]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qemu-doc.texi
net: Get rid of 'vlan' terminology and use 'hub' instead in the doc files
[mirror_qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4@include version.texi
5
6@documentlanguage en
7@documentencoding UTF-8
8
9@settitle QEMU version @value{VERSION} User Documentation
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
13
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
20@iftex
21@titlepage
22@sp 7
23@center @titlefont{QEMU version @value{VERSION}}
24@sp 1
25@center @titlefont{User Documentation}
26@sp 3
27@end titlepage
28@end iftex
29
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
38* QEMU Guest Agent::
39* QEMU User space emulator::
40* Implementation notes::
41* Deprecated features::
42* License::
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
50@chapter Introduction
51
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
57@section Features
58
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
61
62@cindex operating modes
63QEMU has two operating modes:
64
65@itemize
66@cindex system emulation
67@item Full system emulation. In this mode, QEMU emulates a full system (for
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
71
72@cindex user mode emulation
73@item User mode emulation. In this mode, QEMU can launch
74processes compiled for one CPU on another CPU. It can be used to
75launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
76to ease cross-compilation and cross-debugging.
77
78@end itemize
79
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
92
93QEMU user mode emulation has the following features:
94@itemize
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
123@end itemize
124
125
126@node QEMU PC System emulator
127@chapter QEMU PC System emulator
128@cindex system emulation (PC)
129
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
139* pcsys_other_devs:: Other Devices
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
142* vnc_security:: VNC security
143* network_tls:: TLS setup for network services
144* gdb_usage:: GDB usage
145* pcsys_os_specific:: Target OS specific information
146@end menu
147
148@node pcsys_introduction
149@section Introduction
150
151@c man begin DESCRIPTION
152
153The QEMU PC System emulator simulates the
154following peripherals:
155
156@itemize @minus
157@item
158i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159@item
160Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161extensions (hardware level, including all non standard modes).
162@item
163PS/2 mouse and keyboard
164@item
1652 PCI IDE interfaces with hard disk and CD-ROM support
166@item
167Floppy disk
168@item
169PCI and ISA network adapters
170@item
171Serial ports
172@item
173IPMI BMC, either and internal or external one
174@item
175Creative SoundBlaster 16 sound card
176@item
177ENSONIQ AudioPCI ES1370 sound card
178@item
179Intel 82801AA AC97 Audio compatible sound card
180@item
181Intel HD Audio Controller and HDA codec
182@item
183Adlib (OPL2) - Yamaha YM3812 compatible chip
184@item
185Gravis Ultrasound GF1 sound card
186@item
187CS4231A compatible sound card
188@item
189PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
190@end itemize
191
192SMP is supported with up to 255 CPUs.
193
194QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
195VGA BIOS.
196
197QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198
199QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200by Tibor "TS" Schütz.
201
202Note that, by default, GUS shares IRQ(7) with parallel ports and so
203QEMU must be told to not have parallel ports to have working GUS.
204
205@example
206qemu-system-i386 dos.img -soundhw gus -parallel none
207@end example
208
209Alternatively:
210@example
211qemu-system-i386 dos.img -device gus,irq=5
212@end example
213
214Or some other unclaimed IRQ.
215
216CS4231A is the chip used in Windows Sound System and GUSMAX products
217
218@c man end
219
220@node pcsys_quickstart
221@section Quick Start
222@cindex quick start
223
224Download and uncompress the linux image (@file{linux.img}) and type:
225
226@example
227qemu-system-i386 linux.img
228@end example
229
230Linux should boot and give you a prompt.
231
232@node sec_invocation
233@section Invocation
234
235@example
236@c man begin SYNOPSIS
237@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
238@c man end
239@end example
240
241@c man begin OPTIONS
242@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
243targets do not need a disk image.
244
245@include qemu-options.texi
246
247@c man end
248
249@subsection Device URL Syntax
250@c TODO merge this with section Disk Images
251
252@c man begin NOTES
253
254In addition to using normal file images for the emulated storage devices,
255QEMU can also use networked resources such as iSCSI devices. These are
256specified using a special URL syntax.
257
258@table @option
259@item iSCSI
260iSCSI support allows QEMU to access iSCSI resources directly and use as
261images for the guest storage. Both disk and cdrom images are supported.
262
263Syntax for specifying iSCSI LUNs is
264``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
265
266By default qemu will use the iSCSI initiator-name
267'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
268line or a configuration file.
269
270Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
271stalled requests and force a reestablishment of the session. The timeout
272is specified in seconds. The default is 0 which means no timeout. Libiscsi
2731.15.0 or greater is required for this feature.
274
275Example (without authentication):
276@example
277qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
278 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
279 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
280@end example
281
282Example (CHAP username/password via URL):
283@example
284qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
285@end example
286
287Example (CHAP username/password via environment variables):
288@example
289LIBISCSI_CHAP_USERNAME="user" \
290LIBISCSI_CHAP_PASSWORD="password" \
291qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
292@end example
293
294@item NBD
295QEMU supports NBD (Network Block Devices) both using TCP protocol as well
296as Unix Domain Sockets.
297
298Syntax for specifying a NBD device using TCP
299``nbd:<server-ip>:<port>[:exportname=<export>]''
300
301Syntax for specifying a NBD device using Unix Domain Sockets
302``nbd:unix:<domain-socket>[:exportname=<export>]''
303
304Example for TCP
305@example
306qemu-system-i386 --drive file=nbd:192.0.2.1:30000
307@end example
308
309Example for Unix Domain Sockets
310@example
311qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
312@end example
313
314@item SSH
315QEMU supports SSH (Secure Shell) access to remote disks.
316
317Examples:
318@example
319qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
320qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
321@end example
322
323Currently authentication must be done using ssh-agent. Other
324authentication methods may be supported in future.
325
326@item Sheepdog
327Sheepdog is a distributed storage system for QEMU.
328QEMU supports using either local sheepdog devices or remote networked
329devices.
330
331Syntax for specifying a sheepdog device
332@example
333sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
334@end example
335
336Example
337@example
338qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
339@end example
340
341See also @url{https://sheepdog.github.io/sheepdog/}.
342
343@item GlusterFS
344GlusterFS is a user space distributed file system.
345QEMU supports the use of GlusterFS volumes for hosting VM disk images using
346TCP, Unix Domain Sockets and RDMA transport protocols.
347
348Syntax for specifying a VM disk image on GlusterFS volume is
349@example
350
351URI:
352gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
353
354JSON:
355'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
356@ "server":[@{"type":"tcp","host":"...","port":"..."@},
357@ @{"type":"unix","socket":"..."@}]@}@}'
358@end example
359
360
361Example
362@example
363URI:
364qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
365@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
366
367JSON:
368qemu-system-x86_64 'json:@{"driver":"qcow2",
369@ "file":@{"driver":"gluster",
370@ "volume":"testvol","path":"a.img",
371@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
372@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
373@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
374qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
375@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
376@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
377@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
378@end example
379
380See also @url{http://www.gluster.org}.
381
382@item HTTP/HTTPS/FTP/FTPS
383QEMU supports read-only access to files accessed over http(s) and ftp(s).
384
385Syntax using a single filename:
386@example
387<protocol>://[<username>[:<password>]@@]<host>/<path>
388@end example
389
390where:
391@table @option
392@item protocol
393'http', 'https', 'ftp', or 'ftps'.
394
395@item username
396Optional username for authentication to the remote server.
397
398@item password
399Optional password for authentication to the remote server.
400
401@item host
402Address of the remote server.
403
404@item path
405Path on the remote server, including any query string.
406@end table
407
408The following options are also supported:
409@table @option
410@item url
411The full URL when passing options to the driver explicitly.
412
413@item readahead
414The amount of data to read ahead with each range request to the remote server.
415This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
416does not have a suffix, it will be assumed to be in bytes. The value must be a
417multiple of 512 bytes. It defaults to 256k.
418
419@item sslverify
420Whether to verify the remote server's certificate when connecting over SSL. It
421can have the value 'on' or 'off'. It defaults to 'on'.
422
423@item cookie
424Send this cookie (it can also be a list of cookies separated by ';') with
425each outgoing request. Only supported when using protocols such as HTTP
426which support cookies, otherwise ignored.
427
428@item timeout
429Set the timeout in seconds of the CURL connection. This timeout is the time
430that CURL waits for a response from the remote server to get the size of the
431image to be downloaded. If not set, the default timeout of 5 seconds is used.
432@end table
433
434Note that when passing options to qemu explicitly, @option{driver} is the value
435of <protocol>.
436
437Example: boot from a remote Fedora 20 live ISO image
438@example
439qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
440
441qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
442@end example
443
444Example: boot from a remote Fedora 20 cloud image using a local overlay for
445writes, copy-on-read, and a readahead of 64k
446@example
447qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
448
449qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
450@end example
451
452Example: boot from an image stored on a VMware vSphere server with a self-signed
453certificate using a local overlay for writes, a readahead of 64k and a timeout
454of 10 seconds.
455@example
456qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
457
458qemu-system-x86_64 -drive file=/tmp/test.qcow2
459@end example
460
461@end table
462
463@c man end
464
465@node pcsys_keys
466@section Keys in the graphical frontends
467
468@c man begin OPTIONS
469
470During the graphical emulation, you can use special key combinations to change
471modes. The default key mappings are shown below, but if you use @code{-alt-grab}
472then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
473@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
474
475@table @key
476@item Ctrl-Alt-f
477@kindex Ctrl-Alt-f
478Toggle full screen
479
480@item Ctrl-Alt-+
481@kindex Ctrl-Alt-+
482Enlarge the screen
483
484@item Ctrl-Alt--
485@kindex Ctrl-Alt--
486Shrink the screen
487
488@item Ctrl-Alt-u
489@kindex Ctrl-Alt-u
490Restore the screen's un-scaled dimensions
491
492@item Ctrl-Alt-n
493@kindex Ctrl-Alt-n
494Switch to virtual console 'n'. Standard console mappings are:
495@table @emph
496@item 1
497Target system display
498@item 2
499Monitor
500@item 3
501Serial port
502@end table
503
504@item Ctrl-Alt
505@kindex Ctrl-Alt
506Toggle mouse and keyboard grab.
507@end table
508
509@kindex Ctrl-Up
510@kindex Ctrl-Down
511@kindex Ctrl-PageUp
512@kindex Ctrl-PageDown
513In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
514@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
515
516@c man end
517
518@node mux_keys
519@section Keys in the character backend multiplexer
520
521@c man begin OPTIONS
522
523During emulation, if you are using a character backend multiplexer
524(which is the default if you are using @option{-nographic}) then
525several commands are available via an escape sequence. These
526key sequences all start with an escape character, which is @key{Ctrl-a}
527by default, but can be changed with @option{-echr}. The list below assumes
528you're using the default.
529
530@table @key
531@item Ctrl-a h
532@kindex Ctrl-a h
533Print this help
534@item Ctrl-a x
535@kindex Ctrl-a x
536Exit emulator
537@item Ctrl-a s
538@kindex Ctrl-a s
539Save disk data back to file (if -snapshot)
540@item Ctrl-a t
541@kindex Ctrl-a t
542Toggle console timestamps
543@item Ctrl-a b
544@kindex Ctrl-a b
545Send break (magic sysrq in Linux)
546@item Ctrl-a c
547@kindex Ctrl-a c
548Rotate between the frontends connected to the multiplexer (usually
549this switches between the monitor and the console)
550@item Ctrl-a Ctrl-a
551@kindex Ctrl-a Ctrl-a
552Send the escape character to the frontend
553@end table
554@c man end
555
556@ignore
557
558@c man begin SEEALSO
559The HTML documentation of QEMU for more precise information and Linux
560user mode emulator invocation.
561@c man end
562
563@c man begin AUTHOR
564Fabrice Bellard
565@c man end
566
567@end ignore
568
569@node pcsys_monitor
570@section QEMU Monitor
571@cindex QEMU monitor
572
573The QEMU monitor is used to give complex commands to the QEMU
574emulator. You can use it to:
575
576@itemize @minus
577
578@item
579Remove or insert removable media images
580(such as CD-ROM or floppies).
581
582@item
583Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
584from a disk file.
585
586@item Inspect the VM state without an external debugger.
587
588@end itemize
589
590@subsection Commands
591
592The following commands are available:
593
594@include qemu-monitor.texi
595
596@include qemu-monitor-info.texi
597
598@subsection Integer expressions
599
600The monitor understands integers expressions for every integer
601argument. You can use register names to get the value of specifics
602CPU registers by prefixing them with @emph{$}.
603
604@node disk_images
605@section Disk Images
606
607QEMU supports many disk image formats, including growable disk images
608(their size increase as non empty sectors are written), compressed and
609encrypted disk images.
610
611@menu
612* disk_images_quickstart:: Quick start for disk image creation
613* disk_images_snapshot_mode:: Snapshot mode
614* vm_snapshots:: VM snapshots
615* qemu_img_invocation:: qemu-img Invocation
616* qemu_nbd_invocation:: qemu-nbd Invocation
617* disk_images_formats:: Disk image file formats
618* host_drives:: Using host drives
619* disk_images_fat_images:: Virtual FAT disk images
620* disk_images_nbd:: NBD access
621* disk_images_sheepdog:: Sheepdog disk images
622* disk_images_iscsi:: iSCSI LUNs
623* disk_images_gluster:: GlusterFS disk images
624* disk_images_ssh:: Secure Shell (ssh) disk images
625* disk_images_nvme:: NVMe userspace driver
626* disk_image_locking:: Disk image file locking
627@end menu
628
629@node disk_images_quickstart
630@subsection Quick start for disk image creation
631
632You can create a disk image with the command:
633@example
634qemu-img create myimage.img mysize
635@end example
636where @var{myimage.img} is the disk image filename and @var{mysize} is its
637size in kilobytes. You can add an @code{M} suffix to give the size in
638megabytes and a @code{G} suffix for gigabytes.
639
640See @ref{qemu_img_invocation} for more information.
641
642@node disk_images_snapshot_mode
643@subsection Snapshot mode
644
645If you use the option @option{-snapshot}, all disk images are
646considered as read only. When sectors in written, they are written in
647a temporary file created in @file{/tmp}. You can however force the
648write back to the raw disk images by using the @code{commit} monitor
649command (or @key{C-a s} in the serial console).
650
651@node vm_snapshots
652@subsection VM snapshots
653
654VM snapshots are snapshots of the complete virtual machine including
655CPU state, RAM, device state and the content of all the writable
656disks. In order to use VM snapshots, you must have at least one non
657removable and writable block device using the @code{qcow2} disk image
658format. Normally this device is the first virtual hard drive.
659
660Use the monitor command @code{savevm} to create a new VM snapshot or
661replace an existing one. A human readable name can be assigned to each
662snapshot in addition to its numerical ID.
663
664Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
665a VM snapshot. @code{info snapshots} lists the available snapshots
666with their associated information:
667
668@example
669(qemu) info snapshots
670Snapshot devices: hda
671Snapshot list (from hda):
672ID TAG VM SIZE DATE VM CLOCK
6731 start 41M 2006-08-06 12:38:02 00:00:14.954
6742 40M 2006-08-06 12:43:29 00:00:18.633
6753 msys 40M 2006-08-06 12:44:04 00:00:23.514
676@end example
677
678A VM snapshot is made of a VM state info (its size is shown in
679@code{info snapshots}) and a snapshot of every writable disk image.
680The VM state info is stored in the first @code{qcow2} non removable
681and writable block device. The disk image snapshots are stored in
682every disk image. The size of a snapshot in a disk image is difficult
683to evaluate and is not shown by @code{info snapshots} because the
684associated disk sectors are shared among all the snapshots to save
685disk space (otherwise each snapshot would need a full copy of all the
686disk images).
687
688When using the (unrelated) @code{-snapshot} option
689(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
690but they are deleted as soon as you exit QEMU.
691
692VM snapshots currently have the following known limitations:
693@itemize
694@item
695They cannot cope with removable devices if they are removed or
696inserted after a snapshot is done.
697@item
698A few device drivers still have incomplete snapshot support so their
699state is not saved or restored properly (in particular USB).
700@end itemize
701
702@node qemu_img_invocation
703@subsection @code{qemu-img} Invocation
704
705@include qemu-img.texi
706
707@node qemu_nbd_invocation
708@subsection @code{qemu-nbd} Invocation
709
710@include qemu-nbd.texi
711
712@include docs/qemu-block-drivers.texi
713
714@node pcsys_network
715@section Network emulation
716
717QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
718target) and can connect them to a network backend on the host or an emulated
719hub. The various host network backends can either be used to connect the NIC of
720the guest to a real network (e.g. by using a TAP devices or the non-privileged
721user mode network stack), or to other guest instances running in another QEMU
722process (e.g. by using the socket host network backend).
723
724@subsection Using TAP network interfaces
725
726This is the standard way to connect QEMU to a real network. QEMU adds
727a virtual network device on your host (called @code{tapN}), and you
728can then configure it as if it was a real ethernet card.
729
730@subsubsection Linux host
731
732As an example, you can download the @file{linux-test-xxx.tar.gz}
733archive and copy the script @file{qemu-ifup} in @file{/etc} and
734configure properly @code{sudo} so that the command @code{ifconfig}
735contained in @file{qemu-ifup} can be executed as root. You must verify
736that your host kernel supports the TAP network interfaces: the
737device @file{/dev/net/tun} must be present.
738
739See @ref{sec_invocation} to have examples of command lines using the
740TAP network interfaces.
741
742@subsubsection Windows host
743
744There is a virtual ethernet driver for Windows 2000/XP systems, called
745TAP-Win32. But it is not included in standard QEMU for Windows,
746so you will need to get it separately. It is part of OpenVPN package,
747so download OpenVPN from : @url{https://openvpn.net/}.
748
749@subsection Using the user mode network stack
750
751By using the option @option{-net user} (default configuration if no
752@option{-net} option is specified), QEMU uses a completely user mode
753network stack (you don't need root privilege to use the virtual
754network). The virtual network configuration is the following:
755
756@example
757
758 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
759 | (10.0.2.2)
760 |
761 ----> DNS server (10.0.2.3)
762 |
763 ----> SMB server (10.0.2.4)
764@end example
765
766The QEMU VM behaves as if it was behind a firewall which blocks all
767incoming connections. You can use a DHCP client to automatically
768configure the network in the QEMU VM. The DHCP server assign addresses
769to the hosts starting from 10.0.2.15.
770
771In order to check that the user mode network is working, you can ping
772the address 10.0.2.2 and verify that you got an address in the range
77310.0.2.x from the QEMU virtual DHCP server.
774
775Note that ICMP traffic in general does not work with user mode networking.
776@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
777however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
778ping sockets to allow @code{ping} to the Internet. The host admin has to set
779the ping_group_range in order to grant access to those sockets. To allow ping
780for GID 100 (usually users group):
781
782@example
783echo 100 100 > /proc/sys/net/ipv4/ping_group_range
784@end example
785
786When using the built-in TFTP server, the router is also the TFTP
787server.
788
789When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
790connections can be redirected from the host to the guest. It allows for
791example to redirect X11, telnet or SSH connections.
792
793@subsection Hubs
794
795QEMU can simulate several hubs. A hub can be thought of as a virtual connection
796between several network devices. These devices can be for example QEMU virtual
797ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
798guest NICs or host network backends to such a hub using the @option{-netdev
799hubport} or @option{-nic hubport} options. The legacy @option{-net} option
800also connects the given device to the emulated hub with ID 0 (i.e. the default
801hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
802
803@subsection Connecting emulated networks between QEMU instances
804
805Using the @option{-netdev socket} (or @option{-nic socket} or
806@option{-net socket}) option, it is possible to create emulated
807networks that span several QEMU instances.
808See the description of the @option{-netdev socket} option in the
809@ref{sec_invocation,,Invocation chapter} to have a basic example.
810
811@node pcsys_other_devs
812@section Other Devices
813
814@subsection Inter-VM Shared Memory device
815
816On Linux hosts, a shared memory device is available. The basic syntax
817is:
818
819@example
820qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
821@end example
822
823where @var{hostmem} names a host memory backend. For a POSIX shared
824memory backend, use something like
825
826@example
827-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
828@end example
829
830If desired, interrupts can be sent between guest VMs accessing the same shared
831memory region. Interrupt support requires using a shared memory server and
832using a chardev socket to connect to it. The code for the shared memory server
833is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
834memory server is:
835
836@example
837# First start the ivshmem server once and for all
838ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
839
840# Then start your qemu instances with matching arguments
841qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
842 -chardev socket,path=@var{path},id=@var{id}
843@end example
844
845When using the server, the guest will be assigned a VM ID (>=0) that allows guests
846using the same server to communicate via interrupts. Guests can read their
847VM ID from a device register (see ivshmem-spec.txt).
848
849@subsubsection Migration with ivshmem
850
851With device property @option{master=on}, the guest will copy the shared
852memory on migration to the destination host. With @option{master=off},
853the guest will not be able to migrate with the device attached. In the
854latter case, the device should be detached and then reattached after
855migration using the PCI hotplug support.
856
857At most one of the devices sharing the same memory can be master. The
858master must complete migration before you plug back the other devices.
859
860@subsubsection ivshmem and hugepages
861
862Instead of specifying the <shm size> using POSIX shm, you may specify
863a memory backend that has hugepage support:
864
865@example
866qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
867 -device ivshmem-plain,memdev=mb1
868@end example
869
870ivshmem-server also supports hugepages mount points with the
871@option{-m} memory path argument.
872
873@node direct_linux_boot
874@section Direct Linux Boot
875
876This section explains how to launch a Linux kernel inside QEMU without
877having to make a full bootable image. It is very useful for fast Linux
878kernel testing.
879
880The syntax is:
881@example
882qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
883@end example
884
885Use @option{-kernel} to provide the Linux kernel image and
886@option{-append} to give the kernel command line arguments. The
887@option{-initrd} option can be used to provide an INITRD image.
888
889When using the direct Linux boot, a disk image for the first hard disk
890@file{hda} is required because its boot sector is used to launch the
891Linux kernel.
892
893If you do not need graphical output, you can disable it and redirect
894the virtual serial port and the QEMU monitor to the console with the
895@option{-nographic} option. The typical command line is:
896@example
897qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
898 -append "root=/dev/hda console=ttyS0" -nographic
899@end example
900
901Use @key{Ctrl-a c} to switch between the serial console and the
902monitor (@pxref{pcsys_keys}).
903
904@node pcsys_usb
905@section USB emulation
906
907QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
908plug virtual USB devices or real host USB devices (only works with certain
909host operating systems). QEMU will automatically create and connect virtual
910USB hubs as necessary to connect multiple USB devices.
911
912@menu
913* usb_devices::
914* host_usb_devices::
915@end menu
916@node usb_devices
917@subsection Connecting USB devices
918
919USB devices can be connected with the @option{-device usb-...} command line
920option or the @code{device_add} monitor command. Available devices are:
921
922@table @code
923@item usb-mouse
924Virtual Mouse. This will override the PS/2 mouse emulation when activated.
925@item usb-tablet
926Pointer device that uses absolute coordinates (like a touchscreen).
927This means QEMU is able to report the mouse position without having
928to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
929@item usb-storage,drive=@var{drive_id}
930Mass storage device backed by @var{drive_id} (@pxref{disk_images})
931@item usb-uas
932USB attached SCSI device, see
933@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
934for details
935@item usb-bot
936Bulk-only transport storage device, see
937@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
938for details here, too
939@item usb-mtp,x-root=@var{dir}
940Media transfer protocol device, using @var{dir} as root of the file tree
941that is presented to the guest.
942@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
943Pass through the host device identified by @var{bus} and @var{addr}
944@item usb-host,vendorid=@var{vendor},productid=@var{product}
945Pass through the host device identified by @var{vendor} and @var{product} ID
946@item usb-wacom-tablet
947Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
948above but it can be used with the tslib library because in addition to touch
949coordinates it reports touch pressure.
950@item usb-kbd
951Standard USB keyboard. Will override the PS/2 keyboard (if present).
952@item usb-serial,chardev=@var{id}
953Serial converter. This emulates an FTDI FT232BM chip connected to host character
954device @var{id}.
955@item usb-braille,chardev=@var{id}
956Braille device. This will use BrlAPI to display the braille output on a real
957or fake device referenced by @var{id}.
958@item usb-net[,netdev=@var{id}]
959Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
960specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
961For instance, user-mode networking can be used with
962@example
963qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
964@end example
965@item usb-ccid
966Smartcard reader device
967@item usb-audio
968USB audio device
969@item usb-bt-dongle
970Bluetooth dongle for the transport layer of HCI. It is connected to HCI
971scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
972Note that the syntax for the @code{-device usb-bt-dongle} option is not as
973useful yet as it was with the legacy @code{-usbdevice} option. So to
974configure an USB bluetooth device, you might need to use
975"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
976bluetooth dongle whose type is specified in the same format as with
977the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
978no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
979This USB device implements the USB Transport Layer of HCI. Example
980usage:
981@example
982@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
983@end example
984@end table
985
986@node host_usb_devices
987@subsection Using host USB devices on a Linux host
988
989WARNING: this is an experimental feature. QEMU will slow down when
990using it. USB devices requiring real time streaming (i.e. USB Video
991Cameras) are not supported yet.
992
993@enumerate
994@item If you use an early Linux 2.4 kernel, verify that no Linux driver
995is actually using the USB device. A simple way to do that is simply to
996disable the corresponding kernel module by renaming it from @file{mydriver.o}
997to @file{mydriver.o.disabled}.
998
999@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1000@example
1001ls /proc/bus/usb
1002001 devices drivers
1003@end example
1004
1005@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1006@example
1007chown -R myuid /proc/bus/usb
1008@end example
1009
1010@item Launch QEMU and do in the monitor:
1011@example
1012info usbhost
1013 Device 1.2, speed 480 Mb/s
1014 Class 00: USB device 1234:5678, USB DISK
1015@end example
1016You should see the list of the devices you can use (Never try to use
1017hubs, it won't work).
1018
1019@item Add the device in QEMU by using:
1020@example
1021device_add usb-host,vendorid=0x1234,productid=0x5678
1022@end example
1023
1024Normally the guest OS should report that a new USB device is plugged.
1025You can use the option @option{-device usb-host,...} to do the same.
1026
1027@item Now you can try to use the host USB device in QEMU.
1028
1029@end enumerate
1030
1031When relaunching QEMU, you may have to unplug and plug again the USB
1032device to make it work again (this is a bug).
1033
1034@node vnc_security
1035@section VNC security
1036
1037The VNC server capability provides access to the graphical console
1038of the guest VM across the network. This has a number of security
1039considerations depending on the deployment scenarios.
1040
1041@menu
1042* vnc_sec_none::
1043* vnc_sec_password::
1044* vnc_sec_certificate::
1045* vnc_sec_certificate_verify::
1046* vnc_sec_certificate_pw::
1047* vnc_sec_sasl::
1048* vnc_sec_certificate_sasl::
1049* vnc_setup_sasl::
1050@end menu
1051@node vnc_sec_none
1052@subsection Without passwords
1053
1054The simplest VNC server setup does not include any form of authentication.
1055For this setup it is recommended to restrict it to listen on a UNIX domain
1056socket only. For example
1057
1058@example
1059qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1060@end example
1061
1062This ensures that only users on local box with read/write access to that
1063path can access the VNC server. To securely access the VNC server from a
1064remote machine, a combination of netcat+ssh can be used to provide a secure
1065tunnel.
1066
1067@node vnc_sec_password
1068@subsection With passwords
1069
1070The VNC protocol has limited support for password based authentication. Since
1071the protocol limits passwords to 8 characters it should not be considered
1072to provide high security. The password can be fairly easily brute-forced by
1073a client making repeat connections. For this reason, a VNC server using password
1074authentication should be restricted to only listen on the loopback interface
1075or UNIX domain sockets. Password authentication is not supported when operating
1076in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1077authentication is requested with the @code{password} option, and then once QEMU
1078is running the password is set with the monitor. Until the monitor is used to
1079set the password all clients will be rejected.
1080
1081@example
1082qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1083(qemu) change vnc password
1084Password: ********
1085(qemu)
1086@end example
1087
1088@node vnc_sec_certificate
1089@subsection With x509 certificates
1090
1091The QEMU VNC server also implements the VeNCrypt extension allowing use of
1092TLS for encryption of the session, and x509 certificates for authentication.
1093The use of x509 certificates is strongly recommended, because TLS on its
1094own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1095support provides a secure session, but no authentication. This allows any
1096client to connect, and provides an encrypted session.
1097
1098@example
1099qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1100@end example
1101
1102In the above example @code{/etc/pki/qemu} should contain at least three files,
1103@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1104users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1105NB the @code{server-key.pem} file should be protected with file mode 0600 to
1106only be readable by the user owning it.
1107
1108@node vnc_sec_certificate_verify
1109@subsection With x509 certificates and client verification
1110
1111Certificates can also provide a means to authenticate the client connecting.
1112The server will request that the client provide a certificate, which it will
1113then validate against the CA certificate. This is a good choice if deploying
1114in an environment with a private internal certificate authority.
1115
1116@example
1117qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1118@end example
1119
1120
1121@node vnc_sec_certificate_pw
1122@subsection With x509 certificates, client verification and passwords
1123
1124Finally, the previous method can be combined with VNC password authentication
1125to provide two layers of authentication for clients.
1126
1127@example
1128qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1129(qemu) change vnc password
1130Password: ********
1131(qemu)
1132@end example
1133
1134
1135@node vnc_sec_sasl
1136@subsection With SASL authentication
1137
1138The SASL authentication method is a VNC extension, that provides an
1139easily extendable, pluggable authentication method. This allows for
1140integration with a wide range of authentication mechanisms, such as
1141PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1142The strength of the authentication depends on the exact mechanism
1143configured. If the chosen mechanism also provides a SSF layer, then
1144it will encrypt the datastream as well.
1145
1146Refer to the later docs on how to choose the exact SASL mechanism
1147used for authentication, but assuming use of one supporting SSF,
1148then QEMU can be launched with:
1149
1150@example
1151qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1152@end example
1153
1154@node vnc_sec_certificate_sasl
1155@subsection With x509 certificates and SASL authentication
1156
1157If the desired SASL authentication mechanism does not supported
1158SSF layers, then it is strongly advised to run it in combination
1159with TLS and x509 certificates. This provides securely encrypted
1160data stream, avoiding risk of compromising of the security
1161credentials. This can be enabled, by combining the 'sasl' option
1162with the aforementioned TLS + x509 options:
1163
1164@example
1165qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1166@end example
1167
1168@node vnc_setup_sasl
1169
1170@subsection Configuring SASL mechanisms
1171
1172The following documentation assumes use of the Cyrus SASL implementation on a
1173Linux host, but the principles should apply to any other SASL implementation
1174or host. When SASL is enabled, the mechanism configuration will be loaded from
1175system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1176unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1177it search alternate locations for the service config file.
1178
1179If the TLS option is enabled for VNC, then it will provide session encryption,
1180otherwise the SASL mechanism will have to provide encryption. In the latter
1181case the list of possible plugins that can be used is drastically reduced. In
1182fact only the GSSAPI SASL mechanism provides an acceptable level of security
1183by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1184mechanism, however, it has multiple serious flaws described in detail in
1185RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1186provides a simple username/password auth facility similar to DIGEST-MD5, but
1187does not support session encryption, so can only be used in combination with
1188TLS.
1189
1190When not using TLS the recommended configuration is
1191
1192@example
1193mech_list: gssapi
1194keytab: /etc/qemu/krb5.tab
1195@end example
1196
1197This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1198the server principal stored in /etc/qemu/krb5.tab. For this to work the
1199administrator of your KDC must generate a Kerberos principal for the server,
1200with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1201'somehost.example.com' with the fully qualified host name of the machine
1202running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1203
1204When using TLS, if username+password authentication is desired, then a
1205reasonable configuration is
1206
1207@example
1208mech_list: scram-sha-1
1209sasldb_path: /etc/qemu/passwd.db
1210@end example
1211
1212The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1213file with accounts.
1214
1215Other SASL configurations will be left as an exercise for the reader. Note that
1216all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1217secure data channel.
1218
1219
1220@node network_tls
1221@section TLS setup for network services
1222
1223Almost all network services in QEMU have the ability to use TLS for
1224session data encryption, along with x509 certificates for simple
1225client authentication. What follows is a description of how to
1226generate certificates suitable for usage with QEMU, and applies to
1227the VNC server, character devices with the TCP backend, NBD server
1228and client, and migration server and client.
1229
1230At a high level, QEMU requires certificates and private keys to be
1231provided in PEM format. Aside from the core fields, the certificates
1232should include various extension data sets, including v3 basic
1233constraints data, key purpose, key usage and subject alt name.
1234
1235The GnuTLS package includes a command called @code{certtool} which can
1236be used to easily generate certificates and keys in the required format
1237with expected data present. Alternatively a certificate management
1238service may be used.
1239
1240At a minimum it is necessary to setup a certificate authority, and
1241issue certificates to each server. If using x509 certificates for
1242authentication, then each client will also need to be issued a
1243certificate.
1244
1245Assuming that the QEMU network services will only ever be exposed to
1246clients on a private intranet, there is no need to use a commercial
1247certificate authority to create certificates. A self-signed CA is
1248sufficient, and in fact likely to be more secure since it removes
1249the ability of malicious 3rd parties to trick the CA into mis-issuing
1250certs for impersonating your services. The only likely exception
1251where a commercial CA might be desirable is if enabling the VNC
1252websockets server and exposing it directly to remote browser clients.
1253In such a case it might be useful to use a commercial CA to avoid
1254needing to install custom CA certs in the web browsers.
1255
1256The recommendation is for the server to keep its certificates in either
1257@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
1258
1259@menu
1260* tls_generate_ca::
1261* tls_generate_server::
1262* tls_generate_client::
1263* tls_creds_setup::
1264@end menu
1265@node tls_generate_ca
1266@subsection Setup the Certificate Authority
1267
1268This step only needs to be performed once per organization / organizational
1269unit. First the CA needs a private key. This key must be kept VERY secret
1270and secure. If this key is compromised the entire trust chain of the certificates
1271issued with it is lost.
1272
1273@example
1274# certtool --generate-privkey > ca-key.pem
1275@end example
1276
1277To generate a self-signed certificate requires one core piece of information,
1278the name of the organization. A template file @code{ca.info} should be
1279populated with the desired data to avoid having to deal with interactive
1280prompts from certtool:
1281@example
1282# cat > ca.info <<EOF
1283cn = Name of your organization
1284ca
1285cert_signing_key
1286EOF
1287# certtool --generate-self-signed \
1288 --load-privkey ca-key.pem
1289 --template ca.info \
1290 --outfile ca-cert.pem
1291@end example
1292
1293The @code{ca} keyword in the template sets the v3 basic constraints extension
1294to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1295the key usage extension to indicate this will be used for signing other keys.
1296The generated @code{ca-cert.pem} file should be copied to all servers and
1297clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1298must not be disclosed/copied anywhere except the host responsible for issuing
1299certificates.
1300
1301@node tls_generate_server
1302@subsection Issuing server certificates
1303
1304Each server (or host) needs to be issued with a key and certificate. When connecting
1305the certificate is sent to the client which validates it against the CA certificate.
1306The core pieces of information for a server certificate are the hostnames and/or IP
1307addresses that will be used by clients when connecting. The hostname / IP address
1308that the client specifies when connecting will be validated against the hostname(s)
1309and IP address(es) recorded in the server certificate, and if no match is found
1310the client will close the connection.
1311
1312Thus it is recommended that the server certificate include both the fully qualified
1313and unqualified hostnames. If the server will have permanently assigned IP address(es),
1314and clients are likely to use them when connecting, they may also be included in the
1315certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1316only included 1 hostname in the @code{CN} field, however, usage of this field for
1317validation is now deprecated. Instead modern TLS clients will validate against the
1318Subject Alt Name extension data, which allows for multiple entries. In the future
1319usage of the @code{CN} field may be discontinued entirely, so providing SAN
1320extension data is strongly recommended.
1321
1322On the host holding the CA, create template files containing the information
1323for each server, and use it to issue server certificates.
1324
1325@example
1326# cat > server-hostNNN.info <<EOF
1327organization = Name of your organization
1328cn = hostNNN.foo.example.com
1329dns_name = hostNNN
1330dns_name = hostNNN.foo.example.com
1331ip_address = 10.0.1.87
1332ip_address = 192.8.0.92
1333ip_address = 2620:0:cafe::87
1334ip_address = 2001:24::92
1335tls_www_server
1336encryption_key
1337signing_key
1338EOF
1339# certtool --generate-privkey > server-hostNNN-key.pem
1340# certtool --generate-certificate \
1341 --load-ca-certificate ca-cert.pem \
1342 --load-ca-privkey ca-key.pem \
1343 --load-privkey server-hostNNN-key.pem \
1344 --template server-hostNNN.info \
1345 --outfile server-hostNNN-cert.pem
1346@end example
1347
1348The @code{dns_name} and @code{ip_address} fields in the template are setting
1349the subject alt name extension data. The @code{tls_www_server} keyword is the
1350key purpose extension to indicate this certificate is intended for usage in
1351a web server. Although QEMU network services are not in fact HTTP servers
1352(except for VNC websockets), setting this key purpose is still recommended.
1353The @code{encryption_key} and @code{signing_key} keyword is the key usage
1354extension to indicate this certificate is intended for usage in the data
1355session.
1356
1357The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1358should now be securely copied to the server for which they were generated,
1359and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1360to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1361file is security sensitive and should be kept protected with file mode 0600
1362to prevent disclosure.
1363
1364@node tls_generate_client
1365@subsection Issuing client certificates
1366
1367The QEMU x509 TLS credential setup defaults to enabling client verification
1368using certificates, providing a simple authentication mechanism. If this
1369default is used, each client also needs to be issued a certificate. The client
1370certificate contains enough metadata to uniquely identify the client with the
1371scope of the certificate authority. The client certificate would typically
1372include fields for organization, state, city, building, etc.
1373
1374Once again on the host holding the CA, create template files containing the
1375information for each client, and use it to issue client certificates.
1376
1377
1378@example
1379# cat > client-hostNNN.info <<EOF
1380country = GB
1381state = London
1382locality = City Of London
1383organization = Name of your organization
1384cn = hostNNN.foo.example.com
1385tls_www_client
1386encryption_key
1387signing_key
1388EOF
1389# certtool --generate-privkey > client-hostNNN-key.pem
1390# certtool --generate-certificate \
1391 --load-ca-certificate ca-cert.pem \
1392 --load-ca-privkey ca-key.pem \
1393 --load-privkey client-hostNNN-key.pem \
1394 --template client-hostNNN.info \
1395 --outfile client-hostNNN-cert.pem
1396@end example
1397
1398The subject alt name extension data is not required for clients, so the
1399the @code{dns_name} and @code{ip_address} fields are not included.
1400The @code{tls_www_client} keyword is the key purpose extension to indicate
1401this certificate is intended for usage in a web client. Although QEMU
1402network clients are not in fact HTTP clients, setting this key purpose is
1403still recommended. The @code{encryption_key} and @code{signing_key} keyword
1404is the key usage extension to indicate this certificate is intended for
1405usage in the data session.
1406
1407The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1408should now be securely copied to the client for which they were generated,
1409and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1410to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1411file is security sensitive and should be kept protected with file mode 0600
1412to prevent disclosure.
1413
1414If a single host is going to be using TLS in both a client and server
1415role, it is possible to create a single certificate to cover both roles.
1416This would be quite common for the migration and NBD services, where a
1417QEMU process will be started by accepting a TLS protected incoming migration,
1418and later itself be migrated out to another host. To generate a single
1419certificate, simply include the template data from both the client and server
1420instructions in one.
1421
1422@example
1423# cat > both-hostNNN.info <<EOF
1424country = GB
1425state = London
1426locality = City Of London
1427organization = Name of your organization
1428cn = hostNNN.foo.example.com
1429dns_name = hostNNN
1430dns_name = hostNNN.foo.example.com
1431ip_address = 10.0.1.87
1432ip_address = 192.8.0.92
1433ip_address = 2620:0:cafe::87
1434ip_address = 2001:24::92
1435tls_www_server
1436tls_www_client
1437encryption_key
1438signing_key
1439EOF
1440# certtool --generate-privkey > both-hostNNN-key.pem
1441# certtool --generate-certificate \
1442 --load-ca-certificate ca-cert.pem \
1443 --load-ca-privkey ca-key.pem \
1444 --load-privkey both-hostNNN-key.pem \
1445 --template both-hostNNN.info \
1446 --outfile both-hostNNN-cert.pem
1447@end example
1448
1449When copying the PEM files to the target host, save them twice,
1450once as @code{server-cert.pem} and @code{server-key.pem}, and
1451again as @code{client-cert.pem} and @code{client-key.pem}.
1452
1453@node tls_creds_setup
1454@subsection TLS x509 credential configuration
1455
1456QEMU has a standard mechanism for loading x509 credentials that will be
1457used for network services and clients. It requires specifying the
1458@code{tls-creds-x509} class name to the @code{--object} command line
1459argument for the system emulators. Each set of credentials loaded should
1460be given a unique string identifier via the @code{id} parameter. A single
1461set of TLS credentials can be used for multiple network backends, so VNC,
1462migration, NBD, character devices can all share the same credentials. Note,
1463however, that credentials for use in a client endpoint must be loaded
1464separately from those used in a server endpoint.
1465
1466When specifying the object, the @code{dir} parameters specifies which
1467directory contains the credential files. This directory is expected to
1468contain files with the names mentioned previously, @code{ca-cert.pem},
1469@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1470and @code{client-cert.pem} as appropriate. It is also possible to
1471include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1472@code{dh-params.pem}, which can be created using the
1473@code{certtool --generate-dh-params} command. If omitted, QEMU will
1474dynamically generate DH parameters when loading the credentials.
1475
1476The @code{endpoint} parameter indicates whether the credentials will
1477be used for a network client or server, and determines which PEM
1478files are loaded.
1479
1480The @code{verify} parameter determines whether x509 certificate
1481validation should be performed. This defaults to enabled, meaning
1482clients will always validate the server hostname against the
1483certificate subject alt name fields and/or CN field. It also
1484means that servers will request that clients provide a certificate
1485and validate them. Verification should never be turned off for
1486client endpoints, however, it may be turned off for server endpoints
1487if an alternative mechanism is used to authenticate clients. For
1488example, the VNC server can use SASL to authenticate clients
1489instead.
1490
1491To load server credentials with client certificate validation
1492enabled
1493
1494@example
1495$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
1496@end example
1497
1498while to load client credentials use
1499
1500@example
1501$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
1502@end example
1503
1504Network services which support TLS will all have a @code{tls-creds}
1505parameter which expects the ID of the TLS credentials object. For
1506example with VNC:
1507
1508@example
1509$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1510@end example
1511
1512@node gdb_usage
1513@section GDB usage
1514
1515QEMU has a primitive support to work with gdb, so that you can do
1516'Ctrl-C' while the virtual machine is running and inspect its state.
1517
1518In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1519gdb connection:
1520@example
1521qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1522 -append "root=/dev/hda"
1523Connected to host network interface: tun0
1524Waiting gdb connection on port 1234
1525@end example
1526
1527Then launch gdb on the 'vmlinux' executable:
1528@example
1529> gdb vmlinux
1530@end example
1531
1532In gdb, connect to QEMU:
1533@example
1534(gdb) target remote localhost:1234
1535@end example
1536
1537Then you can use gdb normally. For example, type 'c' to launch the kernel:
1538@example
1539(gdb) c
1540@end example
1541
1542Here are some useful tips in order to use gdb on system code:
1543
1544@enumerate
1545@item
1546Use @code{info reg} to display all the CPU registers.
1547@item
1548Use @code{x/10i $eip} to display the code at the PC position.
1549@item
1550Use @code{set architecture i8086} to dump 16 bit code. Then use
1551@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1552@end enumerate
1553
1554Advanced debugging options:
1555
1556The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1557@table @code
1558@item maintenance packet qqemu.sstepbits
1559
1560This will display the MASK bits used to control the single stepping IE:
1561@example
1562(gdb) maintenance packet qqemu.sstepbits
1563sending: "qqemu.sstepbits"
1564received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1565@end example
1566@item maintenance packet qqemu.sstep
1567
1568This will display the current value of the mask used when single stepping IE:
1569@example
1570(gdb) maintenance packet qqemu.sstep
1571sending: "qqemu.sstep"
1572received: "0x7"
1573@end example
1574@item maintenance packet Qqemu.sstep=HEX_VALUE
1575
1576This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1577@example
1578(gdb) maintenance packet Qqemu.sstep=0x5
1579sending: "qemu.sstep=0x5"
1580received: "OK"
1581@end example
1582@end table
1583
1584@node pcsys_os_specific
1585@section Target OS specific information
1586
1587@subsection Linux
1588
1589To have access to SVGA graphic modes under X11, use the @code{vesa} or
1590the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1591color depth in the guest and the host OS.
1592
1593When using a 2.6 guest Linux kernel, you should add the option
1594@code{clock=pit} on the kernel command line because the 2.6 Linux
1595kernels make very strict real time clock checks by default that QEMU
1596cannot simulate exactly.
1597
1598When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1599not activated because QEMU is slower with this patch. The QEMU
1600Accelerator Module is also much slower in this case. Earlier Fedora
1601Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1602patch by default. Newer kernels don't have it.
1603
1604@subsection Windows
1605
1606If you have a slow host, using Windows 95 is better as it gives the
1607best speed. Windows 2000 is also a good choice.
1608
1609@subsubsection SVGA graphic modes support
1610
1611QEMU emulates a Cirrus Logic GD5446 Video
1612card. All Windows versions starting from Windows 95 should recognize
1613and use this graphic card. For optimal performances, use 16 bit color
1614depth in the guest and the host OS.
1615
1616If you are using Windows XP as guest OS and if you want to use high
1617resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16181280x1024x16), then you should use the VESA VBE virtual graphic card
1619(option @option{-std-vga}).
1620
1621@subsubsection CPU usage reduction
1622
1623Windows 9x does not correctly use the CPU HLT
1624instruction. The result is that it takes host CPU cycles even when
1625idle. You can install the utility from
1626@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1627to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1628
1629@subsubsection Windows 2000 disk full problem
1630
1631Windows 2000 has a bug which gives a disk full problem during its
1632installation. When installing it, use the @option{-win2k-hack} QEMU
1633option to enable a specific workaround. After Windows 2000 is
1634installed, you no longer need this option (this option slows down the
1635IDE transfers).
1636
1637@subsubsection Windows 2000 shutdown
1638
1639Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1640can. It comes from the fact that Windows 2000 does not automatically
1641use the APM driver provided by the BIOS.
1642
1643In order to correct that, do the following (thanks to Struan
1644Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1645Add/Troubleshoot a device => Add a new device & Next => No, select the
1646hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1647(again) a few times. Now the driver is installed and Windows 2000 now
1648correctly instructs QEMU to shutdown at the appropriate moment.
1649
1650@subsubsection Share a directory between Unix and Windows
1651
1652See @ref{sec_invocation} about the help of the option
1653@option{'-netdev user,smb=...'}.
1654
1655@subsubsection Windows XP security problem
1656
1657Some releases of Windows XP install correctly but give a security
1658error when booting:
1659@example
1660A problem is preventing Windows from accurately checking the
1661license for this computer. Error code: 0x800703e6.
1662@end example
1663
1664The workaround is to install a service pack for XP after a boot in safe
1665mode. Then reboot, and the problem should go away. Since there is no
1666network while in safe mode, its recommended to download the full
1667installation of SP1 or SP2 and transfer that via an ISO or using the
1668vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1669
1670@subsection MS-DOS and FreeDOS
1671
1672@subsubsection CPU usage reduction
1673
1674DOS does not correctly use the CPU HLT instruction. The result is that
1675it takes host CPU cycles even when idle. You can install the utility from
1676@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1677to solve this problem.
1678
1679@node QEMU System emulator for non PC targets
1680@chapter QEMU System emulator for non PC targets
1681
1682QEMU is a generic emulator and it emulates many non PC
1683machines. Most of the options are similar to the PC emulator. The
1684differences are mentioned in the following sections.
1685
1686@menu
1687* PowerPC System emulator::
1688* Sparc32 System emulator::
1689* Sparc64 System emulator::
1690* MIPS System emulator::
1691* ARM System emulator::
1692* ColdFire System emulator::
1693* Cris System emulator::
1694* Microblaze System emulator::
1695* SH4 System emulator::
1696* Xtensa System emulator::
1697@end menu
1698
1699@node PowerPC System emulator
1700@section PowerPC System emulator
1701@cindex system emulation (PowerPC)
1702
1703Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1704or PowerMac PowerPC system.
1705
1706QEMU emulates the following PowerMac peripherals:
1707
1708@itemize @minus
1709@item
1710UniNorth or Grackle PCI Bridge
1711@item
1712PCI VGA compatible card with VESA Bochs Extensions
1713@item
17142 PMAC IDE interfaces with hard disk and CD-ROM support
1715@item
1716NE2000 PCI adapters
1717@item
1718Non Volatile RAM
1719@item
1720VIA-CUDA with ADB keyboard and mouse.
1721@end itemize
1722
1723QEMU emulates the following PREP peripherals:
1724
1725@itemize @minus
1726@item
1727PCI Bridge
1728@item
1729PCI VGA compatible card with VESA Bochs Extensions
1730@item
17312 IDE interfaces with hard disk and CD-ROM support
1732@item
1733Floppy disk
1734@item
1735NE2000 network adapters
1736@item
1737Serial port
1738@item
1739PREP Non Volatile RAM
1740@item
1741PC compatible keyboard and mouse.
1742@end itemize
1743
1744QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1745@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1746
1747Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
1748for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1749v2) portable firmware implementation. The goal is to implement a 100%
1750IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1751
1752@c man begin OPTIONS
1753
1754The following options are specific to the PowerPC emulation:
1755
1756@table @option
1757
1758@item -g @var{W}x@var{H}[x@var{DEPTH}]
1759
1760Set the initial VGA graphic mode. The default is 800x600x32.
1761
1762@item -prom-env @var{string}
1763
1764Set OpenBIOS variables in NVRAM, for example:
1765
1766@example
1767qemu-system-ppc -prom-env 'auto-boot?=false' \
1768 -prom-env 'boot-device=hd:2,\yaboot' \
1769 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1770@end example
1771
1772These variables are not used by Open Hack'Ware.
1773
1774@end table
1775
1776@c man end
1777
1778
1779More information is available at
1780@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1781
1782@node Sparc32 System emulator
1783@section Sparc32 System emulator
1784@cindex system emulation (Sparc32)
1785
1786Use the executable @file{qemu-system-sparc} to simulate the following
1787Sun4m architecture machines:
1788@itemize @minus
1789@item
1790SPARCstation 4
1791@item
1792SPARCstation 5
1793@item
1794SPARCstation 10
1795@item
1796SPARCstation 20
1797@item
1798SPARCserver 600MP
1799@item
1800SPARCstation LX
1801@item
1802SPARCstation Voyager
1803@item
1804SPARCclassic
1805@item
1806SPARCbook
1807@end itemize
1808
1809The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1810but Linux limits the number of usable CPUs to 4.
1811
1812QEMU emulates the following sun4m peripherals:
1813
1814@itemize @minus
1815@item
1816IOMMU
1817@item
1818TCX or cgthree Frame buffer
1819@item
1820Lance (Am7990) Ethernet
1821@item
1822Non Volatile RAM M48T02/M48T08
1823@item
1824Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1825and power/reset logic
1826@item
1827ESP SCSI controller with hard disk and CD-ROM support
1828@item
1829Floppy drive (not on SS-600MP)
1830@item
1831CS4231 sound device (only on SS-5, not working yet)
1832@end itemize
1833
1834The number of peripherals is fixed in the architecture. Maximum
1835memory size depends on the machine type, for SS-5 it is 256MB and for
1836others 2047MB.
1837
1838Since version 0.8.2, QEMU uses OpenBIOS
1839@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1840firmware implementation. The goal is to implement a 100% IEEE
18411275-1994 (referred to as Open Firmware) compliant firmware.
1842
1843A sample Linux 2.6 series kernel and ram disk image are available on
1844the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1845most kernel versions work. Please note that currently older Solaris kernels
1846don't work probably due to interface issues between OpenBIOS and
1847Solaris.
1848
1849@c man begin OPTIONS
1850
1851The following options are specific to the Sparc32 emulation:
1852
1853@table @option
1854
1855@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1856
1857Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1858option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1859of 1152x900x8 for people who wish to use OBP.
1860
1861@item -prom-env @var{string}
1862
1863Set OpenBIOS variables in NVRAM, for example:
1864
1865@example
1866qemu-system-sparc -prom-env 'auto-boot?=false' \
1867 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1868@end example
1869
1870@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1871
1872Set the emulated machine type. Default is SS-5.
1873
1874@end table
1875
1876@c man end
1877
1878@node Sparc64 System emulator
1879@section Sparc64 System emulator
1880@cindex system emulation (Sparc64)
1881
1882Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1883(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1884Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1885able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1886Sun4v emulator is still a work in progress.
1887
1888The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1889of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1890and is able to boot the disk.s10hw2 Solaris image.
1891@example
1892qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1893 -nographic -m 256 \
1894 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1895@end example
1896
1897
1898QEMU emulates the following peripherals:
1899
1900@itemize @minus
1901@item
1902UltraSparc IIi APB PCI Bridge
1903@item
1904PCI VGA compatible card with VESA Bochs Extensions
1905@item
1906PS/2 mouse and keyboard
1907@item
1908Non Volatile RAM M48T59
1909@item
1910PC-compatible serial ports
1911@item
19122 PCI IDE interfaces with hard disk and CD-ROM support
1913@item
1914Floppy disk
1915@end itemize
1916
1917@c man begin OPTIONS
1918
1919The following options are specific to the Sparc64 emulation:
1920
1921@table @option
1922
1923@item -prom-env @var{string}
1924
1925Set OpenBIOS variables in NVRAM, for example:
1926
1927@example
1928qemu-system-sparc64 -prom-env 'auto-boot?=false'
1929@end example
1930
1931@item -M [sun4u|sun4v|niagara]
1932
1933Set the emulated machine type. The default is sun4u.
1934
1935@end table
1936
1937@c man end
1938
1939@node MIPS System emulator
1940@section MIPS System emulator
1941@cindex system emulation (MIPS)
1942
1943Four executables cover simulation of 32 and 64-bit MIPS systems in
1944both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1945@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1946Five different machine types are emulated:
1947
1948@itemize @minus
1949@item
1950A generic ISA PC-like machine "mips"
1951@item
1952The MIPS Malta prototype board "malta"
1953@item
1954An ACER Pica "pica61". This machine needs the 64-bit emulator.
1955@item
1956MIPS emulator pseudo board "mipssim"
1957@item
1958A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1959@end itemize
1960
1961The generic emulation is supported by Debian 'Etch' and is able to
1962install Debian into a virtual disk image. The following devices are
1963emulated:
1964
1965@itemize @minus
1966@item
1967A range of MIPS CPUs, default is the 24Kf
1968@item
1969PC style serial port
1970@item
1971PC style IDE disk
1972@item
1973NE2000 network card
1974@end itemize
1975
1976The Malta emulation supports the following devices:
1977
1978@itemize @minus
1979@item
1980Core board with MIPS 24Kf CPU and Galileo system controller
1981@item
1982PIIX4 PCI/USB/SMbus controller
1983@item
1984The Multi-I/O chip's serial device
1985@item
1986PCI network cards (PCnet32 and others)
1987@item
1988Malta FPGA serial device
1989@item
1990Cirrus (default) or any other PCI VGA graphics card
1991@end itemize
1992
1993The ACER Pica emulation supports:
1994
1995@itemize @minus
1996@item
1997MIPS R4000 CPU
1998@item
1999PC-style IRQ and DMA controllers
2000@item
2001PC Keyboard
2002@item
2003IDE controller
2004@end itemize
2005
2006The mipssim pseudo board emulation provides an environment similar
2007to what the proprietary MIPS emulator uses for running Linux.
2008It supports:
2009
2010@itemize @minus
2011@item
2012A range of MIPS CPUs, default is the 24Kf
2013@item
2014PC style serial port
2015@item
2016MIPSnet network emulation
2017@end itemize
2018
2019The MIPS Magnum R4000 emulation supports:
2020
2021@itemize @minus
2022@item
2023MIPS R4000 CPU
2024@item
2025PC-style IRQ controller
2026@item
2027PC Keyboard
2028@item
2029SCSI controller
2030@item
2031G364 framebuffer
2032@end itemize
2033
2034
2035@node ARM System emulator
2036@section ARM System emulator
2037@cindex system emulation (ARM)
2038
2039Use the executable @file{qemu-system-arm} to simulate a ARM
2040machine. The ARM Integrator/CP board is emulated with the following
2041devices:
2042
2043@itemize @minus
2044@item
2045ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2046@item
2047Two PL011 UARTs
2048@item
2049SMC 91c111 Ethernet adapter
2050@item
2051PL110 LCD controller
2052@item
2053PL050 KMI with PS/2 keyboard and mouse.
2054@item
2055PL181 MultiMedia Card Interface with SD card.
2056@end itemize
2057
2058The ARM Versatile baseboard is emulated with the following devices:
2059
2060@itemize @minus
2061@item
2062ARM926E, ARM1136 or Cortex-A8 CPU
2063@item
2064PL190 Vectored Interrupt Controller
2065@item
2066Four PL011 UARTs
2067@item
2068SMC 91c111 Ethernet adapter
2069@item
2070PL110 LCD controller
2071@item
2072PL050 KMI with PS/2 keyboard and mouse.
2073@item
2074PCI host bridge. Note the emulated PCI bridge only provides access to
2075PCI memory space. It does not provide access to PCI IO space.
2076This means some devices (eg. ne2k_pci NIC) are not usable, and others
2077(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2078mapped control registers.
2079@item
2080PCI OHCI USB controller.
2081@item
2082LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2083@item
2084PL181 MultiMedia Card Interface with SD card.
2085@end itemize
2086
2087Several variants of the ARM RealView baseboard are emulated,
2088including the EB, PB-A8 and PBX-A9. Due to interactions with the
2089bootloader, only certain Linux kernel configurations work out
2090of the box on these boards.
2091
2092Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2093enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2094should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2095disabled and expect 1024M RAM.
2096
2097The following devices are emulated:
2098
2099@itemize @minus
2100@item
2101ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2102@item
2103ARM AMBA Generic/Distributed Interrupt Controller
2104@item
2105Four PL011 UARTs
2106@item
2107SMC 91c111 or SMSC LAN9118 Ethernet adapter
2108@item
2109PL110 LCD controller
2110@item
2111PL050 KMI with PS/2 keyboard and mouse
2112@item
2113PCI host bridge
2114@item
2115PCI OHCI USB controller
2116@item
2117LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2118@item
2119PL181 MultiMedia Card Interface with SD card.
2120@end itemize
2121
2122The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2123and "Terrier") emulation includes the following peripherals:
2124
2125@itemize @minus
2126@item
2127Intel PXA270 System-on-chip (ARM V5TE core)
2128@item
2129NAND Flash memory
2130@item
2131IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2132@item
2133On-chip OHCI USB controller
2134@item
2135On-chip LCD controller
2136@item
2137On-chip Real Time Clock
2138@item
2139TI ADS7846 touchscreen controller on SSP bus
2140@item
2141Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2142@item
2143GPIO-connected keyboard controller and LEDs
2144@item
2145Secure Digital card connected to PXA MMC/SD host
2146@item
2147Three on-chip UARTs
2148@item
2149WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2150@end itemize
2151
2152The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2153following elements:
2154
2155@itemize @minus
2156@item
2157Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2158@item
2159ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2160@item
2161On-chip LCD controller
2162@item
2163On-chip Real Time Clock
2164@item
2165TI TSC2102i touchscreen controller / analog-digital converter / Audio
2166CODEC, connected through MicroWire and I@math{^2}S busses
2167@item
2168GPIO-connected matrix keypad
2169@item
2170Secure Digital card connected to OMAP MMC/SD host
2171@item
2172Three on-chip UARTs
2173@end itemize
2174
2175Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2176emulation supports the following elements:
2177
2178@itemize @minus
2179@item
2180Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2181@item
2182RAM and non-volatile OneNAND Flash memories
2183@item
2184Display connected to EPSON remote framebuffer chip and OMAP on-chip
2185display controller and a LS041y3 MIPI DBI-C controller
2186@item
2187TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2188driven through SPI bus
2189@item
2190National Semiconductor LM8323-controlled qwerty keyboard driven
2191through I@math{^2}C bus
2192@item
2193Secure Digital card connected to OMAP MMC/SD host
2194@item
2195Three OMAP on-chip UARTs and on-chip STI debugging console
2196@item
2197A Bluetooth(R) transceiver and HCI connected to an UART
2198@item
2199Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2200TUSB6010 chip - only USB host mode is supported
2201@item
2202TI TMP105 temperature sensor driven through I@math{^2}C bus
2203@item
2204TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2205@item
2206Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2207through CBUS
2208@end itemize
2209
2210The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2211devices:
2212
2213@itemize @minus
2214@item
2215Cortex-M3 CPU core.
2216@item
221764k Flash and 8k SRAM.
2218@item
2219Timers, UARTs, ADC and I@math{^2}C interface.
2220@item
2221OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2222@end itemize
2223
2224The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2225devices:
2226
2227@itemize @minus
2228@item
2229Cortex-M3 CPU core.
2230@item
2231256k Flash and 64k SRAM.
2232@item
2233Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2234@item
2235OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2236@end itemize
2237
2238The Freecom MusicPal internet radio emulation includes the following
2239elements:
2240
2241@itemize @minus
2242@item
2243Marvell MV88W8618 ARM core.
2244@item
224532 MB RAM, 256 KB SRAM, 8 MB flash.
2246@item
2247Up to 2 16550 UARTs
2248@item
2249MV88W8xx8 Ethernet controller
2250@item
2251MV88W8618 audio controller, WM8750 CODEC and mixer
2252@item
2253128×64 display with brightness control
2254@item
22552 buttons, 2 navigation wheels with button function
2256@end itemize
2257
2258The Siemens SX1 models v1 and v2 (default) basic emulation.
2259The emulation includes the following elements:
2260
2261@itemize @minus
2262@item
2263Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2264@item
2265ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2266V1
22671 Flash of 16MB and 1 Flash of 8MB
2268V2
22691 Flash of 32MB
2270@item
2271On-chip LCD controller
2272@item
2273On-chip Real Time Clock
2274@item
2275Secure Digital card connected to OMAP MMC/SD host
2276@item
2277Three on-chip UARTs
2278@end itemize
2279
2280A Linux 2.6 test image is available on the QEMU web site. More
2281information is available in the QEMU mailing-list archive.
2282
2283@c man begin OPTIONS
2284
2285The following options are specific to the ARM emulation:
2286
2287@table @option
2288
2289@item -semihosting
2290Enable semihosting syscall emulation.
2291
2292On ARM this implements the "Angel" interface.
2293
2294Note that this allows guest direct access to the host filesystem,
2295so should only be used with trusted guest OS.
2296
2297@end table
2298
2299@c man end
2300
2301@node ColdFire System emulator
2302@section ColdFire System emulator
2303@cindex system emulation (ColdFire)
2304@cindex system emulation (M68K)
2305
2306Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2307The emulator is able to boot a uClinux kernel.
2308
2309The M5208EVB emulation includes the following devices:
2310
2311@itemize @minus
2312@item
2313MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2314@item
2315Three Two on-chip UARTs.
2316@item
2317Fast Ethernet Controller (FEC)
2318@end itemize
2319
2320The AN5206 emulation includes the following devices:
2321
2322@itemize @minus
2323@item
2324MCF5206 ColdFire V2 Microprocessor.
2325@item
2326Two on-chip UARTs.
2327@end itemize
2328
2329@c man begin OPTIONS
2330
2331The following options are specific to the ColdFire emulation:
2332
2333@table @option
2334
2335@item -semihosting
2336Enable semihosting syscall emulation.
2337
2338On M68K this implements the "ColdFire GDB" interface used by libgloss.
2339
2340Note that this allows guest direct access to the host filesystem,
2341so should only be used with trusted guest OS.
2342
2343@end table
2344
2345@c man end
2346
2347@node Cris System emulator
2348@section Cris System emulator
2349@cindex system emulation (Cris)
2350
2351TODO
2352
2353@node Microblaze System emulator
2354@section Microblaze System emulator
2355@cindex system emulation (Microblaze)
2356
2357TODO
2358
2359@node SH4 System emulator
2360@section SH4 System emulator
2361@cindex system emulation (SH4)
2362
2363TODO
2364
2365@node Xtensa System emulator
2366@section Xtensa System emulator
2367@cindex system emulation (Xtensa)
2368
2369Two executables cover simulation of both Xtensa endian options,
2370@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2371Two different machine types are emulated:
2372
2373@itemize @minus
2374@item
2375Xtensa emulator pseudo board "sim"
2376@item
2377Avnet LX60/LX110/LX200 board
2378@end itemize
2379
2380The sim pseudo board emulation provides an environment similar
2381to one provided by the proprietary Tensilica ISS.
2382It supports:
2383
2384@itemize @minus
2385@item
2386A range of Xtensa CPUs, default is the DC232B
2387@item
2388Console and filesystem access via semihosting calls
2389@end itemize
2390
2391The Avnet LX60/LX110/LX200 emulation supports:
2392
2393@itemize @minus
2394@item
2395A range of Xtensa CPUs, default is the DC232B
2396@item
239716550 UART
2398@item
2399OpenCores 10/100 Mbps Ethernet MAC
2400@end itemize
2401
2402@c man begin OPTIONS
2403
2404The following options are specific to the Xtensa emulation:
2405
2406@table @option
2407
2408@item -semihosting
2409Enable semihosting syscall emulation.
2410
2411Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2412Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2413
2414Note that this allows guest direct access to the host filesystem,
2415so should only be used with trusted guest OS.
2416
2417@end table
2418
2419@c man end
2420
2421@node QEMU Guest Agent
2422@chapter QEMU Guest Agent invocation
2423
2424@include qemu-ga.texi
2425
2426@node QEMU User space emulator
2427@chapter QEMU User space emulator
2428
2429@menu
2430* Supported Operating Systems ::
2431* Features::
2432* Linux User space emulator::
2433* BSD User space emulator ::
2434@end menu
2435
2436@node Supported Operating Systems
2437@section Supported Operating Systems
2438
2439The following OS are supported in user space emulation:
2440
2441@itemize @minus
2442@item
2443Linux (referred as qemu-linux-user)
2444@item
2445BSD (referred as qemu-bsd-user)
2446@end itemize
2447
2448@node Features
2449@section Features
2450
2451QEMU user space emulation has the following notable features:
2452
2453@table @strong
2454@item System call translation:
2455QEMU includes a generic system call translator. This means that
2456the parameters of the system calls can be converted to fix
2457endianness and 32/64-bit mismatches between hosts and targets.
2458IOCTLs can be converted too.
2459
2460@item POSIX signal handling:
2461QEMU can redirect to the running program all signals coming from
2462the host (such as @code{SIGALRM}), as well as synthesize signals from
2463virtual CPU exceptions (for example @code{SIGFPE} when the program
2464executes a division by zero).
2465
2466QEMU relies on the host kernel to emulate most signal system
2467calls, for example to emulate the signal mask. On Linux, QEMU
2468supports both normal and real-time signals.
2469
2470@item Threading:
2471On Linux, QEMU can emulate the @code{clone} syscall and create a real
2472host thread (with a separate virtual CPU) for each emulated thread.
2473Note that not all targets currently emulate atomic operations correctly.
2474x86 and ARM use a global lock in order to preserve their semantics.
2475@end table
2476
2477QEMU was conceived so that ultimately it can emulate itself. Although
2478it is not very useful, it is an important test to show the power of the
2479emulator.
2480
2481@node Linux User space emulator
2482@section Linux User space emulator
2483
2484@menu
2485* Quick Start::
2486* Wine launch::
2487* Command line options::
2488* Other binaries::
2489@end menu
2490
2491@node Quick Start
2492@subsection Quick Start
2493
2494In order to launch a Linux process, QEMU needs the process executable
2495itself and all the target (x86) dynamic libraries used by it.
2496
2497@itemize
2498
2499@item On x86, you can just try to launch any process by using the native
2500libraries:
2501
2502@example
2503qemu-i386 -L / /bin/ls
2504@end example
2505
2506@code{-L /} tells that the x86 dynamic linker must be searched with a
2507@file{/} prefix.
2508
2509@item Since QEMU is also a linux process, you can launch QEMU with
2510QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2511
2512@example
2513qemu-i386 -L / qemu-i386 -L / /bin/ls
2514@end example
2515
2516@item On non x86 CPUs, you need first to download at least an x86 glibc
2517(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2518@code{LD_LIBRARY_PATH} is not set:
2519
2520@example
2521unset LD_LIBRARY_PATH
2522@end example
2523
2524Then you can launch the precompiled @file{ls} x86 executable:
2525
2526@example
2527qemu-i386 tests/i386/ls
2528@end example
2529You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2530QEMU is automatically launched by the Linux kernel when you try to
2531launch x86 executables. It requires the @code{binfmt_misc} module in the
2532Linux kernel.
2533
2534@item The x86 version of QEMU is also included. You can try weird things such as:
2535@example
2536qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2537 /usr/local/qemu-i386/bin/ls-i386
2538@end example
2539
2540@end itemize
2541
2542@node Wine launch
2543@subsection Wine launch
2544
2545@itemize
2546
2547@item Ensure that you have a working QEMU with the x86 glibc
2548distribution (see previous section). In order to verify it, you must be
2549able to do:
2550
2551@example
2552qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2553@end example
2554
2555@item Download the binary x86 Wine install
2556(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2557
2558@item Configure Wine on your account. Look at the provided script
2559@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2560@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2561
2562@item Then you can try the example @file{putty.exe}:
2563
2564@example
2565qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2566 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2567@end example
2568
2569@end itemize
2570
2571@node Command line options
2572@subsection Command line options
2573
2574@example
2575@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2576@end example
2577
2578@table @option
2579@item -h
2580Print the help
2581@item -L path
2582Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2583@item -s size
2584Set the x86 stack size in bytes (default=524288)
2585@item -cpu model
2586Select CPU model (-cpu help for list and additional feature selection)
2587@item -E @var{var}=@var{value}
2588Set environment @var{var} to @var{value}.
2589@item -U @var{var}
2590Remove @var{var} from the environment.
2591@item -B offset
2592Offset guest address by the specified number of bytes. This is useful when
2593the address region required by guest applications is reserved on the host.
2594This option is currently only supported on some hosts.
2595@item -R size
2596Pre-allocate a guest virtual address space of the given size (in bytes).
2597"G", "M", and "k" suffixes may be used when specifying the size.
2598@end table
2599
2600Debug options:
2601
2602@table @option
2603@item -d item1,...
2604Activate logging of the specified items (use '-d help' for a list of log items)
2605@item -p pagesize
2606Act as if the host page size was 'pagesize' bytes
2607@item -g port
2608Wait gdb connection to port
2609@item -singlestep
2610Run the emulation in single step mode.
2611@end table
2612
2613Environment variables:
2614
2615@table @env
2616@item QEMU_STRACE
2617Print system calls and arguments similar to the 'strace' program
2618(NOTE: the actual 'strace' program will not work because the user
2619space emulator hasn't implemented ptrace). At the moment this is
2620incomplete. All system calls that don't have a specific argument
2621format are printed with information for six arguments. Many
2622flag-style arguments don't have decoders and will show up as numbers.
2623@end table
2624
2625@node Other binaries
2626@subsection Other binaries
2627
2628@cindex user mode (Alpha)
2629@command{qemu-alpha} TODO.
2630
2631@cindex user mode (ARM)
2632@command{qemu-armeb} TODO.
2633
2634@cindex user mode (ARM)
2635@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2636binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2637configurations), and arm-uclinux bFLT format binaries.
2638
2639@cindex user mode (ColdFire)
2640@cindex user mode (M68K)
2641@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2642(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2643coldfire uClinux bFLT format binaries.
2644
2645The binary format is detected automatically.
2646
2647@cindex user mode (Cris)
2648@command{qemu-cris} TODO.
2649
2650@cindex user mode (i386)
2651@command{qemu-i386} TODO.
2652@command{qemu-x86_64} TODO.
2653
2654@cindex user mode (Microblaze)
2655@command{qemu-microblaze} TODO.
2656
2657@cindex user mode (MIPS)
2658@command{qemu-mips} TODO.
2659@command{qemu-mipsel} TODO.
2660
2661@cindex user mode (NiosII)
2662@command{qemu-nios2} TODO.
2663
2664@cindex user mode (PowerPC)
2665@command{qemu-ppc64abi32} TODO.
2666@command{qemu-ppc64} TODO.
2667@command{qemu-ppc} TODO.
2668
2669@cindex user mode (SH4)
2670@command{qemu-sh4eb} TODO.
2671@command{qemu-sh4} TODO.
2672
2673@cindex user mode (SPARC)
2674@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2675
2676@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2677(Sparc64 CPU, 32 bit ABI).
2678
2679@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2680SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2681
2682@node BSD User space emulator
2683@section BSD User space emulator
2684
2685@menu
2686* BSD Status::
2687* BSD Quick Start::
2688* BSD Command line options::
2689@end menu
2690
2691@node BSD Status
2692@subsection BSD Status
2693
2694@itemize @minus
2695@item
2696target Sparc64 on Sparc64: Some trivial programs work.
2697@end itemize
2698
2699@node BSD Quick Start
2700@subsection Quick Start
2701
2702In order to launch a BSD process, QEMU needs the process executable
2703itself and all the target dynamic libraries used by it.
2704
2705@itemize
2706
2707@item On Sparc64, you can just try to launch any process by using the native
2708libraries:
2709
2710@example
2711qemu-sparc64 /bin/ls
2712@end example
2713
2714@end itemize
2715
2716@node BSD Command line options
2717@subsection Command line options
2718
2719@example
2720@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2721@end example
2722
2723@table @option
2724@item -h
2725Print the help
2726@item -L path
2727Set the library root path (default=/)
2728@item -s size
2729Set the stack size in bytes (default=524288)
2730@item -ignore-environment
2731Start with an empty environment. Without this option,
2732the initial environment is a copy of the caller's environment.
2733@item -E @var{var}=@var{value}
2734Set environment @var{var} to @var{value}.
2735@item -U @var{var}
2736Remove @var{var} from the environment.
2737@item -bsd type
2738Set the type of the emulated BSD Operating system. Valid values are
2739FreeBSD, NetBSD and OpenBSD (default).
2740@end table
2741
2742Debug options:
2743
2744@table @option
2745@item -d item1,...
2746Activate logging of the specified items (use '-d help' for a list of log items)
2747@item -p pagesize
2748Act as if the host page size was 'pagesize' bytes
2749@item -singlestep
2750Run the emulation in single step mode.
2751@end table
2752
2753
2754@include qemu-tech.texi
2755
2756@node Deprecated features
2757@appendix Deprecated features
2758
2759In general features are intended to be supported indefinitely once
2760introduced into QEMU. In the event that a feature needs to be removed,
2761it will be listed in this appendix. The feature will remain functional
2762for 2 releases prior to actual removal. Deprecated features may also
2763generate warnings on the console when QEMU starts up, or if activated
2764via a monitor command, however, this is not a mandatory requirement.
2765
2766Prior to the 2.10.0 release there was no official policy on how
2767long features would be deprecated prior to their removal, nor
2768any documented list of which features were deprecated. Thus
2769any features deprecated prior to 2.10.0 will be treated as if
2770they were first deprecated in the 2.10.0 release.
2771
2772What follows is a list of all features currently marked as
2773deprecated.
2774
2775@section Build options
2776
2777@subsection GTK 2.x
2778
2779Previously QEMU has supported building against both GTK 2.x
2780and 3.x series APIs. Support for the GTK 2.x builds will be
2781discontinued, so maintainers should switch to using GTK 3.x,
2782which is the default.
2783
2784@subsection SDL 1.2
2785
2786Previously QEMU has supported building against both SDL 1.2
2787and 2.0 series APIs. Support for the SDL 1.2 builds will be
2788discontinued, so maintainers should switch to using SDL 2.0,
2789which is the default.
2790
2791@section System emulator command line arguments
2792
2793@subsection -no-kvm-pit-reinjection (since 1.3.0)
2794
2795The ``-no-kvm-pit-reinjection'' argument is now a
2796synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2797
2798@subsection -no-kvm-irqchip (since 1.3.0)
2799
2800The ``-no-kvm-irqchip'' argument is now a synonym for
2801setting ``-machine kernel_irqchip=off''.
2802
2803@subsection -no-kvm (since 1.3.0)
2804
2805The ``-no-kvm'' argument is now a synonym for setting
2806``-machine accel=tcg''.
2807
2808@subsection -vnc tls (since 2.5.0)
2809
2810The ``-vnc tls'' argument is now a synonym for setting
2811``-object tls-creds-anon,id=tls0'' combined with
2812``-vnc tls-creds=tls0'
2813
2814@subsection -vnc x509 (since 2.5.0)
2815
2816The ``-vnc x509=/path/to/certs'' argument is now a
2817synonym for setting
2818``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2819combined with ``-vnc tls-creds=tls0'
2820
2821@subsection -vnc x509verify (since 2.5.0)
2822
2823The ``-vnc x509verify=/path/to/certs'' argument is now a
2824synonym for setting
2825``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2826combined with ``-vnc tls-creds=tls0'
2827
2828@subsection -tftp (since 2.6.0)
2829
2830The ``-tftp /some/dir'' argument is replaced by either
2831``-netdev user,id=x,tftp=/some/dir '' (for pluggable NICs, accompanied
2832with ``-device ...,netdev=x''), or ``-nic user,tftp=/some/dir''
2833(for embedded NICs). The new syntax allows different settings to be
2834provided per NIC.
2835
2836@subsection -bootp (since 2.6.0)
2837
2838The ``-bootp /some/file'' argument is replaced by either
2839``-netdev user,id=x,bootp=/some/file '' (for pluggable NICs, accompanied
2840with ``-device ...,netdev=x''), or ``-nic user,bootp=/some/file''
2841(for embedded NICs). The new syntax allows different settings to be
2842provided per NIC.
2843
2844@subsection -redir (since 2.6.0)
2845
2846The ``-redir [tcp|udp]:hostport:[guestaddr]:guestport'' argument is
2847replaced by either
2848``-netdev user,id=x,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2849(for pluggable NICs, accompanied with ``-device ...,netdev=x'') or
2850``-nic user,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2851(for embedded NICs). The new syntax allows different settings to be
2852provided per NIC.
2853
2854@subsection -smb (since 2.6.0)
2855
2856The ``-smb /some/dir'' argument is replaced by either
2857``-netdev user,id=x,smb=/some/dir '' (for pluggable NICs, accompanied
2858with ``-device ...,netdev=x''), or ``-nic user,smb=/some/dir''
2859(for embedded NICs). The new syntax allows different settings to be
2860provided per NIC.
2861
2862@subsection -drive cyls=...,heads=...,secs=...,trans=... (since 2.10.0)
2863
2864The drive geometry arguments are replaced by the the geometry arguments
2865that can be specified with the ``-device'' parameter.
2866
2867@subsection -drive serial=... (since 2.10.0)
2868
2869The drive serial argument is replaced by the the serial argument
2870that can be specified with the ``-device'' parameter.
2871
2872@subsection -drive addr=... (since 2.10.0)
2873
2874The drive addr argument is replaced by the the addr argument
2875that can be specified with the ``-device'' parameter.
2876
2877@subsection -usbdevice (since 2.10.0)
2878
2879The ``-usbdevice DEV'' argument is now a synonym for setting
2880the ``-device usb-DEV'' argument instead. The deprecated syntax
2881would automatically enable USB support on the machine type.
2882If using the new syntax, USB support must be explicitly
2883enabled via the ``-machine usb=on'' argument.
2884
2885@subsection -nodefconfig (since 2.11.0)
2886
2887The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2888
2889@subsection -balloon (since 2.12.0)
2890
2891The @option{--balloon virtio} argument has been superseded by
2892@option{--device virtio-balloon}.
2893
2894@subsection -machine s390-squash-mcss=on|off (since 2.12.0)
2895
2896The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
2897cssid to be chosen freely. Instead of squashing subchannels into the
2898default channel subsystem image for guests that do not support multiple
2899channel subsystems, all devices can be put into the default channel
2900subsystem image.
2901
2902@subsection -fsdev handle (since 2.12.0)
2903
2904The ``handle'' fsdev backend does not support symlinks and causes the 9p
2905filesystem in the guest to fail a fair amount of tests from the PJD POSIX
2906filesystem test suite. Also it requires the CAP_DAC_READ_SEARCH capability,
2907which is not the recommended way to run QEMU. This backend should not be
2908used and it will be removed with no replacement.
2909
2910@subsection -no-frame (since 2.12.0)
2911
2912The @code{--no-frame} argument works with SDL 1.2 only. The other user
2913interfaces never implemented this in the first place. So this will be
2914removed together with SDL 1.2 support.
2915
2916@subsection -rtc-td-hack (since 2.12.0)
2917
2918The @code{-rtc-td-hack} option has been replaced by
2919@code{-rtc driftfix=slew}.
2920
2921@subsection -localtime (since 2.12.0)
2922
2923The @code{-localtime} option has been replaced by @code{-rtc base=localtime}.
2924
2925@subsection -startdate (since 2.12.0)
2926
2927The @code{-startdate} option has been replaced by @code{-rtc base=@var{date}}.
2928
2929@section qemu-img command line arguments
2930
2931@subsection convert -s (since 2.0.0)
2932
2933The ``convert -s snapshot_id_or_name'' argument is obsoleted
2934by the ``convert -l snapshot_param'' argument instead.
2935
2936@section QEMU Machine Protocol (QMP) commands
2937
2938@subsection block-dirty-bitmap-add "autoload" parameter (since 2.12.0)
2939
2940"autoload" parameter is now ignored. All bitmaps are automatically loaded
2941from qcow2 images.
2942
2943@subsection query-cpus (since 2.12.0)
2944
2945The ``query-cpus'' command is replaced by the ``query-cpus-fast'' command.
2946
2947@subsection query-cpus-fast "arch" output member (since 2.13.0)
2948
2949The ``arch'' output member of the ``query-cpus-fast'' command is
2950replaced by the ``target'' output member.
2951
2952@section System emulator devices
2953
2954@subsection ivshmem (since 2.6.0)
2955
2956The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2957or ``ivshmem-doorbell`` device types.
2958
2959@subsection Page size support < 4k for embedded PowerPC CPUs (since 2.12.0)
2960
2961qemu-system-ppcemb will be removed. qemu-system-ppc (or qemu-system-ppc64)
2962should be used instead. That means that embedded 4xx PowerPC CPUs will not
2963support page sizes < 4096 any longer.
2964
2965@section System emulator machines
2966
2967@subsection Xilinx EP108 (since 2.11.0)
2968
2969The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2970The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2971
2972@section Block device options
2973
2974@subsection "backing": "" (since 2.12.0)
2975
2976In order to prevent QEMU from automatically opening an image's backing
2977chain, use ``"backing": null'' instead.
2978
2979@node License
2980@appendix License
2981
2982QEMU is a trademark of Fabrice Bellard.
2983
2984QEMU is released under the
2985@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2986version 2. Parts of QEMU have specific licenses, see file
2987@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2988
2989@node Index
2990@appendix Index
2991@menu
2992* Concept Index::
2993* Function Index::
2994* Keystroke Index::
2995* Program Index::
2996* Data Type Index::
2997* Variable Index::
2998@end menu
2999
3000@node Concept Index
3001@section Concept Index
3002This is the main index. Should we combine all keywords in one index? TODO
3003@printindex cp
3004
3005@node Function Index
3006@section Function Index
3007This index could be used for command line options and monitor functions.
3008@printindex fn
3009
3010@node Keystroke Index
3011@section Keystroke Index
3012
3013This is a list of all keystrokes which have a special function
3014in system emulation.
3015
3016@printindex ky
3017
3018@node Program Index
3019@section Program Index
3020@printindex pg
3021
3022@node Data Type Index
3023@section Data Type Index
3024
3025This index could be used for qdev device names and options.
3026
3027@printindex tp
3028
3029@node Variable Index
3030@section Variable Index
3031@printindex vr
3032
3033@bye