]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qapi-schema.json
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / qapi-schema.json
... / ...
CommitLineData
1# -*- Mode: Python -*-
2##
3# = Introduction
4#
5# This document describes all commands currently supported by QMP.
6#
7# Most of the time their usage is exactly the same as in the user Monitor, this
8# means that any other document which also describe commands (the manpage,
9# QEMU's manual, etc) can and should be consulted.
10#
11# QMP has two types of commands: regular and query commands. Regular commands
12# usually change the Virtual Machine's state someway, while query commands just
13# return information. The sections below are divided accordingly.
14#
15# It's important to observe that all communication examples are formatted in
16# a reader-friendly way, so that they're easier to understand. However, in real
17# protocol usage, they're emitted as a single line.
18#
19# Also, the following notation is used to denote data flow:
20#
21# Example:
22#
23# | -> data issued by the Client
24# | <- Server data response
25#
26# Please, refer to the QMP specification (docs/qmp-spec.txt) for
27# detailed information on the Server command and response formats.
28#
29# = Stability Considerations
30#
31# The current QMP command set (described in this file) may be useful for a
32# number of use cases, however it's limited and several commands have bad
33# defined semantics, specially with regard to command completion.
34#
35# These problems are going to be solved incrementally in the next QEMU releases
36# and we're going to establish a deprecation policy for badly defined commands.
37#
38# If you're planning to adopt QMP, please observe the following:
39#
40# 1. The deprecation policy will take effect and be documented soon, please
41# check the documentation of each used command as soon as a new release of
42# QEMU is available
43#
44# 2. DO NOT rely on anything which is not explicit documented
45#
46# 3. Errors, in special, are not documented. Applications should NOT check
47# for specific errors classes or data (it's strongly recommended to only
48# check for the "error" key)
49#
50##
51
52{ 'pragma': { 'doc-required': true } }
53
54# Whitelists to permit QAPI rule violations; think twice before you
55# add to them!
56{ 'pragma': {
57 # Commands allowed to return a non-dictionary:
58 'returns-whitelist': [
59 'human-monitor-command',
60 'qom-get',
61 'query-migrate-cache-size',
62 'query-tpm-models',
63 'query-tpm-types',
64 'ringbuf-read' ],
65 'name-case-whitelist': [
66 'ACPISlotType', # DIMM, visible through query-acpi-ospm-status
67 'CpuInfoMIPS', # PC, visible through query-cpu
68 'CpuInfoTricore', # PC, visible through query-cpu
69 'QapiErrorClass', # all members, visible through errors
70 'UuidInfo', # UUID, visible through query-uuid
71 'X86CPURegister32', # all members, visible indirectly through qom-get
72 'q_obj_CpuInfo-base' # CPU, visible through query-cpu
73 ] } }
74
75# QAPI common definitions
76{ 'include': 'qapi/common.json' }
77
78# QAPI crypto definitions
79{ 'include': 'qapi/crypto.json' }
80
81# QAPI block definitions
82{ 'include': 'qapi/block.json' }
83
84# QAPI event definitions
85{ 'include': 'qapi/event.json' }
86
87# Tracing commands
88{ 'include': 'qapi/trace.json' }
89
90# QAPI introspection
91{ 'include': 'qapi/introspect.json' }
92
93##
94# = QMP commands
95##
96
97##
98# @qmp_capabilities:
99#
100# Enable QMP capabilities.
101#
102# Arguments: None.
103#
104# Example:
105#
106# -> { "execute": "qmp_capabilities" }
107# <- { "return": {} }
108#
109# Notes: This command is valid exactly when first connecting: it must be
110# issued before any other command will be accepted, and will fail once the
111# monitor is accepting other commands. (see qemu docs/qmp-spec.txt)
112#
113# Since: 0.13
114#
115##
116{ 'command': 'qmp_capabilities' }
117
118##
119# @LostTickPolicy:
120#
121# Policy for handling lost ticks in timer devices.
122#
123# @discard: throw away the missed tick(s) and continue with future injection
124# normally. Guest time may be delayed, unless the OS has explicit
125# handling of lost ticks
126#
127# @delay: continue to deliver ticks at the normal rate. Guest time will be
128# delayed due to the late tick
129#
130# @merge: merge the missed tick(s) into one tick and inject. Guest time
131# may be delayed, depending on how the OS reacts to the merging
132# of ticks
133#
134# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
135# guest time should not be delayed once catchup is complete.
136#
137# Since: 2.0
138##
139{ 'enum': 'LostTickPolicy',
140 'data': ['discard', 'delay', 'merge', 'slew' ] }
141
142##
143# @add_client:
144#
145# Allow client connections for VNC, Spice and socket based
146# character devices to be passed in to QEMU via SCM_RIGHTS.
147#
148# @protocol: protocol name. Valid names are "vnc", "spice" or the
149# name of a character device (eg. from -chardev id=XXXX)
150#
151# @fdname: file descriptor name previously passed via 'getfd' command
152#
153# @skipauth: whether to skip authentication. Only applies
154# to "vnc" and "spice" protocols
155#
156# @tls: whether to perform TLS. Only applies to the "spice"
157# protocol
158#
159# Returns: nothing on success.
160#
161# Since: 0.14.0
162#
163# Example:
164#
165# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
166# "fdname": "myclient" } }
167# <- { "return": {} }
168#
169##
170{ 'command': 'add_client',
171 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
172 '*tls': 'bool' } }
173
174##
175# @NameInfo:
176#
177# Guest name information.
178#
179# @name: The name of the guest
180#
181# Since: 0.14.0
182##
183{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
184
185##
186# @query-name:
187#
188# Return the name information of a guest.
189#
190# Returns: @NameInfo of the guest
191#
192# Since: 0.14.0
193#
194# Example:
195#
196# -> { "execute": "query-name" }
197# <- { "return": { "name": "qemu-name" } }
198#
199##
200{ 'command': 'query-name', 'returns': 'NameInfo' }
201
202##
203# @KvmInfo:
204#
205# Information about support for KVM acceleration
206#
207# @enabled: true if KVM acceleration is active
208#
209# @present: true if KVM acceleration is built into this executable
210#
211# Since: 0.14.0
212##
213{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
214
215##
216# @query-kvm:
217#
218# Returns information about KVM acceleration
219#
220# Returns: @KvmInfo
221#
222# Since: 0.14.0
223#
224# Example:
225#
226# -> { "execute": "query-kvm" }
227# <- { "return": { "enabled": true, "present": true } }
228#
229##
230{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
231
232##
233# @RunState:
234#
235# An enumeration of VM run states.
236#
237# @debug: QEMU is running on a debugger
238#
239# @finish-migrate: guest is paused to finish the migration process
240#
241# @inmigrate: guest is paused waiting for an incoming migration. Note
242# that this state does not tell whether the machine will start at the
243# end of the migration. This depends on the command-line -S option and
244# any invocation of 'stop' or 'cont' that has happened since QEMU was
245# started.
246#
247# @internal-error: An internal error that prevents further guest execution
248# has occurred
249#
250# @io-error: the last IOP has failed and the device is configured to pause
251# on I/O errors
252#
253# @paused: guest has been paused via the 'stop' command
254#
255# @postmigrate: guest is paused following a successful 'migrate'
256#
257# @prelaunch: QEMU was started with -S and guest has not started
258#
259# @restore-vm: guest is paused to restore VM state
260#
261# @running: guest is actively running
262#
263# @save-vm: guest is paused to save the VM state
264#
265# @shutdown: guest is shut down (and -no-shutdown is in use)
266#
267# @suspended: guest is suspended (ACPI S3)
268#
269# @watchdog: the watchdog action is configured to pause and has been triggered
270#
271# @guest-panicked: guest has been panicked as a result of guest OS panic
272#
273# @colo: guest is paused to save/restore VM state under colo checkpoint,
274# VM can not get into this state unless colo capability is enabled
275# for migration. (since 2.8)
276##
277{ 'enum': 'RunState',
278 'data': [ 'debug', 'inmigrate', 'internal-error', 'io-error', 'paused',
279 'postmigrate', 'prelaunch', 'finish-migrate', 'restore-vm',
280 'running', 'save-vm', 'shutdown', 'suspended', 'watchdog',
281 'guest-panicked', 'colo' ] }
282
283##
284# @StatusInfo:
285#
286# Information about VCPU run state
287#
288# @running: true if all VCPUs are runnable, false if not runnable
289#
290# @singlestep: true if VCPUs are in single-step mode
291#
292# @status: the virtual machine @RunState
293#
294# Since: 0.14.0
295#
296# Notes: @singlestep is enabled through the GDB stub
297##
298{ 'struct': 'StatusInfo',
299 'data': {'running': 'bool', 'singlestep': 'bool', 'status': 'RunState'} }
300
301##
302# @query-status:
303#
304# Query the run status of all VCPUs
305#
306# Returns: @StatusInfo reflecting all VCPUs
307#
308# Since: 0.14.0
309#
310# Example:
311#
312# -> { "execute": "query-status" }
313# <- { "return": { "running": true,
314# "singlestep": false,
315# "status": "running" } }
316#
317##
318{ 'command': 'query-status', 'returns': 'StatusInfo' }
319
320##
321# @UuidInfo:
322#
323# Guest UUID information (Universally Unique Identifier).
324#
325# @UUID: the UUID of the guest
326#
327# Since: 0.14.0
328#
329# Notes: If no UUID was specified for the guest, a null UUID is returned.
330##
331{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
332
333##
334# @query-uuid:
335#
336# Query the guest UUID information.
337#
338# Returns: The @UuidInfo for the guest
339#
340# Since: 0.14.0
341#
342# Example:
343#
344# -> { "execute": "query-uuid" }
345# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
346#
347##
348{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
349
350##
351# @ChardevInfo:
352#
353# Information about a character device.
354#
355# @label: the label of the character device
356#
357# @filename: the filename of the character device
358#
359# @frontend-open: shows whether the frontend device attached to this backend
360# (eg. with the chardev=... option) is in open or closed state
361# (since 2.1)
362#
363# Notes: @filename is encoded using the QEMU command line character device
364# encoding. See the QEMU man page for details.
365#
366# Since: 0.14.0
367##
368{ 'struct': 'ChardevInfo', 'data': {'label': 'str',
369 'filename': 'str',
370 'frontend-open': 'bool'} }
371
372##
373# @query-chardev:
374#
375# Returns information about current character devices.
376#
377# Returns: a list of @ChardevInfo
378#
379# Since: 0.14.0
380#
381# Example:
382#
383# -> { "execute": "query-chardev" }
384# <- {
385# "return": [
386# {
387# "label": "charchannel0",
388# "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.agent,server",
389# "frontend-open": false
390# },
391# {
392# "label": "charmonitor",
393# "filename": "unix:/var/lib/libvirt/qemu/seabios.rhel6.monitor,server",
394# "frontend-open": true
395# },
396# {
397# "label": "charserial0",
398# "filename": "pty:/dev/pts/2",
399# "frontend-open": true
400# }
401# ]
402# }
403#
404##
405{ 'command': 'query-chardev', 'returns': ['ChardevInfo'] }
406
407##
408# @ChardevBackendInfo:
409#
410# Information about a character device backend
411#
412# @name: The backend name
413#
414# Since: 2.0
415##
416{ 'struct': 'ChardevBackendInfo', 'data': {'name': 'str'} }
417
418##
419# @query-chardev-backends:
420#
421# Returns information about character device backends.
422#
423# Returns: a list of @ChardevBackendInfo
424#
425# Since: 2.0
426#
427# Example:
428#
429# -> { "execute": "query-chardev-backends" }
430# <- {
431# "return":[
432# {
433# "name":"udp"
434# },
435# {
436# "name":"tcp"
437# },
438# {
439# "name":"unix"
440# },
441# {
442# "name":"spiceport"
443# }
444# ]
445# }
446#
447##
448{ 'command': 'query-chardev-backends', 'returns': ['ChardevBackendInfo'] }
449
450##
451# @DataFormat:
452#
453# An enumeration of data format.
454#
455# @utf8: Data is a UTF-8 string (RFC 3629)
456#
457# @base64: Data is Base64 encoded binary (RFC 3548)
458#
459# Since: 1.4
460##
461{ 'enum': 'DataFormat',
462 'data': [ 'utf8', 'base64' ] }
463
464##
465# @ringbuf-write:
466#
467# Write to a ring buffer character device.
468#
469# @device: the ring buffer character device name
470#
471# @data: data to write
472#
473# @format: data encoding (default 'utf8').
474# - base64: data must be base64 encoded text. Its binary
475# decoding gets written.
476# - utf8: data's UTF-8 encoding is written
477# - data itself is always Unicode regardless of format, like
478# any other string.
479#
480# Returns: Nothing on success
481#
482# Since: 1.4
483#
484# Example:
485#
486# -> { "execute": "ringbuf-write",
487# "arguments": { "device": "foo",
488# "data": "abcdefgh",
489# "format": "utf8" } }
490# <- { "return": {} }
491#
492##
493{ 'command': 'ringbuf-write',
494 'data': {'device': 'str', 'data': 'str',
495 '*format': 'DataFormat'} }
496
497##
498# @ringbuf-read:
499#
500# Read from a ring buffer character device.
501#
502# @device: the ring buffer character device name
503#
504# @size: how many bytes to read at most
505#
506# @format: data encoding (default 'utf8').
507# - base64: the data read is returned in base64 encoding.
508# - utf8: the data read is interpreted as UTF-8.
509# Bug: can screw up when the buffer contains invalid UTF-8
510# sequences, NUL characters, after the ring buffer lost
511# data, and when reading stops because the size limit is
512# reached.
513# - The return value is always Unicode regardless of format,
514# like any other string.
515#
516# Returns: data read from the device
517#
518# Since: 1.4
519#
520# Example:
521#
522# -> { "execute": "ringbuf-read",
523# "arguments": { "device": "foo",
524# "size": 1000,
525# "format": "utf8" } }
526# <- { "return": "abcdefgh" }
527#
528##
529{ 'command': 'ringbuf-read',
530 'data': {'device': 'str', 'size': 'int', '*format': 'DataFormat'},
531 'returns': 'str' }
532
533##
534# @EventInfo:
535#
536# Information about a QMP event
537#
538# @name: The event name
539#
540# Since: 1.2.0
541##
542{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
543
544##
545# @query-events:
546#
547# Return a list of supported QMP events by this server
548#
549# Returns: A list of @EventInfo for all supported events
550#
551# Since: 1.2.0
552#
553# Example:
554#
555# -> { "execute": "query-events" }
556# <- {
557# "return": [
558# {
559# "name":"SHUTDOWN"
560# },
561# {
562# "name":"RESET"
563# }
564# ]
565# }
566#
567# Note: This example has been shortened as the real response is too long.
568#
569##
570{ 'command': 'query-events', 'returns': ['EventInfo'] }
571
572##
573# @MigrationStats:
574#
575# Detailed migration status.
576#
577# @transferred: amount of bytes already transferred to the target VM
578#
579# @remaining: amount of bytes remaining to be transferred to the target VM
580#
581# @total: total amount of bytes involved in the migration process
582#
583# @duplicate: number of duplicate (zero) pages (since 1.2)
584#
585# @skipped: number of skipped zero pages (since 1.5)
586#
587# @normal: number of normal pages (since 1.2)
588#
589# @normal-bytes: number of normal bytes sent (since 1.2)
590#
591# @dirty-pages-rate: number of pages dirtied by second by the
592# guest (since 1.3)
593#
594# @mbps: throughput in megabits/sec. (since 1.6)
595#
596# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
597#
598# @postcopy-requests: The number of page requests received from the destination
599# (since 2.7)
600#
601# Since: 0.14.0
602##
603{ 'struct': 'MigrationStats',
604 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
605 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
606 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
607 'mbps' : 'number', 'dirty-sync-count' : 'int',
608 'postcopy-requests' : 'int' } }
609
610##
611# @XBZRLECacheStats:
612#
613# Detailed XBZRLE migration cache statistics
614#
615# @cache-size: XBZRLE cache size
616#
617# @bytes: amount of bytes already transferred to the target VM
618#
619# @pages: amount of pages transferred to the target VM
620#
621# @cache-miss: number of cache miss
622#
623# @cache-miss-rate: rate of cache miss (since 2.1)
624#
625# @overflow: number of overflows
626#
627# Since: 1.2
628##
629{ 'struct': 'XBZRLECacheStats',
630 'data': {'cache-size': 'int', 'bytes': 'int', 'pages': 'int',
631 'cache-miss': 'int', 'cache-miss-rate': 'number',
632 'overflow': 'int' } }
633
634##
635# @MigrationStatus:
636#
637# An enumeration of migration status.
638#
639# @none: no migration has ever happened.
640#
641# @setup: migration process has been initiated.
642#
643# @cancelling: in the process of cancelling migration.
644#
645# @cancelled: cancelling migration is finished.
646#
647# @active: in the process of doing migration.
648#
649# @postcopy-active: like active, but now in postcopy mode. (since 2.5)
650#
651# @completed: migration is finished.
652#
653# @failed: some error occurred during migration process.
654#
655# @colo: VM is in the process of fault tolerance, VM can not get into this
656# state unless colo capability is enabled for migration. (since 2.8)
657#
658# Since: 2.3
659#
660##
661{ 'enum': 'MigrationStatus',
662 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
663 'active', 'postcopy-active', 'completed', 'failed', 'colo' ] }
664
665##
666# @MigrationInfo:
667#
668# Information about current migration process.
669#
670# @status: @MigrationStatus describing the current migration status.
671# If this field is not returned, no migration process
672# has been initiated
673#
674# @ram: @MigrationStats containing detailed migration
675# status, only returned if status is 'active' or
676# 'completed'(since 1.2)
677#
678# @disk: @MigrationStats containing detailed disk migration
679# status, only returned if status is 'active' and it is a block
680# migration
681#
682# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
683# migration statistics, only returned if XBZRLE feature is on and
684# status is 'active' or 'completed' (since 1.2)
685#
686# @total-time: total amount of milliseconds since migration started.
687# If migration has ended, it returns the total migration
688# time. (since 1.2)
689#
690# @downtime: only present when migration finishes correctly
691# total downtime in milliseconds for the guest.
692# (since 1.3)
693#
694# @expected-downtime: only present while migration is active
695# expected downtime in milliseconds for the guest in last walk
696# of the dirty bitmap. (since 1.3)
697#
698# @setup-time: amount of setup time in milliseconds _before_ the
699# iterations begin but _after_ the QMP command is issued. This is designed
700# to provide an accounting of any activities (such as RDMA pinning) which
701# may be expensive, but do not actually occur during the iterative
702# migration rounds themselves. (since 1.6)
703#
704# @cpu-throttle-percentage: percentage of time guest cpus are being
705# throttled during auto-converge. This is only present when auto-converge
706# has started throttling guest cpus. (Since 2.7)
707#
708# @error-desc: the human readable error description string, when
709# @status is 'failed'. Clients should not attempt to parse the
710# error strings. (Since 2.7)
711#
712# Since: 0.14.0
713##
714{ 'struct': 'MigrationInfo',
715 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
716 '*disk': 'MigrationStats',
717 '*xbzrle-cache': 'XBZRLECacheStats',
718 '*total-time': 'int',
719 '*expected-downtime': 'int',
720 '*downtime': 'int',
721 '*setup-time': 'int',
722 '*cpu-throttle-percentage': 'int',
723 '*error-desc': 'str'} }
724
725##
726# @query-migrate:
727#
728# Returns information about current migration process. If migration
729# is active there will be another json-object with RAM migration
730# status and if block migration is active another one with block
731# migration status.
732#
733# Returns: @MigrationInfo
734#
735# Since: 0.14.0
736#
737# Example:
738#
739# 1. Before the first migration
740#
741# -> { "execute": "query-migrate" }
742# <- { "return": {} }
743#
744# 2. Migration is done and has succeeded
745#
746# -> { "execute": "query-migrate" }
747# <- { "return": {
748# "status": "completed",
749# "ram":{
750# "transferred":123,
751# "remaining":123,
752# "total":246,
753# "total-time":12345,
754# "setup-time":12345,
755# "downtime":12345,
756# "duplicate":123,
757# "normal":123,
758# "normal-bytes":123456,
759# "dirty-sync-count":15
760# }
761# }
762# }
763#
764# 3. Migration is done and has failed
765#
766# -> { "execute": "query-migrate" }
767# <- { "return": { "status": "failed" } }
768#
769# 4. Migration is being performed and is not a block migration:
770#
771# -> { "execute": "query-migrate" }
772# <- {
773# "return":{
774# "status":"active",
775# "ram":{
776# "transferred":123,
777# "remaining":123,
778# "total":246,
779# "total-time":12345,
780# "setup-time":12345,
781# "expected-downtime":12345,
782# "duplicate":123,
783# "normal":123,
784# "normal-bytes":123456,
785# "dirty-sync-count":15
786# }
787# }
788# }
789#
790# 5. Migration is being performed and is a block migration:
791#
792# -> { "execute": "query-migrate" }
793# <- {
794# "return":{
795# "status":"active",
796# "ram":{
797# "total":1057024,
798# "remaining":1053304,
799# "transferred":3720,
800# "total-time":12345,
801# "setup-time":12345,
802# "expected-downtime":12345,
803# "duplicate":123,
804# "normal":123,
805# "normal-bytes":123456,
806# "dirty-sync-count":15
807# },
808# "disk":{
809# "total":20971520,
810# "remaining":20880384,
811# "transferred":91136
812# }
813# }
814# }
815#
816# 6. Migration is being performed and XBZRLE is active:
817#
818# -> { "execute": "query-migrate" }
819# <- {
820# "return":{
821# "status":"active",
822# "capabilities" : [ { "capability": "xbzrle", "state" : true } ],
823# "ram":{
824# "total":1057024,
825# "remaining":1053304,
826# "transferred":3720,
827# "total-time":12345,
828# "setup-time":12345,
829# "expected-downtime":12345,
830# "duplicate":10,
831# "normal":3333,
832# "normal-bytes":3412992,
833# "dirty-sync-count":15
834# },
835# "xbzrle-cache":{
836# "cache-size":67108864,
837# "bytes":20971520,
838# "pages":2444343,
839# "cache-miss":2244,
840# "cache-miss-rate":0.123,
841# "overflow":34434
842# }
843# }
844# }
845#
846##
847{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
848
849##
850# @MigrationCapability:
851#
852# Migration capabilities enumeration
853#
854# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
855# This feature allows us to minimize migration traffic for certain work
856# loads, by sending compressed difference of the pages
857#
858# @rdma-pin-all: Controls whether or not the entire VM memory footprint is
859# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
860# Disabled by default. (since 2.0)
861#
862# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
863# essentially saves 1MB of zeroes per block on the wire. Enabling requires
864# source and target VM to support this feature. To enable it is sufficient
865# to enable the capability on the source VM. The feature is disabled by
866# default. (since 1.6)
867#
868# @compress: Use multiple compression threads to accelerate live migration.
869# This feature can help to reduce the migration traffic, by sending
870# compressed pages. Please note that if compress and xbzrle are both
871# on, compress only takes effect in the ram bulk stage, after that,
872# it will be disabled and only xbzrle takes effect, this can help to
873# minimize migration traffic. The feature is disabled by default.
874# (since 2.4 )
875#
876# @events: generate events for each migration state change
877# (since 2.4 )
878#
879# @auto-converge: If enabled, QEMU will automatically throttle down the guest
880# to speed up convergence of RAM migration. (since 1.6)
881#
882# @postcopy-ram: Start executing on the migration target before all of RAM has
883# been migrated, pulling the remaining pages along as needed. NOTE: If
884# the migration fails during postcopy the VM will fail. (since 2.6)
885#
886# @x-colo: If enabled, migration will never end, and the state of the VM on the
887# primary side will be migrated continuously to the VM on secondary
888# side, this process is called COarse-Grain LOck Stepping (COLO) for
889# Non-stop Service. (since 2.8)
890#
891# @release-ram: if enabled, qemu will free the migrated ram pages on the source
892# during postcopy-ram migration. (since 2.9)
893#
894# Since: 1.2
895##
896{ 'enum': 'MigrationCapability',
897 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
898 'compress', 'events', 'postcopy-ram', 'x-colo', 'release-ram'] }
899
900##
901# @MigrationCapabilityStatus:
902#
903# Migration capability information
904#
905# @capability: capability enum
906#
907# @state: capability state bool
908#
909# Since: 1.2
910##
911{ 'struct': 'MigrationCapabilityStatus',
912 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
913
914##
915# @migrate-set-capabilities:
916#
917# Enable/Disable the following migration capabilities (like xbzrle)
918#
919# @capabilities: json array of capability modifications to make
920#
921# Since: 1.2
922#
923# Example:
924#
925# -> { "execute": "migrate-set-capabilities" , "arguments":
926# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
927#
928##
929{ 'command': 'migrate-set-capabilities',
930 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
931
932##
933# @query-migrate-capabilities:
934#
935# Returns information about the current migration capabilities status
936#
937# Returns: @MigrationCapabilitiesStatus
938#
939# Since: 1.2
940#
941# Example:
942#
943# -> { "execute": "query-migrate-capabilities" }
944# <- { "return": [
945# {"state": false, "capability": "xbzrle"},
946# {"state": false, "capability": "rdma-pin-all"},
947# {"state": false, "capability": "auto-converge"},
948# {"state": false, "capability": "zero-blocks"},
949# {"state": false, "capability": "compress"},
950# {"state": true, "capability": "events"},
951# {"state": false, "capability": "postcopy-ram"},
952# {"state": false, "capability": "x-colo"}
953# ]}
954#
955##
956{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
957
958##
959# @MigrationParameter:
960#
961# Migration parameters enumeration
962#
963# @compress-level: Set the compression level to be used in live migration,
964# the compression level is an integer between 0 and 9, where 0 means
965# no compression, 1 means the best compression speed, and 9 means best
966# compression ratio which will consume more CPU.
967#
968# @compress-threads: Set compression thread count to be used in live migration,
969# the compression thread count is an integer between 1 and 255.
970#
971# @decompress-threads: Set decompression thread count to be used in live
972# migration, the decompression thread count is an integer between 1
973# and 255. Usually, decompression is at least 4 times as fast as
974# compression, so set the decompress-threads to the number about 1/4
975# of compress-threads is adequate.
976#
977# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
978# when migration auto-converge is activated. The
979# default value is 20. (Since 2.7)
980#
981# @cpu-throttle-increment: throttle percentage increase each time
982# auto-converge detects that migration is not making
983# progress. The default value is 10. (Since 2.7)
984#
985# @tls-creds: ID of the 'tls-creds' object that provides credentials for
986# establishing a TLS connection over the migration data channel.
987# On the outgoing side of the migration, the credentials must
988# be for a 'client' endpoint, while for the incoming side the
989# credentials must be for a 'server' endpoint. Setting this
990# will enable TLS for all migrations. The default is unset,
991# resulting in unsecured migration at the QEMU level. (Since 2.7)
992#
993# @tls-hostname: hostname of the target host for the migration. This is
994# required when using x509 based TLS credentials and the
995# migration URI does not already include a hostname. For
996# example if using fd: or exec: based migration, the
997# hostname must be provided so that the server's x509
998# certificate identity can be validated. (Since 2.7)
999#
1000# @max-bandwidth: to set maximum speed for migration. maximum speed in
1001# bytes per second. (Since 2.8)
1002#
1003# @downtime-limit: set maximum tolerated downtime for migration. maximum
1004# downtime in milliseconds (Since 2.8)
1005#
1006# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
1007# periodic mode. (Since 2.8)
1008#
1009# Since: 2.4
1010##
1011{ 'enum': 'MigrationParameter',
1012 'data': ['compress-level', 'compress-threads', 'decompress-threads',
1013 'cpu-throttle-initial', 'cpu-throttle-increment',
1014 'tls-creds', 'tls-hostname', 'max-bandwidth',
1015 'downtime-limit', 'x-checkpoint-delay' ] }
1016
1017##
1018# @migrate-set-parameters:
1019#
1020# Set various migration parameters.
1021#
1022# Since: 2.4
1023#
1024# Example:
1025#
1026# -> { "execute": "migrate-set-parameters" ,
1027# "arguments": { "compress-level": 1 } }
1028#
1029##
1030{ 'command': 'migrate-set-parameters', 'boxed': true,
1031 'data': 'MigrationParameters' }
1032
1033##
1034# @MigrationParameters:
1035#
1036# Optional members can be omitted on input ('migrate-set-parameters')
1037# but most members will always be present on output
1038# ('query-migrate-parameters'), with the exception of tls-creds and
1039# tls-hostname.
1040#
1041# @compress-level: compression level
1042#
1043# @compress-threads: compression thread count
1044#
1045# @decompress-threads: decompression thread count
1046#
1047# @cpu-throttle-initial: Initial percentage of time guest cpus are
1048# throttledwhen migration auto-converge is activated.
1049# The default value is 20. (Since 2.7)
1050#
1051# @cpu-throttle-increment: throttle percentage increase each time
1052# auto-converge detects that migration is not making
1053# progress. The default value is 10. (Since 2.7)
1054#
1055# @tls-creds: ID of the 'tls-creds' object that provides credentials
1056# for establishing a TLS connection over the migration data
1057# channel. On the outgoing side of the migration, the credentials
1058# must be for a 'client' endpoint, while for the incoming side the
1059# credentials must be for a 'server' endpoint. Setting this
1060# will enable TLS for all migrations. The default is unset,
1061# resulting in unsecured migration at the QEMU level. (Since 2.7)
1062# An empty string means that QEMU will use plain text mode for
1063# migration, rather than TLS (Since 2.9)
1064#
1065# @tls-hostname: hostname of the target host for the migration. This
1066# is required when using x509 based TLS credentials and the
1067# migration URI does not already include a hostname. For
1068# example if using fd: or exec: based migration, the
1069# hostname must be provided so that the server's x509
1070# certificate identity can be validated. (Since 2.7)
1071# An empty string means that QEMU will use the hostname
1072# associated with the migration URI, if any. (Since 2.9)
1073#
1074# @max-bandwidth: to set maximum speed for migration. maximum speed in
1075# bytes per second. (Since 2.8)
1076#
1077# @downtime-limit: set maximum tolerated downtime for migration. maximum
1078# downtime in milliseconds (Since 2.8)
1079#
1080# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1081#
1082# Since: 2.4
1083##
1084{ 'struct': 'MigrationParameters',
1085 'data': { '*compress-level': 'int',
1086 '*compress-threads': 'int',
1087 '*decompress-threads': 'int',
1088 '*cpu-throttle-initial': 'int',
1089 '*cpu-throttle-increment': 'int',
1090 '*tls-creds': 'str',
1091 '*tls-hostname': 'str',
1092 '*max-bandwidth': 'int',
1093 '*downtime-limit': 'int',
1094 '*x-checkpoint-delay': 'int'} }
1095
1096##
1097# @query-migrate-parameters:
1098#
1099# Returns information about the current migration parameters
1100#
1101# Returns: @MigrationParameters
1102#
1103# Since: 2.4
1104#
1105# Example:
1106#
1107# -> { "execute": "query-migrate-parameters" }
1108# <- { "return": {
1109# "decompress-threads": 2,
1110# "cpu-throttle-increment": 10,
1111# "compress-threads": 8,
1112# "compress-level": 1,
1113# "cpu-throttle-initial": 20,
1114# "max-bandwidth": 33554432,
1115# "downtime-limit": 300
1116# }
1117# }
1118#
1119##
1120{ 'command': 'query-migrate-parameters',
1121 'returns': 'MigrationParameters' }
1122
1123##
1124# @client_migrate_info:
1125#
1126# Set migration information for remote display. This makes the server
1127# ask the client to automatically reconnect using the new parameters
1128# once migration finished successfully. Only implemented for SPICE.
1129#
1130# @protocol: must be "spice"
1131# @hostname: migration target hostname
1132# @port: spice tcp port for plaintext channels
1133# @tls-port: spice tcp port for tls-secured channels
1134# @cert-subject: server certificate subject
1135#
1136# Since: 0.14.0
1137#
1138# Example:
1139#
1140# -> { "execute": "client_migrate_info",
1141# "arguments": { "protocol": "spice",
1142# "hostname": "virt42.lab.kraxel.org",
1143# "port": 1234 } }
1144# <- { "return": {} }
1145#
1146##
1147{ 'command': 'client_migrate_info',
1148 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int',
1149 '*tls-port': 'int', '*cert-subject': 'str' } }
1150
1151##
1152# @migrate-start-postcopy:
1153#
1154# Followup to a migration command to switch the migration to postcopy mode.
1155# The postcopy-ram capability must be set before the original migration
1156# command.
1157#
1158# Since: 2.5
1159#
1160# Example:
1161#
1162# -> { "execute": "migrate-start-postcopy" }
1163# <- { "return": {} }
1164#
1165##
1166{ 'command': 'migrate-start-postcopy' }
1167
1168##
1169# @COLOMessage:
1170#
1171# The message transmission between Primary side and Secondary side.
1172#
1173# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1174#
1175# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1176#
1177# @checkpoint-reply: SVM gets PVM's checkpoint request
1178#
1179# @vmstate-send: VM's state will be sent by PVM.
1180#
1181# @vmstate-size: The total size of VMstate.
1182#
1183# @vmstate-received: VM's state has been received by SVM.
1184#
1185# @vmstate-loaded: VM's state has been loaded by SVM.
1186#
1187# Since: 2.8
1188##
1189{ 'enum': 'COLOMessage',
1190 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1191 'vmstate-send', 'vmstate-size', 'vmstate-received',
1192 'vmstate-loaded' ] }
1193
1194##
1195# @COLOMode:
1196#
1197# The colo mode
1198#
1199# @unknown: unknown mode
1200#
1201# @primary: master side
1202#
1203# @secondary: slave side
1204#
1205# Since: 2.8
1206##
1207{ 'enum': 'COLOMode',
1208 'data': [ 'unknown', 'primary', 'secondary'] }
1209
1210##
1211# @FailoverStatus:
1212#
1213# An enumeration of COLO failover status
1214#
1215# @none: no failover has ever happened
1216#
1217# @require: got failover requirement but not handled
1218#
1219# @active: in the process of doing failover
1220#
1221# @completed: finish the process of failover
1222#
1223# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1224#
1225# Since: 2.8
1226##
1227{ 'enum': 'FailoverStatus',
1228 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1229
1230##
1231# @x-colo-lost-heartbeat:
1232#
1233# Tell qemu that heartbeat is lost, request it to do takeover procedures.
1234# If this command is sent to the PVM, the Primary side will exit COLO mode.
1235# If sent to the Secondary, the Secondary side will run failover work,
1236# then takes over server operation to become the service VM.
1237#
1238# Since: 2.8
1239#
1240# Example:
1241#
1242# -> { "execute": "x-colo-lost-heartbeat" }
1243# <- { "return": {} }
1244#
1245##
1246{ 'command': 'x-colo-lost-heartbeat' }
1247
1248##
1249# @MouseInfo:
1250#
1251# Information about a mouse device.
1252#
1253# @name: the name of the mouse device
1254#
1255# @index: the index of the mouse device
1256#
1257# @current: true if this device is currently receiving mouse events
1258#
1259# @absolute: true if this device supports absolute coordinates as input
1260#
1261# Since: 0.14.0
1262##
1263{ 'struct': 'MouseInfo',
1264 'data': {'name': 'str', 'index': 'int', 'current': 'bool',
1265 'absolute': 'bool'} }
1266
1267##
1268# @query-mice:
1269#
1270# Returns information about each active mouse device
1271#
1272# Returns: a list of @MouseInfo for each device
1273#
1274# Since: 0.14.0
1275#
1276# Example:
1277#
1278# -> { "execute": "query-mice" }
1279# <- { "return": [
1280# {
1281# "name":"QEMU Microsoft Mouse",
1282# "index":0,
1283# "current":false,
1284# "absolute":false
1285# },
1286# {
1287# "name":"QEMU PS/2 Mouse",
1288# "index":1,
1289# "current":true,
1290# "absolute":true
1291# }
1292# ]
1293# }
1294#
1295##
1296{ 'command': 'query-mice', 'returns': ['MouseInfo'] }
1297
1298##
1299# @CpuInfoArch:
1300#
1301# An enumeration of cpu types that enable additional information during
1302# @query-cpus.
1303#
1304# Since: 2.6
1305##
1306{ 'enum': 'CpuInfoArch',
1307 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
1308
1309##
1310# @CpuInfo:
1311#
1312# Information about a virtual CPU
1313#
1314# @CPU: the index of the virtual CPU
1315#
1316# @current: this only exists for backwards compatibility and should be ignored
1317#
1318# @halted: true if the virtual CPU is in the halt state. Halt usually refers
1319# to a processor specific low power mode.
1320#
1321# @qom_path: path to the CPU object in the QOM tree (since 2.4)
1322#
1323# @thread_id: ID of the underlying host thread
1324#
1325# @arch: architecture of the cpu, which determines which additional fields
1326# will be listed (since 2.6)
1327#
1328# Since: 0.14.0
1329#
1330# Notes: @halted is a transient state that changes frequently. By the time the
1331# data is sent to the client, the guest may no longer be halted.
1332##
1333{ 'union': 'CpuInfo',
1334 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
1335 'qom_path': 'str', 'thread_id': 'int', 'arch': 'CpuInfoArch' },
1336 'discriminator': 'arch',
1337 'data': { 'x86': 'CpuInfoX86',
1338 'sparc': 'CpuInfoSPARC',
1339 'ppc': 'CpuInfoPPC',
1340 'mips': 'CpuInfoMIPS',
1341 'tricore': 'CpuInfoTricore',
1342 'other': 'CpuInfoOther' } }
1343
1344##
1345# @CpuInfoX86:
1346#
1347# Additional information about a virtual i386 or x86_64 CPU
1348#
1349# @pc: the 64-bit instruction pointer
1350#
1351# Since: 2.6
1352##
1353{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
1354
1355##
1356# @CpuInfoSPARC:
1357#
1358# Additional information about a virtual SPARC CPU
1359#
1360# @pc: the PC component of the instruction pointer
1361#
1362# @npc: the NPC component of the instruction pointer
1363#
1364# Since: 2.6
1365##
1366{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
1367
1368##
1369# @CpuInfoPPC:
1370#
1371# Additional information about a virtual PPC CPU
1372#
1373# @nip: the instruction pointer
1374#
1375# Since: 2.6
1376##
1377{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
1378
1379##
1380# @CpuInfoMIPS:
1381#
1382# Additional information about a virtual MIPS CPU
1383#
1384# @PC: the instruction pointer
1385#
1386# Since: 2.6
1387##
1388{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
1389
1390##
1391# @CpuInfoTricore:
1392#
1393# Additional information about a virtual Tricore CPU
1394#
1395# @PC: the instruction pointer
1396#
1397# Since: 2.6
1398##
1399{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
1400
1401##
1402# @CpuInfoOther:
1403#
1404# No additional information is available about the virtual CPU
1405#
1406# Since: 2.6
1407#
1408##
1409{ 'struct': 'CpuInfoOther', 'data': { } }
1410
1411##
1412# @query-cpus:
1413#
1414# Returns a list of information about each virtual CPU.
1415#
1416# Returns: a list of @CpuInfo for each virtual CPU
1417#
1418# Since: 0.14.0
1419#
1420# Example:
1421#
1422# -> { "execute": "query-cpus" }
1423# <- { "return": [
1424# {
1425# "CPU":0,
1426# "current":true,
1427# "halted":false,
1428# "qom_path":"/machine/unattached/device[0]",
1429# "arch":"x86",
1430# "pc":3227107138,
1431# "thread_id":3134
1432# },
1433# {
1434# "CPU":1,
1435# "current":false,
1436# "halted":true,
1437# "qom_path":"/machine/unattached/device[2]",
1438# "arch":"x86",
1439# "pc":7108165,
1440# "thread_id":3135
1441# }
1442# ]
1443# }
1444#
1445##
1446{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
1447
1448##
1449# @IOThreadInfo:
1450#
1451# Information about an iothread
1452#
1453# @id: the identifier of the iothread
1454#
1455# @thread-id: ID of the underlying host thread
1456#
1457# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
1458# (since 2.9)
1459#
1460# @poll-grow: how many ns will be added to polling time, 0 means that it's not
1461# configured (since 2.9)
1462#
1463# @poll-shrink: how many ns will be removed from polling time, 0 means that
1464# it's not configured (since 2.9)
1465#
1466# Since: 2.0
1467##
1468{ 'struct': 'IOThreadInfo',
1469 'data': {'id': 'str',
1470 'thread-id': 'int',
1471 'poll-max-ns': 'int',
1472 'poll-grow': 'int',
1473 'poll-shrink': 'int' } }
1474
1475##
1476# @query-iothreads:
1477#
1478# Returns a list of information about each iothread.
1479#
1480# Note: this list excludes the QEMU main loop thread, which is not declared
1481# using the -object iothread command-line option. It is always the main thread
1482# of the process.
1483#
1484# Returns: a list of @IOThreadInfo for each iothread
1485#
1486# Since: 2.0
1487#
1488# Example:
1489#
1490# -> { "execute": "query-iothreads" }
1491# <- { "return": [
1492# {
1493# "id":"iothread0",
1494# "thread-id":3134
1495# },
1496# {
1497# "id":"iothread1",
1498# "thread-id":3135
1499# }
1500# ]
1501# }
1502#
1503##
1504{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
1505
1506##
1507# @NetworkAddressFamily:
1508#
1509# The network address family
1510#
1511# @ipv4: IPV4 family
1512#
1513# @ipv6: IPV6 family
1514#
1515# @unix: unix socket
1516#
1517# @vsock: vsock family (since 2.8)
1518#
1519# @unknown: otherwise
1520#
1521# Since: 2.1
1522##
1523{ 'enum': 'NetworkAddressFamily',
1524 'data': [ 'ipv4', 'ipv6', 'unix', 'vsock', 'unknown' ] }
1525
1526##
1527# @VncBasicInfo:
1528#
1529# The basic information for vnc network connection
1530#
1531# @host: IP address
1532#
1533# @service: The service name of the vnc port. This may depend on the host
1534# system's service database so symbolic names should not be relied
1535# on.
1536#
1537# @family: address family
1538#
1539# @websocket: true in case the socket is a websocket (since 2.3).
1540#
1541# Since: 2.1
1542##
1543{ 'struct': 'VncBasicInfo',
1544 'data': { 'host': 'str',
1545 'service': 'str',
1546 'family': 'NetworkAddressFamily',
1547 'websocket': 'bool' } }
1548
1549##
1550# @VncServerInfo:
1551#
1552# The network connection information for server
1553#
1554# @auth: authentication method used for
1555# the plain (non-websocket) VNC server
1556#
1557# Since: 2.1
1558##
1559{ 'struct': 'VncServerInfo',
1560 'base': 'VncBasicInfo',
1561 'data': { '*auth': 'str' } }
1562
1563##
1564# @VncClientInfo:
1565#
1566# Information about a connected VNC client.
1567#
1568# @x509_dname: If x509 authentication is in use, the Distinguished
1569# Name of the client.
1570#
1571# @sasl_username: If SASL authentication is in use, the SASL username
1572# used for authentication.
1573#
1574# Since: 0.14.0
1575##
1576{ 'struct': 'VncClientInfo',
1577 'base': 'VncBasicInfo',
1578 'data': { '*x509_dname': 'str', '*sasl_username': 'str' } }
1579
1580##
1581# @VncInfo:
1582#
1583# Information about the VNC session.
1584#
1585# @enabled: true if the VNC server is enabled, false otherwise
1586#
1587# @host: The hostname the VNC server is bound to. This depends on
1588# the name resolution on the host and may be an IP address.
1589#
1590# @family: 'ipv6' if the host is listening for IPv6 connections
1591# 'ipv4' if the host is listening for IPv4 connections
1592# 'unix' if the host is listening on a unix domain socket
1593# 'unknown' otherwise
1594#
1595# @service: The service name of the server's port. This may depends
1596# on the host system's service database so symbolic names should not
1597# be relied on.
1598#
1599# @auth: the current authentication type used by the server
1600# 'none' if no authentication is being used
1601# 'vnc' if VNC authentication is being used
1602# 'vencrypt+plain' if VEncrypt is used with plain text authentication
1603# 'vencrypt+tls+none' if VEncrypt is used with TLS and no authentication
1604# 'vencrypt+tls+vnc' if VEncrypt is used with TLS and VNC authentication
1605# 'vencrypt+tls+plain' if VEncrypt is used with TLS and plain text auth
1606# 'vencrypt+x509+none' if VEncrypt is used with x509 and no auth
1607# 'vencrypt+x509+vnc' if VEncrypt is used with x509 and VNC auth
1608# 'vencrypt+x509+plain' if VEncrypt is used with x509 and plain text auth
1609# 'vencrypt+tls+sasl' if VEncrypt is used with TLS and SASL auth
1610# 'vencrypt+x509+sasl' if VEncrypt is used with x509 and SASL auth
1611#
1612# @clients: a list of @VncClientInfo of all currently connected clients
1613#
1614# Since: 0.14.0
1615##
1616{ 'struct': 'VncInfo',
1617 'data': {'enabled': 'bool', '*host': 'str',
1618 '*family': 'NetworkAddressFamily',
1619 '*service': 'str', '*auth': 'str', '*clients': ['VncClientInfo']} }
1620
1621##
1622# @VncPrimaryAuth:
1623#
1624# vnc primary authentication method.
1625#
1626# Since: 2.3
1627##
1628{ 'enum': 'VncPrimaryAuth',
1629 'data': [ 'none', 'vnc', 'ra2', 'ra2ne', 'tight', 'ultra',
1630 'tls', 'vencrypt', 'sasl' ] }
1631
1632##
1633# @VncVencryptSubAuth:
1634#
1635# vnc sub authentication method with vencrypt.
1636#
1637# Since: 2.3
1638##
1639{ 'enum': 'VncVencryptSubAuth',
1640 'data': [ 'plain',
1641 'tls-none', 'x509-none',
1642 'tls-vnc', 'x509-vnc',
1643 'tls-plain', 'x509-plain',
1644 'tls-sasl', 'x509-sasl' ] }
1645
1646
1647##
1648# @VncServerInfo2:
1649#
1650# The network connection information for server
1651#
1652# @auth: The current authentication type used by the servers
1653#
1654# @vencrypt: The vencrypt sub authentication type used by the
1655# servers, only specified in case auth == vencrypt.
1656#
1657# Since: 2.9
1658##
1659{ 'struct': 'VncServerInfo2',
1660 'base': 'VncBasicInfo',
1661 'data': { 'auth' : 'VncPrimaryAuth',
1662 '*vencrypt' : 'VncVencryptSubAuth' } }
1663
1664
1665##
1666# @VncInfo2:
1667#
1668# Information about a vnc server
1669#
1670# @id: vnc server name.
1671#
1672# @server: A list of @VncBasincInfo describing all listening sockets.
1673# The list can be empty (in case the vnc server is disabled).
1674# It also may have multiple entries: normal + websocket,
1675# possibly also ipv4 + ipv6 in the future.
1676#
1677# @clients: A list of @VncClientInfo of all currently connected clients.
1678# The list can be empty, for obvious reasons.
1679#
1680# @auth: The current authentication type used by the non-websockets servers
1681#
1682# @vencrypt: The vencrypt authentication type used by the servers,
1683# only specified in case auth == vencrypt.
1684#
1685# @display: The display device the vnc server is linked to.
1686#
1687# Since: 2.3
1688##
1689{ 'struct': 'VncInfo2',
1690 'data': { 'id' : 'str',
1691 'server' : ['VncServerInfo2'],
1692 'clients' : ['VncClientInfo'],
1693 'auth' : 'VncPrimaryAuth',
1694 '*vencrypt' : 'VncVencryptSubAuth',
1695 '*display' : 'str' } }
1696
1697##
1698# @query-vnc:
1699#
1700# Returns information about the current VNC server
1701#
1702# Returns: @VncInfo
1703#
1704# Since: 0.14.0
1705#
1706# Example:
1707#
1708# -> { "execute": "query-vnc" }
1709# <- { "return": {
1710# "enabled":true,
1711# "host":"0.0.0.0",
1712# "service":"50402",
1713# "auth":"vnc",
1714# "family":"ipv4",
1715# "clients":[
1716# {
1717# "host":"127.0.0.1",
1718# "service":"50401",
1719# "family":"ipv4"
1720# }
1721# ]
1722# }
1723# }
1724#
1725##
1726{ 'command': 'query-vnc', 'returns': 'VncInfo' }
1727
1728##
1729# @query-vnc-servers:
1730#
1731# Returns a list of vnc servers. The list can be empty.
1732#
1733# Returns: a list of @VncInfo2
1734#
1735# Since: 2.3
1736##
1737{ 'command': 'query-vnc-servers', 'returns': ['VncInfo2'] }
1738
1739##
1740# @SpiceBasicInfo:
1741#
1742# The basic information for SPICE network connection
1743#
1744# @host: IP address
1745#
1746# @port: port number
1747#
1748# @family: address family
1749#
1750# Since: 2.1
1751##
1752{ 'struct': 'SpiceBasicInfo',
1753 'data': { 'host': 'str',
1754 'port': 'str',
1755 'family': 'NetworkAddressFamily' } }
1756
1757##
1758# @SpiceServerInfo:
1759#
1760# Information about a SPICE server
1761#
1762# @auth: authentication method
1763#
1764# Since: 2.1
1765##
1766{ 'struct': 'SpiceServerInfo',
1767 'base': 'SpiceBasicInfo',
1768 'data': { '*auth': 'str' } }
1769
1770##
1771# @SpiceChannel:
1772#
1773# Information about a SPICE client channel.
1774#
1775# @connection-id: SPICE connection id number. All channels with the same id
1776# belong to the same SPICE session.
1777#
1778# @channel-type: SPICE channel type number. "1" is the main control
1779# channel, filter for this one if you want to track spice
1780# sessions only
1781#
1782# @channel-id: SPICE channel ID number. Usually "0", might be different when
1783# multiple channels of the same type exist, such as multiple
1784# display channels in a multihead setup
1785#
1786# @tls: true if the channel is encrypted, false otherwise.
1787#
1788# Since: 0.14.0
1789##
1790{ 'struct': 'SpiceChannel',
1791 'base': 'SpiceBasicInfo',
1792 'data': {'connection-id': 'int', 'channel-type': 'int', 'channel-id': 'int',
1793 'tls': 'bool'} }
1794
1795##
1796# @SpiceQueryMouseMode:
1797#
1798# An enumeration of Spice mouse states.
1799#
1800# @client: Mouse cursor position is determined by the client.
1801#
1802# @server: Mouse cursor position is determined by the server.
1803#
1804# @unknown: No information is available about mouse mode used by
1805# the spice server.
1806#
1807# Note: spice/enums.h has a SpiceMouseMode already, hence the name.
1808#
1809# Since: 1.1
1810##
1811{ 'enum': 'SpiceQueryMouseMode',
1812 'data': [ 'client', 'server', 'unknown' ] }
1813
1814##
1815# @SpiceInfo:
1816#
1817# Information about the SPICE session.
1818#
1819# @enabled: true if the SPICE server is enabled, false otherwise
1820#
1821# @migrated: true if the last guest migration completed and spice
1822# migration had completed as well. false otherwise. (since 1.4)
1823#
1824# @host: The hostname the SPICE server is bound to. This depends on
1825# the name resolution on the host and may be an IP address.
1826#
1827# @port: The SPICE server's port number.
1828#
1829# @compiled-version: SPICE server version.
1830#
1831# @tls-port: The SPICE server's TLS port number.
1832#
1833# @auth: the current authentication type used by the server
1834# 'none' if no authentication is being used
1835# 'spice' uses SASL or direct TLS authentication, depending on command
1836# line options
1837#
1838# @mouse-mode: The mode in which the mouse cursor is displayed currently. Can
1839# be determined by the client or the server, or unknown if spice
1840# server doesn't provide this information. (since: 1.1)
1841#
1842# @channels: a list of @SpiceChannel for each active spice channel
1843#
1844# Since: 0.14.0
1845##
1846{ 'struct': 'SpiceInfo',
1847 'data': {'enabled': 'bool', 'migrated': 'bool', '*host': 'str', '*port': 'int',
1848 '*tls-port': 'int', '*auth': 'str', '*compiled-version': 'str',
1849 'mouse-mode': 'SpiceQueryMouseMode', '*channels': ['SpiceChannel']} }
1850
1851##
1852# @query-spice:
1853#
1854# Returns information about the current SPICE server
1855#
1856# Returns: @SpiceInfo
1857#
1858# Since: 0.14.0
1859#
1860# Example:
1861#
1862# -> { "execute": "query-spice" }
1863# <- { "return": {
1864# "enabled": true,
1865# "auth": "spice",
1866# "port": 5920,
1867# "tls-port": 5921,
1868# "host": "0.0.0.0",
1869# "channels": [
1870# {
1871# "port": "54924",
1872# "family": "ipv4",
1873# "channel-type": 1,
1874# "connection-id": 1804289383,
1875# "host": "127.0.0.1",
1876# "channel-id": 0,
1877# "tls": true
1878# },
1879# {
1880# "port": "36710",
1881# "family": "ipv4",
1882# "channel-type": 4,
1883# "connection-id": 1804289383,
1884# "host": "127.0.0.1",
1885# "channel-id": 0,
1886# "tls": false
1887# },
1888# [ ... more channels follow ... ]
1889# ]
1890# }
1891# }
1892#
1893##
1894{ 'command': 'query-spice', 'returns': 'SpiceInfo' }
1895
1896##
1897# @BalloonInfo:
1898#
1899# Information about the guest balloon device.
1900#
1901# @actual: the number of bytes the balloon currently contains
1902#
1903# Since: 0.14.0
1904#
1905##
1906{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1907
1908##
1909# @query-balloon:
1910#
1911# Return information about the balloon device.
1912#
1913# Returns: @BalloonInfo on success
1914#
1915# If the balloon driver is enabled but not functional because the KVM
1916# kernel module cannot support it, KvmMissingCap
1917#
1918# If no balloon device is present, DeviceNotActive
1919#
1920# Since: 0.14.0
1921#
1922# Example:
1923#
1924# -> { "execute": "query-balloon" }
1925# <- { "return": {
1926# "actual": 1073741824,
1927# }
1928# }
1929#
1930##
1931{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1932
1933##
1934# @PciMemoryRange:
1935#
1936# A PCI device memory region
1937#
1938# @base: the starting address (guest physical)
1939#
1940# @limit: the ending address (guest physical)
1941#
1942# Since: 0.14.0
1943##
1944{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
1945
1946##
1947# @PciMemoryRegion:
1948#
1949# Information about a PCI device I/O region.
1950#
1951# @bar: the index of the Base Address Register for this region
1952#
1953# @type: 'io' if the region is a PIO region
1954# 'memory' if the region is a MMIO region
1955#
1956# @size: memory size
1957#
1958# @prefetch: if @type is 'memory', true if the memory is prefetchable
1959#
1960# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
1961#
1962# Since: 0.14.0
1963##
1964{ 'struct': 'PciMemoryRegion',
1965 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
1966 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
1967
1968##
1969# @PciBusInfo:
1970#
1971# Information about a bus of a PCI Bridge device
1972#
1973# @number: primary bus interface number. This should be the number of the
1974# bus the device resides on.
1975#
1976# @secondary: secondary bus interface number. This is the number of the
1977# main bus for the bridge
1978#
1979# @subordinate: This is the highest number bus that resides below the
1980# bridge.
1981#
1982# @io_range: The PIO range for all devices on this bridge
1983#
1984# @memory_range: The MMIO range for all devices on this bridge
1985#
1986# @prefetchable_range: The range of prefetchable MMIO for all devices on
1987# this bridge
1988#
1989# Since: 2.4
1990##
1991{ 'struct': 'PciBusInfo',
1992 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
1993 'io_range': 'PciMemoryRange',
1994 'memory_range': 'PciMemoryRange',
1995 'prefetchable_range': 'PciMemoryRange' } }
1996
1997##
1998# @PciBridgeInfo:
1999#
2000# Information about a PCI Bridge device
2001#
2002# @bus: information about the bus the device resides on
2003#
2004# @devices: a list of @PciDeviceInfo for each device on this bridge
2005#
2006# Since: 0.14.0
2007##
2008{ 'struct': 'PciBridgeInfo',
2009 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
2010
2011##
2012# @PciDeviceClass:
2013#
2014# Information about the Class of a PCI device
2015#
2016# @desc: a string description of the device's class
2017#
2018# @class: the class code of the device
2019#
2020# Since: 2.4
2021##
2022{ 'struct': 'PciDeviceClass',
2023 'data': {'*desc': 'str', 'class': 'int'} }
2024
2025##
2026# @PciDeviceId:
2027#
2028# Information about the Id of a PCI device
2029#
2030# @device: the PCI device id
2031#
2032# @vendor: the PCI vendor id
2033#
2034# Since: 2.4
2035##
2036{ 'struct': 'PciDeviceId',
2037 'data': {'device': 'int', 'vendor': 'int'} }
2038
2039##
2040# @PciDeviceInfo:
2041#
2042# Information about a PCI device
2043#
2044# @bus: the bus number of the device
2045#
2046# @slot: the slot the device is located in
2047#
2048# @function: the function of the slot used by the device
2049#
2050# @class_info: the class of the device
2051#
2052# @id: the PCI device id
2053#
2054# @irq: if an IRQ is assigned to the device, the IRQ number
2055#
2056# @qdev_id: the device name of the PCI device
2057#
2058# @pci_bridge: if the device is a PCI bridge, the bridge information
2059#
2060# @regions: a list of the PCI I/O regions associated with the device
2061#
2062# Notes: the contents of @class_info.desc are not stable and should only be
2063# treated as informational.
2064#
2065# Since: 0.14.0
2066##
2067{ 'struct': 'PciDeviceInfo',
2068 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
2069 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
2070 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
2071 'regions': ['PciMemoryRegion']} }
2072
2073##
2074# @PciInfo:
2075#
2076# Information about a PCI bus
2077#
2078# @bus: the bus index
2079#
2080# @devices: a list of devices on this bus
2081#
2082# Since: 0.14.0
2083##
2084{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
2085
2086##
2087# @query-pci:
2088#
2089# Return information about the PCI bus topology of the guest.
2090#
2091# Returns: a list of @PciInfo for each PCI bus. Each bus is
2092# represented by a json-object, which has a key with a json-array of
2093# all PCI devices attached to it. Each device is represented by a
2094# json-object.
2095#
2096# Since: 0.14.0
2097#
2098# Example:
2099#
2100# -> { "execute": "query-pci" }
2101# <- { "return": [
2102# {
2103# "bus": 0,
2104# "devices": [
2105# {
2106# "bus": 0,
2107# "qdev_id": "",
2108# "slot": 0,
2109# "class_info": {
2110# "class": 1536,
2111# "desc": "Host bridge"
2112# },
2113# "id": {
2114# "device": 32902,
2115# "vendor": 4663
2116# },
2117# "function": 0,
2118# "regions": [
2119# ]
2120# },
2121# {
2122# "bus": 0,
2123# "qdev_id": "",
2124# "slot": 1,
2125# "class_info": {
2126# "class": 1537,
2127# "desc": "ISA bridge"
2128# },
2129# "id": {
2130# "device": 32902,
2131# "vendor": 28672
2132# },
2133# "function": 0,
2134# "regions": [
2135# ]
2136# },
2137# {
2138# "bus": 0,
2139# "qdev_id": "",
2140# "slot": 1,
2141# "class_info": {
2142# "class": 257,
2143# "desc": "IDE controller"
2144# },
2145# "id": {
2146# "device": 32902,
2147# "vendor": 28688
2148# },
2149# "function": 1,
2150# "regions": [
2151# {
2152# "bar": 4,
2153# "size": 16,
2154# "address": 49152,
2155# "type": "io"
2156# }
2157# ]
2158# },
2159# {
2160# "bus": 0,
2161# "qdev_id": "",
2162# "slot": 2,
2163# "class_info": {
2164# "class": 768,
2165# "desc": "VGA controller"
2166# },
2167# "id": {
2168# "device": 4115,
2169# "vendor": 184
2170# },
2171# "function": 0,
2172# "regions": [
2173# {
2174# "prefetch": true,
2175# "mem_type_64": false,
2176# "bar": 0,
2177# "size": 33554432,
2178# "address": 4026531840,
2179# "type": "memory"
2180# },
2181# {
2182# "prefetch": false,
2183# "mem_type_64": false,
2184# "bar": 1,
2185# "size": 4096,
2186# "address": 4060086272,
2187# "type": "memory"
2188# },
2189# {
2190# "prefetch": false,
2191# "mem_type_64": false,
2192# "bar": 6,
2193# "size": 65536,
2194# "address": -1,
2195# "type": "memory"
2196# }
2197# ]
2198# },
2199# {
2200# "bus": 0,
2201# "qdev_id": "",
2202# "irq": 11,
2203# "slot": 4,
2204# "class_info": {
2205# "class": 1280,
2206# "desc": "RAM controller"
2207# },
2208# "id": {
2209# "device": 6900,
2210# "vendor": 4098
2211# },
2212# "function": 0,
2213# "regions": [
2214# {
2215# "bar": 0,
2216# "size": 32,
2217# "address": 49280,
2218# "type": "io"
2219# }
2220# ]
2221# }
2222# ]
2223# }
2224# ]
2225# }
2226#
2227# Note: This example has been shortened as the real response is too long.
2228#
2229##
2230{ 'command': 'query-pci', 'returns': ['PciInfo'] }
2231
2232##
2233# @quit:
2234#
2235# This command will cause the QEMU process to exit gracefully. While every
2236# attempt is made to send the QMP response before terminating, this is not
2237# guaranteed. When using this interface, a premature EOF would not be
2238# unexpected.
2239#
2240# Since: 0.14.0
2241#
2242# Example:
2243#
2244# -> { "execute": "quit" }
2245# <- { "return": {} }
2246##
2247{ 'command': 'quit' }
2248
2249##
2250# @stop:
2251#
2252# Stop all guest VCPU execution.
2253#
2254# Since: 0.14.0
2255#
2256# Notes: This function will succeed even if the guest is already in the stopped
2257# state. In "inmigrate" state, it will ensure that the guest
2258# remains paused once migration finishes, as if the -S option was
2259# passed on the command line.
2260#
2261# Example:
2262#
2263# -> { "execute": "stop" }
2264# <- { "return": {} }
2265#
2266##
2267{ 'command': 'stop' }
2268
2269##
2270# @system_reset:
2271#
2272# Performs a hard reset of a guest.
2273#
2274# Since: 0.14.0
2275#
2276# Example:
2277#
2278# -> { "execute": "system_reset" }
2279# <- { "return": {} }
2280#
2281##
2282{ 'command': 'system_reset' }
2283
2284##
2285# @system_powerdown:
2286#
2287# Requests that a guest perform a powerdown operation.
2288#
2289# Since: 0.14.0
2290#
2291# Notes: A guest may or may not respond to this command. This command
2292# returning does not indicate that a guest has accepted the request or
2293# that it has shut down. Many guests will respond to this command by
2294# prompting the user in some way.
2295# Example:
2296#
2297# -> { "execute": "system_powerdown" }
2298# <- { "return": {} }
2299#
2300##
2301{ 'command': 'system_powerdown' }
2302
2303##
2304# @cpu:
2305#
2306# This command is a nop that is only provided for the purposes of compatibility.
2307#
2308# Since: 0.14.0
2309#
2310# Notes: Do not use this command.
2311##
2312{ 'command': 'cpu', 'data': {'index': 'int'} }
2313
2314##
2315# @cpu-add:
2316#
2317# Adds CPU with specified ID
2318#
2319# @id: ID of CPU to be created, valid values [0..max_cpus)
2320#
2321# Returns: Nothing on success
2322#
2323# Since: 1.5
2324#
2325# Example:
2326#
2327# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
2328# <- { "return": {} }
2329#
2330##
2331{ 'command': 'cpu-add', 'data': {'id': 'int'} }
2332
2333##
2334# @memsave:
2335#
2336# Save a portion of guest memory to a file.
2337#
2338# @val: the virtual address of the guest to start from
2339#
2340# @size: the size of memory region to save
2341#
2342# @filename: the file to save the memory to as binary data
2343#
2344# @cpu-index: the index of the virtual CPU to use for translating the
2345# virtual address (defaults to CPU 0)
2346#
2347# Returns: Nothing on success
2348#
2349# Since: 0.14.0
2350#
2351# Notes: Errors were not reliably returned until 1.1
2352#
2353# Example:
2354#
2355# -> { "execute": "memsave",
2356# "arguments": { "val": 10,
2357# "size": 100,
2358# "filename": "/tmp/virtual-mem-dump" } }
2359# <- { "return": {} }
2360#
2361##
2362{ 'command': 'memsave',
2363 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
2364
2365##
2366# @pmemsave:
2367#
2368# Save a portion of guest physical memory to a file.
2369#
2370# @val: the physical address of the guest to start from
2371#
2372# @size: the size of memory region to save
2373#
2374# @filename: the file to save the memory to as binary data
2375#
2376# Returns: Nothing on success
2377#
2378# Since: 0.14.0
2379#
2380# Notes: Errors were not reliably returned until 1.1
2381#
2382# Example:
2383#
2384# -> { "execute": "pmemsave",
2385# "arguments": { "val": 10,
2386# "size": 100,
2387# "filename": "/tmp/physical-mem-dump" } }
2388# <- { "return": {} }
2389#
2390##
2391{ 'command': 'pmemsave',
2392 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
2393
2394##
2395# @cont:
2396#
2397# Resume guest VCPU execution.
2398#
2399# Since: 0.14.0
2400#
2401# Returns: If successful, nothing
2402# If QEMU was started with an encrypted block device and a key has
2403# not yet been set, DeviceEncrypted.
2404#
2405# Notes: This command will succeed if the guest is currently running. It
2406# will also succeed if the guest is in the "inmigrate" state; in
2407# this case, the effect of the command is to make sure the guest
2408# starts once migration finishes, removing the effect of the -S
2409# command line option if it was passed.
2410#
2411# Example:
2412#
2413# -> { "execute": "cont" }
2414# <- { "return": {} }
2415#
2416##
2417{ 'command': 'cont' }
2418
2419##
2420# @system_wakeup:
2421#
2422# Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
2423#
2424# Since: 1.1
2425#
2426# Returns: nothing.
2427#
2428# Example:
2429#
2430# -> { "execute": "system_wakeup" }
2431# <- { "return": {} }
2432#
2433##
2434{ 'command': 'system_wakeup' }
2435
2436##
2437# @inject-nmi:
2438#
2439# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
2440# The command fails when the guest doesn't support injecting.
2441#
2442# Returns: If successful, nothing
2443#
2444# Since: 0.14.0
2445#
2446# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
2447#
2448# Example:
2449#
2450# -> { "execute": "inject-nmi" }
2451# <- { "return": {} }
2452#
2453##
2454{ 'command': 'inject-nmi' }
2455
2456##
2457# @set_link:
2458#
2459# Sets the link status of a virtual network adapter.
2460#
2461# @name: the device name of the virtual network adapter
2462#
2463# @up: true to set the link status to be up
2464#
2465# Returns: Nothing on success
2466# If @name is not a valid network device, DeviceNotFound
2467#
2468# Since: 0.14.0
2469#
2470# Notes: Not all network adapters support setting link status. This command
2471# will succeed even if the network adapter does not support link status
2472# notification.
2473#
2474# Example:
2475#
2476# -> { "execute": "set_link",
2477# "arguments": { "name": "e1000.0", "up": false } }
2478# <- { "return": {} }
2479#
2480##
2481{ 'command': 'set_link', 'data': {'name': 'str', 'up': 'bool'} }
2482
2483##
2484# @balloon:
2485#
2486# Request the balloon driver to change its balloon size.
2487#
2488# @value: the target size of the balloon in bytes
2489#
2490# Returns: Nothing on success
2491# If the balloon driver is enabled but not functional because the KVM
2492# kernel module cannot support it, KvmMissingCap
2493# If no balloon device is present, DeviceNotActive
2494#
2495# Notes: This command just issues a request to the guest. When it returns,
2496# the balloon size may not have changed. A guest can change the balloon
2497# size independent of this command.
2498#
2499# Since: 0.14.0
2500#
2501# Example:
2502#
2503# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
2504# <- { "return": {} }
2505#
2506##
2507{ 'command': 'balloon', 'data': {'value': 'int'} }
2508
2509##
2510# @Abort:
2511#
2512# This action can be used to test transaction failure.
2513#
2514# Since: 1.6
2515##
2516{ 'struct': 'Abort',
2517 'data': { } }
2518
2519##
2520# @ActionCompletionMode:
2521#
2522# An enumeration of Transactional completion modes.
2523#
2524# @individual: Do not attempt to cancel any other Actions if any Actions fail
2525# after the Transaction request succeeds. All Actions that
2526# can complete successfully will do so without waiting on others.
2527# This is the default.
2528#
2529# @grouped: If any Action fails after the Transaction succeeds, cancel all
2530# Actions. Actions do not complete until all Actions are ready to
2531# complete. May be rejected by Actions that do not support this
2532# completion mode.
2533#
2534# Since: 2.5
2535##
2536{ 'enum': 'ActionCompletionMode',
2537 'data': [ 'individual', 'grouped' ] }
2538
2539##
2540# @TransactionAction:
2541#
2542# A discriminated record of operations that can be performed with
2543# @transaction. Action @type can be:
2544#
2545# - @abort: since 1.6
2546# - @block-dirty-bitmap-add: since 2.5
2547# - @block-dirty-bitmap-clear: since 2.5
2548# - @blockdev-backup: since 2.3
2549# - @blockdev-snapshot: since 2.5
2550# - @blockdev-snapshot-internal-sync: since 1.7
2551# - @blockdev-snapshot-sync: since 1.1
2552# - @drive-backup: since 1.6
2553#
2554# Since: 1.1
2555##
2556{ 'union': 'TransactionAction',
2557 'data': {
2558 'abort': 'Abort',
2559 'block-dirty-bitmap-add': 'BlockDirtyBitmapAdd',
2560 'block-dirty-bitmap-clear': 'BlockDirtyBitmap',
2561 'blockdev-backup': 'BlockdevBackup',
2562 'blockdev-snapshot': 'BlockdevSnapshot',
2563 'blockdev-snapshot-internal-sync': 'BlockdevSnapshotInternal',
2564 'blockdev-snapshot-sync': 'BlockdevSnapshotSync',
2565 'drive-backup': 'DriveBackup'
2566 } }
2567
2568##
2569# @TransactionProperties:
2570#
2571# Optional arguments to modify the behavior of a Transaction.
2572#
2573# @completion-mode: Controls how jobs launched asynchronously by
2574# Actions will complete or fail as a group.
2575# See @ActionCompletionMode for details.
2576#
2577# Since: 2.5
2578##
2579{ 'struct': 'TransactionProperties',
2580 'data': {
2581 '*completion-mode': 'ActionCompletionMode'
2582 }
2583}
2584
2585##
2586# @transaction:
2587#
2588# Executes a number of transactionable QMP commands atomically. If any
2589# operation fails, then the entire set of actions will be abandoned and the
2590# appropriate error returned.
2591#
2592# For external snapshots, the dictionary contains the device, the file to use for
2593# the new snapshot, and the format. The default format, if not specified, is
2594# qcow2.
2595#
2596# Each new snapshot defaults to being created by QEMU (wiping any
2597# contents if the file already exists), but it is also possible to reuse
2598# an externally-created file. In the latter case, you should ensure that
2599# the new image file has the same contents as the current one; QEMU cannot
2600# perform any meaningful check. Typically this is achieved by using the
2601# current image file as the backing file for the new image.
2602#
2603# On failure, the original disks pre-snapshot attempt will be used.
2604#
2605# For internal snapshots, the dictionary contains the device and the snapshot's
2606# name. If an internal snapshot matching name already exists, the request will
2607# be rejected. Only some image formats support it, for example, qcow2, rbd,
2608# and sheepdog.
2609#
2610# On failure, qemu will try delete the newly created internal snapshot in the
2611# transaction. When an I/O error occurs during deletion, the user needs to fix
2612# it later with qemu-img or other command.
2613#
2614# @actions: List of @TransactionAction;
2615# information needed for the respective operations.
2616#
2617# @properties: structure of additional options to control the
2618# execution of the transaction. See @TransactionProperties
2619# for additional detail.
2620#
2621# Returns: nothing on success
2622#
2623# Errors depend on the operations of the transaction
2624#
2625# Note: The transaction aborts on the first failure. Therefore, there will be
2626# information on only one failed operation returned in an error condition, and
2627# subsequent actions will not have been attempted.
2628#
2629# Since: 1.1
2630#
2631# Example:
2632#
2633# -> { "execute": "transaction",
2634# "arguments": { "actions": [
2635# { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd0",
2636# "snapshot-file": "/some/place/my-image",
2637# "format": "qcow2" } },
2638# { "type": "blockdev-snapshot-sync", "data" : { "node-name": "myfile",
2639# "snapshot-file": "/some/place/my-image2",
2640# "snapshot-node-name": "node3432",
2641# "mode": "existing",
2642# "format": "qcow2" } },
2643# { "type": "blockdev-snapshot-sync", "data" : { "device": "ide-hd1",
2644# "snapshot-file": "/some/place/my-image2",
2645# "mode": "existing",
2646# "format": "qcow2" } },
2647# { "type": "blockdev-snapshot-internal-sync", "data" : {
2648# "device": "ide-hd2",
2649# "name": "snapshot0" } } ] } }
2650# <- { "return": {} }
2651#
2652##
2653{ 'command': 'transaction',
2654 'data': { 'actions': [ 'TransactionAction' ],
2655 '*properties': 'TransactionProperties'
2656 }
2657}
2658
2659##
2660# @human-monitor-command:
2661#
2662# Execute a command on the human monitor and return the output.
2663#
2664# @command-line: the command to execute in the human monitor
2665#
2666# @cpu-index: The CPU to use for commands that require an implicit CPU
2667#
2668# Returns: the output of the command as a string
2669#
2670# Since: 0.14.0
2671#
2672# Notes: This command only exists as a stop-gap. Its use is highly
2673# discouraged. The semantics of this command are not
2674# guaranteed: this means that command names, arguments and
2675# responses can change or be removed at ANY time. Applications
2676# that rely on long term stability guarantees should NOT
2677# use this command.
2678#
2679# Known limitations:
2680#
2681# * This command is stateless, this means that commands that depend
2682# on state information (such as getfd) might not work
2683#
2684# * Commands that prompt the user for data (eg. 'cont' when the block
2685# device is encrypted) don't currently work
2686#
2687# Example:
2688#
2689# -> { "execute": "human-monitor-command",
2690# "arguments": { "command-line": "info kvm" } }
2691# <- { "return": "kvm support: enabled\r\n" }
2692#
2693##
2694{ 'command': 'human-monitor-command',
2695 'data': {'command-line': 'str', '*cpu-index': 'int'},
2696 'returns': 'str' }
2697
2698##
2699# @migrate_cancel:
2700#
2701# Cancel the current executing migration process.
2702#
2703# Returns: nothing on success
2704#
2705# Notes: This command succeeds even if there is no migration process running.
2706#
2707# Since: 0.14.0
2708#
2709# Example:
2710#
2711# -> { "execute": "migrate_cancel" }
2712# <- { "return": {} }
2713#
2714##
2715{ 'command': 'migrate_cancel' }
2716
2717##
2718# @migrate_set_downtime:
2719#
2720# Set maximum tolerated downtime for migration.
2721#
2722# @value: maximum downtime in seconds
2723#
2724# Returns: nothing on success
2725#
2726# Notes: This command is deprecated in favor of 'migrate-set-parameters'
2727#
2728# Since: 0.14.0
2729#
2730# Example:
2731#
2732# -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } }
2733# <- { "return": {} }
2734#
2735##
2736{ 'command': 'migrate_set_downtime', 'data': {'value': 'number'} }
2737
2738##
2739# @migrate_set_speed:
2740#
2741# Set maximum speed for migration.
2742#
2743# @value: maximum speed in bytes per second.
2744#
2745# Returns: nothing on success
2746#
2747# Notes: This command is deprecated in favor of 'migrate-set-parameters'
2748#
2749# Since: 0.14.0
2750#
2751# Example:
2752#
2753# -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } }
2754# <- { "return": {} }
2755#
2756##
2757{ 'command': 'migrate_set_speed', 'data': {'value': 'int'} }
2758
2759##
2760# @migrate-set-cache-size:
2761#
2762# Set cache size to be used by XBZRLE migration
2763#
2764# @value: cache size in bytes
2765#
2766# The size will be rounded down to the nearest power of 2.
2767# The cache size can be modified before and during ongoing migration
2768#
2769# Returns: nothing on success
2770#
2771# Since: 1.2
2772#
2773# Example:
2774#
2775# -> { "execute": "migrate-set-cache-size",
2776# "arguments": { "value": 536870912 } }
2777# <- { "return": {} }
2778#
2779##
2780{ 'command': 'migrate-set-cache-size', 'data': {'value': 'int'} }
2781
2782##
2783# @query-migrate-cache-size:
2784#
2785# Query migration XBZRLE cache size
2786#
2787# Returns: XBZRLE cache size in bytes
2788#
2789# Since: 1.2
2790#
2791# Example:
2792#
2793# -> { "execute": "query-migrate-cache-size" }
2794# <- { "return": 67108864 }
2795#
2796##
2797{ 'command': 'query-migrate-cache-size', 'returns': 'int' }
2798
2799##
2800# @ObjectPropertyInfo:
2801#
2802# @name: the name of the property
2803#
2804# @type: the type of the property. This will typically come in one of four
2805# forms:
2806#
2807# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
2808# These types are mapped to the appropriate JSON type.
2809#
2810# 2) A child type in the form 'child<subtype>' where subtype is a qdev
2811# device type name. Child properties create the composition tree.
2812#
2813# 3) A link type in the form 'link<subtype>' where subtype is a qdev
2814# device type name. Link properties form the device model graph.
2815#
2816# Since: 1.2
2817##
2818{ 'struct': 'ObjectPropertyInfo',
2819 'data': { 'name': 'str', 'type': 'str' } }
2820
2821##
2822# @qom-list:
2823#
2824# This command will list any properties of a object given a path in the object
2825# model.
2826#
2827# @path: the path within the object model. See @qom-get for a description of
2828# this parameter.
2829#
2830# Returns: a list of @ObjectPropertyInfo that describe the properties of the
2831# object.
2832#
2833# Since: 1.2
2834##
2835{ 'command': 'qom-list',
2836 'data': { 'path': 'str' },
2837 'returns': [ 'ObjectPropertyInfo' ] }
2838
2839##
2840# @qom-get:
2841#
2842# This command will get a property from a object model path and return the
2843# value.
2844#
2845# @path: The path within the object model. There are two forms of supported
2846# paths--absolute and partial paths.
2847#
2848# Absolute paths are derived from the root object and can follow child<>
2849# or link<> properties. Since they can follow link<> properties, they
2850# can be arbitrarily long. Absolute paths look like absolute filenames
2851# and are prefixed with a leading slash.
2852#
2853# Partial paths look like relative filenames. They do not begin
2854# with a prefix. The matching rules for partial paths are subtle but
2855# designed to make specifying objects easy. At each level of the
2856# composition tree, the partial path is matched as an absolute path.
2857# The first match is not returned. At least two matches are searched
2858# for. A successful result is only returned if only one match is
2859# found. If more than one match is found, a flag is return to
2860# indicate that the match was ambiguous.
2861#
2862# @property: The property name to read
2863#
2864# Returns: The property value. The type depends on the property
2865# type. child<> and link<> properties are returned as #str
2866# pathnames. All integer property types (u8, u16, etc) are
2867# returned as #int.
2868#
2869# Since: 1.2
2870##
2871{ 'command': 'qom-get',
2872 'data': { 'path': 'str', 'property': 'str' },
2873 'returns': 'any' }
2874
2875##
2876# @qom-set:
2877#
2878# This command will set a property from a object model path.
2879#
2880# @path: see @qom-get for a description of this parameter
2881#
2882# @property: the property name to set
2883#
2884# @value: a value who's type is appropriate for the property type. See @qom-get
2885# for a description of type mapping.
2886#
2887# Since: 1.2
2888##
2889{ 'command': 'qom-set',
2890 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
2891
2892##
2893# @set_password:
2894#
2895# Sets the password of a remote display session.
2896#
2897# @protocol: `vnc' to modify the VNC server password
2898# `spice' to modify the Spice server password
2899#
2900# @password: the new password
2901#
2902# @connected: how to handle existing clients when changing the
2903# password. If nothing is specified, defaults to `keep'
2904# `fail' to fail the command if clients are connected
2905# `disconnect' to disconnect existing clients
2906# `keep' to maintain existing clients
2907#
2908# Returns: Nothing on success
2909# If Spice is not enabled, DeviceNotFound
2910#
2911# Since: 0.14.0
2912#
2913# Example:
2914#
2915# -> { "execute": "set_password", "arguments": { "protocol": "vnc",
2916# "password": "secret" } }
2917# <- { "return": {} }
2918#
2919##
2920{ 'command': 'set_password',
2921 'data': {'protocol': 'str', 'password': 'str', '*connected': 'str'} }
2922
2923##
2924# @expire_password:
2925#
2926# Expire the password of a remote display server.
2927#
2928# @protocol: the name of the remote display protocol `vnc' or `spice'
2929#
2930# @time: when to expire the password.
2931# `now' to expire the password immediately
2932# `never' to cancel password expiration
2933# `+INT' where INT is the number of seconds from now (integer)
2934# `INT' where INT is the absolute time in seconds
2935#
2936# Returns: Nothing on success
2937# If @protocol is `spice' and Spice is not active, DeviceNotFound
2938#
2939# Since: 0.14.0
2940#
2941# Notes: Time is relative to the server and currently there is no way to
2942# coordinate server time with client time. It is not recommended to
2943# use the absolute time version of the @time parameter unless you're
2944# sure you are on the same machine as the QEMU instance.
2945#
2946# Example:
2947#
2948# -> { "execute": "expire_password", "arguments": { "protocol": "vnc",
2949# "time": "+60" } }
2950# <- { "return": {} }
2951#
2952##
2953{ 'command': 'expire_password', 'data': {'protocol': 'str', 'time': 'str'} }
2954
2955##
2956# @change-vnc-password:
2957#
2958# Change the VNC server password.
2959#
2960# @password: the new password to use with VNC authentication
2961#
2962# Since: 1.1
2963#
2964# Notes: An empty password in this command will set the password to the empty
2965# string. Existing clients are unaffected by executing this command.
2966##
2967{ 'command': 'change-vnc-password', 'data': {'password': 'str'} }
2968
2969##
2970# @change:
2971#
2972# This command is multiple commands multiplexed together.
2973#
2974# @device: This is normally the name of a block device but it may also be 'vnc'.
2975# when it's 'vnc', then sub command depends on @target
2976#
2977# @target: If @device is a block device, then this is the new filename.
2978# If @device is 'vnc', then if the value 'password' selects the vnc
2979# change password command. Otherwise, this specifies a new server URI
2980# address to listen to for VNC connections.
2981#
2982# @arg: If @device is a block device, then this is an optional format to open
2983# the device with.
2984# If @device is 'vnc' and @target is 'password', this is the new VNC
2985# password to set. If this argument is an empty string, then no future
2986# logins will be allowed.
2987#
2988# Returns: Nothing on success.
2989# If @device is not a valid block device, DeviceNotFound
2990# If the new block device is encrypted, DeviceEncrypted. Note that
2991# if this error is returned, the device has been opened successfully
2992# and an additional call to @block_passwd is required to set the
2993# device's password. The behavior of reads and writes to the block
2994# device between when these calls are executed is undefined.
2995#
2996# Notes: This interface is deprecated, and it is strongly recommended that you
2997# avoid using it. For changing block devices, use
2998# blockdev-change-medium; for changing VNC parameters, use
2999# change-vnc-password.
3000#
3001# Since: 0.14.0
3002#
3003# Example:
3004#
3005# 1. Change a removable medium
3006#
3007# -> { "execute": "change",
3008# "arguments": { "device": "ide1-cd0",
3009# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
3010# <- { "return": {} }
3011#
3012# 2. Change VNC password
3013#
3014# -> { "execute": "change",
3015# "arguments": { "device": "vnc", "target": "password",
3016# "arg": "foobar1" } }
3017# <- { "return": {} }
3018#
3019##
3020{ 'command': 'change',
3021 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
3022
3023##
3024# @ObjectTypeInfo:
3025#
3026# This structure describes a search result from @qom-list-types
3027#
3028# @name: the type name found in the search
3029#
3030# Since: 1.1
3031#
3032# Notes: This command is experimental and may change syntax in future releases.
3033##
3034{ 'struct': 'ObjectTypeInfo',
3035 'data': { 'name': 'str' } }
3036
3037##
3038# @qom-list-types:
3039#
3040# This command will return a list of types given search parameters
3041#
3042# @implements: if specified, only return types that implement this type name
3043#
3044# @abstract: if true, include abstract types in the results
3045#
3046# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
3047#
3048# Since: 1.1
3049##
3050{ 'command': 'qom-list-types',
3051 'data': { '*implements': 'str', '*abstract': 'bool' },
3052 'returns': [ 'ObjectTypeInfo' ] }
3053
3054##
3055# @DevicePropertyInfo:
3056#
3057# Information about device properties.
3058#
3059# @name: the name of the property
3060# @type: the typename of the property
3061# @description: if specified, the description of the property.
3062# (since 2.2)
3063#
3064# Since: 1.2
3065##
3066{ 'struct': 'DevicePropertyInfo',
3067 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
3068
3069##
3070# @device-list-properties:
3071#
3072# List properties associated with a device.
3073#
3074# @typename: the type name of a device
3075#
3076# Returns: a list of DevicePropertyInfo describing a devices properties
3077#
3078# Since: 1.2
3079##
3080{ 'command': 'device-list-properties',
3081 'data': { 'typename': 'str'},
3082 'returns': [ 'DevicePropertyInfo' ] }
3083
3084##
3085# @migrate:
3086#
3087# Migrates the current running guest to another Virtual Machine.
3088#
3089# @uri: the Uniform Resource Identifier of the destination VM
3090#
3091# @blk: do block migration (full disk copy)
3092#
3093# @inc: incremental disk copy migration
3094#
3095# @detach: this argument exists only for compatibility reasons and
3096# is ignored by QEMU
3097#
3098# Returns: nothing on success
3099#
3100# Since: 0.14.0
3101#
3102# Notes:
3103#
3104# 1. The 'query-migrate' command should be used to check migration's progress
3105# and final result (this information is provided by the 'status' member)
3106#
3107# 2. All boolean arguments default to false
3108#
3109# 3. The user Monitor's "detach" argument is invalid in QMP and should not
3110# be used
3111#
3112# Example:
3113#
3114# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
3115# <- { "return": {} }
3116#
3117##
3118{ 'command': 'migrate',
3119 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', '*detach': 'bool' } }
3120
3121##
3122# @migrate-incoming:
3123#
3124# Start an incoming migration, the qemu must have been started
3125# with -incoming defer
3126#
3127# @uri: The Uniform Resource Identifier identifying the source or
3128# address to listen on
3129#
3130# Returns: nothing on success
3131#
3132# Since: 2.3
3133#
3134# Notes:
3135#
3136# 1. It's a bad idea to use a string for the uri, but it needs to stay
3137# compatible with -incoming and the format of the uri is already exposed
3138# above libvirt.
3139#
3140# 2. QEMU must be started with -incoming defer to allow migrate-incoming to
3141# be used.
3142#
3143# 3. The uri format is the same as for -incoming
3144#
3145# Example:
3146#
3147# -> { "execute": "migrate-incoming",
3148# "arguments": { "uri": "tcp::4446" } }
3149# <- { "return": {} }
3150#
3151##
3152{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
3153
3154##
3155# @xen-save-devices-state:
3156#
3157# Save the state of all devices to file. The RAM and the block devices
3158# of the VM are not saved by this command.
3159#
3160# @filename: the file to save the state of the devices to as binary
3161# data. See xen-save-devices-state.txt for a description of the binary
3162# format.
3163#
3164# Returns: Nothing on success
3165#
3166# Since: 1.1
3167#
3168# Example:
3169#
3170# -> { "execute": "xen-save-devices-state",
3171# "arguments": { "filename": "/tmp/save" } }
3172# <- { "return": {} }
3173#
3174##
3175{ 'command': 'xen-save-devices-state', 'data': {'filename': 'str'} }
3176
3177##
3178# @xen-set-global-dirty-log:
3179#
3180# Enable or disable the global dirty log mode.
3181#
3182# @enable: true to enable, false to disable.
3183#
3184# Returns: nothing
3185#
3186# Since: 1.3
3187#
3188# Example:
3189#
3190# -> { "execute": "xen-set-global-dirty-log",
3191# "arguments": { "enable": true } }
3192# <- { "return": {} }
3193#
3194##
3195{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
3196
3197##
3198# @device_add:
3199#
3200# @driver: the name of the new device's driver
3201#
3202# @bus: the device's parent bus (device tree path)
3203#
3204# @id: the device's ID, must be unique
3205#
3206# Additional arguments depend on the type.
3207#
3208# Add a device.
3209#
3210# Notes:
3211# 1. For detailed information about this command, please refer to the
3212# 'docs/qdev-device-use.txt' file.
3213#
3214# 2. It's possible to list device properties by running QEMU with the
3215# "-device DEVICE,help" command-line argument, where DEVICE is the
3216# device's name
3217#
3218# Example:
3219#
3220# -> { "execute": "device_add",
3221# "arguments": { "driver": "e1000", "id": "net1",
3222# "bus": "pci.0",
3223# "mac": "52:54:00:12:34:56" } }
3224# <- { "return": {} }
3225#
3226# TODO: This command effectively bypasses QAPI completely due to its
3227# "additional arguments" business. It shouldn't have been added to
3228# the schema in this form. It should be qapified properly, or
3229# replaced by a properly qapified command.
3230#
3231# Since: 0.13
3232##
3233{ 'command': 'device_add',
3234 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
3235 'gen': false } # so we can get the additional arguments
3236
3237##
3238# @device_del:
3239#
3240# Remove a device from a guest
3241#
3242# @id: the device's ID or QOM path
3243#
3244# Returns: Nothing on success
3245# If @id is not a valid device, DeviceNotFound
3246#
3247# Notes: When this command completes, the device may not be removed from the
3248# guest. Hot removal is an operation that requires guest cooperation.
3249# This command merely requests that the guest begin the hot removal
3250# process. Completion of the device removal process is signaled with a
3251# DEVICE_DELETED event. Guest reset will automatically complete removal
3252# for all devices.
3253#
3254# Since: 0.14.0
3255#
3256# Example:
3257#
3258# -> { "execute": "device_del",
3259# "arguments": { "id": "net1" } }
3260# <- { "return": {} }
3261#
3262# -> { "execute": "device_del",
3263# "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
3264# <- { "return": {} }
3265#
3266##
3267{ 'command': 'device_del', 'data': {'id': 'str'} }
3268
3269##
3270# @DumpGuestMemoryFormat:
3271#
3272# An enumeration of guest-memory-dump's format.
3273#
3274# @elf: elf format
3275#
3276# @kdump-zlib: kdump-compressed format with zlib-compressed
3277#
3278# @kdump-lzo: kdump-compressed format with lzo-compressed
3279#
3280# @kdump-snappy: kdump-compressed format with snappy-compressed
3281#
3282# Since: 2.0
3283##
3284{ 'enum': 'DumpGuestMemoryFormat',
3285 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
3286
3287##
3288# @dump-guest-memory:
3289#
3290# Dump guest's memory to vmcore. It is a synchronous operation that can take
3291# very long depending on the amount of guest memory.
3292#
3293# @paging: if true, do paging to get guest's memory mapping. This allows
3294# using gdb to process the core file.
3295#
3296# IMPORTANT: this option can make QEMU allocate several gigabytes
3297# of RAM. This can happen for a large guest, or a
3298# malicious guest pretending to be large.
3299#
3300# Also, paging=true has the following limitations:
3301#
3302# 1. The guest may be in a catastrophic state or can have corrupted
3303# memory, which cannot be trusted
3304# 2. The guest can be in real-mode even if paging is enabled. For
3305# example, the guest uses ACPI to sleep, and ACPI sleep state
3306# goes in real-mode
3307# 3. Currently only supported on i386 and x86_64.
3308#
3309# @protocol: the filename or file descriptor of the vmcore. The supported
3310# protocols are:
3311#
3312# 1. file: the protocol starts with "file:", and the following
3313# string is the file's path.
3314# 2. fd: the protocol starts with "fd:", and the following string
3315# is the fd's name.
3316#
3317# @detach: if true, QMP will return immediately rather than
3318# waiting for the dump to finish. The user can track progress
3319# using "query-dump". (since 2.6).
3320#
3321# @begin: if specified, the starting physical address.
3322#
3323# @length: if specified, the memory size, in bytes. If you don't
3324# want to dump all guest's memory, please specify the start @begin
3325# and @length
3326#
3327# @format: if specified, the format of guest memory dump. But non-elf
3328# format is conflict with paging and filter, ie. @paging, @begin and
3329# @length is not allowed to be specified with non-elf @format at the
3330# same time (since 2.0)
3331#
3332# Note: All boolean arguments default to false
3333#
3334# Returns: nothing on success
3335#
3336# Since: 1.2
3337#
3338# Example:
3339#
3340# -> { "execute": "dump-guest-memory",
3341# "arguments": { "protocol": "fd:dump" } }
3342# <- { "return": {} }
3343#
3344##
3345{ 'command': 'dump-guest-memory',
3346 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
3347 '*begin': 'int', '*length': 'int',
3348 '*format': 'DumpGuestMemoryFormat'} }
3349
3350##
3351# @DumpStatus:
3352#
3353# Describe the status of a long-running background guest memory dump.
3354#
3355# @none: no dump-guest-memory has started yet.
3356#
3357# @active: there is one dump running in background.
3358#
3359# @completed: the last dump has finished successfully.
3360#
3361# @failed: the last dump has failed.
3362#
3363# Since: 2.6
3364##
3365{ 'enum': 'DumpStatus',
3366 'data': [ 'none', 'active', 'completed', 'failed' ] }
3367
3368##
3369# @DumpQueryResult:
3370#
3371# The result format for 'query-dump'.
3372#
3373# @status: enum of @DumpStatus, which shows current dump status
3374#
3375# @completed: bytes written in latest dump (uncompressed)
3376#
3377# @total: total bytes to be written in latest dump (uncompressed)
3378#
3379# Since: 2.6
3380##
3381{ 'struct': 'DumpQueryResult',
3382 'data': { 'status': 'DumpStatus',
3383 'completed': 'int',
3384 'total': 'int' } }
3385
3386##
3387# @query-dump:
3388#
3389# Query latest dump status.
3390#
3391# Returns: A @DumpStatus object showing the dump status.
3392#
3393# Since: 2.6
3394#
3395# Example:
3396#
3397# -> { "execute": "query-dump" }
3398# <- { "return": { "status": "active", "completed": 1024000,
3399# "total": 2048000 } }
3400#
3401##
3402{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
3403
3404##
3405# @DumpGuestMemoryCapability:
3406#
3407# A list of the available formats for dump-guest-memory
3408#
3409# Since: 2.0
3410##
3411{ 'struct': 'DumpGuestMemoryCapability',
3412 'data': {
3413 'formats': ['DumpGuestMemoryFormat'] } }
3414
3415##
3416# @query-dump-guest-memory-capability:
3417#
3418# Returns the available formats for dump-guest-memory
3419#
3420# Returns: A @DumpGuestMemoryCapability object listing available formats for
3421# dump-guest-memory
3422#
3423# Since: 2.0
3424#
3425# Example:
3426#
3427# -> { "execute": "query-dump-guest-memory-capability" }
3428# <- { "return": { "formats":
3429# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
3430#
3431##
3432{ 'command': 'query-dump-guest-memory-capability',
3433 'returns': 'DumpGuestMemoryCapability' }
3434
3435##
3436# @dump-skeys:
3437#
3438# Dump guest's storage keys
3439#
3440# @filename: the path to the file to dump to
3441#
3442# This command is only supported on s390 architecture.
3443#
3444# Since: 2.5
3445#
3446# Example:
3447#
3448# -> { "execute": "dump-skeys",
3449# "arguments": { "filename": "/tmp/skeys" } }
3450# <- { "return": {} }
3451#
3452##
3453{ 'command': 'dump-skeys',
3454 'data': { 'filename': 'str' } }
3455
3456##
3457# @netdev_add:
3458#
3459# Add a network backend.
3460#
3461# @type: the type of network backend. Current valid values are 'user', 'tap',
3462# 'vde', 'socket', 'dump' and 'bridge'
3463#
3464# @id: the name of the new network backend
3465#
3466# Additional arguments depend on the type.
3467#
3468# TODO: This command effectively bypasses QAPI completely due to its
3469# "additional arguments" business. It shouldn't have been added to
3470# the schema in this form. It should be qapified properly, or
3471# replaced by a properly qapified command.
3472#
3473# Since: 0.14.0
3474#
3475# Returns: Nothing on success
3476# If @type is not a valid network backend, DeviceNotFound
3477#
3478# Example:
3479#
3480# -> { "execute": "netdev_add",
3481# "arguments": { "type": "user", "id": "netdev1",
3482# "dnssearch": "example.org" } }
3483# <- { "return": {} }
3484#
3485##
3486{ 'command': 'netdev_add',
3487 'data': {'type': 'str', 'id': 'str'},
3488 'gen': false } # so we can get the additional arguments
3489
3490##
3491# @netdev_del:
3492#
3493# Remove a network backend.
3494#
3495# @id: the name of the network backend to remove
3496#
3497# Returns: Nothing on success
3498# If @id is not a valid network backend, DeviceNotFound
3499#
3500# Since: 0.14.0
3501#
3502# Example:
3503#
3504# -> { "execute": "netdev_del", "arguments": { "id": "netdev1" } }
3505# <- { "return": {} }
3506#
3507##
3508{ 'command': 'netdev_del', 'data': {'id': 'str'} }
3509
3510##
3511# @object-add:
3512#
3513# Create a QOM object.
3514#
3515# @qom-type: the class name for the object to be created
3516#
3517# @id: the name of the new object
3518#
3519# @props: a dictionary of properties to be passed to the backend
3520#
3521# Returns: Nothing on success
3522# Error if @qom-type is not a valid class name
3523#
3524# Since: 2.0
3525#
3526# Example:
3527#
3528# -> { "execute": "object-add",
3529# "arguments": { "qom-type": "rng-random", "id": "rng1",
3530# "props": { "filename": "/dev/hwrng" } } }
3531# <- { "return": {} }
3532#
3533##
3534{ 'command': 'object-add',
3535 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
3536
3537##
3538# @object-del:
3539#
3540# Remove a QOM object.
3541#
3542# @id: the name of the QOM object to remove
3543#
3544# Returns: Nothing on success
3545# Error if @id is not a valid id for a QOM object
3546#
3547# Since: 2.0
3548#
3549# Example:
3550#
3551# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
3552# <- { "return": {} }
3553#
3554##
3555{ 'command': 'object-del', 'data': {'id': 'str'} }
3556
3557##
3558# @NetdevNoneOptions:
3559#
3560# Use it alone to have zero network devices.
3561#
3562# Since: 1.2
3563##
3564{ 'struct': 'NetdevNoneOptions',
3565 'data': { } }
3566
3567##
3568# @NetLegacyNicOptions:
3569#
3570# Create a new Network Interface Card.
3571#
3572# @netdev: id of -netdev to connect to
3573#
3574# @macaddr: MAC address
3575#
3576# @model: device model (e1000, rtl8139, virtio etc.)
3577#
3578# @addr: PCI device address
3579#
3580# @vectors: number of MSI-x vectors, 0 to disable MSI-X
3581#
3582# Since: 1.2
3583##
3584{ 'struct': 'NetLegacyNicOptions',
3585 'data': {
3586 '*netdev': 'str',
3587 '*macaddr': 'str',
3588 '*model': 'str',
3589 '*addr': 'str',
3590 '*vectors': 'uint32' } }
3591
3592##
3593# @String:
3594#
3595# A fat type wrapping 'str', to be embedded in lists.
3596#
3597# Since: 1.2
3598##
3599{ 'struct': 'String',
3600 'data': {
3601 'str': 'str' } }
3602
3603##
3604# @NetdevUserOptions:
3605#
3606# Use the user mode network stack which requires no administrator privilege to
3607# run.
3608#
3609# @hostname: client hostname reported by the builtin DHCP server
3610#
3611# @restrict: isolate the guest from the host
3612#
3613# @ipv4: whether to support IPv4, default true for enabled
3614# (since 2.6)
3615#
3616# @ipv6: whether to support IPv6, default true for enabled
3617# (since 2.6)
3618#
3619# @ip: legacy parameter, use net= instead
3620#
3621# @net: IP network address that the guest will see, in the
3622# form addr[/netmask] The netmask is optional, and can be
3623# either in the form a.b.c.d or as a number of valid top-most
3624# bits. Default is 10.0.2.0/24.
3625#
3626# @host: guest-visible address of the host
3627#
3628# @tftp: root directory of the built-in TFTP server
3629#
3630# @bootfile: BOOTP filename, for use with tftp=
3631#
3632# @dhcpstart: the first of the 16 IPs the built-in DHCP server can
3633# assign
3634#
3635# @dns: guest-visible address of the virtual nameserver
3636#
3637# @dnssearch: list of DNS suffixes to search, passed as DHCP option
3638# to the guest
3639#
3640# @ipv6-prefix: IPv6 network prefix (default is fec0::) (since
3641# 2.6). The network prefix is given in the usual
3642# hexadecimal IPv6 address notation.
3643#
3644# @ipv6-prefixlen: IPv6 network prefix length (default is 64)
3645# (since 2.6)
3646#
3647# @ipv6-host: guest-visible IPv6 address of the host (since 2.6)
3648#
3649# @ipv6-dns: guest-visible IPv6 address of the virtual
3650# nameserver (since 2.6)
3651#
3652# @smb: root directory of the built-in SMB server
3653#
3654# @smbserver: IP address of the built-in SMB server
3655#
3656# @hostfwd: redirect incoming TCP or UDP host connections to guest
3657# endpoints
3658#
3659# @guestfwd: forward guest TCP connections
3660#
3661# Since: 1.2
3662##
3663{ 'struct': 'NetdevUserOptions',
3664 'data': {
3665 '*hostname': 'str',
3666 '*restrict': 'bool',
3667 '*ipv4': 'bool',
3668 '*ipv6': 'bool',
3669 '*ip': 'str',
3670 '*net': 'str',
3671 '*host': 'str',
3672 '*tftp': 'str',
3673 '*bootfile': 'str',
3674 '*dhcpstart': 'str',
3675 '*dns': 'str',
3676 '*dnssearch': ['String'],
3677 '*ipv6-prefix': 'str',
3678 '*ipv6-prefixlen': 'int',
3679 '*ipv6-host': 'str',
3680 '*ipv6-dns': 'str',
3681 '*smb': 'str',
3682 '*smbserver': 'str',
3683 '*hostfwd': ['String'],
3684 '*guestfwd': ['String'] } }
3685
3686##
3687# @NetdevTapOptions:
3688#
3689# Connect the host TAP network interface name to the VLAN.
3690#
3691# @ifname: interface name
3692#
3693# @fd: file descriptor of an already opened tap
3694#
3695# @fds: multiple file descriptors of already opened multiqueue capable
3696# tap
3697#
3698# @script: script to initialize the interface
3699#
3700# @downscript: script to shut down the interface
3701#
3702# @br: bridge name (since 2.8)
3703#
3704# @helper: command to execute to configure bridge
3705#
3706# @sndbuf: send buffer limit. Understands [TGMKkb] suffixes.
3707#
3708# @vnet_hdr: enable the IFF_VNET_HDR flag on the tap interface
3709#
3710# @vhost: enable vhost-net network accelerator
3711#
3712# @vhostfd: file descriptor of an already opened vhost net device
3713#
3714# @vhostfds: file descriptors of multiple already opened vhost net
3715# devices
3716#
3717# @vhostforce: vhost on for non-MSIX virtio guests
3718#
3719# @queues: number of queues to be created for multiqueue capable tap
3720#
3721# @poll-us: maximum number of microseconds that could
3722# be spent on busy polling for tap (since 2.7)
3723#
3724# Since: 1.2
3725##
3726{ 'struct': 'NetdevTapOptions',
3727 'data': {
3728 '*ifname': 'str',
3729 '*fd': 'str',
3730 '*fds': 'str',
3731 '*script': 'str',
3732 '*downscript': 'str',
3733 '*br': 'str',
3734 '*helper': 'str',
3735 '*sndbuf': 'size',
3736 '*vnet_hdr': 'bool',
3737 '*vhost': 'bool',
3738 '*vhostfd': 'str',
3739 '*vhostfds': 'str',
3740 '*vhostforce': 'bool',
3741 '*queues': 'uint32',
3742 '*poll-us': 'uint32'} }
3743
3744##
3745# @NetdevSocketOptions:
3746#
3747# Connect the VLAN to a remote VLAN in another QEMU virtual machine using a TCP
3748# socket connection.
3749#
3750# @fd: file descriptor of an already opened socket
3751#
3752# @listen: port number, and optional hostname, to listen on
3753#
3754# @connect: port number, and optional hostname, to connect to
3755#
3756# @mcast: UDP multicast address and port number
3757#
3758# @localaddr: source address and port for multicast and udp packets
3759#
3760# @udp: UDP unicast address and port number
3761#
3762# Since: 1.2
3763##
3764{ 'struct': 'NetdevSocketOptions',
3765 'data': {
3766 '*fd': 'str',
3767 '*listen': 'str',
3768 '*connect': 'str',
3769 '*mcast': 'str',
3770 '*localaddr': 'str',
3771 '*udp': 'str' } }
3772
3773##
3774# @NetdevL2TPv3Options:
3775#
3776# Connect the VLAN to Ethernet over L2TPv3 Static tunnel
3777#
3778# @src: source address
3779#
3780# @dst: destination address
3781#
3782# @srcport: source port - mandatory for udp, optional for ip
3783#
3784# @dstport: destination port - mandatory for udp, optional for ip
3785#
3786# @ipv6: force the use of ipv6
3787#
3788# @udp: use the udp version of l2tpv3 encapsulation
3789#
3790# @cookie64: use 64 bit coookies
3791#
3792# @counter: have sequence counter
3793#
3794# @pincounter: pin sequence counter to zero -
3795# workaround for buggy implementations or
3796# networks with packet reorder
3797#
3798# @txcookie: 32 or 64 bit transmit cookie
3799#
3800# @rxcookie: 32 or 64 bit receive cookie
3801#
3802# @txsession: 32 bit transmit session
3803#
3804# @rxsession: 32 bit receive session - if not specified
3805# set to the same value as transmit
3806#
3807# @offset: additional offset - allows the insertion of
3808# additional application-specific data before the packet payload
3809#
3810# Since: 2.1
3811##
3812{ 'struct': 'NetdevL2TPv3Options',
3813 'data': {
3814 'src': 'str',
3815 'dst': 'str',
3816 '*srcport': 'str',
3817 '*dstport': 'str',
3818 '*ipv6': 'bool',
3819 '*udp': 'bool',
3820 '*cookie64': 'bool',
3821 '*counter': 'bool',
3822 '*pincounter': 'bool',
3823 '*txcookie': 'uint64',
3824 '*rxcookie': 'uint64',
3825 'txsession': 'uint32',
3826 '*rxsession': 'uint32',
3827 '*offset': 'uint32' } }
3828
3829##
3830# @NetdevVdeOptions:
3831#
3832# Connect the VLAN to a vde switch running on the host.
3833#
3834# @sock: socket path
3835#
3836# @port: port number
3837#
3838# @group: group owner of socket
3839#
3840# @mode: permissions for socket
3841#
3842# Since: 1.2
3843##
3844{ 'struct': 'NetdevVdeOptions',
3845 'data': {
3846 '*sock': 'str',
3847 '*port': 'uint16',
3848 '*group': 'str',
3849 '*mode': 'uint16' } }
3850
3851##
3852# @NetdevDumpOptions:
3853#
3854# Dump VLAN network traffic to a file.
3855#
3856# @len: per-packet size limit (64k default). Understands [TGMKkb]
3857# suffixes.
3858#
3859# @file: dump file path (default is qemu-vlan0.pcap)
3860#
3861# Since: 1.2
3862##
3863{ 'struct': 'NetdevDumpOptions',
3864 'data': {
3865 '*len': 'size',
3866 '*file': 'str' } }
3867
3868##
3869# @NetdevBridgeOptions:
3870#
3871# Connect a host TAP network interface to a host bridge device.
3872#
3873# @br: bridge name
3874#
3875# @helper: command to execute to configure bridge
3876#
3877# Since: 1.2
3878##
3879{ 'struct': 'NetdevBridgeOptions',
3880 'data': {
3881 '*br': 'str',
3882 '*helper': 'str' } }
3883
3884##
3885# @NetdevHubPortOptions:
3886#
3887# Connect two or more net clients through a software hub.
3888#
3889# @hubid: hub identifier number
3890#
3891# Since: 1.2
3892##
3893{ 'struct': 'NetdevHubPortOptions',
3894 'data': {
3895 'hubid': 'int32' } }
3896
3897##
3898# @NetdevNetmapOptions:
3899#
3900# Connect a client to a netmap-enabled NIC or to a VALE switch port
3901#
3902# @ifname: Either the name of an existing network interface supported by
3903# netmap, or the name of a VALE port (created on the fly).
3904# A VALE port name is in the form 'valeXXX:YYY', where XXX and
3905# YYY are non-negative integers. XXX identifies a switch and
3906# YYY identifies a port of the switch. VALE ports having the
3907# same XXX are therefore connected to the same switch.
3908#
3909# @devname: path of the netmap device (default: '/dev/netmap').
3910#
3911# Since: 2.0
3912##
3913{ 'struct': 'NetdevNetmapOptions',
3914 'data': {
3915 'ifname': 'str',
3916 '*devname': 'str' } }
3917
3918##
3919# @NetdevVhostUserOptions:
3920#
3921# Vhost-user network backend
3922#
3923# @chardev: name of a unix socket chardev
3924#
3925# @vhostforce: vhost on for non-MSIX virtio guests (default: false).
3926#
3927# @queues: number of queues to be created for multiqueue vhost-user
3928# (default: 1) (Since 2.5)
3929#
3930# Since: 2.1
3931##
3932{ 'struct': 'NetdevVhostUserOptions',
3933 'data': {
3934 'chardev': 'str',
3935 '*vhostforce': 'bool',
3936 '*queues': 'int' } }
3937
3938##
3939# @NetClientDriver:
3940#
3941# Available netdev drivers.
3942#
3943# Since: 2.7
3944##
3945{ 'enum': 'NetClientDriver',
3946 'data': [ 'none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde', 'dump',
3947 'bridge', 'hubport', 'netmap', 'vhost-user' ] }
3948
3949##
3950# @Netdev:
3951#
3952# Captures the configuration of a network device.
3953#
3954# @id: identifier for monitor commands.
3955#
3956# @type: Specify the driver used for interpreting remaining arguments.
3957#
3958# Since: 1.2
3959#
3960# 'l2tpv3' - since 2.1
3961##
3962{ 'union': 'Netdev',
3963 'base': { 'id': 'str', 'type': 'NetClientDriver' },
3964 'discriminator': 'type',
3965 'data': {
3966 'none': 'NetdevNoneOptions',
3967 'nic': 'NetLegacyNicOptions',
3968 'user': 'NetdevUserOptions',
3969 'tap': 'NetdevTapOptions',
3970 'l2tpv3': 'NetdevL2TPv3Options',
3971 'socket': 'NetdevSocketOptions',
3972 'vde': 'NetdevVdeOptions',
3973 'dump': 'NetdevDumpOptions',
3974 'bridge': 'NetdevBridgeOptions',
3975 'hubport': 'NetdevHubPortOptions',
3976 'netmap': 'NetdevNetmapOptions',
3977 'vhost-user': 'NetdevVhostUserOptions' } }
3978
3979##
3980# @NetLegacy:
3981#
3982# Captures the configuration of a network device; legacy.
3983#
3984# @vlan: vlan number
3985#
3986# @id: identifier for monitor commands
3987#
3988# @name: identifier for monitor commands, ignored if @id is present
3989#
3990# @opts: device type specific properties (legacy)
3991#
3992# Since: 1.2
3993##
3994{ 'struct': 'NetLegacy',
3995 'data': {
3996 '*vlan': 'int32',
3997 '*id': 'str',
3998 '*name': 'str',
3999 'opts': 'NetLegacyOptions' } }
4000
4001##
4002# @NetLegacyOptionsType:
4003#
4004# Since: 1.2
4005##
4006{ 'enum': 'NetLegacyOptionsType',
4007 'data': ['none', 'nic', 'user', 'tap', 'l2tpv3', 'socket', 'vde',
4008 'dump', 'bridge', 'netmap', 'vhost-user'] }
4009
4010##
4011# @NetLegacyOptions:
4012#
4013# Like Netdev, but for use only by the legacy command line options
4014#
4015# Since: 1.2
4016##
4017{ 'union': 'NetLegacyOptions',
4018 'base': { 'type': 'NetLegacyOptionsType' },
4019 'discriminator': 'type',
4020 'data': {
4021 'none': 'NetdevNoneOptions',
4022 'nic': 'NetLegacyNicOptions',
4023 'user': 'NetdevUserOptions',
4024 'tap': 'NetdevTapOptions',
4025 'l2tpv3': 'NetdevL2TPv3Options',
4026 'socket': 'NetdevSocketOptions',
4027 'vde': 'NetdevVdeOptions',
4028 'dump': 'NetdevDumpOptions',
4029 'bridge': 'NetdevBridgeOptions',
4030 'netmap': 'NetdevNetmapOptions',
4031 'vhost-user': 'NetdevVhostUserOptions' } }
4032
4033##
4034# @NetFilterDirection:
4035#
4036# Indicates whether a netfilter is attached to a netdev's transmit queue or
4037# receive queue or both.
4038#
4039# @all: the filter is attached both to the receive and the transmit
4040# queue of the netdev (default).
4041#
4042# @rx: the filter is attached to the receive queue of the netdev,
4043# where it will receive packets sent to the netdev.
4044#
4045# @tx: the filter is attached to the transmit queue of the netdev,
4046# where it will receive packets sent by the netdev.
4047#
4048# Since: 2.5
4049##
4050{ 'enum': 'NetFilterDirection',
4051 'data': [ 'all', 'rx', 'tx' ] }
4052
4053##
4054# @InetSocketAddressBase:
4055#
4056# @host: host part of the address
4057# @port: port part of the address
4058##
4059{ 'struct': 'InetSocketAddressBase',
4060 'data': {
4061 'host': 'str',
4062 'port': 'str' } }
4063
4064##
4065# @InetSocketAddress:
4066#
4067# Captures a socket address or address range in the Internet namespace.
4068#
4069# @numeric: true if the host/port are guaranteed to be numeric,
4070# false if name resolution should be attempted. Defaults to false.
4071# (Since 2.9)
4072#
4073# @to: If present, this is range of possible addresses, with port
4074# between @port and @to.
4075#
4076# @ipv4: whether to accept IPv4 addresses, default try both IPv4 and IPv6
4077#
4078# @ipv6: whether to accept IPv6 addresses, default try both IPv4 and IPv6
4079#
4080# Since: 1.3
4081##
4082{ 'struct': 'InetSocketAddress',
4083 'base': 'InetSocketAddressBase',
4084 'data': {
4085 '*numeric': 'bool',
4086 '*to': 'uint16',
4087 '*ipv4': 'bool',
4088 '*ipv6': 'bool' } }
4089
4090##
4091# @UnixSocketAddress:
4092#
4093# Captures a socket address in the local ("Unix socket") namespace.
4094#
4095# @path: filesystem path to use
4096#
4097# Since: 1.3
4098##
4099{ 'struct': 'UnixSocketAddress',
4100 'data': {
4101 'path': 'str' } }
4102
4103##
4104# @VsockSocketAddress:
4105#
4106# Captures a socket address in the vsock namespace.
4107#
4108# @cid: unique host identifier
4109# @port: port
4110#
4111# Note: string types are used to allow for possible future hostname or
4112# service resolution support.
4113#
4114# Since: 2.8
4115##
4116{ 'struct': 'VsockSocketAddress',
4117 'data': {
4118 'cid': 'str',
4119 'port': 'str' } }
4120
4121##
4122# @SocketAddress:
4123#
4124# Captures the address of a socket, which could also be a named file descriptor
4125#
4126# Since: 1.3
4127##
4128{ 'union': 'SocketAddress',
4129 'data': {
4130 'inet': 'InetSocketAddress',
4131 'unix': 'UnixSocketAddress',
4132 'vsock': 'VsockSocketAddress',
4133 'fd': 'String' } }
4134
4135##
4136# @SocketAddressFlatType:
4137#
4138# Available SocketAddressFlat types
4139#
4140# @inet: Internet address
4141#
4142# @unix: Unix domain socket
4143#
4144# Since: 2.9
4145##
4146{ 'enum': 'SocketAddressFlatType',
4147 'data': [ 'unix', 'inet' ] }
4148
4149##
4150# @SocketAddressFlat:
4151#
4152# Captures the address of a socket
4153#
4154# @type: Transport type
4155#
4156# This is similar to SocketAddress, only distinction:
4157#
4158# 1. SocketAddressFlat is a flat union, SocketAddress is a simple union.
4159# A flat union is nicer than simple because it avoids nesting
4160# (i.e. more {}) on the wire.
4161#
4162# 2. SocketAddressFlat supports only types 'unix' and 'inet', because
4163# that's what its current users need.
4164#
4165# Since: 2.9
4166##
4167{ 'union': 'SocketAddressFlat',
4168 'base': { 'type': 'SocketAddressFlatType' },
4169 'discriminator': 'type',
4170 'data': { 'unix': 'UnixSocketAddress',
4171 'inet': 'InetSocketAddress' } }
4172
4173##
4174# @getfd:
4175#
4176# Receive a file descriptor via SCM rights and assign it a name
4177#
4178# @fdname: file descriptor name
4179#
4180# Returns: Nothing on success
4181#
4182# Since: 0.14.0
4183#
4184# Notes: If @fdname already exists, the file descriptor assigned to
4185# it will be closed and replaced by the received file
4186# descriptor.
4187#
4188# The 'closefd' command can be used to explicitly close the
4189# file descriptor when it is no longer needed.
4190#
4191# Example:
4192#
4193# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
4194# <- { "return": {} }
4195#
4196##
4197{ 'command': 'getfd', 'data': {'fdname': 'str'} }
4198
4199##
4200# @closefd:
4201#
4202# Close a file descriptor previously passed via SCM rights
4203#
4204# @fdname: file descriptor name
4205#
4206# Returns: Nothing on success
4207#
4208# Since: 0.14.0
4209#
4210# Example:
4211#
4212# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
4213# <- { "return": {} }
4214#
4215##
4216{ 'command': 'closefd', 'data': {'fdname': 'str'} }
4217
4218##
4219# @MachineInfo:
4220#
4221# Information describing a machine.
4222#
4223# @name: the name of the machine
4224#
4225# @alias: an alias for the machine name
4226#
4227# @is-default: whether the machine is default
4228#
4229# @cpu-max: maximum number of CPUs supported by the machine type
4230# (since 1.5.0)
4231#
4232# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
4233#
4234# Since: 1.2.0
4235##
4236{ 'struct': 'MachineInfo',
4237 'data': { 'name': 'str', '*alias': 'str',
4238 '*is-default': 'bool', 'cpu-max': 'int',
4239 'hotpluggable-cpus': 'bool'} }
4240
4241##
4242# @query-machines:
4243#
4244# Return a list of supported machines
4245#
4246# Returns: a list of MachineInfo
4247#
4248# Since: 1.2.0
4249##
4250{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
4251
4252##
4253# @CpuDefinitionInfo:
4254#
4255# Virtual CPU definition.
4256#
4257# @name: the name of the CPU definition
4258#
4259# @migration-safe: whether a CPU definition can be safely used for
4260# migration in combination with a QEMU compatibility machine
4261# when migrating between different QMU versions and between
4262# hosts with different sets of (hardware or software)
4263# capabilities. If not provided, information is not available
4264# and callers should not assume the CPU definition to be
4265# migration-safe. (since 2.8)
4266#
4267# @static: whether a CPU definition is static and will not change depending on
4268# QEMU version, machine type, machine options and accelerator options.
4269# A static model is always migration-safe. (since 2.8)
4270#
4271# @unavailable-features: List of properties that prevent
4272# the CPU model from running in the current
4273# host. (since 2.8)
4274# @typename: Type name that can be used as argument to @device-list-properties,
4275# to introspect properties configurable using -cpu or -global.
4276# (since 2.9)
4277#
4278# @unavailable-features is a list of QOM property names that
4279# represent CPU model attributes that prevent the CPU from running.
4280# If the QOM property is read-only, that means there's no known
4281# way to make the CPU model run in the current host. Implementations
4282# that choose not to provide specific information return the
4283# property name "type".
4284# If the property is read-write, it means that it MAY be possible
4285# to run the CPU model in the current host if that property is
4286# changed. Management software can use it as hints to suggest or
4287# choose an alternative for the user, or just to generate meaningful
4288# error messages explaining why the CPU model can't be used.
4289# If @unavailable-features is an empty list, the CPU model is
4290# runnable using the current host and machine-type.
4291# If @unavailable-features is not present, runnability
4292# information for the CPU is not available.
4293#
4294# Since: 1.2.0
4295##
4296{ 'struct': 'CpuDefinitionInfo',
4297 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
4298 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
4299
4300##
4301# @query-cpu-definitions:
4302#
4303# Return a list of supported virtual CPU definitions
4304#
4305# Returns: a list of CpuDefInfo
4306#
4307# Since: 1.2.0
4308##
4309{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
4310
4311##
4312# @CpuModelInfo:
4313#
4314# Virtual CPU model.
4315#
4316# A CPU model consists of the name of a CPU definition, to which
4317# delta changes are applied (e.g. features added/removed). Most magic values
4318# that an architecture might require should be hidden behind the name.
4319# However, if required, architectures can expose relevant properties.
4320#
4321# @name: the name of the CPU definition the model is based on
4322# @props: a dictionary of QOM properties to be applied
4323#
4324# Since: 2.8.0
4325##
4326{ 'struct': 'CpuModelInfo',
4327 'data': { 'name': 'str',
4328 '*props': 'any' } }
4329
4330##
4331# @CpuModelExpansionType:
4332#
4333# An enumeration of CPU model expansion types.
4334#
4335# @static: Expand to a static CPU model, a combination of a static base
4336# model name and property delta changes. As the static base model will
4337# never change, the expanded CPU model will be the same, independant of
4338# independent of QEMU version, machine type, machine options, and
4339# accelerator options. Therefore, the resulting model can be used by
4340# tooling without having to specify a compatibility machine - e.g. when
4341# displaying the "host" model. static CPU models are migration-safe.
4342#
4343# @full: Expand all properties. The produced model is not guaranteed to be
4344# migration-safe, but allows tooling to get an insight and work with
4345# model details.
4346#
4347# Note: When a non-migration-safe CPU model is expanded in static mode, some
4348# features enabled by the CPU model may be omitted, because they can't be
4349# implemented by a static CPU model definition (e.g. cache info passthrough and
4350# PMU passthrough in x86). If you need an accurate representation of the
4351# features enabled by a non-migration-safe CPU model, use @full. If you need a
4352# static representation that will keep ABI compatibility even when changing QEMU
4353# version or machine-type, use @static (but keep in mind that some features may
4354# be omitted).
4355#
4356# Since: 2.8.0
4357##
4358{ 'enum': 'CpuModelExpansionType',
4359 'data': [ 'static', 'full' ] }
4360
4361
4362##
4363# @CpuModelExpansionInfo:
4364#
4365# The result of a cpu model expansion.
4366#
4367# @model: the expanded CpuModelInfo.
4368#
4369# Since: 2.8.0
4370##
4371{ 'struct': 'CpuModelExpansionInfo',
4372 'data': { 'model': 'CpuModelInfo' } }
4373
4374
4375##
4376# @query-cpu-model-expansion:
4377#
4378# Expands a given CPU model (or a combination of CPU model + additional options)
4379# to different granularities, allowing tooling to get an understanding what a
4380# specific CPU model looks like in QEMU under a certain configuration.
4381#
4382# This interface can be used to query the "host" CPU model.
4383#
4384# The data returned by this command may be affected by:
4385#
4386# * QEMU version: CPU models may look different depending on the QEMU version.
4387# (Except for CPU models reported as "static" in query-cpu-definitions.)
4388# * machine-type: CPU model may look different depending on the machine-type.
4389# (Except for CPU models reported as "static" in query-cpu-definitions.)
4390# * machine options (including accelerator): in some architectures, CPU models
4391# may look different depending on machine and accelerator options. (Except for
4392# CPU models reported as "static" in query-cpu-definitions.)
4393# * "-cpu" arguments and global properties: arguments to the -cpu option and
4394# global properties may affect expansion of CPU models. Using
4395# query-cpu-model-expansion while using these is not advised.
4396#
4397# Some architectures may not support all expansion types. s390x supports
4398# "full" and "static".
4399#
4400# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
4401# not supported, if the model cannot be expanded, if the model contains
4402# an unknown CPU definition name, unknown properties or properties
4403# with a wrong type. Also returns an error if an expansion type is
4404# not supported.
4405#
4406# Since: 2.8.0
4407##
4408{ 'command': 'query-cpu-model-expansion',
4409 'data': { 'type': 'CpuModelExpansionType',
4410 'model': 'CpuModelInfo' },
4411 'returns': 'CpuModelExpansionInfo' }
4412
4413##
4414# @CpuModelCompareResult:
4415#
4416# An enumeration of CPU model comparation results. The result is usually
4417# calculated using e.g. CPU features or CPU generations.
4418#
4419# @incompatible: If model A is incompatible to model B, model A is not
4420# guaranteed to run where model B runs and the other way around.
4421#
4422# @identical: If model A is identical to model B, model A is guaranteed to run
4423# where model B runs and the other way around.
4424#
4425# @superset: If model A is a superset of model B, model B is guaranteed to run
4426# where model A runs. There are no guarantees about the other way.
4427#
4428# @subset: If model A is a subset of model B, model A is guaranteed to run
4429# where model B runs. There are no guarantees about the other way.
4430#
4431# Since: 2.8.0
4432##
4433{ 'enum': 'CpuModelCompareResult',
4434 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
4435
4436##
4437# @CpuModelCompareInfo:
4438#
4439# The result of a CPU model comparison.
4440#
4441# @result: The result of the compare operation.
4442# @responsible-properties: List of properties that led to the comparison result
4443# not being identical.
4444#
4445# @responsible-properties is a list of QOM property names that led to
4446# both CPUs not being detected as identical. For identical models, this
4447# list is empty.
4448# If a QOM property is read-only, that means there's no known way to make the
4449# CPU models identical. If the special property name "type" is included, the
4450# models are by definition not identical and cannot be made identical.
4451#
4452# Since: 2.8.0
4453##
4454{ 'struct': 'CpuModelCompareInfo',
4455 'data': {'result': 'CpuModelCompareResult',
4456 'responsible-properties': ['str']
4457 }
4458}
4459
4460##
4461# @query-cpu-model-comparison:
4462#
4463# Compares two CPU models, returning how they compare in a specific
4464# configuration. The results indicates how both models compare regarding
4465# runnability. This result can be used by tooling to make decisions if a
4466# certain CPU model will run in a certain configuration or if a compatible
4467# CPU model has to be created by baselining.
4468#
4469# Usually, a CPU model is compared against the maximum possible CPU model
4470# of a certain configuration (e.g. the "host" model for KVM). If that CPU
4471# model is identical or a subset, it will run in that configuration.
4472#
4473# The result returned by this command may be affected by:
4474#
4475# * QEMU version: CPU models may look different depending on the QEMU version.
4476# (Except for CPU models reported as "static" in query-cpu-definitions.)
4477# * machine-type: CPU model may look different depending on the machine-type.
4478# (Except for CPU models reported as "static" in query-cpu-definitions.)
4479# * machine options (including accelerator): in some architectures, CPU models
4480# may look different depending on machine and accelerator options. (Except for
4481# CPU models reported as "static" in query-cpu-definitions.)
4482# * "-cpu" arguments and global properties: arguments to the -cpu option and
4483# global properties may affect expansion of CPU models. Using
4484# query-cpu-model-expansion while using these is not advised.
4485#
4486# Some architectures may not support comparing CPU models. s390x supports
4487# comparing CPU models.
4488#
4489# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
4490# not supported, if a model cannot be used, if a model contains
4491# an unknown cpu definition name, unknown properties or properties
4492# with wrong types.
4493#
4494# Since: 2.8.0
4495##
4496{ 'command': 'query-cpu-model-comparison',
4497 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
4498 'returns': 'CpuModelCompareInfo' }
4499
4500##
4501# @CpuModelBaselineInfo:
4502#
4503# The result of a CPU model baseline.
4504#
4505# @model: the baselined CpuModelInfo.
4506#
4507# Since: 2.8.0
4508##
4509{ 'struct': 'CpuModelBaselineInfo',
4510 'data': { 'model': 'CpuModelInfo' } }
4511
4512##
4513# @query-cpu-model-baseline:
4514#
4515# Baseline two CPU models, creating a compatible third model. The created
4516# model will always be a static, migration-safe CPU model (see "static"
4517# CPU model expansion for details).
4518#
4519# This interface can be used by tooling to create a compatible CPU model out
4520# two CPU models. The created CPU model will be identical to or a subset of
4521# both CPU models when comparing them. Therefore, the created CPU model is
4522# guaranteed to run where the given CPU models run.
4523#
4524# The result returned by this command may be affected by:
4525#
4526# * QEMU version: CPU models may look different depending on the QEMU version.
4527# (Except for CPU models reported as "static" in query-cpu-definitions.)
4528# * machine-type: CPU model may look different depending on the machine-type.
4529# (Except for CPU models reported as "static" in query-cpu-definitions.)
4530# * machine options (including accelerator): in some architectures, CPU models
4531# may look different depending on machine and accelerator options. (Except for
4532# CPU models reported as "static" in query-cpu-definitions.)
4533# * "-cpu" arguments and global properties: arguments to the -cpu option and
4534# global properties may affect expansion of CPU models. Using
4535# query-cpu-model-expansion while using these is not advised.
4536#
4537# Some architectures may not support baselining CPU models. s390x supports
4538# baselining CPU models.
4539#
4540# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
4541# not supported, if a model cannot be used, if a model contains
4542# an unknown cpu definition name, unknown properties or properties
4543# with wrong types.
4544#
4545# Since: 2.8.0
4546##
4547{ 'command': 'query-cpu-model-baseline',
4548 'data': { 'modela': 'CpuModelInfo',
4549 'modelb': 'CpuModelInfo' },
4550 'returns': 'CpuModelBaselineInfo' }
4551
4552##
4553# @AddfdInfo:
4554#
4555# Information about a file descriptor that was added to an fd set.
4556#
4557# @fdset-id: The ID of the fd set that @fd was added to.
4558#
4559# @fd: The file descriptor that was received via SCM rights and
4560# added to the fd set.
4561#
4562# Since: 1.2.0
4563##
4564{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
4565
4566##
4567# @add-fd:
4568#
4569# Add a file descriptor, that was passed via SCM rights, to an fd set.
4570#
4571# @fdset-id: The ID of the fd set to add the file descriptor to.
4572#
4573# @opaque: A free-form string that can be used to describe the fd.
4574#
4575# Returns: @AddfdInfo on success
4576#
4577# If file descriptor was not received, FdNotSupplied
4578#
4579# If @fdset-id is a negative value, InvalidParameterValue
4580#
4581# Notes: The list of fd sets is shared by all monitor connections.
4582#
4583# If @fdset-id is not specified, a new fd set will be created.
4584#
4585# Since: 1.2.0
4586#
4587# Example:
4588#
4589# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
4590# <- { "return": { "fdset-id": 1, "fd": 3 } }
4591#
4592##
4593{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
4594 'returns': 'AddfdInfo' }
4595
4596##
4597# @remove-fd:
4598#
4599# Remove a file descriptor from an fd set.
4600#
4601# @fdset-id: The ID of the fd set that the file descriptor belongs to.
4602#
4603# @fd: The file descriptor that is to be removed.
4604#
4605# Returns: Nothing on success
4606# If @fdset-id or @fd is not found, FdNotFound
4607#
4608# Since: 1.2.0
4609#
4610# Notes: The list of fd sets is shared by all monitor connections.
4611#
4612# If @fd is not specified, all file descriptors in @fdset-id
4613# will be removed.
4614#
4615# Example:
4616#
4617# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
4618# <- { "return": {} }
4619#
4620##
4621{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
4622
4623##
4624# @FdsetFdInfo:
4625#
4626# Information about a file descriptor that belongs to an fd set.
4627#
4628# @fd: The file descriptor value.
4629#
4630# @opaque: A free-form string that can be used to describe the fd.
4631#
4632# Since: 1.2.0
4633##
4634{ 'struct': 'FdsetFdInfo',
4635 'data': {'fd': 'int', '*opaque': 'str'} }
4636
4637##
4638# @FdsetInfo:
4639#
4640# Information about an fd set.
4641#
4642# @fdset-id: The ID of the fd set.
4643#
4644# @fds: A list of file descriptors that belong to this fd set.
4645#
4646# Since: 1.2.0
4647##
4648{ 'struct': 'FdsetInfo',
4649 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
4650
4651##
4652# @query-fdsets:
4653#
4654# Return information describing all fd sets.
4655#
4656# Returns: A list of @FdsetInfo
4657#
4658# Since: 1.2.0
4659#
4660# Note: The list of fd sets is shared by all monitor connections.
4661#
4662# Example:
4663#
4664# -> { "execute": "query-fdsets" }
4665# <- { "return": [
4666# {
4667# "fds": [
4668# {
4669# "fd": 30,
4670# "opaque": "rdonly:/path/to/file"
4671# },
4672# {
4673# "fd": 24,
4674# "opaque": "rdwr:/path/to/file"
4675# }
4676# ],
4677# "fdset-id": 1
4678# },
4679# {
4680# "fds": [
4681# {
4682# "fd": 28
4683# },
4684# {
4685# "fd": 29
4686# }
4687# ],
4688# "fdset-id": 0
4689# }
4690# ]
4691# }
4692#
4693##
4694{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
4695
4696##
4697# @TargetInfo:
4698#
4699# Information describing the QEMU target.
4700#
4701# @arch: the target architecture (eg "x86_64", "i386", etc)
4702#
4703# Since: 1.2.0
4704##
4705{ 'struct': 'TargetInfo',
4706 'data': { 'arch': 'str' } }
4707
4708##
4709# @query-target:
4710#
4711# Return information about the target for this QEMU
4712#
4713# Returns: TargetInfo
4714#
4715# Since: 1.2.0
4716##
4717{ 'command': 'query-target', 'returns': 'TargetInfo' }
4718
4719##
4720# @QKeyCode:
4721#
4722# An enumeration of key name.
4723#
4724# This is used by the @send-key command.
4725#
4726# @unmapped: since 2.0
4727# @pause: since 2.0
4728# @ro: since 2.4
4729# @kp_comma: since 2.4
4730# @kp_equals: since 2.6
4731# @power: since 2.6
4732# @hiragana: since 2.9
4733# @henkan: since 2.9
4734# @yen: since 2.9
4735#
4736# Since: 1.3.0
4737#
4738##
4739{ 'enum': 'QKeyCode',
4740 'data': [ 'unmapped',
4741 'shift', 'shift_r', 'alt', 'alt_r', 'altgr', 'altgr_r', 'ctrl',
4742 'ctrl_r', 'menu', 'esc', '1', '2', '3', '4', '5', '6', '7', '8',
4743 '9', '0', 'minus', 'equal', 'backspace', 'tab', 'q', 'w', 'e',
4744 'r', 't', 'y', 'u', 'i', 'o', 'p', 'bracket_left', 'bracket_right',
4745 'ret', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'semicolon',
4746 'apostrophe', 'grave_accent', 'backslash', 'z', 'x', 'c', 'v', 'b',
4747 'n', 'm', 'comma', 'dot', 'slash', 'asterisk', 'spc', 'caps_lock',
4748 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10',
4749 'num_lock', 'scroll_lock', 'kp_divide', 'kp_multiply',
4750 'kp_subtract', 'kp_add', 'kp_enter', 'kp_decimal', 'sysrq', 'kp_0',
4751 'kp_1', 'kp_2', 'kp_3', 'kp_4', 'kp_5', 'kp_6', 'kp_7', 'kp_8',
4752 'kp_9', 'less', 'f11', 'f12', 'print', 'home', 'pgup', 'pgdn', 'end',
4753 'left', 'up', 'down', 'right', 'insert', 'delete', 'stop', 'again',
4754 'props', 'undo', 'front', 'copy', 'open', 'paste', 'find', 'cut',
4755 'lf', 'help', 'meta_l', 'meta_r', 'compose', 'pause',
4756 'ro', 'hiragana', 'henkan', 'yen',
4757 'kp_comma', 'kp_equals', 'power' ] }
4758
4759##
4760# @KeyValue:
4761#
4762# Represents a keyboard key.
4763#
4764# Since: 1.3.0
4765##
4766{ 'union': 'KeyValue',
4767 'data': {
4768 'number': 'int',
4769 'qcode': 'QKeyCode' } }
4770
4771##
4772# @send-key:
4773#
4774# Send keys to guest.
4775#
4776# @keys: An array of @KeyValue elements. All @KeyValues in this array are
4777# simultaneously sent to the guest. A @KeyValue.number value is sent
4778# directly to the guest, while @KeyValue.qcode must be a valid
4779# @QKeyCode value
4780#
4781# @hold-time: time to delay key up events, milliseconds. Defaults
4782# to 100
4783#
4784# Returns: Nothing on success
4785# If key is unknown or redundant, InvalidParameter
4786#
4787# Since: 1.3.0
4788#
4789# Example:
4790#
4791# -> { "execute": "send-key",
4792# "arguments": { "keys": [ { "type": "qcode", "data": "ctrl" },
4793# { "type": "qcode", "data": "alt" },
4794# { "type": "qcode", "data": "delete" } ] } }
4795# <- { "return": {} }
4796#
4797##
4798{ 'command': 'send-key',
4799 'data': { 'keys': ['KeyValue'], '*hold-time': 'int' } }
4800
4801##
4802# @screendump:
4803#
4804# Write a PPM of the VGA screen to a file.
4805#
4806# @filename: the path of a new PPM file to store the image
4807#
4808# Returns: Nothing on success
4809#
4810# Since: 0.14.0
4811#
4812# Example:
4813#
4814# -> { "execute": "screendump",
4815# "arguments": { "filename": "/tmp/image" } }
4816# <- { "return": {} }
4817#
4818##
4819{ 'command': 'screendump', 'data': {'filename': 'str'} }
4820
4821
4822##
4823# @ChardevCommon:
4824#
4825# Configuration shared across all chardev backends
4826#
4827# @logfile: The name of a logfile to save output
4828# @logappend: true to append instead of truncate
4829# (default to false to truncate)
4830#
4831# Since: 2.6
4832##
4833{ 'struct': 'ChardevCommon', 'data': { '*logfile': 'str',
4834 '*logappend': 'bool' } }
4835
4836##
4837# @ChardevFile:
4838#
4839# Configuration info for file chardevs.
4840#
4841# @in: The name of the input file
4842# @out: The name of the output file
4843# @append: Open the file in append mode (default false to
4844# truncate) (Since 2.6)
4845#
4846# Since: 1.4
4847##
4848{ 'struct': 'ChardevFile', 'data': { '*in' : 'str',
4849 'out' : 'str',
4850 '*append': 'bool' },
4851 'base': 'ChardevCommon' }
4852
4853##
4854# @ChardevHostdev:
4855#
4856# Configuration info for device and pipe chardevs.
4857#
4858# @device: The name of the special file for the device,
4859# i.e. /dev/ttyS0 on Unix or COM1: on Windows
4860#
4861# Since: 1.4
4862##
4863{ 'struct': 'ChardevHostdev', 'data': { 'device' : 'str' },
4864 'base': 'ChardevCommon' }
4865
4866##
4867# @ChardevSocket:
4868#
4869# Configuration info for (stream) socket chardevs.
4870#
4871# @addr: socket address to listen on (server=true)
4872# or connect to (server=false)
4873# @tls-creds: the ID of the TLS credentials object (since 2.6)
4874# @server: create server socket (default: true)
4875# @wait: wait for incoming connection on server
4876# sockets (default: false).
4877# @nodelay: set TCP_NODELAY socket option (default: false)
4878# @telnet: enable telnet protocol on server
4879# sockets (default: false)
4880# @reconnect: For a client socket, if a socket is disconnected,
4881# then attempt a reconnect after the given number of seconds.
4882# Setting this to zero disables this function. (default: 0)
4883# (Since: 2.2)
4884#
4885# Since: 1.4
4886##
4887{ 'struct': 'ChardevSocket', 'data': { 'addr' : 'SocketAddress',
4888 '*tls-creds' : 'str',
4889 '*server' : 'bool',
4890 '*wait' : 'bool',
4891 '*nodelay' : 'bool',
4892 '*telnet' : 'bool',
4893 '*reconnect' : 'int' },
4894 'base': 'ChardevCommon' }
4895
4896##
4897# @ChardevUdp:
4898#
4899# Configuration info for datagram socket chardevs.
4900#
4901# @remote: remote address
4902# @local: local address
4903#
4904# Since: 1.5
4905##
4906{ 'struct': 'ChardevUdp', 'data': { 'remote' : 'SocketAddress',
4907 '*local' : 'SocketAddress' },
4908 'base': 'ChardevCommon' }
4909
4910##
4911# @ChardevMux:
4912#
4913# Configuration info for mux chardevs.
4914#
4915# @chardev: name of the base chardev.
4916#
4917# Since: 1.5
4918##
4919{ 'struct': 'ChardevMux', 'data': { 'chardev' : 'str' },
4920 'base': 'ChardevCommon' }
4921
4922##
4923# @ChardevStdio:
4924#
4925# Configuration info for stdio chardevs.
4926#
4927# @signal: Allow signals (such as SIGINT triggered by ^C)
4928# be delivered to qemu. Default: true in -nographic mode,
4929# false otherwise.
4930#
4931# Since: 1.5
4932##
4933{ 'struct': 'ChardevStdio', 'data': { '*signal' : 'bool' },
4934 'base': 'ChardevCommon' }
4935
4936
4937##
4938# @ChardevSpiceChannel:
4939#
4940# Configuration info for spice vm channel chardevs.
4941#
4942# @type: kind of channel (for example vdagent).
4943#
4944# Since: 1.5
4945##
4946{ 'struct': 'ChardevSpiceChannel', 'data': { 'type' : 'str' },
4947 'base': 'ChardevCommon' }
4948
4949##
4950# @ChardevSpicePort:
4951#
4952# Configuration info for spice port chardevs.
4953#
4954# @fqdn: name of the channel (see docs/spice-port-fqdn.txt)
4955#
4956# Since: 1.5
4957##
4958{ 'struct': 'ChardevSpicePort', 'data': { 'fqdn' : 'str' },
4959 'base': 'ChardevCommon' }
4960
4961##
4962# @ChardevVC:
4963#
4964# Configuration info for virtual console chardevs.
4965#
4966# @width: console width, in pixels
4967# @height: console height, in pixels
4968# @cols: console width, in chars
4969# @rows: console height, in chars
4970#
4971# Since: 1.5
4972##
4973{ 'struct': 'ChardevVC', 'data': { '*width' : 'int',
4974 '*height' : 'int',
4975 '*cols' : 'int',
4976 '*rows' : 'int' },
4977 'base': 'ChardevCommon' }
4978
4979##
4980# @ChardevRingbuf:
4981#
4982# Configuration info for ring buffer chardevs.
4983#
4984# @size: ring buffer size, must be power of two, default is 65536
4985#
4986# Since: 1.5
4987##
4988{ 'struct': 'ChardevRingbuf', 'data': { '*size' : 'int' },
4989 'base': 'ChardevCommon' }
4990
4991##
4992# @ChardevBackend:
4993#
4994# Configuration info for the new chardev backend.
4995#
4996# Since: 1.4 (testdev since 2.2, wctablet since 2.9)
4997##
4998{ 'union': 'ChardevBackend', 'data': { 'file' : 'ChardevFile',
4999 'serial' : 'ChardevHostdev',
5000 'parallel': 'ChardevHostdev',
5001 'pipe' : 'ChardevHostdev',
5002 'socket' : 'ChardevSocket',
5003 'udp' : 'ChardevUdp',
5004 'pty' : 'ChardevCommon',
5005 'null' : 'ChardevCommon',
5006 'mux' : 'ChardevMux',
5007 'msmouse': 'ChardevCommon',
5008 'wctablet' : 'ChardevCommon',
5009 'braille': 'ChardevCommon',
5010 'testdev': 'ChardevCommon',
5011 'stdio' : 'ChardevStdio',
5012 'console': 'ChardevCommon',
5013 'spicevmc' : 'ChardevSpiceChannel',
5014 'spiceport' : 'ChardevSpicePort',
5015 'vc' : 'ChardevVC',
5016 'ringbuf': 'ChardevRingbuf',
5017 # next one is just for compatibility
5018 'memory' : 'ChardevRingbuf' } }
5019
5020##
5021# @ChardevReturn:
5022#
5023# Return info about the chardev backend just created.
5024#
5025# @pty: name of the slave pseudoterminal device, present if
5026# and only if a chardev of type 'pty' was created
5027#
5028# Since: 1.4
5029##
5030{ 'struct' : 'ChardevReturn', 'data': { '*pty' : 'str' } }
5031
5032##
5033# @chardev-add:
5034#
5035# Add a character device backend
5036#
5037# @id: the chardev's ID, must be unique
5038# @backend: backend type and parameters
5039#
5040# Returns: ChardevReturn.
5041#
5042# Since: 1.4
5043#
5044# Example:
5045#
5046# -> { "execute" : "chardev-add",
5047# "arguments" : { "id" : "foo",
5048# "backend" : { "type" : "null", "data" : {} } } }
5049# <- { "return": {} }
5050#
5051# -> { "execute" : "chardev-add",
5052# "arguments" : { "id" : "bar",
5053# "backend" : { "type" : "file",
5054# "data" : { "out" : "/tmp/bar.log" } } } }
5055# <- { "return": {} }
5056#
5057# -> { "execute" : "chardev-add",
5058# "arguments" : { "id" : "baz",
5059# "backend" : { "type" : "pty", "data" : {} } } }
5060# <- { "return": { "pty" : "/dev/pty/42" } }
5061#
5062##
5063{ 'command': 'chardev-add', 'data': {'id' : 'str',
5064 'backend' : 'ChardevBackend' },
5065 'returns': 'ChardevReturn' }
5066
5067##
5068# @chardev-remove:
5069#
5070# Remove a character device backend
5071#
5072# @id: the chardev's ID, must exist and not be in use
5073#
5074# Returns: Nothing on success
5075#
5076# Since: 1.4
5077#
5078# Example:
5079#
5080# -> { "execute": "chardev-remove", "arguments": { "id" : "foo" } }
5081# <- { "return": {} }
5082#
5083##
5084{ 'command': 'chardev-remove', 'data': {'id': 'str'} }
5085
5086##
5087# @TpmModel:
5088#
5089# An enumeration of TPM models
5090#
5091# @tpm-tis: TPM TIS model
5092#
5093# Since: 1.5
5094##
5095{ 'enum': 'TpmModel', 'data': [ 'tpm-tis' ] }
5096
5097##
5098# @query-tpm-models:
5099#
5100# Return a list of supported TPM models
5101#
5102# Returns: a list of TpmModel
5103#
5104# Since: 1.5
5105#
5106# Example:
5107#
5108# -> { "execute": "query-tpm-models" }
5109# <- { "return": [ "tpm-tis" ] }
5110#
5111##
5112{ 'command': 'query-tpm-models', 'returns': ['TpmModel'] }
5113
5114##
5115# @TpmType:
5116#
5117# An enumeration of TPM types
5118#
5119# @passthrough: TPM passthrough type
5120#
5121# Since: 1.5
5122##
5123{ 'enum': 'TpmType', 'data': [ 'passthrough' ] }
5124
5125##
5126# @query-tpm-types:
5127#
5128# Return a list of supported TPM types
5129#
5130# Returns: a list of TpmType
5131#
5132# Since: 1.5
5133#
5134# Example:
5135#
5136# -> { "execute": "query-tpm-types" }
5137# <- { "return": [ "passthrough" ] }
5138#
5139##
5140{ 'command': 'query-tpm-types', 'returns': ['TpmType'] }
5141
5142##
5143# @TPMPassthroughOptions:
5144#
5145# Information about the TPM passthrough type
5146#
5147# @path: string describing the path used for accessing the TPM device
5148#
5149# @cancel-path: string showing the TPM's sysfs cancel file
5150# for cancellation of TPM commands while they are executing
5151#
5152# Since: 1.5
5153##
5154{ 'struct': 'TPMPassthroughOptions', 'data': { '*path' : 'str',
5155 '*cancel-path' : 'str'} }
5156
5157##
5158# @TpmTypeOptions:
5159#
5160# A union referencing different TPM backend types' configuration options
5161#
5162# @type: 'passthrough' The configuration options for the TPM passthrough type
5163#
5164# Since: 1.5
5165##
5166{ 'union': 'TpmTypeOptions',
5167 'data': { 'passthrough' : 'TPMPassthroughOptions' } }
5168
5169##
5170# @TPMInfo:
5171#
5172# Information about the TPM
5173#
5174# @id: The Id of the TPM
5175#
5176# @model: The TPM frontend model
5177#
5178# @options: The TPM (backend) type configuration options
5179#
5180# Since: 1.5
5181##
5182{ 'struct': 'TPMInfo',
5183 'data': {'id': 'str',
5184 'model': 'TpmModel',
5185 'options': 'TpmTypeOptions' } }
5186
5187##
5188# @query-tpm:
5189#
5190# Return information about the TPM device
5191#
5192# Returns: @TPMInfo on success
5193#
5194# Since: 1.5
5195#
5196# Example:
5197#
5198# -> { "execute": "query-tpm" }
5199# <- { "return":
5200# [
5201# { "model": "tpm-tis",
5202# "options":
5203# { "type": "passthrough",
5204# "data":
5205# { "cancel-path": "/sys/class/misc/tpm0/device/cancel",
5206# "path": "/dev/tpm0"
5207# }
5208# },
5209# "id": "tpm0"
5210# }
5211# ]
5212# }
5213#
5214##
5215{ 'command': 'query-tpm', 'returns': ['TPMInfo'] }
5216
5217##
5218# @AcpiTableOptions:
5219#
5220# Specify an ACPI table on the command line to load.
5221#
5222# At most one of @file and @data can be specified. The list of files specified
5223# by any one of them is loaded and concatenated in order. If both are omitted,
5224# @data is implied.
5225#
5226# Other fields / optargs can be used to override fields of the generic ACPI
5227# table header; refer to the ACPI specification 5.0, section 5.2.6 System
5228# Description Table Header. If a header field is not overridden, then the
5229# corresponding value from the concatenated blob is used (in case of @file), or
5230# it is filled in with a hard-coded value (in case of @data).
5231#
5232# String fields are copied into the matching ACPI member from lowest address
5233# upwards, and silently truncated / NUL-padded to length.
5234#
5235# @sig: table signature / identifier (4 bytes)
5236#
5237# @rev: table revision number (dependent on signature, 1 byte)
5238#
5239# @oem_id: OEM identifier (6 bytes)
5240#
5241# @oem_table_id: OEM table identifier (8 bytes)
5242#
5243# @oem_rev: OEM-supplied revision number (4 bytes)
5244#
5245# @asl_compiler_id: identifier of the utility that created the table
5246# (4 bytes)
5247#
5248# @asl_compiler_rev: revision number of the utility that created the
5249# table (4 bytes)
5250#
5251# @file: colon (:) separated list of pathnames to load and
5252# concatenate as table data. The resultant binary blob is expected to
5253# have an ACPI table header. At least one file is required. This field
5254# excludes @data.
5255#
5256# @data: colon (:) separated list of pathnames to load and
5257# concatenate as table data. The resultant binary blob must not have an
5258# ACPI table header. At least one file is required. This field excludes
5259# @file.
5260#
5261# Since: 1.5
5262##
5263{ 'struct': 'AcpiTableOptions',
5264 'data': {
5265 '*sig': 'str',
5266 '*rev': 'uint8',
5267 '*oem_id': 'str',
5268 '*oem_table_id': 'str',
5269 '*oem_rev': 'uint32',
5270 '*asl_compiler_id': 'str',
5271 '*asl_compiler_rev': 'uint32',
5272 '*file': 'str',
5273 '*data': 'str' }}
5274
5275##
5276# @CommandLineParameterType:
5277#
5278# Possible types for an option parameter.
5279#
5280# @string: accepts a character string
5281#
5282# @boolean: accepts "on" or "off"
5283#
5284# @number: accepts a number
5285#
5286# @size: accepts a number followed by an optional suffix (K)ilo,
5287# (M)ega, (G)iga, (T)era
5288#
5289# Since: 1.5
5290##
5291{ 'enum': 'CommandLineParameterType',
5292 'data': ['string', 'boolean', 'number', 'size'] }
5293
5294##
5295# @CommandLineParameterInfo:
5296#
5297# Details about a single parameter of a command line option.
5298#
5299# @name: parameter name
5300#
5301# @type: parameter @CommandLineParameterType
5302#
5303# @help: human readable text string, not suitable for parsing.
5304#
5305# @default: default value string (since 2.1)
5306#
5307# Since: 1.5
5308##
5309{ 'struct': 'CommandLineParameterInfo',
5310 'data': { 'name': 'str',
5311 'type': 'CommandLineParameterType',
5312 '*help': 'str',
5313 '*default': 'str' } }
5314
5315##
5316# @CommandLineOptionInfo:
5317#
5318# Details about a command line option, including its list of parameter details
5319#
5320# @option: option name
5321#
5322# @parameters: an array of @CommandLineParameterInfo
5323#
5324# Since: 1.5
5325##
5326{ 'struct': 'CommandLineOptionInfo',
5327 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
5328
5329##
5330# @query-command-line-options:
5331#
5332# Query command line option schema.
5333#
5334# @option: option name
5335#
5336# Returns: list of @CommandLineOptionInfo for all options (or for the given
5337# @option). Returns an error if the given @option doesn't exist.
5338#
5339# Since: 1.5
5340#
5341# Example:
5342#
5343# -> { "execute": "query-command-line-options",
5344# "arguments": { "option": "option-rom" } }
5345# <- { "return": [
5346# {
5347# "parameters": [
5348# {
5349# "name": "romfile",
5350# "type": "string"
5351# },
5352# {
5353# "name": "bootindex",
5354# "type": "number"
5355# }
5356# ],
5357# "option": "option-rom"
5358# }
5359# ]
5360# }
5361#
5362##
5363{'command': 'query-command-line-options', 'data': { '*option': 'str' },
5364 'returns': ['CommandLineOptionInfo'] }
5365
5366##
5367# @X86CPURegister32:
5368#
5369# A X86 32-bit register
5370#
5371# Since: 1.5
5372##
5373{ 'enum': 'X86CPURegister32',
5374 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
5375
5376##
5377# @X86CPUFeatureWordInfo:
5378#
5379# Information about a X86 CPU feature word
5380#
5381# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
5382#
5383# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
5384# feature word
5385#
5386# @cpuid-register: Output register containing the feature bits
5387#
5388# @features: value of output register, containing the feature bits
5389#
5390# Since: 1.5
5391##
5392{ 'struct': 'X86CPUFeatureWordInfo',
5393 'data': { 'cpuid-input-eax': 'int',
5394 '*cpuid-input-ecx': 'int',
5395 'cpuid-register': 'X86CPURegister32',
5396 'features': 'int' } }
5397
5398##
5399# @DummyForceArrays:
5400#
5401# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
5402#
5403# Since: 2.5
5404##
5405{ 'struct': 'DummyForceArrays',
5406 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
5407
5408
5409##
5410# @RxState:
5411#
5412# Packets receiving state
5413#
5414# @normal: filter assigned packets according to the mac-table
5415#
5416# @none: don't receive any assigned packet
5417#
5418# @all: receive all assigned packets
5419#
5420# Since: 1.6
5421##
5422{ 'enum': 'RxState', 'data': [ 'normal', 'none', 'all' ] }
5423
5424##
5425# @RxFilterInfo:
5426#
5427# Rx-filter information for a NIC.
5428#
5429# @name: net client name
5430#
5431# @promiscuous: whether promiscuous mode is enabled
5432#
5433# @multicast: multicast receive state
5434#
5435# @unicast: unicast receive state
5436#
5437# @vlan: vlan receive state (Since 2.0)
5438#
5439# @broadcast-allowed: whether to receive broadcast
5440#
5441# @multicast-overflow: multicast table is overflowed or not
5442#
5443# @unicast-overflow: unicast table is overflowed or not
5444#
5445# @main-mac: the main macaddr string
5446#
5447# @vlan-table: a list of active vlan id
5448#
5449# @unicast-table: a list of unicast macaddr string
5450#
5451# @multicast-table: a list of multicast macaddr string
5452#
5453# Since: 1.6
5454##
5455{ 'struct': 'RxFilterInfo',
5456 'data': {
5457 'name': 'str',
5458 'promiscuous': 'bool',
5459 'multicast': 'RxState',
5460 'unicast': 'RxState',
5461 'vlan': 'RxState',
5462 'broadcast-allowed': 'bool',
5463 'multicast-overflow': 'bool',
5464 'unicast-overflow': 'bool',
5465 'main-mac': 'str',
5466 'vlan-table': ['int'],
5467 'unicast-table': ['str'],
5468 'multicast-table': ['str'] }}
5469
5470##
5471# @query-rx-filter:
5472#
5473# Return rx-filter information for all NICs (or for the given NIC).
5474#
5475# @name: net client name
5476#
5477# Returns: list of @RxFilterInfo for all NICs (or for the given NIC).
5478# Returns an error if the given @name doesn't exist, or given
5479# NIC doesn't support rx-filter querying, or given net client
5480# isn't a NIC.
5481#
5482# Since: 1.6
5483#
5484# Example:
5485#
5486# -> { "execute": "query-rx-filter", "arguments": { "name": "vnet0" } }
5487# <- { "return": [
5488# {
5489# "promiscuous": true,
5490# "name": "vnet0",
5491# "main-mac": "52:54:00:12:34:56",
5492# "unicast": "normal",
5493# "vlan": "normal",
5494# "vlan-table": [
5495# 4,
5496# 0
5497# ],
5498# "unicast-table": [
5499# ],
5500# "multicast": "normal",
5501# "multicast-overflow": false,
5502# "unicast-overflow": false,
5503# "multicast-table": [
5504# "01:00:5e:00:00:01",
5505# "33:33:00:00:00:01",
5506# "33:33:ff:12:34:56"
5507# ],
5508# "broadcast-allowed": false
5509# }
5510# ]
5511# }
5512#
5513##
5514{ 'command': 'query-rx-filter', 'data': { '*name': 'str' },
5515 'returns': ['RxFilterInfo'] }
5516
5517##
5518# @InputButton:
5519#
5520# Button of a pointer input device (mouse, tablet).
5521#
5522# @side: front side button of a 5-button mouse (since 2.9)
5523#
5524# @extra: rear side button of a 5-button mouse (since 2.9)
5525#
5526# Since: 2.0
5527##
5528{ 'enum' : 'InputButton',
5529 'data' : [ 'left', 'middle', 'right', 'wheel-up', 'wheel-down', 'side',
5530 'extra' ] }
5531
5532##
5533# @InputAxis:
5534#
5535# Position axis of a pointer input device (mouse, tablet).
5536#
5537# Since: 2.0
5538##
5539{ 'enum' : 'InputAxis',
5540 'data' : [ 'x', 'y' ] }
5541
5542##
5543# @InputKeyEvent:
5544#
5545# Keyboard input event.
5546#
5547# @key: Which key this event is for.
5548# @down: True for key-down and false for key-up events.
5549#
5550# Since: 2.0
5551##
5552{ 'struct' : 'InputKeyEvent',
5553 'data' : { 'key' : 'KeyValue',
5554 'down' : 'bool' } }
5555
5556##
5557# @InputBtnEvent:
5558#
5559# Pointer button input event.
5560#
5561# @button: Which button this event is for.
5562# @down: True for key-down and false for key-up events.
5563#
5564# Since: 2.0
5565##
5566{ 'struct' : 'InputBtnEvent',
5567 'data' : { 'button' : 'InputButton',
5568 'down' : 'bool' } }
5569
5570##
5571# @InputMoveEvent:
5572#
5573# Pointer motion input event.
5574#
5575# @axis: Which axis is referenced by @value.
5576# @value: Pointer position. For absolute coordinates the
5577# valid range is 0 -> 0x7ffff
5578#
5579# Since: 2.0
5580##
5581{ 'struct' : 'InputMoveEvent',
5582 'data' : { 'axis' : 'InputAxis',
5583 'value' : 'int' } }
5584
5585##
5586# @InputEvent:
5587#
5588# Input event union.
5589#
5590# @type: the input type, one of:
5591# - 'key': Input event of Keyboard
5592# - 'btn': Input event of pointer buttons
5593# - 'rel': Input event of relative pointer motion
5594# - 'abs': Input event of absolute pointer motion
5595#
5596# Since: 2.0
5597##
5598{ 'union' : 'InputEvent',
5599 'data' : { 'key' : 'InputKeyEvent',
5600 'btn' : 'InputBtnEvent',
5601 'rel' : 'InputMoveEvent',
5602 'abs' : 'InputMoveEvent' } }
5603
5604##
5605# @input-send-event:
5606#
5607# Send input event(s) to guest.
5608#
5609# @device: display device to send event(s) to.
5610# @head: head to send event(s) to, in case the
5611# display device supports multiple scanouts.
5612# @events: List of InputEvent union.
5613#
5614# Returns: Nothing on success.
5615#
5616# The @device and @head parameters can be used to send the input event
5617# to specific input devices in case (a) multiple input devices of the
5618# same kind are added to the virtual machine and (b) you have
5619# configured input routing (see docs/multiseat.txt) for those input
5620# devices. The parameters work exactly like the device and head
5621# properties of input devices. If @device is missing, only devices
5622# that have no input routing config are admissible. If @device is
5623# specified, both input devices with and without input routing config
5624# are admissible, but devices with input routing config take
5625# precedence.
5626#
5627# Since: 2.6
5628#
5629# Note: The consoles are visible in the qom tree, under
5630# /backend/console[$index]. They have a device link and head property,
5631# so it is possible to map which console belongs to which device and
5632# display.
5633#
5634# Example:
5635#
5636# 1. Press left mouse button.
5637#
5638# -> { "execute": "input-send-event",
5639# "arguments": { "device": "video0",
5640# "events": [ { "type": "btn",
5641# "data" : { "down": true, "button": "left" } } ] } }
5642# <- { "return": {} }
5643#
5644# -> { "execute": "input-send-event",
5645# "arguments": { "device": "video0",
5646# "events": [ { "type": "btn",
5647# "data" : { "down": false, "button": "left" } } ] } }
5648# <- { "return": {} }
5649#
5650# 2. Press ctrl-alt-del.
5651#
5652# -> { "execute": "input-send-event",
5653# "arguments": { "events": [
5654# { "type": "key", "data" : { "down": true,
5655# "key": {"type": "qcode", "data": "ctrl" } } },
5656# { "type": "key", "data" : { "down": true,
5657# "key": {"type": "qcode", "data": "alt" } } },
5658# { "type": "key", "data" : { "down": true,
5659# "key": {"type": "qcode", "data": "delete" } } } ] } }
5660# <- { "return": {} }
5661#
5662# 3. Move mouse pointer to absolute coordinates (20000, 400).
5663#
5664# -> { "execute": "input-send-event" ,
5665# "arguments": { "events": [
5666# { "type": "abs", "data" : { "axis": "x", "value" : 20000 } },
5667# { "type": "abs", "data" : { "axis": "y", "value" : 400 } } ] } }
5668# <- { "return": {} }
5669#
5670##
5671{ 'command': 'input-send-event',
5672 'data': { '*device': 'str',
5673 '*head' : 'int',
5674 'events' : [ 'InputEvent' ] } }
5675
5676##
5677# @NumaOptionsType:
5678#
5679# Since: 2.1
5680##
5681{ 'enum': 'NumaOptionsType',
5682 'data': [ 'node' ] }
5683
5684##
5685# @NumaOptions:
5686#
5687# A discriminated record of NUMA options. (for OptsVisitor)
5688#
5689# Since: 2.1
5690##
5691{ 'union': 'NumaOptions',
5692 'base': { 'type': 'NumaOptionsType' },
5693 'discriminator': 'type',
5694 'data': {
5695 'node': 'NumaNodeOptions' }}
5696
5697##
5698# @NumaNodeOptions:
5699#
5700# Create a guest NUMA node. (for OptsVisitor)
5701#
5702# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
5703#
5704# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
5705# if omitted)
5706#
5707# @mem: memory size of this node; mutually exclusive with @memdev.
5708# Equally divide total memory among nodes if both @mem and @memdev are
5709# omitted.
5710#
5711# @memdev: memory backend object. If specified for one node,
5712# it must be specified for all nodes.
5713#
5714# Since: 2.1
5715##
5716{ 'struct': 'NumaNodeOptions',
5717 'data': {
5718 '*nodeid': 'uint16',
5719 '*cpus': ['uint16'],
5720 '*mem': 'size',
5721 '*memdev': 'str' }}
5722
5723##
5724# @HostMemPolicy:
5725#
5726# Host memory policy types
5727#
5728# @default: restore default policy, remove any nondefault policy
5729#
5730# @preferred: set the preferred host nodes for allocation
5731#
5732# @bind: a strict policy that restricts memory allocation to the
5733# host nodes specified
5734#
5735# @interleave: memory allocations are interleaved across the set
5736# of host nodes specified
5737#
5738# Since: 2.1
5739##
5740{ 'enum': 'HostMemPolicy',
5741 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
5742
5743##
5744# @Memdev:
5745#
5746# Information about memory backend
5747#
5748# @id: backend's ID if backend has 'id' property (since 2.9)
5749#
5750# @size: memory backend size
5751#
5752# @merge: enables or disables memory merge support
5753#
5754# @dump: includes memory backend's memory in a core dump or not
5755#
5756# @prealloc: enables or disables memory preallocation
5757#
5758# @host-nodes: host nodes for its memory policy
5759#
5760# @policy: memory policy of memory backend
5761#
5762# Since: 2.1
5763##
5764{ 'struct': 'Memdev',
5765 'data': {
5766 '*id': 'str',
5767 'size': 'size',
5768 'merge': 'bool',
5769 'dump': 'bool',
5770 'prealloc': 'bool',
5771 'host-nodes': ['uint16'],
5772 'policy': 'HostMemPolicy' }}
5773
5774##
5775# @query-memdev:
5776#
5777# Returns information for all memory backends.
5778#
5779# Returns: a list of @Memdev.
5780#
5781# Since: 2.1
5782#
5783# Example:
5784#
5785# -> { "execute": "query-memdev" }
5786# <- { "return": [
5787# {
5788# "id": "mem1",
5789# "size": 536870912,
5790# "merge": false,
5791# "dump": true,
5792# "prealloc": false,
5793# "host-nodes": [0, 1],
5794# "policy": "bind"
5795# },
5796# {
5797# "size": 536870912,
5798# "merge": false,
5799# "dump": true,
5800# "prealloc": true,
5801# "host-nodes": [2, 3],
5802# "policy": "preferred"
5803# }
5804# ]
5805# }
5806#
5807##
5808{ 'command': 'query-memdev', 'returns': ['Memdev'] }
5809
5810##
5811# @PCDIMMDeviceInfo:
5812#
5813# PCDIMMDevice state information
5814#
5815# @id: device's ID
5816#
5817# @addr: physical address, where device is mapped
5818#
5819# @size: size of memory that the device provides
5820#
5821# @slot: slot number at which device is plugged in
5822#
5823# @node: NUMA node number where device is plugged in
5824#
5825# @memdev: memory backend linked with device
5826#
5827# @hotplugged: true if device was hotplugged
5828#
5829# @hotpluggable: true if device if could be added/removed while machine is running
5830#
5831# Since: 2.1
5832##
5833{ 'struct': 'PCDIMMDeviceInfo',
5834 'data': { '*id': 'str',
5835 'addr': 'int',
5836 'size': 'int',
5837 'slot': 'int',
5838 'node': 'int',
5839 'memdev': 'str',
5840 'hotplugged': 'bool',
5841 'hotpluggable': 'bool'
5842 }
5843}
5844
5845##
5846# @MemoryDeviceInfo:
5847#
5848# Union containing information about a memory device
5849#
5850# Since: 2.1
5851##
5852{ 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
5853
5854##
5855# @query-memory-devices:
5856#
5857# Lists available memory devices and their state
5858#
5859# Since: 2.1
5860#
5861# Example:
5862#
5863# -> { "execute": "query-memory-devices" }
5864# <- { "return": [ { "data":
5865# { "addr": 5368709120,
5866# "hotpluggable": true,
5867# "hotplugged": true,
5868# "id": "d1",
5869# "memdev": "/objects/memX",
5870# "node": 0,
5871# "size": 1073741824,
5872# "slot": 0},
5873# "type": "dimm"
5874# } ] }
5875#
5876##
5877{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
5878
5879##
5880# @ACPISlotType:
5881#
5882# @DIMM: memory slot
5883# @CPU: logical CPU slot (since 2.7)
5884##
5885{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
5886
5887##
5888# @ACPIOSTInfo:
5889#
5890# OSPM Status Indication for a device
5891# For description of possible values of @source and @status fields
5892# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
5893#
5894# @device: device ID associated with slot
5895#
5896# @slot: slot ID, unique per slot of a given @slot-type
5897#
5898# @slot-type: type of the slot
5899#
5900# @source: an integer containing the source event
5901#
5902# @status: an integer containing the status code
5903#
5904# Since: 2.1
5905##
5906{ 'struct': 'ACPIOSTInfo',
5907 'data' : { '*device': 'str',
5908 'slot': 'str',
5909 'slot-type': 'ACPISlotType',
5910 'source': 'int',
5911 'status': 'int' } }
5912
5913##
5914# @query-acpi-ospm-status:
5915#
5916# Return a list of ACPIOSTInfo for devices that support status
5917# reporting via ACPI _OST method.
5918#
5919# Since: 2.1
5920#
5921# Example:
5922#
5923# -> { "execute": "query-acpi-ospm-status" }
5924# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
5925# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
5926# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
5927# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
5928# ]}
5929#
5930##
5931{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
5932
5933##
5934# @WatchdogExpirationAction:
5935#
5936# An enumeration of the actions taken when the watchdog device's timer is
5937# expired
5938#
5939# @reset: system resets
5940#
5941# @shutdown: system shutdown, note that it is similar to @powerdown, which
5942# tries to set to system status and notify guest
5943#
5944# @poweroff: system poweroff, the emulator program exits
5945#
5946# @pause: system pauses, similar to @stop
5947#
5948# @debug: system enters debug state
5949#
5950# @none: nothing is done
5951#
5952# @inject-nmi: a non-maskable interrupt is injected into the first VCPU (all
5953# VCPUS on x86) (since 2.4)
5954#
5955# Since: 2.1
5956##
5957{ 'enum': 'WatchdogExpirationAction',
5958 'data': [ 'reset', 'shutdown', 'poweroff', 'pause', 'debug', 'none',
5959 'inject-nmi' ] }
5960
5961##
5962# @IoOperationType:
5963#
5964# An enumeration of the I/O operation types
5965#
5966# @read: read operation
5967#
5968# @write: write operation
5969#
5970# Since: 2.1
5971##
5972{ 'enum': 'IoOperationType',
5973 'data': [ 'read', 'write' ] }
5974
5975##
5976# @GuestPanicAction:
5977#
5978# An enumeration of the actions taken when guest OS panic is detected
5979#
5980# @pause: system pauses
5981#
5982# Since: 2.1 (poweroff since 2.8)
5983##
5984{ 'enum': 'GuestPanicAction',
5985 'data': [ 'pause', 'poweroff' ] }
5986
5987##
5988# @GuestPanicInformationType:
5989#
5990# An enumeration of the guest panic information types
5991#
5992# Since: 2.9
5993##
5994{ 'enum': 'GuestPanicInformationType',
5995 'data': [ 'hyper-v'] }
5996
5997##
5998# @GuestPanicInformation:
5999#
6000# Information about a guest panic
6001#
6002# Since: 2.9
6003##
6004{'union': 'GuestPanicInformation',
6005 'base': {'type': 'GuestPanicInformationType'},
6006 'discriminator': 'type',
6007 'data': { 'hyper-v': 'GuestPanicInformationHyperV' } }
6008
6009##
6010# @GuestPanicInformationHyperV:
6011#
6012# Hyper-V specific guest panic information (HV crash MSRs)
6013#
6014# Since: 2.9
6015##
6016{'struct': 'GuestPanicInformationHyperV',
6017 'data': { 'arg1': 'uint64',
6018 'arg2': 'uint64',
6019 'arg3': 'uint64',
6020 'arg4': 'uint64',
6021 'arg5': 'uint64' } }
6022
6023##
6024# @rtc-reset-reinjection:
6025#
6026# This command will reset the RTC interrupt reinjection backlog.
6027# Can be used if another mechanism to synchronize guest time
6028# is in effect, for example QEMU guest agent's guest-set-time
6029# command.
6030#
6031# Since: 2.1
6032#
6033# Example:
6034#
6035# -> { "execute": "rtc-reset-reinjection" }
6036# <- { "return": {} }
6037#
6038##
6039{ 'command': 'rtc-reset-reinjection' }
6040
6041# Rocker ethernet network switch
6042{ 'include': 'qapi/rocker.json' }
6043
6044##
6045# @ReplayMode:
6046#
6047# Mode of the replay subsystem.
6048#
6049# @none: normal execution mode. Replay or record are not enabled.
6050#
6051# @record: record mode. All non-deterministic data is written into the
6052# replay log.
6053#
6054# @play: replay mode. Non-deterministic data required for system execution
6055# is read from the log.
6056#
6057# Since: 2.5
6058##
6059{ 'enum': 'ReplayMode',
6060 'data': [ 'none', 'record', 'play' ] }
6061
6062##
6063# @xen-load-devices-state:
6064#
6065# Load the state of all devices from file. The RAM and the block devices
6066# of the VM are not loaded by this command.
6067#
6068# @filename: the file to load the state of the devices from as binary
6069# data. See xen-save-devices-state.txt for a description of the binary
6070# format.
6071#
6072# Since: 2.7
6073#
6074# Example:
6075#
6076# -> { "execute": "xen-load-devices-state",
6077# "arguments": { "filename": "/tmp/resume" } }
6078# <- { "return": {} }
6079#
6080##
6081{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
6082
6083##
6084# @xen-set-replication:
6085#
6086# Enable or disable replication.
6087#
6088# @enable: true to enable, false to disable.
6089#
6090# @primary: true for primary or false for secondary.
6091#
6092# @failover: true to do failover, false to stop. but cannot be
6093# specified if 'enable' is true. default value is false.
6094#
6095# Returns: nothing.
6096#
6097# Example:
6098#
6099# -> { "execute": "xen-set-replication",
6100# "arguments": {"enable": true, "primary": false} }
6101# <- { "return": {} }
6102#
6103# Since: 2.9
6104##
6105{ 'command': 'xen-set-replication',
6106 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' } }
6107
6108##
6109# @ReplicationStatus:
6110#
6111# The result format for 'query-xen-replication-status'.
6112#
6113# @error: true if an error happened, false if replication is normal.
6114#
6115# @desc: the human readable error description string, when
6116# @error is 'true'.
6117#
6118# Since: 2.9
6119##
6120{ 'struct': 'ReplicationStatus',
6121 'data': { 'error': 'bool', '*desc': 'str' } }
6122
6123##
6124# @query-xen-replication-status:
6125#
6126# Query replication status while the vm is running.
6127#
6128# Returns: A @ReplicationResult object showing the status.
6129#
6130# Example:
6131#
6132# -> { "execute": "query-xen-replication-status" }
6133# <- { "return": { "error": false } }
6134#
6135# Since: 2.9
6136##
6137{ 'command': 'query-xen-replication-status',
6138 'returns': 'ReplicationStatus' }
6139
6140##
6141# @xen-colo-do-checkpoint:
6142#
6143# Xen uses this command to notify replication to trigger a checkpoint.
6144#
6145# Returns: nothing.
6146#
6147# Example:
6148#
6149# -> { "execute": "xen-colo-do-checkpoint" }
6150# <- { "return": {} }
6151#
6152# Since: 2.9
6153##
6154{ 'command': 'xen-colo-do-checkpoint' }
6155
6156##
6157# @GICCapability:
6158#
6159# The struct describes capability for a specific GIC (Generic
6160# Interrupt Controller) version. These bits are not only decided by
6161# QEMU/KVM software version, but also decided by the hardware that
6162# the program is running upon.
6163#
6164# @version: version of GIC to be described. Currently, only 2 and 3
6165# are supported.
6166#
6167# @emulated: whether current QEMU/hardware supports emulated GIC
6168# device in user space.
6169#
6170# @kernel: whether current QEMU/hardware supports hardware
6171# accelerated GIC device in kernel.
6172#
6173# Since: 2.6
6174##
6175{ 'struct': 'GICCapability',
6176 'data': { 'version': 'int',
6177 'emulated': 'bool',
6178 'kernel': 'bool' } }
6179
6180##
6181# @query-gic-capabilities:
6182#
6183# This command is ARM-only. It will return a list of GICCapability
6184# objects that describe its capability bits.
6185#
6186# Returns: a list of GICCapability objects.
6187#
6188# Since: 2.6
6189#
6190# Example:
6191#
6192# -> { "execute": "query-gic-capabilities" }
6193# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
6194# { "version": 3, "emulated": false, "kernel": true } ] }
6195#
6196##
6197{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
6198
6199##
6200# @CpuInstanceProperties:
6201#
6202# List of properties to be used for hotplugging a CPU instance,
6203# it should be passed by management with device_add command when
6204# a CPU is being hotplugged.
6205#
6206# @node-id: NUMA node ID the CPU belongs to
6207# @socket-id: socket number within node/board the CPU belongs to
6208# @core-id: core number within socket the CPU belongs to
6209# @thread-id: thread number within core the CPU belongs to
6210#
6211# Note: currently there are 4 properties that could be present
6212# but management should be prepared to pass through other
6213# properties with device_add command to allow for future
6214# interface extension. This also requires the filed names to be kept in
6215# sync with the properties passed to -device/device_add.
6216#
6217# Since: 2.7
6218##
6219{ 'struct': 'CpuInstanceProperties',
6220 'data': { '*node-id': 'int',
6221 '*socket-id': 'int',
6222 '*core-id': 'int',
6223 '*thread-id': 'int'
6224 }
6225}
6226
6227##
6228# @HotpluggableCPU:
6229#
6230# @type: CPU object type for usage with device_add command
6231# @props: list of properties to be used for hotplugging CPU
6232# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
6233# @qom-path: link to existing CPU object if CPU is present or
6234# omitted if CPU is not present.
6235#
6236# Since: 2.7
6237##
6238{ 'struct': 'HotpluggableCPU',
6239 'data': { 'type': 'str',
6240 'vcpus-count': 'int',
6241 'props': 'CpuInstanceProperties',
6242 '*qom-path': 'str'
6243 }
6244}
6245
6246##
6247# @query-hotpluggable-cpus:
6248#
6249# Returns: a list of HotpluggableCPU objects.
6250#
6251# Since: 2.7
6252#
6253# Example:
6254#
6255# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
6256#
6257# -> { "execute": "query-hotpluggable-cpus" }
6258# <- {"return": [
6259# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
6260# "vcpus-count": 1 },
6261# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
6262# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
6263# ]}'
6264#
6265# For pc machine type started with -smp 1,maxcpus=2:
6266#
6267# -> { "execute": "query-hotpluggable-cpus" }
6268# <- {"return": [
6269# {
6270# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6271# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
6272# },
6273# {
6274# "qom-path": "/machine/unattached/device[0]",
6275# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
6276# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
6277# }
6278# ]}
6279#
6280##
6281{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
6282
6283##
6284# @GuidInfo:
6285#
6286# GUID information.
6287#
6288# @guid: the globally unique identifier
6289#
6290# Since: 2.9
6291##
6292{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
6293
6294##
6295# @query-vm-generation-id:
6296#
6297# Show Virtual Machine Generation ID
6298#
6299# Since 2.9
6300##
6301{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }