]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qemu-doc.texi
Shuffle code to avoid NetBSD gcc 3.4.6 inlining bug (Rumko)
[mirror_qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4@settitle QEMU Emulator User Documentation
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
8
9@iftex
10@titlepage
11@sp 7
12@center @titlefont{QEMU Emulator}
13@sp 1
14@center @titlefont{User Documentation}
15@sp 3
16@end titlepage
17@end iftex
18
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
28* QEMU User space emulator::
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
37@chapter Introduction
38
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
44@section Features
45
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
48
49QEMU has two operating modes:
50
51@itemize @minus
52
53@item
54Full system emulation. In this mode, QEMU emulates a full system (for
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
58
59@item
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
64
65@end itemize
66
67QEMU can run without an host kernel driver and yet gives acceptable
68performance.
69
70For system emulation, the following hardware targets are supported:
71@itemize
72@item PC (x86 or x86_64 processor)
73@item ISA PC (old style PC without PCI bus)
74@item PREP (PowerPC processor)
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78@item Sun4u (64-bit Sparc processor, in progress)
79@item Malta board (32-bit and 64-bit MIPS processors)
80@item ARM Integrator/CP (ARM)
81@item ARM Versatile baseboard (ARM)
82@item ARM RealView Emulation baseboard (ARM)
83@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86@item Freescale MCF5208EVB (ColdFire V2).
87@item Arnewsh MCF5206 evaluation board (ColdFire V2).
88@item Palm Tungsten|E PDA (OMAP310 processor)
89@end itemize
90
91For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92
93@node Installation
94@chapter Installation
95
96If you want to compile QEMU yourself, see @ref{compilation}.
97
98@menu
99* install_linux:: Linux
100* install_windows:: Windows
101* install_mac:: Macintosh
102@end menu
103
104@node install_linux
105@section Linux
106
107If a precompiled package is available for your distribution - you just
108have to install it. Otherwise, see @ref{compilation}.
109
110@node install_windows
111@section Windows
112
113Download the experimental binary installer at
114@url{http://www.free.oszoo.org/@/download.html}.
115
116@node install_mac
117@section Mac OS X
118
119Download the experimental binary installer at
120@url{http://www.free.oszoo.org/@/download.html}.
121
122@node QEMU PC System emulator
123@chapter QEMU PC System emulator
124
125@menu
126* pcsys_introduction:: Introduction
127* pcsys_quickstart:: Quick Start
128* sec_invocation:: Invocation
129* pcsys_keys:: Keys
130* pcsys_monitor:: QEMU Monitor
131* disk_images:: Disk Images
132* pcsys_network:: Network emulation
133* direct_linux_boot:: Direct Linux Boot
134* pcsys_usb:: USB emulation
135* vnc_security:: VNC security
136* gdb_usage:: GDB usage
137* pcsys_os_specific:: Target OS specific information
138@end menu
139
140@node pcsys_introduction
141@section Introduction
142
143@c man begin DESCRIPTION
144
145The QEMU PC System emulator simulates the
146following peripherals:
147
148@itemize @minus
149@item
150i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151@item
152Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153extensions (hardware level, including all non standard modes).
154@item
155PS/2 mouse and keyboard
156@item
1572 PCI IDE interfaces with hard disk and CD-ROM support
158@item
159Floppy disk
160@item
161PCI/ISA PCI network adapters
162@item
163Serial ports
164@item
165Creative SoundBlaster 16 sound card
166@item
167ENSONIQ AudioPCI ES1370 sound card
168@item
169Intel 82801AA AC97 Audio compatible sound card
170@item
171Adlib(OPL2) - Yamaha YM3812 compatible chip
172@item
173PCI UHCI USB controller and a virtual USB hub.
174@end itemize
175
176SMP is supported with up to 255 CPUs.
177
178Note that adlib, ac97 and gus are only available when QEMU was configured
179with --enable-adlib, --enable-ac97 or --enable-gus respectively.
180
181QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
182VGA BIOS.
183
184QEMU uses YM3812 emulation by Tatsuyuki Satoh.
185
186QEMU uses GUS emulation(GUSEMU32) by Tibor "TS" Schütz.
187
188@c man end
189
190@node pcsys_quickstart
191@section Quick Start
192
193Download and uncompress the linux image (@file{linux.img}) and type:
194
195@example
196qemu linux.img
197@end example
198
199Linux should boot and give you a prompt.
200
201@node sec_invocation
202@section Invocation
203
204@example
205@c man begin SYNOPSIS
206usage: qemu [options] [@var{disk_image}]
207@c man end
208@end example
209
210@c man begin OPTIONS
211@var{disk_image} is a raw hard disk image for IDE hard disk 0.
212
213General options:
214@table @option
215@item -M @var{machine}
216Select the emulated @var{machine} (@code{-M ?} for list)
217
218@item -fda @var{file}
219@item -fdb @var{file}
220Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
221use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
222
223@item -hda @var{file}
224@item -hdb @var{file}
225@item -hdc @var{file}
226@item -hdd @var{file}
227Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
228
229@item -cdrom @var{file}
230Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
231@option{-cdrom} at the same time). You can use the host CD-ROM by
232using @file{/dev/cdrom} as filename (@pxref{host_drives}).
233
234@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
235
236Define a new drive. Valid options are:
237
238@table @code
239@item file=@var{file}
240This option defines which disk image (@pxref{disk_images}) to use with
241this drive. If the filename contains comma, you must double it
242(for instance, "file=my,,file" to use file "my,file").
243@item if=@var{interface}
244This option defines on which type on interface the drive is connected.
245Available types are: ide, scsi, sd, mtd, floppy, pflash.
246@item bus=@var{bus},unit=@var{unit}
247These options define where is connected the drive by defining the bus number and
248the unit id.
249@item index=@var{index}
250This option defines where is connected the drive by using an index in the list
251of available connectors of a given interface type.
252@item media=@var{media}
253This option defines the type of the media: disk or cdrom.
254@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
255These options have the same definition as they have in @option{-hdachs}.
256@item snapshot=@var{snapshot}
257@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
258@item cache=@var{cache}
259@var{cache} is "on" or "off" and allows to disable host cache to access data.
260@end table
261
262Instead of @option{-cdrom} you can use:
263@example
264qemu -drive file=file,index=2,media=cdrom
265@end example
266
267Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
268use:
269@example
270qemu -drive file=file,index=0,media=disk
271qemu -drive file=file,index=1,media=disk
272qemu -drive file=file,index=2,media=disk
273qemu -drive file=file,index=3,media=disk
274@end example
275
276You can connect a CDROM to the slave of ide0:
277@example
278qemu -drive file=file,if=ide,index=1,media=cdrom
279@end example
280
281If you don't specify the "file=" argument, you define an empty drive:
282@example
283qemu -drive if=ide,index=1,media=cdrom
284@end example
285
286You can connect a SCSI disk with unit ID 6 on the bus #0:
287@example
288qemu -drive file=file,if=scsi,bus=0,unit=6
289@end example
290
291Instead of @option{-fda}, @option{-fdb}, you can use:
292@example
293qemu -drive file=file,index=0,if=floppy
294qemu -drive file=file,index=1,if=floppy
295@end example
296
297By default, @var{interface} is "ide" and @var{index} is automatically
298incremented:
299@example
300qemu -drive file=a -drive file=b"
301@end example
302is interpreted like:
303@example
304qemu -hda a -hdb b
305@end example
306
307@item -boot [a|c|d|n]
308Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
309is the default.
310
311@item -snapshot
312Write to temporary files instead of disk image files. In this case,
313the raw disk image you use is not written back. You can however force
314the write back by pressing @key{C-a s} (@pxref{disk_images}).
315
316@item -no-fd-bootchk
317Disable boot signature checking for floppy disks in Bochs BIOS. It may
318be needed to boot from old floppy disks.
319
320@item -m @var{megs}
321Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
322
323@item -smp @var{n}
324Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
325CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
326to 4.
327
328@item -audio-help
329
330Will show the audio subsystem help: list of drivers, tunable
331parameters.
332
333@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
334
335Enable audio and selected sound hardware. Use ? to print all
336available sound hardware.
337
338@example
339qemu -soundhw sb16,adlib hda
340qemu -soundhw es1370 hda
341qemu -soundhw ac97 hda
342qemu -soundhw all hda
343qemu -soundhw ?
344@end example
345
346Note that Linux's i810_audio OSS kernel (for AC97) module might
347require manually specifying clocking.
348
349@example
350modprobe i810_audio clocking=48000
351@end example
352
353@item -localtime
354Set the real time clock to local time (the default is to UTC
355time). This option is needed to have correct date in MS-DOS or
356Windows.
357
358@item -startdate @var{date}
359Set the initial date of the real time clock. Valid format for
360@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
361@code{2006-06-17}. The default value is @code{now}.
362
363@item -pidfile @var{file}
364Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
365from a script.
366
367@item -daemonize
368Daemonize the QEMU process after initialization. QEMU will not detach from
369standard IO until it is ready to receive connections on any of its devices.
370This option is a useful way for external programs to launch QEMU without having
371to cope with initialization race conditions.
372
373@item -win2k-hack
374Use it when installing Windows 2000 to avoid a disk full bug. After
375Windows 2000 is installed, you no longer need this option (this option
376slows down the IDE transfers).
377
378@item -option-rom @var{file}
379Load the contents of @var{file} as an option ROM.
380This option is useful to load things like EtherBoot.
381
382@item -name @var{name}
383Sets the @var{name} of the guest.
384This name will be display in the SDL window caption.
385The @var{name} will also be used for the VNC server.
386
387@end table
388
389Display options:
390@table @option
391
392@item -nographic
393
394Normally, QEMU uses SDL to display the VGA output. With this option,
395you can totally disable graphical output so that QEMU is a simple
396command line application. The emulated serial port is redirected on
397the console. Therefore, you can still use QEMU to debug a Linux kernel
398with a serial console.
399
400@item -no-frame
401
402Do not use decorations for SDL windows and start them using the whole
403available screen space. This makes the using QEMU in a dedicated desktop
404workspace more convenient.
405
406@item -full-screen
407Start in full screen.
408
409@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
410
411Normally, QEMU uses SDL to display the VGA output. With this option,
412you can have QEMU listen on VNC display @var{display} and redirect the VGA
413display over the VNC session. It is very useful to enable the usb
414tablet device when using this option (option @option{-usbdevice
415tablet}). When using the VNC display, you must use the @option{-k}
416parameter to set the keyboard layout if you are not using en-us. Valid
417syntax for the @var{display} is
418
419@table @code
420
421@item @var{interface}:@var{d}
422
423TCP connections will only be allowed from @var{interface} on display @var{d}.
424By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
425be omitted in which case the server will bind to all interfaces.
426
427@item @var{unix}:@var{path}
428
429Connections will be allowed over UNIX domain sockets where @var{path} is the
430location of a unix socket to listen for connections on.
431
432@item none
433
434VNC is initialized by not started. The monitor @code{change} command can be used
435to later start the VNC server.
436
437@end table
438
439Following the @var{display} value there may be one or more @var{option} flags
440separated by commas. Valid options are
441
442@table @code
443
444@item password
445
446Require that password based authentication is used for client connections.
447The password must be set separately using the @code{change} command in the
448@ref{pcsys_monitor}
449
450@item tls
451
452Require that client use TLS when communicating with the VNC server. This
453uses anonymous TLS credentials so is susceptible to a man-in-the-middle
454attack. It is recommended that this option be combined with either the
455@var{x509} or @var{x509verify} options.
456
457@item x509=@var{/path/to/certificate/dir}
458
459Valid if @option{tls} is specified. Require that x509 credentials are used
460for negotiating the TLS session. The server will send its x509 certificate
461to the client. It is recommended that a password be set on the VNC server
462to provide authentication of the client when this is used. The path following
463this option specifies where the x509 certificates are to be loaded from.
464See the @ref{vnc_security} section for details on generating certificates.
465
466@item x509verify=@var{/path/to/certificate/dir}
467
468Valid if @option{tls} is specified. Require that x509 credentials are used
469for negotiating the TLS session. The server will send its x509 certificate
470to the client, and request that the client send its own x509 certificate.
471The server will validate the client's certificate against the CA certificate,
472and reject clients when validation fails. If the certificate authority is
473trusted, this is a sufficient authentication mechanism. You may still wish
474to set a password on the VNC server as a second authentication layer. The
475path following this option specifies where the x509 certificates are to
476be loaded from. See the @ref{vnc_security} section for details on generating
477certificates.
478
479@end table
480
481@item -k @var{language}
482
483Use keyboard layout @var{language} (for example @code{fr} for
484French). This option is only needed where it is not easy to get raw PC
485keycodes (e.g. on Macs, with some X11 servers or with a VNC
486display). You don't normally need to use it on PC/Linux or PC/Windows
487hosts.
488
489The available layouts are:
490@example
491ar de-ch es fo fr-ca hu ja mk no pt-br sv
492da en-gb et fr fr-ch is lt nl pl ru th
493de en-us fi fr-be hr it lv nl-be pt sl tr
494@end example
495
496The default is @code{en-us}.
497
498@end table
499
500USB options:
501@table @option
502
503@item -usb
504Enable the USB driver (will be the default soon)
505
506@item -usbdevice @var{devname}
507Add the USB device @var{devname}. @xref{usb_devices}.
508
509@table @code
510
511@item mouse
512Virtual Mouse. This will override the PS/2 mouse emulation when activated.
513
514@item tablet
515Pointer device that uses absolute coordinates (like a touchscreen). This
516means qemu is able to report the mouse position without having to grab the
517mouse. Also overrides the PS/2 mouse emulation when activated.
518
519@item disk:file
520Mass storage device based on file
521
522@item host:bus.addr
523Pass through the host device identified by bus.addr (Linux only).
524
525@item host:vendor_id:product_id
526Pass through the host device identified by vendor_id:product_id (Linux only).
527
528@end table
529
530@end table
531
532Network options:
533
534@table @option
535
536@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
537Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
538= 0 is the default). The NIC is an ne2k_pci by default on the PC
539target. Optionally, the MAC address can be changed. If no
540@option{-net} option is specified, a single NIC is created.
541Qemu can emulate several different models of network card.
542Valid values for @var{type} are
543@code{i82551}, @code{i82557b}, @code{i82559er},
544@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
545@code{smc91c111}, @code{lance} and @code{mcf_fec}.
546Not all devices are supported on all targets. Use -net nic,model=?
547for a list of available devices for your target.
548
549@item -net user[,vlan=@var{n}][,hostname=@var{name}]
550Use the user mode network stack which requires no administrator
551privilege to run. @option{hostname=name} can be used to specify the client
552hostname reported by the builtin DHCP server.
553
554@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
555Connect the host TAP network interface @var{name} to VLAN @var{n} and
556use the network script @var{file} to configure it. The default
557network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
558disable script execution. If @var{name} is not
559provided, the OS automatically provides one. @option{fd}=@var{h} can be
560used to specify the handle of an already opened host TAP interface. Example:
561
562@example
563qemu linux.img -net nic -net tap
564@end example
565
566More complicated example (two NICs, each one connected to a TAP device)
567@example
568qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
569 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
570@end example
571
572
573@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
574
575Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
576machine using a TCP socket connection. If @option{listen} is
577specified, QEMU waits for incoming connections on @var{port}
578(@var{host} is optional). @option{connect} is used to connect to
579another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
580specifies an already opened TCP socket.
581
582Example:
583@example
584# launch a first QEMU instance
585qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
586 -net socket,listen=:1234
587# connect the VLAN 0 of this instance to the VLAN 0
588# of the first instance
589qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
590 -net socket,connect=127.0.0.1:1234
591@end example
592
593@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
594
595Create a VLAN @var{n} shared with another QEMU virtual
596machines using a UDP multicast socket, effectively making a bus for
597every QEMU with same multicast address @var{maddr} and @var{port}.
598NOTES:
599@enumerate
600@item
601Several QEMU can be running on different hosts and share same bus (assuming
602correct multicast setup for these hosts).
603@item
604mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
605@url{http://user-mode-linux.sf.net}.
606@item
607Use @option{fd=h} to specify an already opened UDP multicast socket.
608@end enumerate
609
610Example:
611@example
612# launch one QEMU instance
613qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
614 -net socket,mcast=230.0.0.1:1234
615# launch another QEMU instance on same "bus"
616qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
617 -net socket,mcast=230.0.0.1:1234
618# launch yet another QEMU instance on same "bus"
619qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
620 -net socket,mcast=230.0.0.1:1234
621@end example
622
623Example (User Mode Linux compat.):
624@example
625# launch QEMU instance (note mcast address selected
626# is UML's default)
627qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628 -net socket,mcast=239.192.168.1:1102
629# launch UML
630/path/to/linux ubd0=/path/to/root_fs eth0=mcast
631@end example
632
633@item -net none
634Indicate that no network devices should be configured. It is used to
635override the default configuration (@option{-net nic -net user}) which
636is activated if no @option{-net} options are provided.
637
638@item -tftp @var{dir}
639When using the user mode network stack, activate a built-in TFTP
640server. The files in @var{dir} will be exposed as the root of a TFTP server.
641The TFTP client on the guest must be configured in binary mode (use the command
642@code{bin} of the Unix TFTP client). The host IP address on the guest is as
643usual 10.0.2.2.
644
645@item -bootp @var{file}
646When using the user mode network stack, broadcast @var{file} as the BOOTP
647filename. In conjunction with @option{-tftp}, this can be used to network boot
648a guest from a local directory.
649
650Example (using pxelinux):
651@example
652qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
653@end example
654
655@item -smb @var{dir}
656When using the user mode network stack, activate a built-in SMB
657server so that Windows OSes can access to the host files in @file{@var{dir}}
658transparently.
659
660In the guest Windows OS, the line:
661@example
66210.0.2.4 smbserver
663@end example
664must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
665or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
666
667Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
668
669Note that a SAMBA server must be installed on the host OS in
670@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6712.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
672
673@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
674
675When using the user mode network stack, redirect incoming TCP or UDP
676connections to the host port @var{host-port} to the guest
677@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
678is not specified, its value is 10.0.2.15 (default address given by the
679built-in DHCP server).
680
681For example, to redirect host X11 connection from screen 1 to guest
682screen 0, use the following:
683
684@example
685# on the host
686qemu -redir tcp:6001::6000 [...]
687# this host xterm should open in the guest X11 server
688xterm -display :1
689@end example
690
691To redirect telnet connections from host port 5555 to telnet port on
692the guest, use the following:
693
694@example
695# on the host
696qemu -redir tcp:5555::23 [...]
697telnet localhost 5555
698@end example
699
700Then when you use on the host @code{telnet localhost 5555}, you
701connect to the guest telnet server.
702
703@end table
704
705Linux boot specific: When using these options, you can use a given
706Linux kernel without installing it in the disk image. It can be useful
707for easier testing of various kernels.
708
709@table @option
710
711@item -kernel @var{bzImage}
712Use @var{bzImage} as kernel image.
713
714@item -append @var{cmdline}
715Use @var{cmdline} as kernel command line
716
717@item -initrd @var{file}
718Use @var{file} as initial ram disk.
719
720@end table
721
722Debug/Expert options:
723@table @option
724
725@item -serial @var{dev}
726Redirect the virtual serial port to host character device
727@var{dev}. The default device is @code{vc} in graphical mode and
728@code{stdio} in non graphical mode.
729
730This option can be used several times to simulate up to 4 serials
731ports.
732
733Use @code{-serial none} to disable all serial ports.
734
735Available character devices are:
736@table @code
737@item vc[:WxH]
738Virtual console. Optionally, a width and height can be given in pixel with
739@example
740vc:800x600
741@end example
742It is also possible to specify width or height in characters:
743@example
744vc:80Cx24C
745@end example
746@item pty
747[Linux only] Pseudo TTY (a new PTY is automatically allocated)
748@item none
749No device is allocated.
750@item null
751void device
752@item /dev/XXX
753[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
754parameters are set according to the emulated ones.
755@item /dev/parport@var{N}
756[Linux only, parallel port only] Use host parallel port
757@var{N}. Currently SPP and EPP parallel port features can be used.
758@item file:@var{filename}
759Write output to @var{filename}. No character can be read.
760@item stdio
761[Unix only] standard input/output
762@item pipe:@var{filename}
763name pipe @var{filename}
764@item COM@var{n}
765[Windows only] Use host serial port @var{n}
766@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
767This implements UDP Net Console.
768When @var{remote_host} or @var{src_ip} are not specified
769they default to @code{0.0.0.0}.
770When not using a specified @var{src_port} a random port is automatically chosen.
771
772If you just want a simple readonly console you can use @code{netcat} or
773@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
774@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
775will appear in the netconsole session.
776
777If you plan to send characters back via netconsole or you want to stop
778and start qemu a lot of times, you should have qemu use the same
779source port each time by using something like @code{-serial
780udp::4555@@:4556} to qemu. Another approach is to use a patched
781version of netcat which can listen to a TCP port and send and receive
782characters via udp. If you have a patched version of netcat which
783activates telnet remote echo and single char transfer, then you can
784use the following options to step up a netcat redirector to allow
785telnet on port 5555 to access the qemu port.
786@table @code
787@item Qemu Options:
788-serial udp::4555@@:4556
789@item netcat options:
790-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
791@item telnet options:
792localhost 5555
793@end table
794
795
796@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
797The TCP Net Console has two modes of operation. It can send the serial
798I/O to a location or wait for a connection from a location. By default
799the TCP Net Console is sent to @var{host} at the @var{port}. If you use
800the @var{server} option QEMU will wait for a client socket application
801to connect to the port before continuing, unless the @code{nowait}
802option was specified. The @code{nodelay} option disables the Nagle buffering
803algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
804one TCP connection at a time is accepted. You can use @code{telnet} to
805connect to the corresponding character device.
806@table @code
807@item Example to send tcp console to 192.168.0.2 port 4444
808-serial tcp:192.168.0.2:4444
809@item Example to listen and wait on port 4444 for connection
810-serial tcp::4444,server
811@item Example to not wait and listen on ip 192.168.0.100 port 4444
812-serial tcp:192.168.0.100:4444,server,nowait
813@end table
814
815@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
816The telnet protocol is used instead of raw tcp sockets. The options
817work the same as if you had specified @code{-serial tcp}. The
818difference is that the port acts like a telnet server or client using
819telnet option negotiation. This will also allow you to send the
820MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
821sequence. Typically in unix telnet you do it with Control-] and then
822type "send break" followed by pressing the enter key.
823
824@item unix:@var{path}[,server][,nowait]
825A unix domain socket is used instead of a tcp socket. The option works the
826same as if you had specified @code{-serial tcp} except the unix domain socket
827@var{path} is used for connections.
828
829@item mon:@var{dev_string}
830This is a special option to allow the monitor to be multiplexed onto
831another serial port. The monitor is accessed with key sequence of
832@key{Control-a} and then pressing @key{c}. See monitor access
833@ref{pcsys_keys} in the -nographic section for more keys.
834@var{dev_string} should be any one of the serial devices specified
835above. An example to multiplex the monitor onto a telnet server
836listening on port 4444 would be:
837@table @code
838@item -serial mon:telnet::4444,server,nowait
839@end table
840
841@end table
842
843@item -parallel @var{dev}
844Redirect the virtual parallel port to host device @var{dev} (same
845devices as the serial port). On Linux hosts, @file{/dev/parportN} can
846be used to use hardware devices connected on the corresponding host
847parallel port.
848
849This option can be used several times to simulate up to 3 parallel
850ports.
851
852Use @code{-parallel none} to disable all parallel ports.
853
854@item -monitor @var{dev}
855Redirect the monitor to host device @var{dev} (same devices as the
856serial port).
857The default device is @code{vc} in graphical mode and @code{stdio} in
858non graphical mode.
859
860@item -echr numeric_ascii_value
861Change the escape character used for switching to the monitor when using
862monitor and serial sharing. The default is @code{0x01} when using the
863@code{-nographic} option. @code{0x01} is equal to pressing
864@code{Control-a}. You can select a different character from the ascii
865control keys where 1 through 26 map to Control-a through Control-z. For
866instance you could use the either of the following to change the escape
867character to Control-t.
868@table @code
869@item -echr 0x14
870@item -echr 20
871@end table
872
873@item -s
874Wait gdb connection to port 1234 (@pxref{gdb_usage}).
875@item -p @var{port}
876Change gdb connection port. @var{port} can be either a decimal number
877to specify a TCP port, or a host device (same devices as the serial port).
878@item -S
879Do not start CPU at startup (you must type 'c' in the monitor).
880@item -d
881Output log in /tmp/qemu.log
882@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
883Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
884@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
885translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
886all those parameters. This option is useful for old MS-DOS disk
887images.
888
889@item -L path
890Set the directory for the BIOS, VGA BIOS and keymaps.
891
892@item -std-vga
893Simulate a standard VGA card with Bochs VBE extensions (default is
894Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
895VBE extensions (e.g. Windows XP) and if you want to use high
896resolution modes (>= 1280x1024x16) then you should use this option.
897
898@item -no-acpi
899Disable ACPI (Advanced Configuration and Power Interface) support. Use
900it if your guest OS complains about ACPI problems (PC target machine
901only).
902
903@item -no-reboot
904Exit instead of rebooting.
905
906@item -loadvm file
907Start right away with a saved state (@code{loadvm} in monitor)
908
909@item -semihosting
910Enable semihosting syscall emulation (ARM and M68K target machines only).
911
912On ARM this implements the "Angel" interface.
913On M68K this implements the "ColdFire GDB" interface used by libgloss.
914
915Note that this allows guest direct access to the host filesystem,
916so should only be used with trusted guest OS.
917@end table
918
919@c man end
920
921@node pcsys_keys
922@section Keys
923
924@c man begin OPTIONS
925
926During the graphical emulation, you can use the following keys:
927@table @key
928@item Ctrl-Alt-f
929Toggle full screen
930
931@item Ctrl-Alt-n
932Switch to virtual console 'n'. Standard console mappings are:
933@table @emph
934@item 1
935Target system display
936@item 2
937Monitor
938@item 3
939Serial port
940@end table
941
942@item Ctrl-Alt
943Toggle mouse and keyboard grab.
944@end table
945
946In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
947@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
948
949During emulation, if you are using the @option{-nographic} option, use
950@key{Ctrl-a h} to get terminal commands:
951
952@table @key
953@item Ctrl-a h
954Print this help
955@item Ctrl-a x
956Exit emulator
957@item Ctrl-a s
958Save disk data back to file (if -snapshot)
959@item Ctrl-a t
960toggle console timestamps
961@item Ctrl-a b
962Send break (magic sysrq in Linux)
963@item Ctrl-a c
964Switch between console and monitor
965@item Ctrl-a Ctrl-a
966Send Ctrl-a
967@end table
968@c man end
969
970@ignore
971
972@c man begin SEEALSO
973The HTML documentation of QEMU for more precise information and Linux
974user mode emulator invocation.
975@c man end
976
977@c man begin AUTHOR
978Fabrice Bellard
979@c man end
980
981@end ignore
982
983@node pcsys_monitor
984@section QEMU Monitor
985
986The QEMU monitor is used to give complex commands to the QEMU
987emulator. You can use it to:
988
989@itemize @minus
990
991@item
992Remove or insert removable media images
993(such as CD-ROM or floppies).
994
995@item
996Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
997from a disk file.
998
999@item Inspect the VM state without an external debugger.
1000
1001@end itemize
1002
1003@subsection Commands
1004
1005The following commands are available:
1006
1007@table @option
1008
1009@item help or ? [@var{cmd}]
1010Show the help for all commands or just for command @var{cmd}.
1011
1012@item commit
1013Commit changes to the disk images (if -snapshot is used).
1014
1015@item info @var{subcommand}
1016Show various information about the system state.
1017
1018@table @option
1019@item info network
1020show the various VLANs and the associated devices
1021@item info block
1022show the block devices
1023@item info registers
1024show the cpu registers
1025@item info history
1026show the command line history
1027@item info pci
1028show emulated PCI device
1029@item info usb
1030show USB devices plugged on the virtual USB hub
1031@item info usbhost
1032show all USB host devices
1033@item info capture
1034show information about active capturing
1035@item info snapshots
1036show list of VM snapshots
1037@item info mice
1038show which guest mouse is receiving events
1039@end table
1040
1041@item q or quit
1042Quit the emulator.
1043
1044@item eject [-f] @var{device}
1045Eject a removable medium (use -f to force it).
1046
1047@item change @var{device} @var{setting}
1048
1049Change the configuration of a device.
1050
1051@table @option
1052@item change @var{diskdevice} @var{filename}
1053Change the medium for a removable disk device to point to @var{filename}. eg
1054
1055@example
1056(qemu) change cdrom /path/to/some.iso
1057@end example
1058
1059@item change vnc @var{display},@var{options}
1060Change the configuration of the VNC server. The valid syntax for @var{display}
1061and @var{options} are described at @ref{sec_invocation}. eg
1062
1063@example
1064(qemu) change vnc localhost:1
1065@end example
1066
1067@item change vnc password
1068
1069Change the password associated with the VNC server. The monitor will prompt for
1070the new password to be entered. VNC passwords are only significant upto 8 letters.
1071eg.
1072
1073@example
1074(qemu) change vnc password
1075Password: ********
1076@end example
1077
1078@end table
1079
1080@item screendump @var{filename}
1081Save screen into PPM image @var{filename}.
1082
1083@item mouse_move @var{dx} @var{dy} [@var{dz}]
1084Move the active mouse to the specified coordinates @var{dx} @var{dy}
1085with optional scroll axis @var{dz}.
1086
1087@item mouse_button @var{val}
1088Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1089
1090@item mouse_set @var{index}
1091Set which mouse device receives events at given @var{index}, index
1092can be obtained with
1093@example
1094info mice
1095@end example
1096
1097@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1098Capture audio into @var{filename}. Using sample rate @var{frequency}
1099bits per sample @var{bits} and number of channels @var{channels}.
1100
1101Defaults:
1102@itemize @minus
1103@item Sample rate = 44100 Hz - CD quality
1104@item Bits = 16
1105@item Number of channels = 2 - Stereo
1106@end itemize
1107
1108@item stopcapture @var{index}
1109Stop capture with a given @var{index}, index can be obtained with
1110@example
1111info capture
1112@end example
1113
1114@item log @var{item1}[,...]
1115Activate logging of the specified items to @file{/tmp/qemu.log}.
1116
1117@item savevm [@var{tag}|@var{id}]
1118Create a snapshot of the whole virtual machine. If @var{tag} is
1119provided, it is used as human readable identifier. If there is already
1120a snapshot with the same tag or ID, it is replaced. More info at
1121@ref{vm_snapshots}.
1122
1123@item loadvm @var{tag}|@var{id}
1124Set the whole virtual machine to the snapshot identified by the tag
1125@var{tag} or the unique snapshot ID @var{id}.
1126
1127@item delvm @var{tag}|@var{id}
1128Delete the snapshot identified by @var{tag} or @var{id}.
1129
1130@item stop
1131Stop emulation.
1132
1133@item c or cont
1134Resume emulation.
1135
1136@item gdbserver [@var{port}]
1137Start gdbserver session (default @var{port}=1234)
1138
1139@item x/fmt @var{addr}
1140Virtual memory dump starting at @var{addr}.
1141
1142@item xp /@var{fmt} @var{addr}
1143Physical memory dump starting at @var{addr}.
1144
1145@var{fmt} is a format which tells the command how to format the
1146data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1147
1148@table @var
1149@item count
1150is the number of items to be dumped.
1151
1152@item format
1153can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1154c (char) or i (asm instruction).
1155
1156@item size
1157can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1158@code{h} or @code{w} can be specified with the @code{i} format to
1159respectively select 16 or 32 bit code instruction size.
1160
1161@end table
1162
1163Examples:
1164@itemize
1165@item
1166Dump 10 instructions at the current instruction pointer:
1167@example
1168(qemu) x/10i $eip
11690x90107063: ret
11700x90107064: sti
11710x90107065: lea 0x0(%esi,1),%esi
11720x90107069: lea 0x0(%edi,1),%edi
11730x90107070: ret
11740x90107071: jmp 0x90107080
11750x90107073: nop
11760x90107074: nop
11770x90107075: nop
11780x90107076: nop
1179@end example
1180
1181@item
1182Dump 80 16 bit values at the start of the video memory.
1183@smallexample
1184(qemu) xp/80hx 0xb8000
11850x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
11860x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
11870x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
11880x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
11890x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
11900x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
11910x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
11920x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
11930x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
11940x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1195@end smallexample
1196@end itemize
1197
1198@item p or print/@var{fmt} @var{expr}
1199
1200Print expression value. Only the @var{format} part of @var{fmt} is
1201used.
1202
1203@item sendkey @var{keys}
1204
1205Send @var{keys} to the emulator. Use @code{-} to press several keys
1206simultaneously. Example:
1207@example
1208sendkey ctrl-alt-f1
1209@end example
1210
1211This command is useful to send keys that your graphical user interface
1212intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1213
1214@item system_reset
1215
1216Reset the system.
1217
1218@item usb_add @var{devname}
1219
1220Add the USB device @var{devname}. For details of available devices see
1221@ref{usb_devices}
1222
1223@item usb_del @var{devname}
1224
1225Remove the USB device @var{devname} from the QEMU virtual USB
1226hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1227command @code{info usb} to see the devices you can remove.
1228
1229@end table
1230
1231@subsection Integer expressions
1232
1233The monitor understands integers expressions for every integer
1234argument. You can use register names to get the value of specifics
1235CPU registers by prefixing them with @emph{$}.
1236
1237@node disk_images
1238@section Disk Images
1239
1240Since version 0.6.1, QEMU supports many disk image formats, including
1241growable disk images (their size increase as non empty sectors are
1242written), compressed and encrypted disk images. Version 0.8.3 added
1243the new qcow2 disk image format which is essential to support VM
1244snapshots.
1245
1246@menu
1247* disk_images_quickstart:: Quick start for disk image creation
1248* disk_images_snapshot_mode:: Snapshot mode
1249* vm_snapshots:: VM snapshots
1250* qemu_img_invocation:: qemu-img Invocation
1251* host_drives:: Using host drives
1252* disk_images_fat_images:: Virtual FAT disk images
1253@end menu
1254
1255@node disk_images_quickstart
1256@subsection Quick start for disk image creation
1257
1258You can create a disk image with the command:
1259@example
1260qemu-img create myimage.img mysize
1261@end example
1262where @var{myimage.img} is the disk image filename and @var{mysize} is its
1263size in kilobytes. You can add an @code{M} suffix to give the size in
1264megabytes and a @code{G} suffix for gigabytes.
1265
1266See @ref{qemu_img_invocation} for more information.
1267
1268@node disk_images_snapshot_mode
1269@subsection Snapshot mode
1270
1271If you use the option @option{-snapshot}, all disk images are
1272considered as read only. When sectors in written, they are written in
1273a temporary file created in @file{/tmp}. You can however force the
1274write back to the raw disk images by using the @code{commit} monitor
1275command (or @key{C-a s} in the serial console).
1276
1277@node vm_snapshots
1278@subsection VM snapshots
1279
1280VM snapshots are snapshots of the complete virtual machine including
1281CPU state, RAM, device state and the content of all the writable
1282disks. In order to use VM snapshots, you must have at least one non
1283removable and writable block device using the @code{qcow2} disk image
1284format. Normally this device is the first virtual hard drive.
1285
1286Use the monitor command @code{savevm} to create a new VM snapshot or
1287replace an existing one. A human readable name can be assigned to each
1288snapshot in addition to its numerical ID.
1289
1290Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1291a VM snapshot. @code{info snapshots} lists the available snapshots
1292with their associated information:
1293
1294@example
1295(qemu) info snapshots
1296Snapshot devices: hda
1297Snapshot list (from hda):
1298ID TAG VM SIZE DATE VM CLOCK
12991 start 41M 2006-08-06 12:38:02 00:00:14.954
13002 40M 2006-08-06 12:43:29 00:00:18.633
13013 msys 40M 2006-08-06 12:44:04 00:00:23.514
1302@end example
1303
1304A VM snapshot is made of a VM state info (its size is shown in
1305@code{info snapshots}) and a snapshot of every writable disk image.
1306The VM state info is stored in the first @code{qcow2} non removable
1307and writable block device. The disk image snapshots are stored in
1308every disk image. The size of a snapshot in a disk image is difficult
1309to evaluate and is not shown by @code{info snapshots} because the
1310associated disk sectors are shared among all the snapshots to save
1311disk space (otherwise each snapshot would need a full copy of all the
1312disk images).
1313
1314When using the (unrelated) @code{-snapshot} option
1315(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1316but they are deleted as soon as you exit QEMU.
1317
1318VM snapshots currently have the following known limitations:
1319@itemize
1320@item
1321They cannot cope with removable devices if they are removed or
1322inserted after a snapshot is done.
1323@item
1324A few device drivers still have incomplete snapshot support so their
1325state is not saved or restored properly (in particular USB).
1326@end itemize
1327
1328@node qemu_img_invocation
1329@subsection @code{qemu-img} Invocation
1330
1331@include qemu-img.texi
1332
1333@node host_drives
1334@subsection Using host drives
1335
1336In addition to disk image files, QEMU can directly access host
1337devices. We describe here the usage for QEMU version >= 0.8.3.
1338
1339@subsubsection Linux
1340
1341On Linux, you can directly use the host device filename instead of a
1342disk image filename provided you have enough privileges to access
1343it. For example, use @file{/dev/cdrom} to access to the CDROM or
1344@file{/dev/fd0} for the floppy.
1345
1346@table @code
1347@item CD
1348You can specify a CDROM device even if no CDROM is loaded. QEMU has
1349specific code to detect CDROM insertion or removal. CDROM ejection by
1350the guest OS is supported. Currently only data CDs are supported.
1351@item Floppy
1352You can specify a floppy device even if no floppy is loaded. Floppy
1353removal is currently not detected accurately (if you change floppy
1354without doing floppy access while the floppy is not loaded, the guest
1355OS will think that the same floppy is loaded).
1356@item Hard disks
1357Hard disks can be used. Normally you must specify the whole disk
1358(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1359see it as a partitioned disk. WARNING: unless you know what you do, it
1360is better to only make READ-ONLY accesses to the hard disk otherwise
1361you may corrupt your host data (use the @option{-snapshot} command
1362line option or modify the device permissions accordingly).
1363@end table
1364
1365@subsubsection Windows
1366
1367@table @code
1368@item CD
1369The preferred syntax is the drive letter (e.g. @file{d:}). The
1370alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1371supported as an alias to the first CDROM drive.
1372
1373Currently there is no specific code to handle removable media, so it
1374is better to use the @code{change} or @code{eject} monitor commands to
1375change or eject media.
1376@item Hard disks
1377Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1378where @var{N} is the drive number (0 is the first hard disk).
1379
1380WARNING: unless you know what you do, it is better to only make
1381READ-ONLY accesses to the hard disk otherwise you may corrupt your
1382host data (use the @option{-snapshot} command line so that the
1383modifications are written in a temporary file).
1384@end table
1385
1386
1387@subsubsection Mac OS X
1388
1389@file{/dev/cdrom} is an alias to the first CDROM.
1390
1391Currently there is no specific code to handle removable media, so it
1392is better to use the @code{change} or @code{eject} monitor commands to
1393change or eject media.
1394
1395@node disk_images_fat_images
1396@subsection Virtual FAT disk images
1397
1398QEMU can automatically create a virtual FAT disk image from a
1399directory tree. In order to use it, just type:
1400
1401@example
1402qemu linux.img -hdb fat:/my_directory
1403@end example
1404
1405Then you access access to all the files in the @file{/my_directory}
1406directory without having to copy them in a disk image or to export
1407them via SAMBA or NFS. The default access is @emph{read-only}.
1408
1409Floppies can be emulated with the @code{:floppy:} option:
1410
1411@example
1412qemu linux.img -fda fat:floppy:/my_directory
1413@end example
1414
1415A read/write support is available for testing (beta stage) with the
1416@code{:rw:} option:
1417
1418@example
1419qemu linux.img -fda fat:floppy:rw:/my_directory
1420@end example
1421
1422What you should @emph{never} do:
1423@itemize
1424@item use non-ASCII filenames ;
1425@item use "-snapshot" together with ":rw:" ;
1426@item expect it to work when loadvm'ing ;
1427@item write to the FAT directory on the host system while accessing it with the guest system.
1428@end itemize
1429
1430@node pcsys_network
1431@section Network emulation
1432
1433QEMU can simulate several network cards (PCI or ISA cards on the PC
1434target) and can connect them to an arbitrary number of Virtual Local
1435Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1436VLAN. VLAN can be connected between separate instances of QEMU to
1437simulate large networks. For simpler usage, a non privileged user mode
1438network stack can replace the TAP device to have a basic network
1439connection.
1440
1441@subsection VLANs
1442
1443QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1444connection between several network devices. These devices can be for
1445example QEMU virtual Ethernet cards or virtual Host ethernet devices
1446(TAP devices).
1447
1448@subsection Using TAP network interfaces
1449
1450This is the standard way to connect QEMU to a real network. QEMU adds
1451a virtual network device on your host (called @code{tapN}), and you
1452can then configure it as if it was a real ethernet card.
1453
1454@subsubsection Linux host
1455
1456As an example, you can download the @file{linux-test-xxx.tar.gz}
1457archive and copy the script @file{qemu-ifup} in @file{/etc} and
1458configure properly @code{sudo} so that the command @code{ifconfig}
1459contained in @file{qemu-ifup} can be executed as root. You must verify
1460that your host kernel supports the TAP network interfaces: the
1461device @file{/dev/net/tun} must be present.
1462
1463See @ref{sec_invocation} to have examples of command lines using the
1464TAP network interfaces.
1465
1466@subsubsection Windows host
1467
1468There is a virtual ethernet driver for Windows 2000/XP systems, called
1469TAP-Win32. But it is not included in standard QEMU for Windows,
1470so you will need to get it separately. It is part of OpenVPN package,
1471so download OpenVPN from : @url{http://openvpn.net/}.
1472
1473@subsection Using the user mode network stack
1474
1475By using the option @option{-net user} (default configuration if no
1476@option{-net} option is specified), QEMU uses a completely user mode
1477network stack (you don't need root privilege to use the virtual
1478network). The virtual network configuration is the following:
1479
1480@example
1481
1482 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1483 | (10.0.2.2)
1484 |
1485 ----> DNS server (10.0.2.3)
1486 |
1487 ----> SMB server (10.0.2.4)
1488@end example
1489
1490The QEMU VM behaves as if it was behind a firewall which blocks all
1491incoming connections. You can use a DHCP client to automatically
1492configure the network in the QEMU VM. The DHCP server assign addresses
1493to the hosts starting from 10.0.2.15.
1494
1495In order to check that the user mode network is working, you can ping
1496the address 10.0.2.2 and verify that you got an address in the range
149710.0.2.x from the QEMU virtual DHCP server.
1498
1499Note that @code{ping} is not supported reliably to the internet as it
1500would require root privileges. It means you can only ping the local
1501router (10.0.2.2).
1502
1503When using the built-in TFTP server, the router is also the TFTP
1504server.
1505
1506When using the @option{-redir} option, TCP or UDP connections can be
1507redirected from the host to the guest. It allows for example to
1508redirect X11, telnet or SSH connections.
1509
1510@subsection Connecting VLANs between QEMU instances
1511
1512Using the @option{-net socket} option, it is possible to make VLANs
1513that span several QEMU instances. See @ref{sec_invocation} to have a
1514basic example.
1515
1516@node direct_linux_boot
1517@section Direct Linux Boot
1518
1519This section explains how to launch a Linux kernel inside QEMU without
1520having to make a full bootable image. It is very useful for fast Linux
1521kernel testing.
1522
1523The syntax is:
1524@example
1525qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1526@end example
1527
1528Use @option{-kernel} to provide the Linux kernel image and
1529@option{-append} to give the kernel command line arguments. The
1530@option{-initrd} option can be used to provide an INITRD image.
1531
1532When using the direct Linux boot, a disk image for the first hard disk
1533@file{hda} is required because its boot sector is used to launch the
1534Linux kernel.
1535
1536If you do not need graphical output, you can disable it and redirect
1537the virtual serial port and the QEMU monitor to the console with the
1538@option{-nographic} option. The typical command line is:
1539@example
1540qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1541 -append "root=/dev/hda console=ttyS0" -nographic
1542@end example
1543
1544Use @key{Ctrl-a c} to switch between the serial console and the
1545monitor (@pxref{pcsys_keys}).
1546
1547@node pcsys_usb
1548@section USB emulation
1549
1550QEMU emulates a PCI UHCI USB controller. You can virtually plug
1551virtual USB devices or real host USB devices (experimental, works only
1552on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1553as necessary to connect multiple USB devices.
1554
1555@menu
1556* usb_devices::
1557* host_usb_devices::
1558@end menu
1559@node usb_devices
1560@subsection Connecting USB devices
1561
1562USB devices can be connected with the @option{-usbdevice} commandline option
1563or the @code{usb_add} monitor command. Available devices are:
1564
1565@table @var
1566@item @code{mouse}
1567Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1568@item @code{tablet}
1569Pointer device that uses absolute coordinates (like a touchscreen).
1570This means qemu is able to report the mouse position without having
1571to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1572@item @code{disk:@var{file}}
1573Mass storage device based on @var{file} (@pxref{disk_images})
1574@item @code{host:@var{bus.addr}}
1575Pass through the host device identified by @var{bus.addr}
1576(Linux only)
1577@item @code{host:@var{vendor_id:product_id}}
1578Pass through the host device identified by @var{vendor_id:product_id}
1579(Linux only)
1580@item @code{wacom-tablet}
1581Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1582above but it can be used with the tslib library because in addition to touch
1583coordinates it reports touch pressure.
1584@item @code{keyboard}
1585Standard USB keyboard. Will override the PS/2 keyboard (if present).
1586@end table
1587
1588@node host_usb_devices
1589@subsection Using host USB devices on a Linux host
1590
1591WARNING: this is an experimental feature. QEMU will slow down when
1592using it. USB devices requiring real time streaming (i.e. USB Video
1593Cameras) are not supported yet.
1594
1595@enumerate
1596@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1597is actually using the USB device. A simple way to do that is simply to
1598disable the corresponding kernel module by renaming it from @file{mydriver.o}
1599to @file{mydriver.o.disabled}.
1600
1601@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1602@example
1603ls /proc/bus/usb
1604001 devices drivers
1605@end example
1606
1607@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1608@example
1609chown -R myuid /proc/bus/usb
1610@end example
1611
1612@item Launch QEMU and do in the monitor:
1613@example
1614info usbhost
1615 Device 1.2, speed 480 Mb/s
1616 Class 00: USB device 1234:5678, USB DISK
1617@end example
1618You should see the list of the devices you can use (Never try to use
1619hubs, it won't work).
1620
1621@item Add the device in QEMU by using:
1622@example
1623usb_add host:1234:5678
1624@end example
1625
1626Normally the guest OS should report that a new USB device is
1627plugged. You can use the option @option{-usbdevice} to do the same.
1628
1629@item Now you can try to use the host USB device in QEMU.
1630
1631@end enumerate
1632
1633When relaunching QEMU, you may have to unplug and plug again the USB
1634device to make it work again (this is a bug).
1635
1636@node vnc_security
1637@section VNC security
1638
1639The VNC server capability provides access to the graphical console
1640of the guest VM across the network. This has a number of security
1641considerations depending on the deployment scenarios.
1642
1643@menu
1644* vnc_sec_none::
1645* vnc_sec_password::
1646* vnc_sec_certificate::
1647* vnc_sec_certificate_verify::
1648* vnc_sec_certificate_pw::
1649* vnc_generate_cert::
1650@end menu
1651@node vnc_sec_none
1652@subsection Without passwords
1653
1654The simplest VNC server setup does not include any form of authentication.
1655For this setup it is recommended to restrict it to listen on a UNIX domain
1656socket only. For example
1657
1658@example
1659qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1660@end example
1661
1662This ensures that only users on local box with read/write access to that
1663path can access the VNC server. To securely access the VNC server from a
1664remote machine, a combination of netcat+ssh can be used to provide a secure
1665tunnel.
1666
1667@node vnc_sec_password
1668@subsection With passwords
1669
1670The VNC protocol has limited support for password based authentication. Since
1671the protocol limits passwords to 8 characters it should not be considered
1672to provide high security. The password can be fairly easily brute-forced by
1673a client making repeat connections. For this reason, a VNC server using password
1674authentication should be restricted to only listen on the loopback interface
1675or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1676option, and then once QEMU is running the password is set with the monitor. Until
1677the monitor is used to set the password all clients will be rejected.
1678
1679@example
1680qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1681(qemu) change vnc password
1682Password: ********
1683(qemu)
1684@end example
1685
1686@node vnc_sec_certificate
1687@subsection With x509 certificates
1688
1689The QEMU VNC server also implements the VeNCrypt extension allowing use of
1690TLS for encryption of the session, and x509 certificates for authentication.
1691The use of x509 certificates is strongly recommended, because TLS on its
1692own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1693support provides a secure session, but no authentication. This allows any
1694client to connect, and provides an encrypted session.
1695
1696@example
1697qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1698@end example
1699
1700In the above example @code{/etc/pki/qemu} should contain at least three files,
1701@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1702users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1703NB the @code{server-key.pem} file should be protected with file mode 0600 to
1704only be readable by the user owning it.
1705
1706@node vnc_sec_certificate_verify
1707@subsection With x509 certificates and client verification
1708
1709Certificates can also provide a means to authenticate the client connecting.
1710The server will request that the client provide a certificate, which it will
1711then validate against the CA certificate. This is a good choice if deploying
1712in an environment with a private internal certificate authority.
1713
1714@example
1715qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1716@end example
1717
1718
1719@node vnc_sec_certificate_pw
1720@subsection With x509 certificates, client verification and passwords
1721
1722Finally, the previous method can be combined with VNC password authentication
1723to provide two layers of authentication for clients.
1724
1725@example
1726qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1727(qemu) change vnc password
1728Password: ********
1729(qemu)
1730@end example
1731
1732@node vnc_generate_cert
1733@subsection Generating certificates for VNC
1734
1735The GNU TLS packages provides a command called @code{certtool} which can
1736be used to generate certificates and keys in PEM format. At a minimum it
1737is neccessary to setup a certificate authority, and issue certificates to
1738each server. If using certificates for authentication, then each client
1739will also need to be issued a certificate. The recommendation is for the
1740server to keep its certificates in either @code{/etc/pki/qemu} or for
1741unprivileged users in @code{$HOME/.pki/qemu}.
1742
1743@menu
1744* vnc_generate_ca::
1745* vnc_generate_server::
1746* vnc_generate_client::
1747@end menu
1748@node vnc_generate_ca
1749@subsubsection Setup the Certificate Authority
1750
1751This step only needs to be performed once per organization / organizational
1752unit. First the CA needs a private key. This key must be kept VERY secret
1753and secure. If this key is compromised the entire trust chain of the certificates
1754issued with it is lost.
1755
1756@example
1757# certtool --generate-privkey > ca-key.pem
1758@end example
1759
1760A CA needs to have a public certificate. For simplicity it can be a self-signed
1761certificate, or one issue by a commercial certificate issuing authority. To
1762generate a self-signed certificate requires one core piece of information, the
1763name of the organization.
1764
1765@example
1766# cat > ca.info <<EOF
1767cn = Name of your organization
1768ca
1769cert_signing_key
1770EOF
1771# certtool --generate-self-signed \
1772 --load-privkey ca-key.pem
1773 --template ca.info \
1774 --outfile ca-cert.pem
1775@end example
1776
1777The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1778TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1779
1780@node vnc_generate_server
1781@subsubsection Issuing server certificates
1782
1783Each server (or host) needs to be issued with a key and certificate. When connecting
1784the certificate is sent to the client which validates it against the CA certificate.
1785The core piece of information for a server certificate is the hostname. This should
1786be the fully qualified hostname that the client will connect with, since the client
1787will typically also verify the hostname in the certificate. On the host holding the
1788secure CA private key:
1789
1790@example
1791# cat > server.info <<EOF
1792organization = Name of your organization
1793cn = server.foo.example.com
1794tls_www_server
1795encryption_key
1796signing_key
1797EOF
1798# certtool --generate-privkey > server-key.pem
1799# certtool --generate-certificate \
1800 --load-ca-certificate ca-cert.pem \
1801 --load-ca-privkey ca-key.pem \
1802 --load-privkey server server-key.pem \
1803 --template server.info \
1804 --outfile server-cert.pem
1805@end example
1806
1807The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1808to the server for which they were generated. The @code{server-key.pem} is security
1809sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1810
1811@node vnc_generate_client
1812@subsubsection Issuing client certificates
1813
1814If the QEMU VNC server is to use the @code{x509verify} option to validate client
1815certificates as its authentication mechanism, each client also needs to be issued
1816a certificate. The client certificate contains enough metadata to uniquely identify
1817the client, typically organization, state, city, building, etc. On the host holding
1818the secure CA private key:
1819
1820@example
1821# cat > client.info <<EOF
1822country = GB
1823state = London
1824locality = London
1825organiazation = Name of your organization
1826cn = client.foo.example.com
1827tls_www_client
1828encryption_key
1829signing_key
1830EOF
1831# certtool --generate-privkey > client-key.pem
1832# certtool --generate-certificate \
1833 --load-ca-certificate ca-cert.pem \
1834 --load-ca-privkey ca-key.pem \
1835 --load-privkey client-key.pem \
1836 --template client.info \
1837 --outfile client-cert.pem
1838@end example
1839
1840The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1841copied to the client for which they were generated.
1842
1843@node gdb_usage
1844@section GDB usage
1845
1846QEMU has a primitive support to work with gdb, so that you can do
1847'Ctrl-C' while the virtual machine is running and inspect its state.
1848
1849In order to use gdb, launch qemu with the '-s' option. It will wait for a
1850gdb connection:
1851@example
1852> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1853 -append "root=/dev/hda"
1854Connected to host network interface: tun0
1855Waiting gdb connection on port 1234
1856@end example
1857
1858Then launch gdb on the 'vmlinux' executable:
1859@example
1860> gdb vmlinux
1861@end example
1862
1863In gdb, connect to QEMU:
1864@example
1865(gdb) target remote localhost:1234
1866@end example
1867
1868Then you can use gdb normally. For example, type 'c' to launch the kernel:
1869@example
1870(gdb) c
1871@end example
1872
1873Here are some useful tips in order to use gdb on system code:
1874
1875@enumerate
1876@item
1877Use @code{info reg} to display all the CPU registers.
1878@item
1879Use @code{x/10i $eip} to display the code at the PC position.
1880@item
1881Use @code{set architecture i8086} to dump 16 bit code. Then use
1882@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1883@end enumerate
1884
1885@node pcsys_os_specific
1886@section Target OS specific information
1887
1888@subsection Linux
1889
1890To have access to SVGA graphic modes under X11, use the @code{vesa} or
1891the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1892color depth in the guest and the host OS.
1893
1894When using a 2.6 guest Linux kernel, you should add the option
1895@code{clock=pit} on the kernel command line because the 2.6 Linux
1896kernels make very strict real time clock checks by default that QEMU
1897cannot simulate exactly.
1898
1899When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1900not activated because QEMU is slower with this patch. The QEMU
1901Accelerator Module is also much slower in this case. Earlier Fedora
1902Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1903patch by default. Newer kernels don't have it.
1904
1905@subsection Windows
1906
1907If you have a slow host, using Windows 95 is better as it gives the
1908best speed. Windows 2000 is also a good choice.
1909
1910@subsubsection SVGA graphic modes support
1911
1912QEMU emulates a Cirrus Logic GD5446 Video
1913card. All Windows versions starting from Windows 95 should recognize
1914and use this graphic card. For optimal performances, use 16 bit color
1915depth in the guest and the host OS.
1916
1917If you are using Windows XP as guest OS and if you want to use high
1918resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
19191280x1024x16), then you should use the VESA VBE virtual graphic card
1920(option @option{-std-vga}).
1921
1922@subsubsection CPU usage reduction
1923
1924Windows 9x does not correctly use the CPU HLT
1925instruction. The result is that it takes host CPU cycles even when
1926idle. You can install the utility from
1927@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1928problem. Note that no such tool is needed for NT, 2000 or XP.
1929
1930@subsubsection Windows 2000 disk full problem
1931
1932Windows 2000 has a bug which gives a disk full problem during its
1933installation. When installing it, use the @option{-win2k-hack} QEMU
1934option to enable a specific workaround. After Windows 2000 is
1935installed, you no longer need this option (this option slows down the
1936IDE transfers).
1937
1938@subsubsection Windows 2000 shutdown
1939
1940Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1941can. It comes from the fact that Windows 2000 does not automatically
1942use the APM driver provided by the BIOS.
1943
1944In order to correct that, do the following (thanks to Struan
1945Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1946Add/Troubleshoot a device => Add a new device & Next => No, select the
1947hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1948(again) a few times. Now the driver is installed and Windows 2000 now
1949correctly instructs QEMU to shutdown at the appropriate moment.
1950
1951@subsubsection Share a directory between Unix and Windows
1952
1953See @ref{sec_invocation} about the help of the option @option{-smb}.
1954
1955@subsubsection Windows XP security problem
1956
1957Some releases of Windows XP install correctly but give a security
1958error when booting:
1959@example
1960A problem is preventing Windows from accurately checking the
1961license for this computer. Error code: 0x800703e6.
1962@end example
1963
1964The workaround is to install a service pack for XP after a boot in safe
1965mode. Then reboot, and the problem should go away. Since there is no
1966network while in safe mode, its recommended to download the full
1967installation of SP1 or SP2 and transfer that via an ISO or using the
1968vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1969
1970@subsection MS-DOS and FreeDOS
1971
1972@subsubsection CPU usage reduction
1973
1974DOS does not correctly use the CPU HLT instruction. The result is that
1975it takes host CPU cycles even when idle. You can install the utility
1976from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1977problem.
1978
1979@node QEMU System emulator for non PC targets
1980@chapter QEMU System emulator for non PC targets
1981
1982QEMU is a generic emulator and it emulates many non PC
1983machines. Most of the options are similar to the PC emulator. The
1984differences are mentioned in the following sections.
1985
1986@menu
1987* QEMU PowerPC System emulator::
1988* Sparc32 System emulator::
1989* Sparc64 System emulator::
1990* MIPS System emulator::
1991* ARM System emulator::
1992* ColdFire System emulator::
1993@end menu
1994
1995@node QEMU PowerPC System emulator
1996@section QEMU PowerPC System emulator
1997
1998Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1999or PowerMac PowerPC system.
2000
2001QEMU emulates the following PowerMac peripherals:
2002
2003@itemize @minus
2004@item
2005UniNorth PCI Bridge
2006@item
2007PCI VGA compatible card with VESA Bochs Extensions
2008@item
20092 PMAC IDE interfaces with hard disk and CD-ROM support
2010@item
2011NE2000 PCI adapters
2012@item
2013Non Volatile RAM
2014@item
2015VIA-CUDA with ADB keyboard and mouse.
2016@end itemize
2017
2018QEMU emulates the following PREP peripherals:
2019
2020@itemize @minus
2021@item
2022PCI Bridge
2023@item
2024PCI VGA compatible card with VESA Bochs Extensions
2025@item
20262 IDE interfaces with hard disk and CD-ROM support
2027@item
2028Floppy disk
2029@item
2030NE2000 network adapters
2031@item
2032Serial port
2033@item
2034PREP Non Volatile RAM
2035@item
2036PC compatible keyboard and mouse.
2037@end itemize
2038
2039QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2040@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2041
2042@c man begin OPTIONS
2043
2044The following options are specific to the PowerPC emulation:
2045
2046@table @option
2047
2048@item -g WxH[xDEPTH]
2049
2050Set the initial VGA graphic mode. The default is 800x600x15.
2051
2052@end table
2053
2054@c man end
2055
2056
2057More information is available at
2058@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2059
2060@node Sparc32 System emulator
2061@section Sparc32 System emulator
2062
2063Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
20645, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2065architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2066or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2067complete. SMP up to 16 CPUs is supported, but Linux limits the number
2068of usable CPUs to 4.
2069
2070QEMU emulates the following sun4m/sun4d peripherals:
2071
2072@itemize @minus
2073@item
2074IOMMU or IO-UNITs
2075@item
2076TCX Frame buffer
2077@item
2078Lance (Am7990) Ethernet
2079@item
2080Non Volatile RAM M48T08
2081@item
2082Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2083and power/reset logic
2084@item
2085ESP SCSI controller with hard disk and CD-ROM support
2086@item
2087Floppy drive (not on SS-600MP)
2088@item
2089CS4231 sound device (only on SS-5, not working yet)
2090@end itemize
2091
2092The number of peripherals is fixed in the architecture. Maximum
2093memory size depends on the machine type, for SS-5 it is 256MB and for
2094others 2047MB.
2095
2096Since version 0.8.2, QEMU uses OpenBIOS
2097@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2098firmware implementation. The goal is to implement a 100% IEEE
20991275-1994 (referred to as Open Firmware) compliant firmware.
2100
2101A sample Linux 2.6 series kernel and ram disk image are available on
2102the QEMU web site. Please note that currently NetBSD, OpenBSD or
2103Solaris kernels don't work.
2104
2105@c man begin OPTIONS
2106
2107The following options are specific to the Sparc32 emulation:
2108
2109@table @option
2110
2111@item -g WxHx[xDEPTH]
2112
2113Set the initial TCX graphic mode. The default is 1024x768x8, currently
2114the only other possible mode is 1024x768x24.
2115
2116@item -prom-env string
2117
2118Set OpenBIOS variables in NVRAM, for example:
2119
2120@example
2121qemu-system-sparc -prom-env 'auto-boot?=false' \
2122 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2123@end example
2124
2125@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2126
2127Set the emulated machine type. Default is SS-5.
2128
2129@end table
2130
2131@c man end
2132
2133@node Sparc64 System emulator
2134@section Sparc64 System emulator
2135
2136Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2137The emulator is not usable for anything yet.
2138
2139QEMU emulates the following sun4u peripherals:
2140
2141@itemize @minus
2142@item
2143UltraSparc IIi APB PCI Bridge
2144@item
2145PCI VGA compatible card with VESA Bochs Extensions
2146@item
2147Non Volatile RAM M48T59
2148@item
2149PC-compatible serial ports
2150@end itemize
2151
2152@node MIPS System emulator
2153@section MIPS System emulator
2154
2155Four executables cover simulation of 32 and 64-bit MIPS systems in
2156both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2157@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2158Four different machine types are emulated:
2159
2160@itemize @minus
2161@item
2162A generic ISA PC-like machine "mips"
2163@item
2164The MIPS Malta prototype board "malta"
2165@item
2166An ACER Pica "pica61". This machine needs the 64-bit emulator.
2167@item
2168MIPS emulator pseudo board "mipssim"
2169@end itemize
2170
2171The generic emulation is supported by Debian 'Etch' and is able to
2172install Debian into a virtual disk image. The following devices are
2173emulated:
2174
2175@itemize @minus
2176@item
2177A range of MIPS CPUs, default is the 24Kf
2178@item
2179PC style serial port
2180@item
2181PC style IDE disk
2182@item
2183NE2000 network card
2184@end itemize
2185
2186The Malta emulation supports the following devices:
2187
2188@itemize @minus
2189@item
2190Core board with MIPS 24Kf CPU and Galileo system controller
2191@item
2192PIIX4 PCI/USB/SMbus controller
2193@item
2194The Multi-I/O chip's serial device
2195@item
2196PCnet32 PCI network card
2197@item
2198Malta FPGA serial device
2199@item
2200Cirrus VGA graphics card
2201@end itemize
2202
2203The ACER Pica emulation supports:
2204
2205@itemize @minus
2206@item
2207MIPS R4000 CPU
2208@item
2209PC-style IRQ and DMA controllers
2210@item
2211PC Keyboard
2212@item
2213IDE controller
2214@end itemize
2215
2216The mipssim pseudo board emulation provides an environment similiar
2217to what the proprietary MIPS emulator uses for running Linux.
2218It supports:
2219
2220@itemize @minus
2221@item
2222A range of MIPS CPUs, default is the 24Kf
2223@item
2224PC style serial port
2225@item
2226MIPSnet network emulation
2227@end itemize
2228
2229@node ARM System emulator
2230@section ARM System emulator
2231
2232Use the executable @file{qemu-system-arm} to simulate a ARM
2233machine. The ARM Integrator/CP board is emulated with the following
2234devices:
2235
2236@itemize @minus
2237@item
2238ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2239@item
2240Two PL011 UARTs
2241@item
2242SMC 91c111 Ethernet adapter
2243@item
2244PL110 LCD controller
2245@item
2246PL050 KMI with PS/2 keyboard and mouse.
2247@item
2248PL181 MultiMedia Card Interface with SD card.
2249@end itemize
2250
2251The ARM Versatile baseboard is emulated with the following devices:
2252
2253@itemize @minus
2254@item
2255ARM926E, ARM1136 or Cortex-A8 CPU
2256@item
2257PL190 Vectored Interrupt Controller
2258@item
2259Four PL011 UARTs
2260@item
2261SMC 91c111 Ethernet adapter
2262@item
2263PL110 LCD controller
2264@item
2265PL050 KMI with PS/2 keyboard and mouse.
2266@item
2267PCI host bridge. Note the emulated PCI bridge only provides access to
2268PCI memory space. It does not provide access to PCI IO space.
2269This means some devices (eg. ne2k_pci NIC) are not usable, and others
2270(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2271mapped control registers.
2272@item
2273PCI OHCI USB controller.
2274@item
2275LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2276@item
2277PL181 MultiMedia Card Interface with SD card.
2278@end itemize
2279
2280The ARM RealView Emulation baseboard is emulated with the following devices:
2281
2282@itemize @minus
2283@item
2284ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2285@item
2286ARM AMBA Generic/Distributed Interrupt Controller
2287@item
2288Four PL011 UARTs
2289@item
2290SMC 91c111 Ethernet adapter
2291@item
2292PL110 LCD controller
2293@item
2294PL050 KMI with PS/2 keyboard and mouse
2295@item
2296PCI host bridge
2297@item
2298PCI OHCI USB controller
2299@item
2300LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2301@item
2302PL181 MultiMedia Card Interface with SD card.
2303@end itemize
2304
2305The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2306and "Terrier") emulation includes the following peripherals:
2307
2308@itemize @minus
2309@item
2310Intel PXA270 System-on-chip (ARM V5TE core)
2311@item
2312NAND Flash memory
2313@item
2314IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2315@item
2316On-chip OHCI USB controller
2317@item
2318On-chip LCD controller
2319@item
2320On-chip Real Time Clock
2321@item
2322TI ADS7846 touchscreen controller on SSP bus
2323@item
2324Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2325@item
2326GPIO-connected keyboard controller and LEDs
2327@item
2328Secure Digital card connected to PXA MMC/SD host
2329@item
2330Three on-chip UARTs
2331@item
2332WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2333@end itemize
2334
2335The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2336following elements:
2337
2338@itemize @minus
2339@item
2340Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2341@item
2342ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2343@item
2344On-chip LCD controller
2345@item
2346On-chip Real Time Clock
2347@item
2348TI TSC2102i touchscreen controller / analog-digital converter / Audio
2349CODEC, connected through MicroWire and I@math{^2}S busses
2350@item
2351GPIO-connected matrix keypad
2352@item
2353Secure Digital card connected to OMAP MMC/SD host
2354@item
2355Three on-chip UARTs
2356@end itemize
2357
2358The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2359devices:
2360
2361@itemize @minus
2362@item
2363Cortex-M3 CPU core.
2364@item
236564k Flash and 8k SRAM.
2366@item
2367Timers, UARTs, ADC and I@math{^2}C interface.
2368@item
2369OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2370@end itemize
2371
2372The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2373devices:
2374
2375@itemize @minus
2376@item
2377Cortex-M3 CPU core.
2378@item
2379256k Flash and 64k SRAM.
2380@item
2381Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2382@item
2383OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2384@end itemize
2385
2386A Linux 2.6 test image is available on the QEMU web site. More
2387information is available in the QEMU mailing-list archive.
2388
2389@node ColdFire System emulator
2390@section ColdFire System emulator
2391
2392Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2393The emulator is able to boot a uClinux kernel.
2394
2395The M5208EVB emulation includes the following devices:
2396
2397@itemize @minus
2398@item
2399MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2400@item
2401Three Two on-chip UARTs.
2402@item
2403Fast Ethernet Controller (FEC)
2404@end itemize
2405
2406The AN5206 emulation includes the following devices:
2407
2408@itemize @minus
2409@item
2410MCF5206 ColdFire V2 Microprocessor.
2411@item
2412Two on-chip UARTs.
2413@end itemize
2414
2415@node QEMU User space emulator
2416@chapter QEMU User space emulator
2417
2418@menu
2419* Supported Operating Systems ::
2420* Linux User space emulator::
2421* Mac OS X/Darwin User space emulator ::
2422@end menu
2423
2424@node Supported Operating Systems
2425@section Supported Operating Systems
2426
2427The following OS are supported in user space emulation:
2428
2429@itemize @minus
2430@item
2431Linux (referred as qemu-linux-user)
2432@item
2433Mac OS X/Darwin (referred as qemu-darwin-user)
2434@end itemize
2435
2436@node Linux User space emulator
2437@section Linux User space emulator
2438
2439@menu
2440* Quick Start::
2441* Wine launch::
2442* Command line options::
2443* Other binaries::
2444@end menu
2445
2446@node Quick Start
2447@subsection Quick Start
2448
2449In order to launch a Linux process, QEMU needs the process executable
2450itself and all the target (x86) dynamic libraries used by it.
2451
2452@itemize
2453
2454@item On x86, you can just try to launch any process by using the native
2455libraries:
2456
2457@example
2458qemu-i386 -L / /bin/ls
2459@end example
2460
2461@code{-L /} tells that the x86 dynamic linker must be searched with a
2462@file{/} prefix.
2463
2464@item Since QEMU is also a linux process, you can launch qemu with
2465qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2466
2467@example
2468qemu-i386 -L / qemu-i386 -L / /bin/ls
2469@end example
2470
2471@item On non x86 CPUs, you need first to download at least an x86 glibc
2472(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2473@code{LD_LIBRARY_PATH} is not set:
2474
2475@example
2476unset LD_LIBRARY_PATH
2477@end example
2478
2479Then you can launch the precompiled @file{ls} x86 executable:
2480
2481@example
2482qemu-i386 tests/i386/ls
2483@end example
2484You can look at @file{qemu-binfmt-conf.sh} so that
2485QEMU is automatically launched by the Linux kernel when you try to
2486launch x86 executables. It requires the @code{binfmt_misc} module in the
2487Linux kernel.
2488
2489@item The x86 version of QEMU is also included. You can try weird things such as:
2490@example
2491qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2492 /usr/local/qemu-i386/bin/ls-i386
2493@end example
2494
2495@end itemize
2496
2497@node Wine launch
2498@subsection Wine launch
2499
2500@itemize
2501
2502@item Ensure that you have a working QEMU with the x86 glibc
2503distribution (see previous section). In order to verify it, you must be
2504able to do:
2505
2506@example
2507qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2508@end example
2509
2510@item Download the binary x86 Wine install
2511(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2512
2513@item Configure Wine on your account. Look at the provided script
2514@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2515@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2516
2517@item Then you can try the example @file{putty.exe}:
2518
2519@example
2520qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2521 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2522@end example
2523
2524@end itemize
2525
2526@node Command line options
2527@subsection Command line options
2528
2529@example
2530usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2531@end example
2532
2533@table @option
2534@item -h
2535Print the help
2536@item -L path
2537Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2538@item -s size
2539Set the x86 stack size in bytes (default=524288)
2540@end table
2541
2542Debug options:
2543
2544@table @option
2545@item -d
2546Activate log (logfile=/tmp/qemu.log)
2547@item -p pagesize
2548Act as if the host page size was 'pagesize' bytes
2549@end table
2550
2551Environment variables:
2552
2553@table @env
2554@item QEMU_STRACE
2555Print system calls and arguments similar to the 'strace' program
2556(NOTE: the actual 'strace' program will not work because the user
2557space emulator hasn't implemented ptrace). At the moment this is
2558incomplete. All system calls that don't have a specific argument
2559format are printed with information for six arguments. Many
2560flag-style arguments don't have decoders and will show up as numbers.
2561@end table
2562
2563@node Other binaries
2564@subsection Other binaries
2565
2566@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2567binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2568configurations), and arm-uclinux bFLT format binaries.
2569
2570@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2571(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2572coldfire uClinux bFLT format binaries.
2573
2574The binary format is detected automatically.
2575
2576@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2577(Sparc64 CPU, 32 bit ABI).
2578
2579@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2580SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2581
2582@node Mac OS X/Darwin User space emulator
2583@section Mac OS X/Darwin User space emulator
2584
2585@menu
2586* Mac OS X/Darwin Status::
2587* Mac OS X/Darwin Quick Start::
2588* Mac OS X/Darwin Command line options::
2589@end menu
2590
2591@node Mac OS X/Darwin Status
2592@subsection Mac OS X/Darwin Status
2593
2594@itemize @minus
2595@item
2596target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2597@item
2598target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2599@item
2600target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2601@item
2602target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2603@end itemize
2604
2605[1] If you're host commpage can be executed by qemu.
2606
2607@node Mac OS X/Darwin Quick Start
2608@subsection Quick Start
2609
2610In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2611itself and all the target dynamic libraries used by it. If you don't have the FAT
2612libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2613CD or compile them by hand.
2614
2615@itemize
2616
2617@item On x86, you can just try to launch any process by using the native
2618libraries:
2619
2620@example
2621qemu-i386 /bin/ls
2622@end example
2623
2624or to run the ppc version of the executable:
2625
2626@example
2627qemu-ppc /bin/ls
2628@end example
2629
2630@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2631are installed:
2632
2633@example
2634qemu-i386 -L /opt/x86_root/ /bin/ls
2635@end example
2636
2637@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2638@file{/opt/x86_root/usr/bin/dyld}.
2639
2640@end itemize
2641
2642@node Mac OS X/Darwin Command line options
2643@subsection Command line options
2644
2645@example
2646usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2647@end example
2648
2649@table @option
2650@item -h
2651Print the help
2652@item -L path
2653Set the library root path (default=/)
2654@item -s size
2655Set the stack size in bytes (default=524288)
2656@end table
2657
2658Debug options:
2659
2660@table @option
2661@item -d
2662Activate log (logfile=/tmp/qemu.log)
2663@item -p pagesize
2664Act as if the host page size was 'pagesize' bytes
2665@end table
2666
2667@node compilation
2668@chapter Compilation from the sources
2669
2670@menu
2671* Linux/Unix::
2672* Windows::
2673* Cross compilation for Windows with Linux::
2674* Mac OS X::
2675@end menu
2676
2677@node Linux/Unix
2678@section Linux/Unix
2679
2680@subsection Compilation
2681
2682First you must decompress the sources:
2683@example
2684cd /tmp
2685tar zxvf qemu-x.y.z.tar.gz
2686cd qemu-x.y.z
2687@end example
2688
2689Then you configure QEMU and build it (usually no options are needed):
2690@example
2691./configure
2692make
2693@end example
2694
2695Then type as root user:
2696@example
2697make install
2698@end example
2699to install QEMU in @file{/usr/local}.
2700
2701@subsection GCC version
2702
2703In order to compile QEMU successfully, it is very important that you
2704have the right tools. The most important one is gcc. On most hosts and
2705in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2706Linux distribution includes a gcc 4.x compiler, you can usually
2707install an older version (it is invoked by @code{gcc32} or
2708@code{gcc34}). The QEMU configure script automatically probes for
2709these older versions so that usually you don't have to do anything.
2710
2711@node Windows
2712@section Windows
2713
2714@itemize
2715@item Install the current versions of MSYS and MinGW from
2716@url{http://www.mingw.org/}. You can find detailed installation
2717instructions in the download section and the FAQ.
2718
2719@item Download
2720the MinGW development library of SDL 1.2.x
2721(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2722@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2723unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2724directory. Edit the @file{sdl-config} script so that it gives the
2725correct SDL directory when invoked.
2726
2727@item Extract the current version of QEMU.
2728
2729@item Start the MSYS shell (file @file{msys.bat}).
2730
2731@item Change to the QEMU directory. Launch @file{./configure} and
2732@file{make}. If you have problems using SDL, verify that
2733@file{sdl-config} can be launched from the MSYS command line.
2734
2735@item You can install QEMU in @file{Program Files/Qemu} by typing
2736@file{make install}. Don't forget to copy @file{SDL.dll} in
2737@file{Program Files/Qemu}.
2738
2739@end itemize
2740
2741@node Cross compilation for Windows with Linux
2742@section Cross compilation for Windows with Linux
2743
2744@itemize
2745@item
2746Install the MinGW cross compilation tools available at
2747@url{http://www.mingw.org/}.
2748
2749@item
2750Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2751unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2752variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2753the QEMU configuration script.
2754
2755@item
2756Configure QEMU for Windows cross compilation:
2757@example
2758./configure --enable-mingw32
2759@end example
2760If necessary, you can change the cross-prefix according to the prefix
2761chosen for the MinGW tools with --cross-prefix. You can also use
2762--prefix to set the Win32 install path.
2763
2764@item You can install QEMU in the installation directory by typing
2765@file{make install}. Don't forget to copy @file{SDL.dll} in the
2766installation directory.
2767
2768@end itemize
2769
2770Note: Currently, Wine does not seem able to launch
2771QEMU for Win32.
2772
2773@node Mac OS X
2774@section Mac OS X
2775
2776The Mac OS X patches are not fully merged in QEMU, so you should look
2777at the QEMU mailing list archive to have all the necessary
2778information.
2779
2780@node Index
2781@chapter Index
2782@printindex cp
2783
2784@bye