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
2477# <- { "return": {} }
2478#
2479##
2480{ 'command': 'balloon', 'data': {'value': 'int'} }
2481
2482##
2483# @Abort:
2484#
2485# This action can be used to test transaction failure.
2486#
2487# Since: 1.6
2488##
2489{ 'struct': 'Abort',
2490 'data': { } }
2491
2492##
2493# @ActionCompletionMode:
2494#
2495# An enumeration of Transactional completion modes.
2496#
2497# @individual: Do not attempt to cancel any other Actions if any Actions fail
2498# after the Transaction request succeeds. All Actions that
2499# can complete successfully will do so without waiting on others.
2500# This is the default.
2501#
2502# @grouped: If any Action fails after the Transaction succeeds, cancel all
2503# Actions. Actions do not complete until all Actions are ready to
2504# complete. May be rejected by Actions that do not support this
2505# completion mode.
2506#
2507# Since: 2.5
2508##
2509{ 'enum': 'ActionCompletionMode',
2510 'data': [ 'individual', 'grouped' ] }
2511
2512##
2513# @TransactionAction:
2514#
2515# A discriminated record of operations that can be performed with
2516# @transaction. Action @type can be:
2517#
2518# - @abort: since 1.6
2519# - @block-dirty-bitmap-add: since 2.5
2520# - @block-dirty-bitmap-clear: since 2.5
2521# - @blockdev-backup: since 2.3
2522# - @blockdev-snapshot: since 2.5
2523# - @blockdev-snapshot-internal-sync: since 1.7
2524# - @blockdev-snapshot-sync: since 1.1
2525# - @drive-backup: since 1.6
2526#
2527# Since: 1.1
2528##
2529{ 'union': 'TransactionAction',
2530 'data': {
2531 'abort': 'Abort',
2532 'block-dirty-bitmap-add': 'BlockDirtyBitmapAdd',
2533 'block-dirty-bitmap-clear': 'BlockDirtyBitmap',
2534 'blockdev-backup': 'BlockdevBackup',
2535 'blockdev-snapshot': 'BlockdevSnapshot',
2536 'blockdev-snapshot-internal-sync': 'BlockdevSnapshotInternal',
2537 'blockdev-snapshot-sync': 'BlockdevSnapshotSync',
2538 'drive-backup': 'DriveBackup'
2539 } }
2540
2541##
2542# @TransactionProperties:
2543#
2544# Optional arguments to modify the behavior of a Transaction.
2545#
2546# @completion-mode: #optional Controls how jobs launched asynchronously by
2547# Actions will complete or fail as a group.
2548# See @ActionCompletionMode for details.
2549#
2550# Since: 2.5
2551##
2552{ 'struct': 'TransactionProperties',
2553 'data': {
2554 '*completion-mode': 'ActionCompletionMode'
2555 }
2556}
2557
2558##
2559# @transaction:
2560#
2561# Executes a number of transactionable QMP commands atomically. If any
2562# operation fails, then the entire set of actions will be abandoned and the
2563# appropriate error returned.
2564#
2565# For external snapshots, the dictionary contains the device, the file to use for
2566# the new snapshot, and the format. The default format, if not specified, is
2567# qcow2.
2568#
2569# Each new snapshot defaults to being created by QEMU (wiping any
2570# contents if the file already exists), but it is also possible to reuse
2571# an externally-created file. In the latter case, you should ensure that
2572# the new image file has the same contents as the current one; QEMU cannot
2573# perform any meaningful check. Typically this is achieved by using the
2574# current image file as the backing file for the new image.
2575#
2576# On failure, the original disks pre-snapshot attempt will be used.
2577#
2578# For internal snapshots, the dictionary contains the device and the snapshot's
2579# name. If an internal snapshot matching name already exists, the request will
2580# be rejected. Only some image formats support it, for example, qcow2, rbd,
2581# and sheepdog.
2582#
2583# On failure, qemu will try delete the newly created internal snapshot in the
2584# transaction. When an I/O error occurs during deletion, the user needs to fix
2585# it later with qemu-img or other command.
2586#
2587# @actions: List of @TransactionAction;
2588# information needed for the respective operations.
2589#
2590# @properties: #optional structure of additional options to control the
2591# execution of the transaction. See @TransactionProperties
2592# for additional detail.
2593#
2594# Returns: nothing on success
2595#
2596# Errors depend on the operations of the transaction
2597#
2598# Note: The transaction aborts on the first failure. Therefore, there will be
2599# information on only one failed operation returned in an error condition, and
2600# subsequent actions will not have been attempted.
2601#
2602# Since: 1.1
2603#
2604# Example:
2605#
2606# -> { "execute": "transaction",
2607# "arguments": { "actions": [
2608# { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
2609# "snapshot-file": "/some/place/my-image",
2610# "format": "qcow2" } },
2611# { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
2612# "snapshot-file": "/some/place/my-image2",
2613# "snapshot-node-name": "node3432",
2614# "mode": "existing",
2615# "format": "qcow2" } },
2616# { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
2617# "snapshot-file": "/some/place/my-image2",
2618# "mode": "existing",
2619# "format": "qcow2" } },
2620# { "type": "blockdev-snapshot-internal-sync", "data" : {
2621# "device": "ide-hd2",
2622# "name": "snapshot0" } } ] } }
2623# <- { "return": {} }
2624#
2625##
2626{ 'command': 'transaction',
2627 'data': { 'actions': [ 'TransactionAction' ],
2628 '*properties': 'TransactionProperties'
2629 }
2630}
2631
2632##
2633# @human-monitor-command:
2634#
2635# Execute a command on the human monitor and return the output.
2636#
2637# @command-line: the command to execute in the human monitor
2638#
2639# @cpu-index: #optional The CPU to use for commands that require an implicit CPU
2640#
2641# Returns: the output of the command as a string
2642#
2643# Since: 0.14.0
2644#
2645# Notes: This command only exists as a stop-gap. Its use is highly
2646# discouraged. The semantics of this command are not
2647# guaranteed: this means that command names, arguments and
2648# responses can change or be removed at ANY time. Applications
2649# that rely on long term stability guarantees should NOT
2650# use this command.
2651#
2652# Known limitations:
2653#
2654# * This command is stateless, this means that commands that depend
2655# on state information (such as getfd) might not work
2656#
2657# * Commands that prompt the user for data (eg. 'cont' when the block
2658# device is encrypted) don't currently work
2659#
2660# Example:
2661#
2662# -> { "execute": "human-monitor-command",
2663# "arguments": { "command-line": "info kvm" } }
2664# <- { "return": "kvm support: enabled\r\n" }
2665#
2666##
2667{ 'command': 'human-monitor-command',
2668 'data': {'command-line': 'str', '*cpu-index': 'int'},
2669 'returns': 'str' }
2670
2671##
2672# @migrate_cancel:
2673#
2674# Cancel the current executing migration process.
2675#
2676# Returns: nothing on success
2677#
2678# Notes: This command succeeds even if there is no migration process running.
2679#
2680# Since: 0.14.0
2681#
2682# Example:
2683#
2684# -> { "execute": "migrate_cancel" }
2685# <- { "return": {} }
2686#
2687##
2688{ 'command': 'migrate_cancel' }
2689
2690##
2691# @migrate_set_downtime:
2692#
2693# Set maximum tolerated downtime for migration.
2694#
2695# @value: maximum downtime in seconds
2696#
2697# Returns: nothing on success
2698#
2699# Notes: This command is deprecated in favor of 'migrate-set-parameters'
2700#
2701# Since: 0.14.0
2702#
2703# Example:
2704#
2705# -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
2706# <- { "return": {} }
2707#
2708##
2709{ 'command': 'migrate_set_downtime', 'data': {'value': 'number'} }
2710
2711##
2712# @migrate_set_speed:
2713#
2714# Set maximum speed for migration.
2715#
2716# @value: maximum speed in bytes per second.
2717#
2718# Returns: nothing on success
2719#
2720# Notes: This command is deprecated in favor of 'migrate-set-parameters'
2721#
2722# Since: 0.14.0
2723#
2724# Example:
2725#
2726# -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
2727# <- { "return": {} }
2728#
2729##
2730{ 'command': 'migrate_set_speed', 'data': {'value': 'int'} }
2731
2732##
2733# @migrate-set-cache-size:
2734#
2735# Set cache size to be used by XBZRLE migration
2736#
2737# @value: cache size in bytes
2738#
2739# The size will be rounded down to the nearest power of 2.
2740# The cache size can be modified before and during ongoing migration
2741#
2742# Returns: nothing on success
2743#
2744# Since: 1.2
2745#
2746# Example:
2747#
2748# -> { "execute": "migrate-set-cache-size",
2749# "arguments": { "value": 536870912 } }
2750# <- { "return": {} }
2751#
2752##
2753{ 'command': 'migrate-set-cache-size', 'data': {'value': 'int'} }
2754
2755##
2756# @query-migrate-cache-size:
2757#
2758# Query migration XBZRLE cache size
2759#
2760# Returns: XBZRLE cache size in bytes
2761#
2762# Since: 1.2
2763#
2764# Example:
2765#
2766# -> { "execute": "query-migrate-cache-size" }
2767# <- { "return": 67108864 }
2768#
2769##
2770{ 'command': 'query-migrate-cache-size', 'returns': 'int' }
2771
2772##
2773# @ObjectPropertyInfo:
2774#
2775# @name: the name of the property
2776#
2777# @type: the type of the property. This will typically come in one of four
2778# forms:
2779#
2780# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
2781# These types are mapped to the appropriate JSON type.
2782#
2783# 2) A child type in the form 'child<subtype>' where subtype is a qdev
2784# device type name. Child properties create the composition tree.
2785#
2786# 3) A link type in the form 'link<subtype>' where subtype is a qdev
2787# device type name. Link properties form the device model graph.
2788#
2789# Since: 1.2
2790##
2791{ 'struct': 'ObjectPropertyInfo',
2792 'data': { 'name': 'str', 'type': 'str' } }
2793
2794##
2795# @qom-list:
2796#
2797# This command will list any properties of a object given a path in the object
2798# model.
2799#
2800# @path: the path within the object model. See @qom-get for a description of
2801# this parameter.
2802#
2803# Returns: a list of @ObjectPropertyInfo that describe the properties of the
2804# object.
2805#
2806# Since: 1.2
2807##
2808{ 'command': 'qom-list',
2809 'data': { 'path': 'str' },
2810 'returns': [ 'ObjectPropertyInfo' ] }
2811
2812##
2813# @qom-get:
2814#
2815# This command will get a property from a object model path and return the
2816# value.
2817#
2818# @path: The path within the object model. There are two forms of supported
2819# paths--absolute and partial paths.
2820#
2821# Absolute paths are derived from the root object and can follow child<>
2822# or link<> properties. Since they can follow link<> properties, they
2823# can be arbitrarily long. Absolute paths look like absolute filenames
2824# and are prefixed with a leading slash.
2825#
2826# Partial paths look like relative filenames. They do not begin
2827# with a prefix. The matching rules for partial paths are subtle but
2828# designed to make specifying objects easy. At each level of the
2829# composition tree, the partial path is matched as an absolute path.
2830# The first match is not returned. At least two matches are searched
2831# for. A successful result is only returned if only one match is
2832# found. If more than one match is found, a flag is return to
2833# indicate that the match was ambiguous.
2834#
2835# @property: The property name to read
2836#
2837# Returns: The property value. The type depends on the property
2838# type. child<> and link<> properties are returned as #str
2839# pathnames. All integer property types (u8, u16, etc) are
2840# returned as #int.
2841#
2842# Since: 1.2
2843##
2844{ 'command': 'qom-get',
2845 'data': { 'path': 'str', 'property': 'str' },
2846 'returns': 'any' }
2847
2848##
2849# @qom-set:
2850#
2851# This command will set a property from a object model path.
2852#
2853# @path: see @qom-get for a description of this parameter
2854#
2855# @property: the property name to set
2856#
2857# @value: a value who's type is appropriate for the property type. See @qom-get
2858# for a description of type mapping.
2859#
2860# Since: 1.2
2861##
2862{ 'command': 'qom-set',
2863 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
2864
2865##
2866# @set_password:
2867#
2868# Sets the password of a remote display session.
2869#
2870# @protocol: `vnc' to modify the VNC server password
2871# `spice' to modify the Spice server password
2872#
2873# @password: the new password
2874#
2875# @connected: #optional how to handle existing clients when changing the
2876# password. If nothing is specified, defaults to `keep'
2877# `fail' to fail the command if clients are connected
2878# `disconnect' to disconnect existing clients
2879# `keep' to maintain existing clients
2880#
2881# Returns: Nothing on success
2882# If Spice is not enabled, DeviceNotFound
2883#
2884# Since: 0.14.0
2885#
2886# Example:
2887#
2888# -> { "execute": "set_password", "arguments": { "protocol": "vnc",
2889# "password": "secret" } }
2890# <- { "return": {} }
2891#
2892##
2893{ 'command': 'set_password',
2894 'data': {'protocol': 'str', 'password': 'str', '*connected': 'str'} }
2895
2896##
2897# @expire_password:
2898#
2899# Expire the password of a remote display server.
2900#
2901# @protocol: the name of the remote display protocol `vnc' or `spice'
2902#
2903# @time: when to expire the password.
2904# `now' to expire the password immediately
2905# `never' to cancel password expiration
2906# `+INT' where INT is the number of seconds from now (integer)
2907# `INT' where INT is the absolute time in seconds
2908#
2909# Returns: Nothing on success
2910# If @protocol is `spice' and Spice is not active, DeviceNotFound
2911#
2912# Since: 0.14.0
2913#
2914# Notes: Time is relative to the server and currently there is no way to
2915# coordinate server time with client time. It is not recommended to
2916# use the absolute time version of the @time parameter unless you're
2917# sure you are on the same machine as the QEMU instance.
2918#
2919# Example:
2920#
2921# -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
2922# "time": "+60" } }
2923# <- { "return": {} }
2924#
2925##
2926{ 'command': 'expire_password', 'data': {'protocol': 'str', 'time': 'str'} }
2927
2928##
2929# @change-vnc-password:
2930#
2931# Change the VNC server password.
2932#
2933# @password: the new password to use with VNC authentication
2934#
2935# Since: 1.1
2936#
2937# Notes: An empty password in this command will set the password to the empty
2938# string. Existing clients are unaffected by executing this command.
2939##
2940{ 'command': 'change-vnc-password', 'data': {'password': 'str'} }
2941
2942##
2943# @change:
2944#
2945# This command is multiple commands multiplexed together.
2946#
2947# @device: This is normally the name of a block device but it may also be 'vnc'.
2948# when it's 'vnc', then sub command depends on @target
2949#
2950# @target: If @device is a block device, then this is the new filename.
2951# If @device is 'vnc', then if the value 'password' selects the vnc
2952# change password command. Otherwise, this specifies a new server URI
2953# address to listen to for VNC connections.
2954#
2955# @arg: If @device is a block device, then this is an optional format to open
2956# the device with.
2957# If @device is 'vnc' and @target is 'password', this is the new VNC
2958# password to set. If this argument is an empty string, then no future
2959# logins will be allowed.
2960#
2961# Returns: Nothing on success.
2962# If @device is not a valid block device, DeviceNotFound
2963# If the new block device is encrypted, DeviceEncrypted. Note that
2964# if this error is returned, the device has been opened successfully
2965# and an additional call to @block_passwd is required to set the
2966# device's password. The behavior of reads and writes to the block
2967# device between when these calls are executed is undefined.
2968#
2969# Notes: This interface is deprecated, and it is strongly recommended that you
2970# avoid using it. For changing block devices, use
2971# blockdev-change-medium; for changing VNC parameters, use
2972# change-vnc-password.
2973#
2974# Since: 0.14.0
2975#
2976# Example:
2977#
2978# 1. Change a removable medium
2979#
2980# -> { "execute": "change",
2981# "arguments": { "device": "ide1-cd0",
2982# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
2983# <- { "return": {} }
2984#
2985# 2. Change VNC password
2986#
2987# -> { "execute": "change",
2988# "arguments": { "device": "vnc", "target": "password",
2989# "arg": "foobar1" } }
2990# <- { "return": {} }
2991#
2992##
2993{ 'command': 'change',
2994 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
2995
2996##
2997# @ObjectTypeInfo:
2998#
2999# This structure describes a search result from @qom-list-types
3000#
3001# @name: the type name found in the search
3002#
3003# Since: 1.1
3004#
3005# Notes: This command is experimental and may change syntax in future releases.
3006##
3007{ 'struct': 'ObjectTypeInfo',
3008 'data': { 'name': 'str' } }
3009
3010##
3011# @qom-list-types:
3012#
3013# This command will return a list of types given search parameters
3014#
3015# @implements: if specified, only return types that implement this type name
3016#
3017# @abstract: if true, include abstract types in the results
3018#
3019# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
3020#
3021# Since: 1.1
3022##
3023{ 'command': 'qom-list-types',
3024 'data': { '*implements': 'str', '*abstract': 'bool' },
3025 'returns': [ 'ObjectTypeInfo' ] }
3026
3027##
3028# @DevicePropertyInfo:
3029#
3030# Information about device properties.
3031#
3032# @name: the name of the property
3033# @type: the typename of the property
3034# @description: #optional if specified, the description of the property.
3035# (since 2.2)
3036#
3037# Since: 1.2
3038##
3039{ 'struct': 'DevicePropertyInfo',
3040 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
3041
3042##
3043# @device-list-properties:
3044#
3045# List properties associated with a device.
3046#
3047# @typename: the type name of a device
3048#
3049# Returns: a list of DevicePropertyInfo describing a devices properties
3050#
3051# Since: 1.2
3052##
3053{ 'command': 'device-list-properties',
3054 'data': { 'typename': 'str'},
3055 'returns': [ 'DevicePropertyInfo' ] }
3056
3057##
3058# @migrate:
3059#
3060# Migrates the current running guest to another Virtual Machine.
3061#
3062# @uri: the Uniform Resource Identifier of the destination VM
3063#
3064# @blk: #optional do block migration (full disk copy)
3065#
3066# @inc: #optional incremental disk copy migration
3067#
3068# @detach: this argument exists only for compatibility reasons and
3069# is ignored by QEMU
3070#
3071# Returns: nothing on success
3072#
3073# Since: 0.14.0
3074#
3075# Notes:
3076#
3077# 1. The 'query-migrate' command should be used to check migration's progress
3078# and final result (this information is provided by the 'status' member)
3079#
3080# 2. All boolean arguments default to false
3081#
3082# 3. The user Monitor's "detach" argument is invalid in QMP and should not
3083# be used
3084#
3085# Example:
3086#
3087# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
3088# <- { "return": {} }
3089#
3090##
3091{ 'command': 'migrate',
3092 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', '*detach': 'bool' } }
3093
3094##
3095# @migrate-incoming:
3096#
3097# Start an incoming migration, the qemu must have been started
3098# with -incoming defer
3099#
3100# @uri: The Uniform Resource Identifier identifying the source or
3101# address to listen on
3102#
3103# Returns: nothing on success
3104#
3105# Since: 2.3
3106#
3107# Notes:
3108#
3109# 1. It's a bad idea to use a string for the uri, but it needs to stay
3110# compatible with -incoming and the format of the uri is already exposed
3111# above libvirt.
3112#
3113# 2. QEMU must be started with -incoming defer to allow migrate-incoming to
3114# be used.
3115#
3116# 3. The uri format is the same as for -incoming
3117#
3118# Example:
3119#
3120# -> { "execute": "migrate-incoming",
3121# "arguments": { "uri": "tcp::4446" } }
3122# <- { "return": {} }
3123#
3124##
3125{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
3126
3127##
3128# @xen-save-devices-state:
3129#
3130# Save the state of all devices to file. The RAM and the block devices
3131# of the VM are not saved by this command.
3132#
3133# @filename: the file to save the state of the devices to as binary
3134# data. See xen-save-devices-state.txt for a description of the binary
3135# format.
3136#
3137# Returns: Nothing on success
3138#
3139# Since: 1.1
3140#
3141# Example:
3142#
3143# -> { "execute": "xen-save-devices-state",
3144# "arguments": { "filename": "/tmp/save" } }
3145# <- { "return": {} }
3146#
3147##
3148{ 'command': 'xen-save-devices-state', 'data': {'filename': 'str'} }
3149
3150##
3151# @xen-set-global-dirty-log:
3152#
3153# Enable or disable the global dirty log mode.
3154#
3155# @enable: true to enable, false to disable.
3156#
3157# Returns: nothing
3158#
3159# Since: 1.3
3160#
3161# Example:
3162#
3163# -> { "execute": "xen-set-global-dirty-log",
3164# "arguments": { "enable": true } }
3165# <- { "return": {} }
3166#
3167##
3168{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
3169
3170##
3171# @device_add:
3172#
3173# @driver: the name of the new device's driver
3174#
3175# @bus: #optional the device's parent bus (device tree path)
3176#
3177# @id: #optional the device's ID, must be unique
3178#
3179# Additional arguments depend on the type.
3180#
3181# Add a device.
3182#
3183# Notes:
3184# 1. For detailed information about this command, please refer to the
3185# 'docs/qdev-device-use.txt' file.
3186#
3187# 2. It's possible to list device properties by running QEMU with the
3188# "-device DEVICE,help" command-line argument, where DEVICE is the
3189# device's name
3190#
3191# Example:
3192#
3193# -> { "execute": "device_add",
3194# "arguments": { "driver": "e1000", "id": "net1",
3195# "bus": "pci.0",
3196# "mac": "52:54:00:12:34:56" } }
3197# <- { "return": {} }
3198#
3199# TODO: This command effectively bypasses QAPI completely due to its
3200# "additional arguments" business. It shouldn't have been added to
3201# the schema in this form. It should be qapified properly, or
3202# replaced by a properly qapified command.
3203#
3204# Since: 0.13
3205##
3206{ 'command': 'device_add',
3207 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
3208 'gen': false } # so we can get the additional arguments
3209
3210##
3211# @device_del:
3212#
3213# Remove a device from a guest
3214#
3215# @id: the device's ID or QOM path
3216#
3217# Returns: Nothing on success
3218# If @id is not a valid device, DeviceNotFound
3219#
3220# Notes: When this command completes, the device may not be removed from the
3221# guest. Hot removal is an operation that requires guest cooperation.
3222# This command merely requests that the guest begin the hot removal
3223# process. Completion of the device removal process is signaled with a
3224# DEVICE_DELETED event. Guest reset will automatically complete removal
3225# for all devices.
3226#
3227# Since: 0.14.0
3228#
3229# Example:
3230#
3231# -> { "execute": "device_del",
3232# "arguments": { "id": "net1" } }
3233# <- { "return": {} }
3234#
3235# -> { "execute": "device_del",
3236# "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
3237# <- { "return": {} }
3238#
3239##
3240{ 'command': 'device_del', 'data': {'id': 'str'} }
3241
3242##
3243# @DumpGuestMemoryFormat:
3244#
3245# An enumeration of guest-memory-dump's format.
3246#
3247# @elf: elf format
3248#
3249# @kdump-zlib: kdump-compressed format with zlib-compressed
3250#
3251# @kdump-lzo: kdump-compressed format with lzo-compressed
3252#
3253# @kdump-snappy: kdump-compressed format with snappy-compressed
3254#
3255# Since: 2.0
3256##
3257{ 'enum': 'DumpGuestMemoryFormat',
3258 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
3259
3260##
3261# @dump-guest-memory:
3262#
3263# Dump guest's memory to vmcore. It is a synchronous operation that can take
3264# very long depending on the amount of guest memory.
3265#
3266# @paging: if true, do paging to get guest's memory mapping. This allows
3267# using gdb to process the core file.
3268#
3269# IMPORTANT: this option can make QEMU allocate several gigabytes
3270# of RAM. This can happen for a large guest, or a
3271# malicious guest pretending to be large.
3272#
3273# Also, paging=true has the following limitations:
3274#
3275# 1. The guest may be in a catastrophic state or can have corrupted
3276# memory, which cannot be trusted
3277# 2. The guest can be in real-mode even if paging is enabled. For
3278# example, the guest uses ACPI to sleep, and ACPI sleep state
3279# goes in real-mode
3280# 3. Currently only supported on i386 and x86_64.
3281#
3282# @protocol: the filename or file descriptor of the vmcore. The supported
3283# protocols are:
3284#
3285# 1. file: the protocol starts with "file:", and the following
3286# string is the file's path.
3287# 2. fd: the protocol starts with "fd:", and the following string
3288# is the fd's name.
3289#
3290# @detach: #optional if true, QMP will return immediately rather than
3291# waiting for the dump to finish. The user can track progress
3292# using "query-dump". (since 2.6).
3293#
3294# @begin: #optional if specified, the starting physical address.
3295#
3296# @length: #optional if specified, the memory size, in bytes. If you don't
3297# want to dump all guest's memory, please specify the start @begin
3298# and @length
3299#
3300# @format: #optional if specified, the format of guest memory dump. But non-elf
3301# format is conflict with paging and filter, ie. @paging, @begin and
3302# @length is not allowed to be specified with non-elf @format at the
3303# same time (since 2.0)
3304#
3305# Note: All boolean arguments default to false
3306#
3307# Returns: nothing on success
3308#
3309# Since: 1.2
3310#
3311# Example:
3312#
3313# -> { "execute": "dump-guest-memory",
3314# "arguments": { "protocol": "fd:dump" } }
3315# <- { "return": {} }
3316#
3317##
3318{ 'command': 'dump-guest-memory',
3319 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
3320 '*begin': 'int', '*length': 'int',
3321 '*format': 'DumpGuestMemoryFormat'} }
3322
3323##
3324# @DumpStatus:
3325#
3326# Describe the status of a long-running background guest memory dump.
3327#
3328# @none: no dump-guest-memory has started yet.
3329#
3330# @active: there is one dump running in background.
3331#
3332# @completed: the last dump has finished successfully.
3333#
3334# @failed: the last dump has failed.
3335#
3336# Since: 2.6
3337##
3338{ 'enum': 'DumpStatus',
3339 'data': [ 'none', 'active', 'completed', 'failed' ] }
3340
3341##
3342# @DumpQueryResult:
3343#
3344# The result format for 'query-dump'.
3345#
3346# @status: enum of @DumpStatus, which shows current dump status
3347#
3348# @completed: bytes written in latest dump (uncompressed)
3349#
3350# @total: total bytes to be written in latest dump (uncompressed)
3351#
3352# Since: 2.6
3353##
3354{ 'struct': 'DumpQueryResult',
3355 'data': { 'status': 'DumpStatus',
3356 'completed': 'int',
3357 'total': 'int' } }
3358
3359##
3360# @query-dump:
3361#
3362# Query latest dump status.
3363#
3364# Returns: A @DumpStatus object showing the dump status.
3365#
3366# Since: 2.6
3367#
3368# Example:
3369#
3370# -> { "execute": "query-dump" }
3371# <- { "return": { "status": "active", "completed": 1024000,
3372# "total": 2048000 } }
3373#
3374##
3375{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
3376
3377##
3378# @DumpGuestMemoryCapability:
3379#
3380# A list of the available formats for dump-guest-memory
3381#
3382# Since: 2.0
3383##
3384{ 'struct': 'DumpGuestMemoryCapability',
3385 'data': {
3386 'formats': ['DumpGuestMemoryFormat'] } }
3387
3388##
3389# @query-dump-guest-memory-capability:
3390#
3391# Returns the available formats for dump-guest-memory
3392#
3393# Returns: A @DumpGuestMemoryCapability object listing available formats for
3394# dump-guest-memory
3395#
3396# Since: 2.0
3397#
3398# Example:
3399#
3400# -> { "execute": "query-dump-guest-memory-capability" }
3401# <- { "return": { "formats":
3402# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
3403#
3404##
3405{ 'command': 'query-dump-guest-memory-capability',
3406 'returns': 'DumpGuestMemoryCapability' }
3407
3408##
3409# @dump-skeys:
3410#
3411# Dump guest's storage keys
3412#
3413# @filename: the path to the file to dump to
3414#
3415# This command is only supported on s390 architecture.
3416#
3417# Since: 2.5
3418#
3419# Example:
3420#
3421# -> { "execute": "dump-skeys",
3422# "arguments": { "filename": "/tmp/skeys" } }
3423# <- { "return": {} }
3424#
3425##
3426{ 'command': 'dump-skeys',
3427 'data': { 'filename': 'str' } }
3428
3429##
3430# @netdev_add:
3431#
3432# Add a network backend.
3433#
3434# @type: the type of network backend. Current valid values are 'user', 'tap',
3435# 'vde', 'socket', 'dump' and 'bridge'
3436#
3437# @id: the name of the new network backend
3438#
3439# Additional arguments depend on the type.
3440#
3441# TODO: This command effectively bypasses QAPI completely due to its
3442# "additional arguments" business. It shouldn't have been added to
3443# the schema in this form. It should be qapified properly, or
3444# replaced by a properly qapified command.
3445#
3446# Since: 0.14.0
3447#
3448# Returns: Nothing on success
3449# If @type is not a valid network backend, DeviceNotFound
3450#
3451# Example:
3452#
3453# -> { "execute": "netdev_add",
3454# "arguments": { "type": "user", "id": "netdev1",
3455# "dnssearch": "example.org" } }
3456# <- { "return": {} }
3457#
3458##
3459{ 'command': 'netdev_add',
3460 'data': {'type': 'str', 'id': 'str'},
3461 'gen': false } # so we can get the additional arguments
3462
3463##
3464# @netdev_del:
3465#
3466# Remove a network backend.
3467#
3468# @id: the name of the network backend to remove
3469#
3470# Returns: Nothing on success
3471# If @id is not a valid network backend, DeviceNotFound
3472#
3473# Since: 0.14.0
3474#
3475# Example:
3476#
3477# -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
3478# <- { "return": {} }
3479#
3480##
3481{ 'command': 'netdev_del', 'data': {'id': 'str'} }
3482
3483##
3484# @object-add:
3485#
3486# Create a QOM object.
3487#
3488# @qom-type: the class name for the object to be created
3489#
3490# @id: the name of the new object
3491#
3492# @props: #optional a dictionary of properties to be passed to the backend
3493#
3494# Returns: Nothing on success
3495# Error if @qom-type is not a valid class name
3496#
3497# Since: 2.0
3498#
3499# Example:
3500#
3501# -> { "execute": "object-add",
3502# "arguments": { "qom-type": "rng-random", "id": "rng1",
3503# "props": { "filename": "/dev/hwrng" } } }
3504# <- { "return": {} }
3505#
3506##
3507{ 'command': 'object-add',
3508 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
3509
3510##
3511# @object-del:
3512#
3513# Remove a QOM object.
3514#
3515# @id: the name of the QOM object to remove
3516#
3517# Returns: Nothing on success
3518# Error if @id is not a valid id for a QOM object
3519#
3520# Since: 2.0
3521#
3522# Example:
3523#
3524# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
3525# <- { "return": {} }
3526#
3527##
3528{ 'command': 'object-del', 'data': {'id': 'str'} }
3529
3530##
3531# @NetdevNoneOptions:
3532#
3533# Use it alone to have zero network devices.
3534#
3535# Since: 1.2
3536##
3537{ 'struct': 'NetdevNoneOptions',
3538 'data': { } }
3539
3540##
3541# @NetLegacyNicOptions:
3542#
3543# Create a new Network Interface Card.
3544#
3545# @netdev: #optional id of -netdev to connect to
3546#
3547# @macaddr: #optional MAC address
3548#
3549# @model: #optional device model (e1000, rtl8139, virtio etc.)
3550#
3551# @addr: #optional PCI device address
3552#
3553# @vectors: #optional number of MSI-x vectors, 0 to disable MSI-X
3554#
3555# Since: 1.2
3556##
3557{ 'struct': 'NetLegacyNicOptions',
3558 'data': {
3559 '*netdev': 'str',
3560 '*macaddr': 'str',
3561 '*model': 'str',
3562 '*addr': 'str',
3563 '*vectors': 'uint32' } }
3564
3565##
3566# @String:
3567#
3568# A fat type wrapping 'str', to be embedded in lists.
3569#
3570# Since: 1.2
3571##
3572{ 'struct': 'String',
3573 'data': {
3574 'str': 'str' } }
3575
3576##
3577# @NetdevUserOptions:
3578#
3579# Use the user mode network stack which requires no administrator privilege to
3580# run.
3581#
3582# @hostname: #optional client hostname reported by the builtin DHCP server
3583#
3584# @restrict: #optional isolate the guest from the host
3585#
3586# @ipv4: #optional whether to support IPv4, default true for enabled
3587# (since 2.6)
3588#
3589# @ipv6: #optional whether to support IPv6, default true for enabled
3590# (since 2.6)
3591#
3592# @ip: #optional legacy parameter, use net= instead
3593#
3594# @net: #optional IP network address that the guest will see, in the
3595# form addr[/netmask] The netmask is optional, and can be
3596# either in the form a.b.c.d or as a number of valid top-most
3597# bits. Default is 10.0.2.0/24.
3598#
3599# @host: #optional guest-visible address of the host
3600#
3601# @tftp: #optional root directory of the built-in TFTP server
3602#
3603# @bootfile: #optional BOOTP filename, for use with tftp=
3604#
3605# @dhcpstart: #optional the first of the 16 IPs the built-in DHCP server can
3606# assign
3607#
3608# @dns: #optional guest-visible address of the virtual nameserver
3609#
3610# @dnssearch: #optional list of DNS suffixes to search, passed as DHCP option
3611# to the guest
3612#
3613# @ipv6-prefix: #optional IPv6 network prefix (default is fec0::) (since
3614# 2.6). The network prefix is given in the usual
3615# hexadecimal IPv6 address notation.
3616#
3617# @ipv6-prefixlen: #optional IPv6 network prefix length (default is 64)
3618# (since 2.6)
3619#
3620# @ipv6-host: #optional guest-visible IPv6 address of the host (since 2.6)
3621#
3622# @ipv6-dns: #optional guest-visible IPv6 address of the virtual
3623# nameserver (since 2.6)
3624#
3625# @smb: #optional root directory of the built-in SMB server
3626#
3627# @smbserver: #optional IP address of the built-in SMB server
3628#
3629# @hostfwd: #optional redirect incoming TCP or UDP host connections to guest
3630# endpoints
3631#
3632# @guestfwd: #optional forward guest TCP connections
3633#
3634# Since: 1.2
3635##
3636{ 'struct': 'NetdevUserOptions',
3637 'data': {
3638 '*hostname': 'str',
3639 '*restrict': 'bool',
3640 '*ipv4': 'bool',
3641 '*ipv6': 'bool',
3642 '*ip': 'str',
3643 '*net': 'str',
3644 '*host': 'str',
3645 '*tftp': 'str',
3646 '*bootfile': 'str',
3647 '*dhcpstart': 'str',
3648 '*dns': 'str',
3649 '*dnssearch': ['String'],
3650 '*ipv6-prefix': 'str',
3651 '*ipv6-prefixlen': 'int',
3652 '*ipv6-host': 'str',
3653 '*ipv6-dns': 'str',
3654 '*smb': 'str',
3655 '*smbserver': 'str',
3656 '*hostfwd': ['String'],
3657 '*guestfwd': ['String'] } }
3658
3659##
3660# @NetdevTapOptions:
3661#
3662# Connect the host TAP network interface name to the VLAN.
3663#
3664# @ifname: #optional interface name
3665#
3666# @fd: #optional file descriptor of an already opened tap
3667#
3668# @fds: #optional multiple file descriptors of already opened multiqueue capable
3669# tap
3670#
3671# @script: #optional script to initialize the interface
3672#
3673# @downscript: #optional script to shut down the interface
3674#
3675# @br: #optional bridge name (since 2.8)
3676#
3677# @helper: #optional command to execute to configure bridge
3678#
3679# @sndbuf: #optional send buffer limit. Understands [TGMKkb] suffixes.
3680#
3681# @vnet_hdr: #optional enable the IFF_VNET_HDR flag on the tap interface
3682#
3683# @vhost: #optional enable vhost-net network accelerator
3684#
3685# @vhostfd: #optional file descriptor of an already opened vhost net device
3686#
3687# @vhostfds: #optional file descriptors of multiple already opened vhost net
3688# devices
3689#
3690# @vhostforce: #optional vhost on for non-MSIX virtio guests
3691#
3692# @queues: #optional number of queues to be created for multiqueue capable tap
3693#
3694# @poll-us: #optional maximum number of microseconds that could
3695# be spent on busy polling for tap (since 2.7)
3696#
3697# Since: 1.2
3698##
3699{ 'struct': 'NetdevTapOptions',
3700 'data': {
3701 '*ifname': 'str',
3702 '*fd': 'str',
3703 '*fds': 'str',
3704 '*script': 'str',
3705 '*downscript': 'str',
3706 '*br': 'str',
3707 '*helper': 'str',
3708 '*sndbuf': 'size',
3709 '*vnet_hdr': 'bool',
3710 '*vhost': 'bool',
3711 '*vhostfd': 'str',
3712 '*vhostfds': 'str',
3713 '*vhostforce': 'bool',
3714 '*queues': 'uint32',
3715 '*poll-us': 'uint32'} }
3716
3717##
3718# @NetdevSocketOptions:
3719#
3720# Connect the VLAN to a remote VLAN in another QEMU virtual machine using a TCP
3721# socket connection.
3722#
3723# @fd: #optional file descriptor of an already opened socket
3724#
3725# @listen: #optional port number, and optional hostname, to listen on
3726#
3727# @connect: #optional port number, and optional hostname, to connect to
3728#
3729# @mcast: #optional UDP multicast address and port number
3730#
3731# @localaddr: #optional source address and port for multicast and udp packets
3732#
3733# @udp: #optional UDP unicast address and port number
3734#
3735# Since: 1.2
3736##
3737{ 'struct': 'NetdevSocketOptions',
3738 'data': {
3739 '*fd': 'str',
3740 '*listen': 'str',
3741 '*connect': 'str',
3742 '*mcast': 'str',
3743 '*localaddr': 'str',
3744 '*udp': 'str' } }
3745
3746##
3747# @NetdevL2TPv3Options:
3748#
3749# Connect the VLAN to Ethernet over L2TPv3 Static tunnel
3750#
3751# @src: source address
3752#
3753# @dst: destination address
3754#
3755# @srcport: #optional source port - mandatory for udp, optional for ip
3756#
3757# @dstport: #optional destination port - mandatory for udp, optional for ip
3758#
3759# @ipv6: #optional - force the use of ipv6
3760#
3761# @udp: #optional - use the udp version of l2tpv3 encapsulation
3762#
3763# @cookie64: #optional - use 64 bit coookies
3764#
3765# @counter: #optional have sequence counter
3766#
3767# @pincounter: #optional pin sequence counter to zero -
3768# workaround for buggy implementations or
3769# networks with packet reorder
3770#
3771# @txcookie: #optional 32 or 64 bit transmit cookie
3772#
3773# @rxcookie: #optional 32 or 64 bit receive cookie
3774#
3775# @txsession: 32 bit transmit session
3776#
3777# @rxsession: #optional 32 bit receive session - if not specified
3778# set to the same value as transmit
3779#
3780# @offset: #optional additional offset - allows the insertion of
3781# additional application-specific data before the packet payload
3782#
3783# Since: 2.1
3784##
3785{ 'struct': 'NetdevL2TPv3Options',
3786 'data': {
3787 'src': 'str',
3788 'dst': 'str',
3789 '*srcport': 'str',
3790 '*dstport': 'str',
3791 '*ipv6': 'bool',
3792 '*udp': 'bool',
3793 '*cookie64': 'bool',
3794 '*counter': 'bool',
3795 '*pincounter': 'bool',
3796 '*txcookie': 'uint64',
3797 '*rxcookie': 'uint64',
3798 'txsession': 'uint32',
3799 '*rxsession': 'uint32',
3800 '*offset': 'uint32' } }
3801
3802##
3803# @NetdevVdeOptions:
3804#
3805# Connect the VLAN to a vde switch running on the host.
3806#
3807# @sock: #optional socket path
3808#
3809# @port: #optional port number
3810#
3811# @group: #optional group owner of socket
3812#
3813# @mode: #optional permissions for socket
3814#
3815# Since: 1.2
3816##
3817{ 'struct': 'NetdevVdeOptions',
3818 'data': {
3819 '*sock': 'str',
3820 '*port': 'uint16',
3821 '*group': 'str',
3822 '*mode': 'uint16' } }
3823
3824##
3825# @NetdevDumpOptions:
3826#
3827# Dump VLAN network traffic to a file.
3828#
3829# @len: #optional per-packet size limit (64k default). Understands [TGMKkb]
3830# suffixes.
3831#
3832# @file: #optional dump file path (default is qemu-vlan0.pcap)
3833#
3834# Since: 1.2
3835##
3836{ 'struct': 'NetdevDumpOptions',
3837 'data': {
3838 '*len': 'size',
3839 '*file': 'str' } }
3840
3841##
3842# @NetdevBridgeOptions:
3843#
3844# Connect a host TAP network interface to a host bridge device.
3845#
3846# @br: #optional bridge name
3847#
3848# @helper: #optional command to execute to configure bridge
3849#
3850# Since: 1.2
3851##
3852{ 'struct': 'NetdevBridgeOptions',
3853 'data': {
3854 '*br': 'str',
3855 '*helper': 'str' } }
3856
3857##
3858# @NetdevHubPortOptions:
3859#
3860# Connect two or more net clients through a software hub.
3861#
3862# @hubid: hub identifier number
3863#
3864# Since: 1.2
3865##
3866{ 'struct': 'NetdevHubPortOptions',
3867 'data': {
3868 'hubid': 'int32' } }
3869
3870##
3871# @NetdevNetmapOptions:
3872#
3873# Connect a client to a netmap-enabled NIC or to a VALE switch port
3874#
3875# @ifname: Either the name of an existing network interface supported by
3876# netmap, or the name of a VALE port (created on the fly).
3877# A VALE port name is in the form 'valeXXX:YYY', where XXX and
3878# YYY are non-negative integers. XXX identifies a switch and
3879# YYY identifies a port of the switch. VALE ports having the
3880# same XXX are therefore connected to the same switch.
3881#
3882# @devname: #optional path of the netmap device (default: '/dev/netmap').
3883#
3884# Since: 2.0
3885##
3886{ 'struct': 'NetdevNetmapOptions',
3887 'data': {
3888 'ifname': 'str',
3889 '*devname': 'str' } }
3890
3891##
3892# @NetdevVhostUserOptions:
3893#
3894# Vhost-user network backend
3895#
3896# @chardev: name of a unix socket chardev
3897#
3898# @vhostforce: #optional vhost on for non-MSIX virtio guests (default: false).
3899#
3900# @queues: #optional number of queues to be created for multiqueue vhost-user
3901# (default: 1) (Since 2.5)
3902#
3903# Since: 2.1
3904##
3905{ 'struct': 'NetdevVhostUserOptions',
3906 'data': {
3907 'chardev': 'str',
3908 '*vhostforce': 'bool',
3909 '*queues': 'int' } }
3910
3911##
3912# @NetClientDriver:
3913#
3914# Available netdev drivers.
3915#
3916# Since: 2.7
3917##
3918{ 'enum': 'NetClientDriver',
3919 'data': [ 'none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde', 'dump',
3920 'bridge', 'hubport', 'netmap', 'vhost-user' ] }
3921
3922##
3923# @Netdev:
3924#
3925# Captures the configuration of a network device.
3926#
3927# @id: identifier for monitor commands.
3928#
3929# @type: Specify the driver used for interpreting remaining arguments.
3930#
3931# Since: 1.2
3932#
3933# 'l2tpv3' - since 2.1
3934##
3935{ 'union': 'Netdev',
3936 'base': { 'id': 'str', 'type': 'NetClientDriver' },
3937 'discriminator': 'type',
3938 'data': {
3939 'none': 'NetdevNoneOptions',
3940 'nic': 'NetLegacyNicOptions',
3941 'user': 'NetdevUserOptions',
3942 'tap': 'NetdevTapOptions',
3943 'l2tpv3': 'NetdevL2TPv3Options',
3944 'socket': 'NetdevSocketOptions',
3945 'vde': 'NetdevVdeOptions',
3946 'dump': 'NetdevDumpOptions',
3947 'bridge': 'NetdevBridgeOptions',
3948 'hubport': 'NetdevHubPortOptions',
3949 'netmap': 'NetdevNetmapOptions',
3950 'vhost-user': 'NetdevVhostUserOptions' } }
3951
3952##
3953# @NetLegacy:
3954#
3955# Captures the configuration of a network device; legacy.
3956#
3957# @vlan: #optional vlan number
3958#
3959# @id: #optional identifier for monitor commands
3960#
3961# @name: #optional identifier for monitor commands, ignored if @id is present
3962#
3963# @opts: device type specific properties (legacy)
3964#
3965# Since: 1.2
3966##
3967{ 'struct': 'NetLegacy',
3968 'data': {
3969 '*vlan': 'int32',
3970 '*id': 'str',
3971 '*name': 'str',
3972 'opts': 'NetLegacyOptions' } }
3973
3974##
3975# @NetLegacyOptionsType:
3976#
3977# Since: 1.2
3978##
3979{ 'enum': 'NetLegacyOptionsType',
3980 'data': ['none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde',
3981 'dump', 'bridge', 'netmap', 'vhost-user'] }
3982
3983##
3984# @NetLegacyOptions:
3985#
3986# Like Netdev, but for use only by the legacy command line options
3987#
3988# Since: 1.2
3989##
3990{ 'union': 'NetLegacyOptions',
3991 'base': { 'type': 'NetLegacyOptionsType' },
3992 'discriminator': 'type',
3993 'data': {
3994 'none': 'NetdevNoneOptions',
3995 'nic': 'NetLegacyNicOptions',
3996 'user': 'NetdevUserOptions',
3997 'tap': 'NetdevTapOptions',
3998 'l2tpv3': 'NetdevL2TPv3Options',
3999 'socket': 'NetdevSocketOptions',
4000 'vde': 'NetdevVdeOptions',
4001 'dump': 'NetdevDumpOptions',
4002 'bridge': 'NetdevBridgeOptions',
4003 'netmap': 'NetdevNetmapOptions',
4004 'vhost-user': 'NetdevVhostUserOptions' } }
4005
4006##
4007# @NetFilterDirection:
4008#
4009# Indicates whether a netfilter is attached to a netdev's transmit queue or
4010# receive queue or both.
4011#
4012# @all: the filter is attached both to the receive and the transmit
4013# queue of the netdev (default).
4014#
4015# @rx: the filter is attached to the receive queue of the netdev,
4016# where it will receive packets sent to the netdev.
4017#
4018# @tx: the filter is attached to the transmit queue of the netdev,
4019# where it will receive packets sent by the netdev.
4020#
4021# Since: 2.5
4022##
4023{ 'enum': 'NetFilterDirection',
4024 'data': [ 'all', 'rx', 'tx' ] }
4025
4026##
4027# @InetSocketAddress:
4028#
4029# Captures a socket address or address range in the Internet namespace.
4030#
4031# @host: host part of the address
4032#
4033# @port: port part of the address, or lowest port if @to is present
4034#
4035# @numeric: #optional true if the host/port are guaranteed to be numeric,
4036# false if name resolution should be attempted. Defaults to false.
4037# (Since 2.9)
4038#
4039# @to: highest port to try
4040#
4041# @ipv4: whether to accept IPv4 addresses, default try both IPv4 and IPv6
4042# #optional
4043#
4044# @ipv6: whether to accept IPv6 addresses, default try both IPv4 and IPv6
4045# #optional
4046#
4047# Since: 1.3
4048##
4049{ 'struct': 'InetSocketAddress',
4050 'data': {
4051 'host': 'str',
4052 'port': 'str',
4053 '*numeric': 'bool',
4054 '*to': 'uint16',
4055 '*ipv4': 'bool',
4056 '*ipv6': 'bool' } }
4057
4058##
4059# @UnixSocketAddress:
4060#
4061# Captures a socket address in the local ("Unix socket") namespace.
4062#
4063# @path: filesystem path to use
4064#
4065# Since: 1.3
4066##
4067{ 'struct': 'UnixSocketAddress',
4068 'data': {
4069 'path': 'str' } }
4070
4071##
4072# @VsockSocketAddress:
4073#
4074# Captures a socket address in the vsock namespace.
4075#
4076# @cid: unique host identifier
4077# @port: port
4078#
4079# Note: string types are used to allow for possible future hostname or
4080# service resolution support.
4081#
4082# Since: 2.8
4083##
4084{ 'struct': 'VsockSocketAddress',
4085 'data': {
4086 'cid': 'str',
4087 'port': 'str' } }
4088
4089##
4090# @SocketAddress:
4091#
4092# Captures the address of a socket, which could also be a named file descriptor
4093#
4094# Since: 1.3
4095##
4096{ 'union': 'SocketAddress',
4097 'data': {
4098 'inet': 'InetSocketAddress',
4099 'unix': 'UnixSocketAddress',
4100 'vsock': 'VsockSocketAddress',
4101 'fd': 'String' } }
4102
4103##
4104# @SocketAddressFlatType:
4105#
4106# Available SocketAddressFlat types
4107#
4108# @inet: Internet address
4109#
4110# @unix: Unix domain socket
4111#
4112# Since: 2.9
4113##
4114{ 'enum': 'SocketAddressFlatType',
4115 'data': [ 'unix', 'inet' ] }
4116
4117##
4118# @SocketAddressFlat:
4119#
4120# Captures the address of a socket
4121#
4122# @type: Transport type
4123#
4124# This is similar to SocketAddress, only distinction:
4125#
4126# 1. SocketAddressFlat is a flat union, SocketAddress is a simple union.
4127# A flat union is nicer than simple because it avoids nesting
4128# (i.e. more {}) on the wire.
4129#
4130# 2. SocketAddressFlat supports only types 'unix' and 'inet', because
4131# that's what its current users need.
4132#
4133# Since: 2.9
4134##
4135{ 'union': 'SocketAddressFlat',
4136 'base': { 'type': 'SocketAddressFlatType' },
4137 'discriminator': 'type',
4138 'data': { 'unix': 'UnixSocketAddress',
4139 'inet': 'InetSocketAddress' } }
4140
4141##
4142# @getfd:
4143#
4144# Receive a file descriptor via SCM rights and assign it a name
4145#
4146# @fdname: file descriptor name
4147#
4148# Returns: Nothing on success
4149#
4150# Since: 0.14.0
4151#
4152# Notes: If @fdname already exists, the file descriptor assigned to
4153# it will be closed and replaced by the received file
4154# descriptor.
4155#
4156# The 'closefd' command can be used to explicitly close the
4157# file descriptor when it is no longer needed.
4158#
4159# Example:
4160#
4161# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
4162# <- { "return": {} }
4163#
4164##
4165{ 'command': 'getfd', 'data': {'fdname': 'str'} }
4166
4167##
4168# @closefd:
4169#
4170# Close a file descriptor previously passed via SCM rights
4171#
4172# @fdname: file descriptor name
4173#
4174# Returns: Nothing on success
4175#
4176# Since: 0.14.0
4177#
4178# Example:
4179#
4180# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
4181# <- { "return": {} }
4182#
4183##
4184{ 'command': 'closefd', 'data': {'fdname': 'str'} }
4185
4186##
4187# @MachineInfo:
4188#
4189# Information describing a machine.
4190#
4191# @name: the name of the machine
4192#
4193# @alias: #optional an alias for the machine name
4194#
4195# @is-default: #optional whether the machine is default
4196#
4197# @cpu-max: maximum number of CPUs supported by the machine type
4198# (since 1.5.0)
4199#
4200# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
4201#
4202# Since: 1.2.0
4203##
4204{ 'struct': 'MachineInfo',
4205 'data': { 'name': 'str', '*alias': 'str',
4206 '*is-default': 'bool', 'cpu-max': 'int',
4207 'hotpluggable-cpus': 'bool'} }
4208
4209##
4210# @query-machines:
4211#
4212# Return a list of supported machines
4213#
4214# Returns: a list of MachineInfo
4215#
4216# Since: 1.2.0
4217##
4218{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
4219
4220##
4221# @CpuDefinitionInfo:
4222#
4223# Virtual CPU definition.
4224#
4225# @name: the name of the CPU definition
4226#
4227# @migration-safe: #optional whether a CPU definition can be safely used for
4228# migration in combination with a QEMU compatibility machine
4229# when migrating between different QMU versions and between
4230# hosts with different sets of (hardware or software)
4231# capabilities. If not provided, information is not available
4232# and callers should not assume the CPU definition to be
4233# migration-safe. (since 2.8)
4234#
4235# @static: whether a CPU definition is static and will not change depending on
4236# QEMU version, machine type, machine options and accelerator options.
4237# A static model is always migration-safe. (since 2.8)
4238#
4239# @unavailable-features: #optional List of properties that prevent
4240# the CPU model from running in the current
4241# host. (since 2.8)
4242# @typename: Type name that can be used as argument to @device-list-properties,
4243# to introspect properties configurable using -cpu or -global.
4244# (since 2.9)
4245#
4246# @unavailable-features is a list of QOM property names that
4247# represent CPU model attributes that prevent the CPU from running.
4248# If the QOM property is read-only, that means there's no known
4249# way to make the CPU model run in the current host. Implementations
4250# that choose not to provide specific information return the
4251# property name "type".
4252# If the property is read-write, it means that it MAY be possible
4253# to run the CPU model in the current host if that property is
4254# changed. Management software can use it as hints to suggest or
4255# choose an alternative for the user, or just to generate meaningful
4256# error messages explaining why the CPU model can't be used.
4257# If @unavailable-features is an empty list, the CPU model is
4258# runnable using the current host and machine-type.
4259# If @unavailable-features is not present, runnability
4260# information for the CPU is not available.
4261#
4262# Since: 1.2.0
4263##
4264{ 'struct': 'CpuDefinitionInfo',
4265 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
4266 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
4267
4268##
4269# @query-cpu-definitions:
4270#
4271# Return a list of supported virtual CPU definitions
4272#
4273# Returns: a list of CpuDefInfo
4274#
4275# Since: 1.2.0
4276##
4277{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
4278
4279##
4280# @CpuModelInfo:
4281#
4282# Virtual CPU model.
4283#
4284# A CPU model consists of the name of a CPU definition, to which
4285# delta changes are applied (e.g. features added/removed). Most magic values
4286# that an architecture might require should be hidden behind the name.
4287# However, if required, architectures can expose relevant properties.
4288#
4289# @name: the name of the CPU definition the model is based on
4290# @props: #optional a dictionary of QOM properties to be applied
4291#
4292# Since: 2.8.0
4293##
4294{ 'struct': 'CpuModelInfo',
4295 'data': { 'name': 'str',
4296 '*props': 'any' } }
4297
4298##
4299# @CpuModelExpansionType:
4300#
4301# An enumeration of CPU model expansion types.
4302#
4303# @static: Expand to a static CPU model, a combination of a static base
4304# model name and property delta changes. As the static base model will
4305# never change, the expanded CPU model will be the same, independant of
4306# independent of QEMU version, machine type, machine options, and
4307# accelerator options. Therefore, the resulting model can be used by
4308# tooling without having to specify a compatibility machine - e.g. when
4309# displaying the "host" model. static CPU models are migration-safe.
4310#
4311# @full: Expand all properties. The produced model is not guaranteed to be
4312# migration-safe, but allows tooling to get an insight and work with
4313# model details.
4314#
4315# Note: When a non-migration-safe CPU model is expanded in static mode, some
4316# features enabled by the CPU model may be omitted, because they can't be
4317# implemented by a static CPU model definition (e.g. cache info passthrough and
4318# PMU passthrough in x86). If you need an accurate representation of the
4319# features enabled by a non-migration-safe CPU model, use @full. If you need a
4320# static representation that will keep ABI compatibility even when changing QEMU
4321# version or machine-type, use @static (but keep in mind that some features may
4322# be omitted).
4323#
4324# Since: 2.8.0
4325##
4326{ 'enum': 'CpuModelExpansionType',
4327 'data': [ 'static', 'full' ] }
4328
4329
4330##
4331# @CpuModelExpansionInfo:
4332#
4333# The result of a cpu model expansion.
4334#
4335# @model: the expanded CpuModelInfo.
4336#
4337# Since: 2.8.0
4338##
4339{ 'struct': 'CpuModelExpansionInfo',
4340 'data': { 'model': 'CpuModelInfo' } }
4341
4342
4343##
4344# @query-cpu-model-expansion:
4345#
4346# Expands a given CPU model (or a combination of CPU model + additional options)
4347# to different granularities, allowing tooling to get an understanding what a
4348# specific CPU model looks like in QEMU under a certain configuration.
4349#
4350# This interface can be used to query the "host" CPU model.
4351#
4352# The data returned by this command may be affected by:
4353#
4354# * QEMU version: CPU models may look different depending on the QEMU version.
4355# (Except for CPU models reported as "static" in query-cpu-definitions.)
4356# * machine-type: CPU model may look different depending on the machine-type.
4357# (Except for CPU models reported as "static" in query-cpu-definitions.)
4358# * machine options (including accelerator): in some architectures, CPU models
4359# may look different depending on machine and accelerator options. (Except for
4360# CPU models reported as "static" in query-cpu-definitions.)
4361# * "-cpu" arguments and global properties: arguments to the -cpu option and
4362# global properties may affect expansion of CPU models. Using
4363# query-cpu-model-expansion while using these is not advised.
4364#
4365# Some architectures may not support all expansion types. s390x supports
4366# "full" and "static".
4367#
4368# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
4369# not supported, if the model cannot be expanded, if the model contains
4370# an unknown CPU definition name, unknown properties or properties
4371# with a wrong type. Also returns an error if an expansion type is
4372# not supported.
4373#
4374# Since: 2.8.0
4375##
4376{ 'command': 'query-cpu-model-expansion',
4377 'data': { 'type': 'CpuModelExpansionType',
4378 'model': 'CpuModelInfo' },
4379 'returns': 'CpuModelExpansionInfo' }
4380
4381##
4382# @CpuModelCompareResult:
4383#
4384# An enumeration of CPU model comparation results. The result is usually
4385# calculated using e.g. CPU features or CPU generations.
4386#
4387# @incompatible: If model A is incompatible to model B, model A is not
4388# guaranteed to run where model B runs and the other way around.
4389#
4390# @identical: If model A is identical to model B, model A is guaranteed to run
4391# where model B runs and the other way around.
4392#
4393# @superset: If model A is a superset of model B, model B is guaranteed to run
4394# where model A runs. There are no guarantees about the other way.
4395#
4396# @subset: If model A is a subset of model B, model A is guaranteed to run
4397# where model B runs. There are no guarantees about the other way.
4398#
4399# Since: 2.8.0
4400##
4401{ 'enum': 'CpuModelCompareResult',
4402 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
4403
4404##
4405# @CpuModelCompareInfo:
4406#
4407# The result of a CPU model comparison.
4408#
4409# @result: The result of the compare operation.
4410# @responsible-properties: List of properties that led to the comparison result
4411# not being identical.
4412#
4413# @responsible-properties is a list of QOM property names that led to
4414# both CPUs not being detected as identical. For identical models, this
4415# list is empty.
4416# If a QOM property is read-only, that means there's no known way to make the
4417# CPU models identical. If the special property name "type" is included, the
4418# models are by definition not identical and cannot be made identical.
4419#
4420# Since: 2.8.0
4421##
4422{ 'struct': 'CpuModelCompareInfo',
4423 'data': {'result': 'CpuModelCompareResult',
4424 'responsible-properties': ['str']
4425 }
4426}
4427
4428##
4429# @query-cpu-model-comparison:
4430#
4431# Compares two CPU models, returning how they compare in a specific
4432# configuration. The results indicates how both models compare regarding
4433# runnability. This result can be used by tooling to make decisions if a
4434# certain CPU model will run in a certain configuration or if a compatible
4435# CPU model has to be created by baselining.
4436#
4437# Usually, a CPU model is compared against the maximum possible CPU model
4438# of a certain configuration (e.g. the "host" model for KVM). If that CPU
4439# model is identical or a subset, it will run in that configuration.
4440#
4441# The result returned by this command may be affected by:
4442#
4443# * QEMU version: CPU models may look different depending on the QEMU version.
4444# (Except for CPU models reported as "static" in query-cpu-definitions.)
4445# * machine-type: CPU model may look different depending on the machine-type.
4446# (Except for CPU models reported as "static" in query-cpu-definitions.)
4447# * machine options (including accelerator): in some architectures, CPU models
4448# may look different depending on machine and accelerator options. (Except for
4449# CPU models reported as "static" in query-cpu-definitions.)
4450# * "-cpu" arguments and global properties: arguments to the -cpu option and
4451# global properties may affect expansion of CPU models. Using
4452# query-cpu-model-expansion while using these is not advised.
4453#
4454# Some architectures may not support comparing CPU models. s390x supports
4455# comparing CPU models.
4456#
4457# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
4458# not supported, if a model cannot be used, if a model contains
4459# an unknown cpu definition name, unknown properties or properties
4460# with wrong types.
4461#
4462# Since: 2.8.0
4463##
4464{ 'command': 'query-cpu-model-comparison',
4465 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
4466 'returns': 'CpuModelCompareInfo' }
4467
4468##
4469# @CpuModelBaselineInfo:
4470#
4471# The result of a CPU model baseline.
4472#
4473# @model: the baselined CpuModelInfo.
4474#
4475# Since: 2.8.0
4476##
4477{ 'struct': 'CpuModelBaselineInfo',
4478 'data': { 'model': 'CpuModelInfo' } }
4479
4480##
4481# @query-cpu-model-baseline:
4482#
4483# Baseline two CPU models, creating a compatible third model. The created
4484# model will always be a static, migration-safe CPU model (see "static"
4485# CPU model expansion for details).
4486#
4487# This interface can be used by tooling to create a compatible CPU model out
4488# two CPU models. The created CPU model will be identical to or a subset of
4489# both CPU models when comparing them. Therefore, the created CPU model is
4490# guaranteed to run where the given CPU models run.
4491#
4492# The result returned by this command may be affected by:
4493#
4494# * QEMU version: CPU models may look different depending on the QEMU version.
4495# (Except for CPU models reported as "static" in query-cpu-definitions.)
4496# * machine-type: CPU model may look different depending on the machine-type.
4497# (Except for CPU models reported as "static" in query-cpu-definitions.)
4498# * machine options (including accelerator): in some architectures, CPU models
4499# may look different depending on machine and accelerator options. (Except for
4500# CPU models reported as "static" in query-cpu-definitions.)
4501# * "-cpu" arguments and global properties: arguments to the -cpu option and
4502# global properties may affect expansion of CPU models. Using
4503# query-cpu-model-expansion while using these is not advised.
4504#
4505# Some architectures may not support baselining CPU models. s390x supports
4506# baselining CPU models.
4507#
4508# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
4509# not supported, if a model cannot be used, if a model contains
4510# an unknown cpu definition name, unknown properties or properties
4511# with wrong types.
4512#
4513# Since: 2.8.0
4514##
4515{ 'command': 'query-cpu-model-baseline',
4516 'data': { 'modela': 'CpuModelInfo',
4517 'modelb': 'CpuModelInfo' },
4518 'returns': 'CpuModelBaselineInfo' }
4519
4520##
4521# @AddfdInfo:
4522#
4523# Information about a file descriptor that was added to an fd set.
4524#
4525# @fdset-id: The ID of the fd set that @fd was added to.
4526#
4527# @fd: The file descriptor that was received via SCM rights and
4528# added to the fd set.
4529#
4530# Since: 1.2.0
4531##
4532{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
4533
4534##
4535# @add-fd:
4536#
4537# Add a file descriptor, that was passed via SCM rights, to an fd set.
4538#
4539# @fdset-id: #optional The ID of the fd set to add the file descriptor to.
4540#
4541# @opaque: #optional A free-form string that can be used to describe the fd.
4542#
4543# Returns: @AddfdInfo on success
4544#
4545# If file descriptor was not received, FdNotSupplied
4546#
4547# If @fdset-id is a negative value, InvalidParameterValue
4548#
4549# Notes: The list of fd sets is shared by all monitor connections.
4550#
4551# If @fdset-id is not specified, a new fd set will be created.
4552#
4553# Since: 1.2.0
4554#
4555# Example:
4556#
4557# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
4558# <- { "return": { "fdset-id": 1, "fd": 3 } }
4559#
4560##
4561{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
4562 'returns': 'AddfdInfo' }
4563
4564##
4565# @remove-fd:
4566#
4567# Remove a file descriptor from an fd set.
4568#
4569# @fdset-id: The ID of the fd set that the file descriptor belongs to.
4570#
4571# @fd: #optional The file descriptor that is to be removed.
4572#
4573# Returns: Nothing on success
4574# If @fdset-id or @fd is not found, FdNotFound
4575#
4576# Since: 1.2.0
4577#
4578# Notes: The list of fd sets is shared by all monitor connections.
4579#
4580# If @fd is not specified, all file descriptors in @fdset-id
4581# will be removed.
4582#
4583# Example:
4584#
4585# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
4586# <- { "return": {} }
4587#
4588##
4589{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
4590
4591##
4592# @FdsetFdInfo:
4593#
4594# Information about a file descriptor that belongs to an fd set.
4595#
4596# @fd: The file descriptor value.
4597#
4598# @opaque: #optional A free-form string that can be used to describe the fd.
4599#
4600# Since: 1.2.0
4601##
4602{ 'struct': 'FdsetFdInfo',
4603 'data': {'fd': 'int', '*opaque': 'str'} }
4604
4605##
4606# @FdsetInfo:
4607#
4608# Information about an fd set.
4609#
4610# @fdset-id: The ID of the fd set.
4611#
4612# @fds: A list of file descriptors that belong to this fd set.
4613#
4614# Since: 1.2.0
4615##
4616{ 'struct': 'FdsetInfo',
4617 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
4618
4619##
4620# @query-fdsets:
4621#
4622# Return information describing all fd sets.
4623#
4624# Returns: A list of @FdsetInfo
4625#
4626# Since: 1.2.0
4627#
4628# Note: The list of fd sets is shared by all monitor connections.
4629#
4630# Example:
4631#
4632# -> { "execute": "query-fdsets" }
4633# <- { "return": [
4634# {
4635# "fds": [
4636# {
4637# "fd": 30,
4638# "opaque": "rdonly:/path/to/file"
4639# },
4640# {
4641# "fd": 24,
4642# "opaque": "rdwr:/path/to/file"
4643# }
4644# ],
4645# "fdset-id": 1
4646# },
4647# {
4648# "fds": [
4649# {
4650# "fd": 28
4651# },
4652# {
4653# "fd": 29
4654# }
4655# ],
4656# "fdset-id": 0
4657# }
4658# ]
4659# }
4660#
4661##
4662{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
4663
4664##
4665# @TargetInfo:
4666#
4667# Information describing the QEMU target.
4668#
4669# @arch: the target architecture (eg "x86_64", "i386", etc)
4670#
4671# Since: 1.2.0
4672##
4673{ 'struct': 'TargetInfo',
4674 'data': { 'arch': 'str' } }
4675
4676##
4677# @query-target:
4678#
4679# Return information about the target for this QEMU
4680#
4681# Returns: TargetInfo
4682#
4683# Since: 1.2.0
4684##
4685{ 'command': 'query-target', 'returns': 'TargetInfo' }
4686
4687##
4688# @QKeyCode:
4689#
4690# An enumeration of key name.
4691#
4692# This is used by the @send-key command.
4693#
4694# @unmapped: since 2.0
4695# @pause: since 2.0
4696# @ro: since 2.4
4697# @kp_comma: since 2.4
4698# @kp_equals: since 2.6
4699# @power: since 2.6
4700# @hiragana: since 2.9
4701# @henkan: since 2.9
4702# @yen: since 2.9
4703#
4704# Since: 1.3.0
4705#
4706##
4707{ 'enum': 'QKeyCode',
4708 'data': [ 'unmapped',
4709 'shift', 'shift_r', 'alt', 'alt_r', 'altgr', 'altgr_r', 'ctrl',
4710 'ctrl_r', 'menu', 'esc', '1', '2', '3', '4', '5', '6', '7', '8',
4711 '9', '0', 'minus', 'equal', 'backspace', 'tab', 'q', 'w', 'e',
4712 'r', 't', 'y', 'u', 'i', 'o', 'p', 'bracket_left', 'bracket_right',
4713 'ret', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'semicolon',
4714 'apostrophe', 'grave_accent', 'backslash', 'z', 'x', 'c', 'v', 'b',
4715 'n', 'm', 'comma', 'dot', 'slash', 'asterisk', 'spc', 'caps_lock',
4716 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10',
4717 'num_lock', 'scroll_lock', 'kp_divide', 'kp_multiply',
4718 'kp_subtract', 'kp_add', 'kp_enter', 'kp_decimal', 'sysrq', 'kp_0',
4719 'kp_1', 'kp_2', 'kp_3', 'kp_4', 'kp_5', 'kp_6', 'kp_7', 'kp_8',
4720 'kp_9', 'less', 'f11', 'f12', 'print', 'home', 'pgup', 'pgdn', 'end',
4721 'left', 'up', 'down', 'right', 'insert', 'delete', 'stop', 'again',
4722 'props', 'undo', 'front', 'copy', 'open', 'paste', 'find', 'cut',
4723 'lf', 'help', 'meta_l', 'meta_r', 'compose', 'pause',
4724 'ro', 'hiragana', 'henkan', 'yen',
4725 'kp_comma', 'kp_equals', 'power' ] }
4726
4727##
4728# @KeyValue:
4729#
4730# Represents a keyboard key.
4731#
4732# Since: 1.3.0
4733##
4734{ 'union': 'KeyValue',
4735 'data': {
4736 'number': 'int',
4737 'qcode': 'QKeyCode' } }
4738
4739##
4740# @send-key:
4741#
4742# Send keys to guest.
4743#
4744# @keys: An array of @KeyValue elements. All @KeyValues in this array are
4745# simultaneously sent to the guest. A @KeyValue.number value is sent
4746# directly to the guest, while @KeyValue.qcode must be a valid
4747# @QKeyCode value
4748#
4749# @hold-time: #optional time to delay key up events, milliseconds. Defaults
4750# to 100
4751#
4752# Returns: Nothing on success
4753# If key is unknown or redundant, InvalidParameter
4754#
4755# Since: 1.3.0
4756#
4757# Example:
4758#
4759# -> { "execute": "send-key",
4760# "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
4761# { "type": "qcode", "data": "alt" },
4762# { "type": "qcode", "data": "delete" } ] } }
4763# <- { "return": {} }
4764#
4765##
4766{ 'command': 'send-key',
4767 'data': { 'keys': ['KeyValue'], '*hold-time': 'int' } }
4768
4769##
4770# @screendump:
4771#
4772# Write a PPM of the VGA screen to a file.
4773#
4774# @filename: the path of a new PPM file to store the image
4775#
4776# Returns: Nothing on success
4777#
4778# Since: 0.14.0
4779#
4780# Example:
4781#
4782# -> { "execute": "screendump",
4783# "arguments": { "filename": "/tmp/image" } }
4784# <- { "return": {} }
4785#
4786##
4787{ 'command': 'screendump', 'data': {'filename': 'str'} }
4788
4789
4790##
4791# @ChardevCommon:
4792#
4793# Configuration shared across all chardev backends
4794#
4795# @logfile: #optional The name of a logfile to save output
4796# @logappend: #optional true to append instead of truncate
4797# (default to false to truncate)
4798#
4799# Since: 2.6
4800##
4801{ 'struct': 'ChardevCommon', 'data': { '*logfile': 'str',
4802 '*logappend': 'bool' } }
4803
4804##
4805# @ChardevFile:
4806#
4807# Configuration info for file chardevs.
4808#
4809# @in: #optional The name of the input file
4810# @out: The name of the output file
4811# @append: #optional Open the file in append mode (default false to
4812# truncate) (Since 2.6)
4813#
4814# Since: 1.4
4815##
4816{ 'struct': 'ChardevFile', 'data': { '*in' : 'str',
4817 'out' : 'str',
4818 '*append': 'bool' },
4819 'base': 'ChardevCommon' }
4820
4821##
4822# @ChardevHostdev:
4823#
4824# Configuration info for device and pipe chardevs.
4825#
4826# @device: The name of the special file for the device,
4827# i.e. /dev/ttyS0 on Unix or COM1: on Windows
4828#
4829# Since: 1.4
4830##
4831{ 'struct': 'ChardevHostdev', 'data': { 'device' : 'str' },
4832 'base': 'ChardevCommon' }
4833
4834##
4835# @ChardevSocket:
4836#
4837# Configuration info for (stream) socket chardevs.
4838#
4839# @addr: socket address to listen on (server=true)
4840# or connect to (server=false)
4841# @tls-creds: #optional the ID of the TLS credentials object (since 2.6)
4842# @server: #optional create server socket (default: true)
4843# @wait: #optional wait for incoming connection on server
4844# sockets (default: false).
4845# @nodelay: #optional set TCP_NODELAY socket option (default: false)
4846# @telnet: #optional enable telnet protocol on server
4847# sockets (default: false)
4848# @reconnect: #optional For a client socket, if a socket is disconnected,
4849# then attempt a reconnect after the given number of seconds.
4850# Setting this to zero disables this function. (default: 0)
4851# (Since: 2.2)
4852#
4853# Since: 1.4
4854##
4855{ 'struct': 'ChardevSocket', 'data': { 'addr' : 'SocketAddress',
4856 '*tls-creds' : 'str',
4857 '*server' : 'bool',
4858 '*wait' : 'bool',
4859 '*nodelay' : 'bool',
4860 '*telnet' : 'bool',
4861 '*reconnect' : 'int' },
4862 'base': 'ChardevCommon' }
4863
4864##
4865# @ChardevUdp:
4866#
4867# Configuration info for datagram socket chardevs.
4868#
4869# @remote: remote address
4870# @local: #optional local address
4871#
4872# Since: 1.5
4873##
4874{ 'struct': 'ChardevUdp', 'data': { 'remote' : 'SocketAddress',
4875 '*local' : 'SocketAddress' },
4876 'base': 'ChardevCommon' }
4877
4878##
4879# @ChardevMux:
4880#
4881# Configuration info for mux chardevs.
4882#
4883# @chardev: name of the base chardev.
4884#
4885# Since: 1.5
4886##
4887{ 'struct': 'ChardevMux', 'data': { 'chardev' : 'str' },
4888 'base': 'ChardevCommon' }
4889
4890##
4891# @ChardevStdio:
4892#
4893# Configuration info for stdio chardevs.
4894#
4895# @signal: #optional Allow signals (such as SIGINT triggered by ^C)
4896# be delivered to qemu. Default: true in -nographic mode,
4897# false otherwise.
4898#
4899# Since: 1.5
4900##
4901{ 'struct': 'ChardevStdio', 'data': { '*signal' : 'bool' },
4902 'base': 'ChardevCommon' }
4903
4904
4905##
4906# @ChardevSpiceChannel:
4907#
4908# Configuration info for spice vm channel chardevs.
4909#
4910# @type: kind of channel (for example vdagent).
4911#
4912# Since: 1.5
4913##
4914{ 'struct': 'ChardevSpiceChannel', 'data': { 'type' : 'str' },
4915 'base': 'ChardevCommon' }
4916
4917##
4918# @ChardevSpicePort:
4919#
4920# Configuration info for spice port chardevs.
4921#
4922# @fqdn: name of the channel (see docs/spice-port-fqdn.txt)
4923#
4924# Since: 1.5
4925##
4926{ 'struct': 'ChardevSpicePort', 'data': { 'fqdn' : 'str' },
4927 'base': 'ChardevCommon' }
4928
4929##
4930# @ChardevVC:
4931#
4932# Configuration info for virtual console chardevs.
4933#
4934# @width: console width, in pixels
4935# @height: console height, in pixels
4936# @cols: console width, in chars
4937# @rows: console height, in chars
4938#
4939# Since: 1.5
4940##
4941{ 'struct': 'ChardevVC', 'data': { '*width' : 'int',
4942 '*height' : 'int',
4943 '*cols' : 'int',
4944 '*rows' : 'int' },
4945 'base': 'ChardevCommon' }
4946
4947##
4948# @ChardevRingbuf:
4949#
4950# Configuration info for ring buffer chardevs.
4951#
4952# @size: #optional ring buffer size, must be power of two, default is 65536
4953#
4954# Since: 1.5
4955##
4956{ 'struct': 'ChardevRingbuf', 'data': { '*size' : 'int' },
4957 'base': 'ChardevCommon' }
4958
4959##
4960# @ChardevBackend:
4961#
4962# Configuration info for the new chardev backend.
4963#
4964# Since: 1.4 (testdev since 2.2, wctablet since 2.9)
4965##
4966{ 'union': 'ChardevBackend', 'data': { 'file' : 'ChardevFile',
4967 'serial' : 'ChardevHostdev',
4968 'parallel': 'ChardevHostdev',
4969 'pipe' : 'ChardevHostdev',
4970 'socket' : 'ChardevSocket',
4971 'udp' : 'ChardevUdp',
4972 'pty' : 'ChardevCommon',
4973 'null' : 'ChardevCommon',
4974 'mux' : 'ChardevMux',
4975 'msmouse': 'ChardevCommon',
4976 'wctablet' : 'ChardevCommon',
4977 'braille': 'ChardevCommon',
4978 'testdev': 'ChardevCommon',
4979 'stdio' : 'ChardevStdio',
4980 'console': 'ChardevCommon',
4981 'spicevmc' : 'ChardevSpiceChannel',
4982 'spiceport' : 'ChardevSpicePort',
4983 'vc' : 'ChardevVC',
4984 'ringbuf': 'ChardevRingbuf',
4985 # next one is just for compatibility
4986 'memory' : 'ChardevRingbuf' } }
4987
4988##
4989# @ChardevReturn:
4990#
4991# Return info about the chardev backend just created.
4992#
4993# @pty: #optional name of the slave pseudoterminal device, present if
4994# and only if a chardev of type 'pty' was created
4995#
4996# Since: 1.4
4997##
4998{ 'struct' : 'ChardevReturn', 'data': { '*pty' : 'str' } }
4999
5000##
5001# @chardev-add:
5002#
5003# Add a character device backend
5004#
5005# @id: the chardev's ID, must be unique
5006# @backend: backend type and parameters
5007#
5008# Returns: ChardevReturn.
5009#
5010# Since: 1.4
5011#
5012# Example:
5013#
5014# -> { "execute" : "chardev-add",
5015# "arguments" : { "id" : "foo",
5016# "backend" : { "type" : "null", "data" : {} } } }
5017# <- { "return": {} }
5018#
5019# -> { "execute" : "chardev-add",
5020# "arguments" : { "id" : "bar",
5021# "backend" : { "type" : "file",
5022# "data" : { "out" : "/tmp/bar.log" } } } }
5023# <- { "return": {} }
5024#
5025# -> { "execute" : "chardev-add",
5026# "arguments" : { "id" : "baz",
5027# "backend" : { "type" : "pty", "data" : {} } } }
5028# <- { "return": { "pty" : "/dev/pty/42" } }
5029#
5030##
5031{ 'command': 'chardev-add', 'data': {'id' : 'str',
5032 'backend' : 'ChardevBackend' },
5033 'returns': 'ChardevReturn' }
5034
5035##
5036# @chardev-remove:
5037#
5038# Remove a character device backend
5039#
5040# @id: the chardev's ID, must exist and not be in use
5041#
5042# Returns: Nothing on success
5043#
5044# Since: 1.4
5045#
5046# Example:
5047#
5048# -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
5049# <- { "return": {} }
5050#
5051##
5052{ 'command': 'chardev-remove', 'data': {'id': 'str'} }
5053
5054##
5055# @TpmModel:
5056#
5057# An enumeration of TPM models
5058#
5059# @tpm-tis: TPM TIS model
5060#
5061# Since: 1.5
5062##
5063{ 'enum': 'TpmModel', 'data': [ 'tpm-tis' ] }
5064
5065##
5066# @query-tpm-models:
5067#
5068# Return a list of supported TPM models
5069#
5070# Returns: a list of TpmModel
5071#
5072# Since: 1.5
5073#
5074# Example:
5075#
5076# -> { "execute": "query-tpm-models" }
5077# <- { "return": [ "tpm-tis" ] }
5078#
5079##
5080{ 'command': 'query-tpm-models', 'returns': ['TpmModel'] }
5081
5082##
5083# @TpmType:
5084#
5085# An enumeration of TPM types
5086#
5087# @passthrough: TPM passthrough type
5088#
5089# Since: 1.5
5090##
5091{ 'enum': 'TpmType', 'data': [ 'passthrough' ] }
5092
5093##
5094# @query-tpm-types:
5095#
5096# Return a list of supported TPM types
5097#
5098# Returns: a list of TpmType
5099#
5100# Since: 1.5
5101#
5102# Example:
5103#
5104# -> { "execute": "query-tpm-types" }
5105# <- { "return": [ "passthrough" ] }
5106#
5107##
5108{ 'command': 'query-tpm-types', 'returns': ['TpmType'] }
5109
5110##
5111# @TPMPassthroughOptions:
5112#
5113# Information about the TPM passthrough type
5114#
5115# @path: #optional string describing the path used for accessing the TPM device
5116#
5117# @cancel-path: #optional string showing the TPM's sysfs cancel file
5118# for cancellation of TPM commands while they are executing
5119#
5120# Since: 1.5
5121##
5122{ 'struct': 'TPMPassthroughOptions', 'data': { '*path' : 'str',
5123 '*cancel-path' : 'str'} }
5124
5125##
5126# @TpmTypeOptions:
5127#
5128# A union referencing different TPM backend types' configuration options
5129#
5130# @type: 'passthrough' The configuration options for the TPM passthrough type
5131#
5132# Since: 1.5
5133##
5134{ 'union': 'TpmTypeOptions',
5135 'data': { 'passthrough' : 'TPMPassthroughOptions' } }
5136
5137##
5138# @TPMInfo:
5139#
5140# Information about the TPM
5141#
5142# @id: The Id of the TPM
5143#
5144# @model: The TPM frontend model
5145#
5146# @options: The TPM (backend) type configuration options
5147#
5148# Since: 1.5
5149##
5150{ 'struct': 'TPMInfo',
5151 'data': {'id': 'str',
5152 'model': 'TpmModel',
5153 'options': 'TpmTypeOptions' } }
5154
5155##
5156# @query-tpm:
5157#
5158# Return information about the TPM device
5159#
5160# Returns: @TPMInfo on success
5161#
5162# Since: 1.5
5163#
5164# Example:
5165#
5166# -> { "execute": "query-tpm" }
5167# <- { "return":
5168# [
5169# { "model": "tpm-tis",
5170# "options":
5171# { "type": "passthrough",
5172# "data":
5173# { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
5174# "path": "/dev/tpm0"
5175# }
5176# },
5177# "id": "tpm0"
5178# }
5179# ]
5180# }
5181#
5182##
5183{ 'command': 'query-tpm', 'returns': ['TPMInfo'] }
5184
5185##
5186# @AcpiTableOptions:
5187#
5188# Specify an ACPI table on the command line to load.
5189#
5190# At most one of @file and @data can be specified. The list of files specified
5191# by any one of them is loaded and concatenated in order. If both are omitted,
5192# @data is implied.
5193#
5194# Other fields / optargs can be used to override fields of the generic ACPI
5195# table header; refer to the ACPI specification 5.0, section 5.2.6 System
5196# Description Table Header. If a header field is not overridden, then the
5197# corresponding value from the concatenated blob is used (in case of @file), or
5198# it is filled in with a hard-coded value (in case of @data).
5199#
5200# String fields are copied into the matching ACPI member from lowest address
5201# upwards, and silently truncated / NUL-padded to length.
5202#
5203# @sig: #optional table signature / identifier (4 bytes)
5204#
5205# @rev: #optional table revision number (dependent on signature, 1 byte)
5206#
5207# @oem_id: #optional OEM identifier (6 bytes)
5208#
5209# @oem_table_id: #optional OEM table identifier (8 bytes)
5210#
5211# @oem_rev: #optional OEM-supplied revision number (4 bytes)
5212#
5213# @asl_compiler_id: #optional identifier of the utility that created the table
5214# (4 bytes)
5215#
5216# @asl_compiler_rev: #optional revision number of the utility that created the
5217# table (4 bytes)
5218#
5219# @file: #optional colon (:) separated list of pathnames to load and
5220# concatenate as table data. The resultant binary blob is expected to
5221# have an ACPI table header. At least one file is required. This field
5222# excludes @data.
5223#
5224# @data: #optional colon (:) separated list of pathnames to load and
5225# concatenate as table data. The resultant binary blob must not have an
5226# ACPI table header. At least one file is required. This field excludes
5227# @file.
5228#
5229# Since: 1.5
5230##
5231{ 'struct': 'AcpiTableOptions',
5232 'data': {
5233 '*sig': 'str',
5234 '*rev': 'uint8',
5235 '*oem_id': 'str',
5236 '*oem_table_id': 'str',
5237 '*oem_rev': 'uint32',
5238 '*asl_compiler_id': 'str',
5239 '*asl_compiler_rev': 'uint32',
5240 '*file': 'str',
5241 '*data': 'str' }}
5242
5243##
5244# @CommandLineParameterType:
5245#
5246# Possible types for an option parameter.
5247#
5248# @string: accepts a character string
5249#
5250# @boolean: accepts "on" or "off"
5251#
5252# @number: accepts a number
5253#
5254# @size: accepts a number followed by an optional suffix (K)ilo,
5255# (M)ega, (G)iga, (T)era
5256#
5257# Since: 1.5
5258##
5259{ 'enum': 'CommandLineParameterType',
5260 'data': ['string', 'boolean', 'number', 'size'] }
5261
5262##
5263# @CommandLineParameterInfo:
5264#
5265# Details about a single parameter of a command line option.
5266#
5267# @name: parameter name
5268#
5269# @type: parameter @CommandLineParameterType
5270#
5271# @help: #optional human readable text string, not suitable for parsing.
5272#
5273# @default: #optional default value string (since 2.1)
5274#
5275# Since: 1.5
5276##
5277{ 'struct': 'CommandLineParameterInfo',
5278 'data': { 'name': 'str',
5279 'type': 'CommandLineParameterType',
5280 '*help': 'str',
5281 '*default': 'str' } }
5282
5283##
5284# @CommandLineOptionInfo:
5285#
5286# Details about a command line option, including its list of parameter details
5287#
5288# @option: option name
5289#
5290# @parameters: an array of @CommandLineParameterInfo
5291#
5292# Since: 1.5
5293##
5294{ 'struct': 'CommandLineOptionInfo',
5295 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
5296
5297##
5298# @query-command-line-options:
5299#
5300# Query command line option schema.
5301#
5302# @option: #optional option name
5303#
5304# Returns: list of @CommandLineOptionInfo for all options (or for the given
5305# @option). Returns an error if the given @option doesn't exist.
5306#
5307# Since: 1.5
5308#
5309# Example:
5310#
5311# -> { "execute": "query-command-line-options",
5312# "arguments": { "option": "option-rom" } }
5313# <- { "return": [
5314# {
5315# "parameters": [
5316# {
5317# "name": "romfile",
5318# "type": "string"
5319# },
5320# {
5321# "name": "bootindex",
5322# "type": "number"
5323# }
5324# ],
5325# "option": "option-rom"
5326# }
5327# ]
5328# }
5329#
5330##
5331{'command': 'query-command-line-options', 'data': { '*option': 'str' },
5332 'returns': ['CommandLineOptionInfo'] }
5333
5334##
5335# @X86CPURegister32:
5336#
5337# A X86 32-bit register
5338#
5339# Since: 1.5
5340##
5341{ 'enum': 'X86CPURegister32',
5342 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
5343
5344##
5345# @X86CPUFeatureWordInfo:
5346#
5347# Information about a X86 CPU feature word
5348#
5349# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
5350#
5351# @cpuid-input-ecx: #optional Input ECX value for CPUID instruction for that
5352# feature word
5353#
5354# @cpuid-register: Output register containing the feature bits
5355#
5356# @features: value of output register, containing the feature bits
5357#
5358# Since: 1.5
5359##
5360{ 'struct': 'X86CPUFeatureWordInfo',
5361 'data': { 'cpuid-input-eax': 'int',
5362 '*cpuid-input-ecx': 'int',
5363 'cpuid-register': 'X86CPURegister32',
5364 'features': 'int' } }
5365
5366##
5367# @DummyForceArrays:
5368#
5369# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
5370#
5371# Since: 2.5
5372##
5373{ 'struct': 'DummyForceArrays',
5374 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
5375
5376
5377##
5378# @RxState:
5379#
5380# Packets receiving state
5381#
5382# @normal: filter assigned packets according to the mac-table
5383#
5384# @none: don't receive any assigned packet
5385#
5386# @all: receive all assigned packets
5387#
5388# Since: 1.6
5389##
5390{ 'enum': 'RxState', 'data': [ 'normal', 'none', 'all' ] }
5391
5392##
5393# @RxFilterInfo:
5394#
5395# Rx-filter information for a NIC.
5396#
5397# @name: net client name
5398#
5399# @promiscuous: whether promiscuous mode is enabled
5400#
5401# @multicast: multicast receive state
5402#
5403# @unicast: unicast receive state
5404#
5405# @vlan: vlan receive state (Since 2.0)
5406#
5407# @broadcast-allowed: whether to receive broadcast
5408#
5409# @multicast-overflow: multicast table is overflowed or not
5410#
5411# @unicast-overflow: unicast table is overflowed or not
5412#
5413# @main-mac: the main macaddr string
5414#
5415# @vlan-table: a list of active vlan id
5416#
5417# @unicast-table: a list of unicast macaddr string
5418#
5419# @multicast-table: a list of multicast macaddr string
5420#
5421# Since: 1.6
5422##
5423{ 'struct': 'RxFilterInfo',
5424 'data': {
5425 'name': 'str',
5426 'promiscuous': 'bool',
5427 'multicast': 'RxState',
5428 'unicast': 'RxState',
5429 'vlan': 'RxState',
5430 'broadcast-allowed': 'bool',
5431 'multicast-overflow': 'bool',
5432 'unicast-overflow': 'bool',
5433 'main-mac': 'str',
5434 'vlan-table': ['int'],
5435 'unicast-table': ['str'],
5436 'multicast-table': ['str'] }}
5437
5438##
5439# @query-rx-filter:
5440#
5441# Return rx-filter information for all NICs (or for the given NIC).
5442#
5443# @name: #optional net client name
5444#
5445# Returns: list of @RxFilterInfo for all NICs (or for the given NIC).
5446# Returns an error if the given @name doesn't exist, or given
5447# NIC doesn't support rx-filter querying, or given net client
5448# isn't a NIC.
5449#
5450# Since: 1.6
5451#
5452# Example:
5453#
5454# -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
5455# <- { "return": [
5456# {
5457# "promiscuous": true,
5458# "name": "vnet0",
5459# "main-mac": "52:54:00:12:34:56",
5460# "unicast": "normal",
5461# "vlan": "normal",
5462# "vlan-table": [
5463# 4,
5464# 0
5465# ],
5466# "unicast-table": [
5467# ],
5468# "multicast": "normal",
5469# "multicast-overflow": false,
5470# "unicast-overflow": false,
5471# "multicast-table": [
5472# "01:00:5e:00:00:01",
5473# "33:33:00:00:00:01",
5474# "33:33:ff:12:34:56"
5475# ],
5476# "broadcast-allowed": false
5477# }
5478# ]
5479# }
5480#
5481##
5482{ 'command': 'query-rx-filter', 'data': { '*name': 'str' },
5483 'returns': ['RxFilterInfo'] }
5484
5485##
5486# @InputButton:
5487#
5488# Button of a pointer input device (mouse, tablet).
5489#
5490# @side: front side button of a 5-button mouse (since 2.9)
5491#
5492# @extra: rear side button of a 5-button mouse (since 2.9)
5493#
5494# Since: 2.0
5495##
5496{ 'enum' : 'InputButton',
5497 'data' : [ 'left', 'middle', 'right', 'wheel-up', 'wheel-down', 'side',
5498 'extra' ] }
5499
5500##
5501# @InputAxis:
5502#
5503# Position axis of a pointer input device (mouse, tablet).
5504#
5505# Since: 2.0
5506##
5507{ 'enum' : 'InputAxis',
5508 'data' : [ 'x', 'y' ] }
5509
5510##
5511# @InputKeyEvent:
5512#
5513# Keyboard input event.
5514#
5515# @key: Which key this event is for.
5516# @down: True for key-down and false for key-up events.
5517#
5518# Since: 2.0
5519##
5520{ 'struct' : 'InputKeyEvent',
5521 'data' : { 'key' : 'KeyValue',
5522 'down' : 'bool' } }
5523
5524##
5525# @InputBtnEvent:
5526#
5527# Pointer button input event.
5528#
5529# @button: Which button this event is for.
5530# @down: True for key-down and false for key-up events.
5531#
5532# Since: 2.0
5533##
5534{ 'struct' : 'InputBtnEvent',
5535 'data' : { 'button' : 'InputButton',
5536 'down' : 'bool' } }
5537
5538##
5539# @InputMoveEvent:
5540#
5541# Pointer motion input event.
5542#
5543# @axis: Which axis is referenced by @value.
5544# @value: Pointer position. For absolute coordinates the
5545# valid range is 0 -> 0x7ffff
5546#
5547# Since: 2.0
5548##
5549{ 'struct' : 'InputMoveEvent',
5550 'data' : { 'axis' : 'InputAxis',
5551 'value' : 'int' } }
5552
5553##
5554# @InputEvent:
5555#
5556# Input event union.
5557#
5558# @type: the input type, one of:
5559# - 'key': Input event of Keyboard
5560# - 'btn': Input event of pointer buttons
5561# - 'rel': Input event of relative pointer motion
5562# - 'abs': Input event of absolute pointer motion
5563#
5564# Since: 2.0
5565##
5566{ 'union' : 'InputEvent',
5567 'data' : { 'key' : 'InputKeyEvent',
5568 'btn' : 'InputBtnEvent',
5569 'rel' : 'InputMoveEvent',
5570 'abs' : 'InputMoveEvent' } }
5571
5572##
5573# @input-send-event:
5574#
5575# Send input event(s) to guest.
5576#
5577# @device: #optional display device to send event(s) to.
5578# @head: #optional head to send event(s) to, in case the
5579# display device supports multiple scanouts.
5580# @events: List of InputEvent union.
5581#
5582# Returns: Nothing on success.
5583#
5584# The @device and @head parameters can be used to send the input event
5585# to specific input devices in case (a) multiple input devices of the
5586# same kind are added to the virtual machine and (b) you have
5587# configured input routing (see docs/multiseat.txt) for those input
5588# devices. The parameters work exactly like the device and head
5589# properties of input devices. If @device is missing, only devices
5590# that have no input routing config are admissible. If @device is
5591# specified, both input devices with and without input routing config
5592# are admissible, but devices with input routing config take
5593# precedence.
5594#
5595# Since: 2.6
5596#
5597# Note: The consoles are visible in the qom tree, under
5598# /backend/console[$index]. They have a device link and head property,
5599# so it is possible to map which console belongs to which device and
5600# display.
5601#
5602# Example:
5603#
5604# 1. Press left mouse button.
5605#
5606# -> { "execute": "input-send-event",
5607# "arguments": { "device": "video0",
5608# "events": [ { "type": "btn",
5609# "data" : { "down": true, "button": "left" } } ] } }
5610# <- { "return": {} }
5611#
5612# -> { "execute": "input-send-event",
5613# "arguments": { "device": "video0",
5614# "events": [ { "type": "btn",
5615# "data" : { "down": false, "button": "left" } } ] } }
5616# <- { "return": {} }
5617#
5618# 2. Press ctrl-alt-del.
5619#
5620# -> { "execute": "input-send-event",
5621# "arguments": { "events": [
5622# { "type": "key", "data" : { "down": true,
5623# "key": {"type": "qcode", "data": "ctrl" } } },
5624# { "type": "key", "data" : { "down": true,
5625# "key": {"type": "qcode", "data": "alt" } } },
5626# { "type": "key", "data" : { "down": true,
5627# "key": {"type": "qcode", "data": "delete" } } } ] } }
5628# <- { "return": {} }
5629#
5630# 3. Move mouse pointer to absolute coordinates (20000, 400).
5631#
5632# -> { "execute": "input-send-event" ,
5633# "arguments": { "events": [
5634# { "type": "abs", "data" : { "axis": "x", "value" : 20000 } },
5635# { "type": "abs", "data" : { "axis": "y", "value" : 400 } } ] } }
5636# <- { "return": {} }
5637#
5638##
5639{ 'command': 'input-send-event',
5640 'data': { '*device': 'str',
5641 '*head' : 'int',
5642 'events' : [ 'InputEvent' ] } }
5643
5644##
5645# @NumaOptionsType:
5646#
5647# Since: 2.1
5648##
5649{ 'enum': 'NumaOptionsType',
5650 'data': [ 'node' ] }
5651
5652##
5653# @NumaOptions:
5654#
5655# A discriminated record of NUMA options. (for OptsVisitor)
5656#
5657# Since: 2.1
5658##
5659{ 'union': 'NumaOptions',
5660 'base': { 'type': 'NumaOptionsType' },
5661 'discriminator': 'type',
5662 'data': {
5663 'node': 'NumaNodeOptions' }}
5664
5665##
5666# @NumaNodeOptions:
5667#
5668# Create a guest NUMA node. (for OptsVisitor)
5669#
5670# @nodeid: #optional NUMA node ID (increase by 1 from 0 if omitted)
5671#
5672# @cpus: #optional VCPUs belonging to this node (assign VCPUS round-robin
5673# if omitted)
5674#
5675# @mem: #optional memory size of this node; mutually exclusive with @memdev.
5676# Equally divide total memory among nodes if both @mem and @memdev are
5677# omitted.
5678#
5679# @memdev: #optional memory backend object. If specified for one node,
5680# it must be specified for all nodes.
5681#
5682# Since: 2.1
5683##
5684{ 'struct': 'NumaNodeOptions',
5685 'data': {
5686 '*nodeid': 'uint16',
5687 '*cpus': ['uint16'],
5688 '*mem': 'size',
5689 '*memdev': 'str' }}
5690
5691##
5692# @HostMemPolicy:
5693#
5694# Host memory policy types
5695#
5696# @default: restore default policy, remove any nondefault policy
5697#
5698# @preferred: set the preferred host nodes for allocation
5699#
5700# @bind: a strict policy that restricts memory allocation to the
5701# host nodes specified
5702#
5703# @interleave: memory allocations are interleaved across the set
5704# of host nodes specified
5705#
5706# Since: 2.1
5707##
5708{ 'enum': 'HostMemPolicy',
5709 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
5710
5711##
5712# @Memdev:
5713#
5714# Information about memory backend
5715#
5716# @id: #optional backend's ID if backend has 'id' property (since 2.9)
5717#
5718# @size: memory backend size
5719#
5720# @merge: enables or disables memory merge support
5721#
5722# @dump: includes memory backend's memory in a core dump or not
5723#
5724# @prealloc: enables or disables memory preallocation
5725#
5726# @host-nodes: host nodes for its memory policy
5727#
5728# @policy: memory policy of memory backend
5729#
5730# Since: 2.1
5731##
5732{ 'struct': 'Memdev',
5733 'data': {
5734 '*id': 'str',
5735 'size': 'size',
5736 'merge': 'bool',
5737 'dump': 'bool',
5738 'prealloc': 'bool',
5739 'host-nodes': ['uint16'],
5740 'policy': 'HostMemPolicy' }}
5741
5742##
5743# @query-memdev:
5744#
5745# Returns information for all memory backends.
5746#
5747# Returns: a list of @Memdev.
5748#
5749# Since: 2.1
5750#
5751# Example:
5752#
5753# -> { "execute": "query-memdev" }
5754# <- { "return": [
5755# {
5756# "id": "mem1",
5757# "size": 536870912,
5758# "merge": false,
5759# "dump": true,
5760# "prealloc": false,
5761# "host-nodes": [0, 1],
5762# "policy": "bind"
5763# },
5764# {
5765# "size": 536870912,
5766# "merge": false,
5767# "dump": true,
5768# "prealloc": true,
5769# "host-nodes": [2, 3],
5770# "policy": "preferred"
5771# }
5772# ]
5773# }
5774#
5775##
5776{ 'command': 'query-memdev', 'returns': ['Memdev'] }
5777
5778##
5779# @PCDIMMDeviceInfo:
5780#
5781# PCDIMMDevice state information
5782#
5783# @id: #optional device's ID
5784#
5785# @addr: physical address, where device is mapped
5786#
5787# @size: size of memory that the device provides
5788#
5789# @slot: slot number at which device is plugged in
5790#
5791# @node: NUMA node number where device is plugged in
5792#
5793# @memdev: memory backend linked with device
5794#
5795# @hotplugged: true if device was hotplugged
5796#
5797# @hotpluggable: true if device if could be added/removed while machine is running
5798#
5799# Since: 2.1
5800##
5801{ 'struct': 'PCDIMMDeviceInfo',
5802 'data': { '*id': 'str',
5803 'addr': 'int',
5804 'size': 'int',
5805 'slot': 'int',
5806 'node': 'int',
5807 'memdev': 'str',
5808 'hotplugged': 'bool',
5809 'hotpluggable': 'bool'
5810 }
5811}
5812
5813##
5814# @MemoryDeviceInfo:
5815#
5816# Union containing information about a memory device
5817#
5818# Since: 2.1
5819##
5820{ 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
5821
5822##
5823# @query-memory-devices:
5824#
5825# Lists available memory devices and their state
5826#
5827# Since: 2.1
5828#
5829# Example:
5830#
5831# -> { "execute": "query-memory-devices" }
5832# <- { "return": [ { "data":
5833# { "addr": 5368709120,
5834# "hotpluggable": true,
5835# "hotplugged": true,
5836# "id": "d1",
5837# "memdev": "/objects/memX",
5838# "node": 0,
5839# "size": 1073741824,
5840# "slot": 0},
5841# "type": "dimm"
5842# } ] }
5843#
5844##
5845{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
5846
5847##
5848# @ACPISlotType:
5849#
5850# @DIMM: memory slot
5851# @CPU: logical CPU slot (since 2.7)
5852##
5853{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
5854
5855##
5856# @ACPIOSTInfo:
5857#
5858# OSPM Status Indication for a device
5859# For description of possible values of @source and @status fields
5860# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
5861#
5862# @device: #optional device ID associated with slot
5863#
5864# @slot: slot ID, unique per slot of a given @slot-type
5865#
5866# @slot-type: type of the slot
5867#
5868# @source: an integer containing the source event
5869#
5870# @status: an integer containing the status code
5871#
5872# Since: 2.1
5873##
5874{ 'struct': 'ACPIOSTInfo',
5875 'data' : { '*device': 'str',
5876 'slot': 'str',
5877 'slot-type': 'ACPISlotType',
5878 'source': 'int',
5879 'status': 'int' } }
5880
5881##
5882# @query-acpi-ospm-status:
5883#
5884# Return a list of ACPIOSTInfo for devices that support status
5885# reporting via ACPI _OST method.
5886#
5887# Since: 2.1
5888#
5889# Example:
5890#
5891# -> { "execute": "query-acpi-ospm-status" }
5892# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
5893# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
5894# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
5895# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
5896# ]}
5897#
5898##
5899{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
5900
5901##
5902# @WatchdogExpirationAction:
5903#
5904# An enumeration of the actions taken when the watchdog device's timer is
5905# expired
5906#
5907# @reset: system resets
5908#
5909# @shutdown: system shutdown, note that it is similar to @powerdown, which
5910# tries to set to system status and notify guest
5911#
5912# @poweroff: system poweroff, the emulator program exits
5913#
5914# @pause: system pauses, similar to @stop
5915#
5916# @debug: system enters debug state
5917#
5918# @none: nothing is done
5919#
5920# @inject-nmi: a non-maskable interrupt is injected into the first VCPU (all
5921# VCPUS on x86) (since 2.4)
5922#
5923# Since: 2.1
5924##
5925{ 'enum': 'WatchdogExpirationAction',
5926 'data': [ 'reset', 'shutdown', 'poweroff', 'pause', 'debug', 'none',
5927 'inject-nmi' ] }
5928
5929##
5930# @IoOperationType:
5931#
5932# An enumeration of the I/O operation types
5933#
5934# @read: read operation
5935#
5936# @write: write operation
5937#
5938# Since: 2.1
5939##
5940{ 'enum': 'IoOperationType',
5941 'data': [ 'read', 'write' ] }
5942
5943##
5944# @GuestPanicAction:
5945#
5946# An enumeration of the actions taken when guest OS panic is detected
5947#
5948# @pause: system pauses
5949#
5950# Since: 2.1 (poweroff since 2.8)
5951##
5952{ 'enum': 'GuestPanicAction',
5953 'data': [ 'pause', 'poweroff' ] }
5954
5955##
5956# @GuestPanicInformationType:
5957#
5958# An enumeration of the guest panic information types
5959#
5960# Since: 2.9
5961##
5962{ 'enum': 'GuestPanicInformationType',
5963 'data': [ 'hyper-v'] }
5964
5965##
5966# @GuestPanicInformation:
5967#
5968# Information about a guest panic
5969#
5970# Since: 2.9
5971##
5972{'union': 'GuestPanicInformation',
5973 'base': {'type': 'GuestPanicInformationType'},
5974 'discriminator': 'type',
5975 'data': { 'hyper-v': 'GuestPanicInformationHyperV' } }
5976
5977##
5978# @GuestPanicInformationHyperV:
5979#
5980# Hyper-V specific guest panic information (HV crash MSRs)
5981#
5982# Since: 2.9
5983##
5984{'struct': 'GuestPanicInformationHyperV',
5985 'data': { 'arg1': 'uint64',
5986 'arg2': 'uint64',
5987 'arg3': 'uint64',
5988 'arg4': 'uint64',
5989 'arg5': 'uint64' } }
5990
5991##
5992# @rtc-reset-reinjection:
5993#
5994# This command will reset the RTC interrupt reinjection backlog.
5995# Can be used if another mechanism to synchronize guest time
5996# is in effect, for example QEMU guest agent's guest-set-time
5997# command.
5998#
5999# Since: 2.1
6000#
6001# Example:
6002#
6003# -> { "execute": "rtc-reset-reinjection" }
6004# <- { "return": {} }
6005#
6006##
6007{ 'command': 'rtc-reset-reinjection' }
6008
6009# Rocker ethernet network switch
6010{ 'include': 'qapi/rocker.json' }
6011
6012##
6013# @ReplayMode:
6014#
6015# Mode of the replay subsystem.
6016#
6017# @none: normal execution mode. Replay or record are not enabled.
6018#
6019# @record: record mode. All non-deterministic data is written into the
6020# replay log.
6021#
6022# @play: replay mode. Non-deterministic data required for system execution
6023# is read from the log.
6024#
6025# Since: 2.5
6026##
6027{ 'enum': 'ReplayMode',
6028 'data': [ 'none', 'record', 'play' ] }
6029
6030##
6031# @xen-load-devices-state:
6032#
6033# Load the state of all devices from file. The RAM and the block devices
6034# of the VM are not loaded by this command.
6035#
6036# @filename: the file to load the state of the devices from as binary
6037# data. See xen-save-devices-state.txt for a description of the binary
6038# format.
6039#
6040# Since: 2.7
6041#
6042# Example:
6043#
6044# -> { "execute": "xen-load-devices-state",
6045# "arguments": { "filename": "/tmp/resume" } }
6046# <- { "return": {} }
6047#
6048##
6049{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
6050
6051##
6052# @xen-set-replication:
6053#
6054# Enable or disable replication.
6055#
6056# @enable: true to enable, false to disable.
6057#
6058# @primary: true for primary or false for secondary.
6059#
6060# @failover: #optional true to do failover, false to stop. but cannot be
6061# specified if 'enable' is true. default value is false.
6062#
6063# Returns: nothing.
6064#
6065# Example:
6066#
6067# -> { "execute": "xen-set-replication",
6068# "arguments": {"enable": true, "primary": false} }
6069# <- { "return": {} }
6070#
6071# Since: 2.9
6072##
6073{ 'command': 'xen-set-replication',
6074 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' } }
6075
6076##
6077# @ReplicationStatus:
6078#
6079# The result format for 'query-xen-replication-status'.
6080#
6081# @error: true if an error happened, false if replication is normal.
6082#
6083# @desc: #optional the human readable error description string, when
6084# @error is 'true'.
6085#
6086# Since: 2.9
6087##
6088{ 'struct': 'ReplicationStatus',
6089 'data': { 'error': 'bool', '*desc': 'str' } }
6090
6091##
6092# @query-xen-replication-status:
6093#
6094# Query replication status while the vm is running.
6095#
6096# Returns: A @ReplicationResult object showing the status.
6097#
6098# Example:
6099#
6100# -> { "execute": "query-xen-replication-status" }
6101# <- { "return": { "error": false } }
6102#
6103# Since: 2.9
6104##
6105{ 'command': 'query-xen-replication-status',
6106 'returns': 'ReplicationStatus' }
6107
6108##
6109# @xen-colo-do-checkpoint:
6110#
6111# Xen uses this command to notify replication to trigger a checkpoint.
6112#
6113# Returns: nothing.
6114#
6115# Example:
6116#
6117# -> { "execute": "xen-colo-do-checkpoint" }
6118# <- { "return": {} }
6119#
6120# Since: 2.9
6121##
6122{ 'command': 'xen-colo-do-checkpoint' }
6123
6124##
6125# @GICCapability:
6126#
6127# The struct describes capability for a specific GIC (Generic
6128# Interrupt Controller) version. These bits are not only decided by
6129# QEMU/KVM software version, but also decided by the hardware that
6130# the program is running upon.
6131#
6132# @version: version of GIC to be described. Currently, only 2 and 3
6133# are supported.
6134#
6135# @emulated: whether current QEMU/hardware supports emulated GIC
6136# device in user space.
6137#
6138# @kernel: whether current QEMU/hardware supports hardware
6139# accelerated GIC device in kernel.
6140#
6141# Since: 2.6
6142##
6143{ 'struct': 'GICCapability',
6144 'data': { 'version': 'int',
6145 'emulated': 'bool',
6146 'kernel': 'bool' } }
6147
6148##
6149# @query-gic-capabilities:
6150#
6151# This command is ARM-only. It will return a list of GICCapability
6152# objects that describe its capability bits.
6153#
6154# Returns: a list of GICCapability objects.
6155#
6156# Since: 2.6
6157#
6158# Example:
6159#
6160# -> { "execute": "query-gic-capabilities" }
6161# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
6162# { "version": 3, "emulated": false, "kernel": true } ] }
6163#
6164##
6165{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
6166
6167##
6168# @CpuInstanceProperties:
6169#
6170# List of properties to be used for hotplugging a CPU instance,
6171# it should be passed by management with device_add command when
6172# a CPU is being hotplugged.
6173#
6174# @node-id: #optional NUMA node ID the CPU belongs to
6175# @socket-id: #optional socket number within node/board the CPU belongs to
6176# @core-id: #optional core number within socket the CPU belongs to
6177# @thread-id: #optional thread number within core the CPU belongs to
6178#
6179# Note: currently there are 4 properties that could be present
6180# but management should be prepared to pass through other
6181# properties with device_add command to allow for future
6182# interface extension. This also requires the filed names to be kept in
6183# sync with the properties passed to -device/device_add.
6184#
6185# Since: 2.7
6186##
6187{ 'struct': 'CpuInstanceProperties',
6188 'data': { '*node-id': 'int',
6189 '*socket-id': 'int',
6190 '*core-id': 'int',
6191 '*thread-id': 'int'
6192 }
6193}
6194
6195##
6196# @HotpluggableCPU:
6197#
6198# @type: CPU object type for usage with device_add command
6199# @props: list of properties to be used for hotplugging CPU
6200# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
6201# @qom-path: #optional link to existing CPU object if CPU is present or
6202# omitted if CPU is not present.
6203#
6204# Since: 2.7
6205##
6206{ 'struct': 'HotpluggableCPU',
6207 'data': { 'type': 'str',
6208 'vcpus-count': 'int',
6209 'props': 'CpuInstanceProperties',
6210 '*qom-path': 'str'
6211 }
6212}
6213
6214##
6215# @query-hotpluggable-cpus:
6216#
6217# Returns: a list of HotpluggableCPU objects.
6218#
6219# Since: 2.7
6220#
6221# Example:
6222#
6223# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
6224#
6225# -> { "execute": "query-hotpluggable-cpus" }
6226# <- {"return": [
6227# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
6228# "vcpus-count": 1 },
6229# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
6230# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
6231# ]}'
6232#
6233# For pc machine type started with -smp 1,maxcpus=2:
6234#
6235# -> { "execute": "query-hotpluggable-cpus" }
6236# <- {"return": [
6237# {
6238# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6239# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
6240# },
6241# {
6242# "qom-path": "/machine/unattached/device[0]",
6243# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6244# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
6245# }
6246# ]}
6247#
6248##
6249{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
6250
6251##
6252# @GuidInfo:
6253#
6254# GUID information.
6255#
6256# @guid: the globally unique identifier
6257#
6258# Since: 2.9
6259##
6260{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
6261
6262##
6263# @query-vm-generation-id:
6264#
6265# Show Virtual Machine Generation ID
6266#
6267# Since 2.9
6268##
6269{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }