]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qemu-doc.texi
Add missing ffs() declaration for Win32 hosts, by Stefan Weil.
[mirror_qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4@settitle QEMU Emulator User Documentation
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
8
9@iftex
10@titlepage
11@sp 7
12@center @titlefont{QEMU Emulator}
13@sp 1
14@center @titlefont{User Documentation}
15@sp 3
16@end titlepage
17@end iftex
18
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
28* QEMU User space emulator::
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
37@chapter Introduction
38
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
44@section Features
45
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
48
49QEMU has two operating modes:
50
51@itemize @minus
52
53@item
54Full system emulation. In this mode, QEMU emulates a full system (for
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
58
59@item
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
64
65@end itemize
66
67QEMU can run without an host kernel driver and yet gives acceptable
68performance.
69
70For system emulation, the following hardware targets are supported:
71@itemize
72@item PC (x86 or x86_64 processor)
73@item ISA PC (old style PC without PCI bus)
74@item PREP (PowerPC processor)
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
77@item Sun4m (32-bit Sparc processor)
78@item Sun4u (64-bit Sparc processor, in progress)
79@item Malta board (32-bit MIPS processor)
80@item ARM Integrator/CP (ARM)
81@item ARM Versatile baseboard (ARM)
82@item ARM RealView Emulation baseboard (ARM)
83@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86@item Freescale MCF5208EVB (ColdFire V2).
87@item Arnewsh MCF5206 evaluation board (ColdFire V2).
88@item Palm Tungsten|E PDA (OMAP310 processor)
89@end itemize
90
91For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92
93@node Installation
94@chapter Installation
95
96If you want to compile QEMU yourself, see @ref{compilation}.
97
98@menu
99* install_linux:: Linux
100* install_windows:: Windows
101* install_mac:: Macintosh
102@end menu
103
104@node install_linux
105@section Linux
106
107If a precompiled package is available for your distribution - you just
108have to install it. Otherwise, see @ref{compilation}.
109
110@node install_windows
111@section Windows
112
113Download the experimental binary installer at
114@url{http://www.free.oszoo.org/@/download.html}.
115
116@node install_mac
117@section Mac OS X
118
119Download the experimental binary installer at
120@url{http://www.free.oszoo.org/@/download.html}.
121
122@node QEMU PC System emulator
123@chapter QEMU PC System emulator
124
125@menu
126* pcsys_introduction:: Introduction
127* pcsys_quickstart:: Quick Start
128* sec_invocation:: Invocation
129* pcsys_keys:: Keys
130* pcsys_monitor:: QEMU Monitor
131* disk_images:: Disk Images
132* pcsys_network:: Network emulation
133* direct_linux_boot:: Direct Linux Boot
134* pcsys_usb:: USB emulation
135* vnc_security:: VNC security
136* gdb_usage:: GDB usage
137* pcsys_os_specific:: Target OS specific information
138@end menu
139
140@node pcsys_introduction
141@section Introduction
142
143@c man begin DESCRIPTION
144
145The QEMU PC System emulator simulates the
146following peripherals:
147
148@itemize @minus
149@item
150i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151@item
152Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153extensions (hardware level, including all non standard modes).
154@item
155PS/2 mouse and keyboard
156@item
1572 PCI IDE interfaces with hard disk and CD-ROM support
158@item
159Floppy disk
160@item
161PCI/ISA PCI network adapters
162@item
163Serial ports
164@item
165Creative SoundBlaster 16 sound card
166@item
167ENSONIQ AudioPCI ES1370 sound card
168@item
169Adlib(OPL2) - Yamaha YM3812 compatible chip
170@item
171PCI UHCI USB controller and a virtual USB hub.
172@end itemize
173
174SMP is supported with up to 255 CPUs.
175
176Note that adlib is only available when QEMU was configured with
177-enable-adlib
178
179QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
180VGA BIOS.
181
182QEMU uses YM3812 emulation by Tatsuyuki Satoh.
183
184@c man end
185
186@node pcsys_quickstart
187@section Quick Start
188
189Download and uncompress the linux image (@file{linux.img}) and type:
190
191@example
192qemu linux.img
193@end example
194
195Linux should boot and give you a prompt.
196
197@node sec_invocation
198@section Invocation
199
200@example
201@c man begin SYNOPSIS
202usage: qemu [options] [@var{disk_image}]
203@c man end
204@end example
205
206@c man begin OPTIONS
207@var{disk_image} is a raw hard disk image for IDE hard disk 0.
208
209General options:
210@table @option
211@item -M @var{machine}
212Select the emulated @var{machine} (@code{-M ?} for list)
213
214@item -fda @var{file}
215@item -fdb @var{file}
216Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
217use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
218
219@item -hda @var{file}
220@item -hdb @var{file}
221@item -hdc @var{file}
222@item -hdd @var{file}
223Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
224
225@item -cdrom @var{file}
226Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
227@option{-cdrom} at the same time). You can use the host CD-ROM by
228using @file{/dev/cdrom} as filename (@pxref{host_drives}).
229
230@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
231
232Define a new drive. Valid options are:
233
234@table @code
235@item file=@var{file}
236This option defines which disk image (@pxref{disk_images}) to use with
237this drive.
238@item if=@var{interface}
239This option defines on which type on interface the drive is connected.
240Available types are: ide, scsi, sd, mtd, floppy, pflash.
241@item bus=@var{bus},unit=@var{unit}
242These options define where is connected the drive by defining the bus number and
243the unit id.
244@item index=@var{index}
245This option defines where is connected the drive by using an index in the list
246of available connectors of a given interface type.
247@item media=@var{media}
248This option defines the type of the media: disk or cdrom.
249@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
250These options have the same definition as they have in @option{-hdachs}.
251@item snapshot=@var{snapshot}
252@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
253@end table
254
255Instead of @option{-cdrom} you can use:
256@example
257qemu -drive file=file,index=2,media=cdrom
258@end example
259
260Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
261use:
262@example
263qemu -drive file=file,index=0,media=disk
264qemu -drive file=file,index=1,media=disk
265qemu -drive file=file,index=2,media=disk
266qemu -drive file=file,index=3,media=disk
267@end example
268
269You can connect a CDROM to the slave of ide0:
270@example
271qemu -drive file=file,if=ide,index=1,media=cdrom
272@end example
273
274If you don't specify the "file=" argument, you define an empty drive:
275@example
276qemu -drive if=ide,index=1,media=cdrom
277@end example
278
279You can connect a SCSI disk with unit ID 6 on the bus #0:
280@example
281qemu -drive file=file,if=scsi,bus=0,unit=6
282@end example
283
284Instead of @option{-fda}, @option{-fdb}, you can use:
285@example
286qemu -drive file=file,index=0,if=floppy
287qemu -drive file=file,index=1,if=floppy
288@end example
289
290By default, @var{interface} is "ide" and @var{index} is automatically
291incremented:
292@example
293qemu -drive file=a -drive file=b"
294@end example
295is interpreted like:
296@example
297qemu -hda a -hdb b
298@end example
299
300@item -boot [a|c|d|n]
301Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
302is the default.
303
304@item -snapshot
305Write to temporary files instead of disk image files. In this case,
306the raw disk image you use is not written back. You can however force
307the write back by pressing @key{C-a s} (@pxref{disk_images}).
308
309@item -no-fd-bootchk
310Disable boot signature checking for floppy disks in Bochs BIOS. It may
311be needed to boot from old floppy disks.
312
313@item -m @var{megs}
314Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
315
316@item -smp @var{n}
317Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
318CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
319to 4.
320
321@item -audio-help
322
323Will show the audio subsystem help: list of drivers, tunable
324parameters.
325
326@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
327
328Enable audio and selected sound hardware. Use ? to print all
329available sound hardware.
330
331@example
332qemu -soundhw sb16,adlib hda
333qemu -soundhw es1370 hda
334qemu -soundhw all hda
335qemu -soundhw ?
336@end example
337
338@item -localtime
339Set the real time clock to local time (the default is to UTC
340time). This option is needed to have correct date in MS-DOS or
341Windows.
342
343@item -startdate @var{date}
344Set the initial date of the real time clock. Valid format for
345@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
346@code{2006-06-17}. The default value is @code{now}.
347
348@item -pidfile @var{file}
349Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
350from a script.
351
352@item -daemonize
353Daemonize the QEMU process after initialization. QEMU will not detach from
354standard IO until it is ready to receive connections on any of its devices.
355This option is a useful way for external programs to launch QEMU without having
356to cope with initialization race conditions.
357
358@item -win2k-hack
359Use it when installing Windows 2000 to avoid a disk full bug. After
360Windows 2000 is installed, you no longer need this option (this option
361slows down the IDE transfers).
362
363@item -option-rom @var{file}
364Load the contents of @var{file} as an option ROM.
365This option is useful to load things like EtherBoot.
366
367@item -name @var{name}
368Sets the @var{name} of the guest.
369This name will be display in the SDL window caption.
370The @var{name} will also be used for the VNC server.
371
372@end table
373
374Display options:
375@table @option
376
377@item -nographic
378
379Normally, QEMU uses SDL to display the VGA output. With this option,
380you can totally disable graphical output so that QEMU is a simple
381command line application. The emulated serial port is redirected on
382the console. Therefore, you can still use QEMU to debug a Linux kernel
383with a serial console.
384
385@item -no-frame
386
387Do not use decorations for SDL windows and start them using the whole
388available screen space. This makes the using QEMU in a dedicated desktop
389workspace more convenient.
390
391@item -full-screen
392Start in full screen.
393
394@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
395
396Normally, QEMU uses SDL to display the VGA output. With this option,
397you can have QEMU listen on VNC display @var{display} and redirect the VGA
398display over the VNC session. It is very useful to enable the usb
399tablet device when using this option (option @option{-usbdevice
400tablet}). When using the VNC display, you must use the @option{-k}
401parameter to set the keyboard layout if you are not using en-us. Valid
402syntax for the @var{display} is
403
404@table @code
405
406@item @var{interface}:@var{d}
407
408TCP connections will only be allowed from @var{interface} on display @var{d}.
409By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
410be omitted in which case the server will bind to all interfaces.
411
412@item @var{unix}:@var{path}
413
414Connections will be allowed over UNIX domain sockets where @var{path} is the
415location of a unix socket to listen for connections on.
416
417@item none
418
419VNC is initialized by not started. The monitor @code{change} command can be used
420to later start the VNC server.
421
422@end table
423
424Following the @var{display} value there may be one or more @var{option} flags
425separated by commas. Valid options are
426
427@table @code
428
429@item password
430
431Require that password based authentication is used for client connections.
432The password must be set separately using the @code{change} command in the
433@ref{pcsys_monitor}
434
435@item tls
436
437Require that client use TLS when communicating with the VNC server. This
438uses anonymous TLS credentials so is susceptible to a man-in-the-middle
439attack. It is recommended that this option be combined with either the
440@var{x509} or @var{x509verify} options.
441
442@item x509=@var{/path/to/certificate/dir}
443
444Valid if @option{tls} is specified. Require that x509 credentials are used
445for negotiating the TLS session. The server will send its x509 certificate
446to the client. It is recommended that a password be set on the VNC server
447to provide authentication of the client when this is used. The path following
448this option specifies where the x509 certificates are to be loaded from.
449See the @ref{vnc_security} section for details on generating certificates.
450
451@item x509verify=@var{/path/to/certificate/dir}
452
453Valid if @option{tls} is specified. Require that x509 credentials are used
454for negotiating the TLS session. The server will send its x509 certificate
455to the client, and request that the client send its own x509 certificate.
456The server will validate the client's certificate against the CA certificate,
457and reject clients when validation fails. If the certificate authority is
458trusted, this is a sufficient authentication mechanism. You may still wish
459to set a password on the VNC server as a second authentication layer. The
460path following this option specifies where the x509 certificates are to
461be loaded from. See the @ref{vnc_security} section for details on generating
462certificates.
463
464@end table
465
466@item -k @var{language}
467
468Use keyboard layout @var{language} (for example @code{fr} for
469French). This option is only needed where it is not easy to get raw PC
470keycodes (e.g. on Macs, with some X11 servers or with a VNC
471display). You don't normally need to use it on PC/Linux or PC/Windows
472hosts.
473
474The available layouts are:
475@example
476ar de-ch es fo fr-ca hu ja mk no pt-br sv
477da en-gb et fr fr-ch is lt nl pl ru th
478de en-us fi fr-be hr it lv nl-be pt sl tr
479@end example
480
481The default is @code{en-us}.
482
483@end table
484
485USB options:
486@table @option
487
488@item -usb
489Enable the USB driver (will be the default soon)
490
491@item -usbdevice @var{devname}
492Add the USB device @var{devname}. @xref{usb_devices}.
493@end table
494
495Network options:
496
497@table @option
498
499@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
500Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
501= 0 is the default). The NIC is an ne2k_pci by default on the PC
502target. Optionally, the MAC address can be changed. If no
503@option{-net} option is specified, a single NIC is created.
504Qemu can emulate several different models of network card.
505Valid values for @var{type} are
506@code{i82551}, @code{i82557b}, @code{i82559er},
507@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
508@code{smc91c111}, @code{lance} and @code{mcf_fec}.
509Not all devices are supported on all targets. Use -net nic,model=?
510for a list of available devices for your target.
511
512@item -net user[,vlan=@var{n}][,hostname=@var{name}]
513Use the user mode network stack which requires no administrator
514privilege to run. @option{hostname=name} can be used to specify the client
515hostname reported by the builtin DHCP server.
516
517@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
518Connect the host TAP network interface @var{name} to VLAN @var{n} and
519use the network script @var{file} to configure it. The default
520network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
521disable script execution. If @var{name} is not
522provided, the OS automatically provides one. @option{fd}=@var{h} can be
523used to specify the handle of an already opened host TAP interface. Example:
524
525@example
526qemu linux.img -net nic -net tap
527@end example
528
529More complicated example (two NICs, each one connected to a TAP device)
530@example
531qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
532 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
533@end example
534
535
536@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
537
538Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
539machine using a TCP socket connection. If @option{listen} is
540specified, QEMU waits for incoming connections on @var{port}
541(@var{host} is optional). @option{connect} is used to connect to
542another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
543specifies an already opened TCP socket.
544
545Example:
546@example
547# launch a first QEMU instance
548qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
549 -net socket,listen=:1234
550# connect the VLAN 0 of this instance to the VLAN 0
551# of the first instance
552qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
553 -net socket,connect=127.0.0.1:1234
554@end example
555
556@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
557
558Create a VLAN @var{n} shared with another QEMU virtual
559machines using a UDP multicast socket, effectively making a bus for
560every QEMU with same multicast address @var{maddr} and @var{port}.
561NOTES:
562@enumerate
563@item
564Several QEMU can be running on different hosts and share same bus (assuming
565correct multicast setup for these hosts).
566@item
567mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
568@url{http://user-mode-linux.sf.net}.
569@item
570Use @option{fd=h} to specify an already opened UDP multicast socket.
571@end enumerate
572
573Example:
574@example
575# launch one QEMU instance
576qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
577 -net socket,mcast=230.0.0.1:1234
578# launch another QEMU instance on same "bus"
579qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
580 -net socket,mcast=230.0.0.1:1234
581# launch yet another QEMU instance on same "bus"
582qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
583 -net socket,mcast=230.0.0.1:1234
584@end example
585
586Example (User Mode Linux compat.):
587@example
588# launch QEMU instance (note mcast address selected
589# is UML's default)
590qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
591 -net socket,mcast=239.192.168.1:1102
592# launch UML
593/path/to/linux ubd0=/path/to/root_fs eth0=mcast
594@end example
595
596@item -net none
597Indicate that no network devices should be configured. It is used to
598override the default configuration (@option{-net nic -net user}) which
599is activated if no @option{-net} options are provided.
600
601@item -tftp @var{dir}
602When using the user mode network stack, activate a built-in TFTP
603server. The files in @var{dir} will be exposed as the root of a TFTP server.
604The TFTP client on the guest must be configured in binary mode (use the command
605@code{bin} of the Unix TFTP client). The host IP address on the guest is as
606usual 10.0.2.2.
607
608@item -bootp @var{file}
609When using the user mode network stack, broadcast @var{file} as the BOOTP
610filename. In conjunction with @option{-tftp}, this can be used to network boot
611a guest from a local directory.
612
613Example (using pxelinux):
614@example
615qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
616@end example
617
618@item -smb @var{dir}
619When using the user mode network stack, activate a built-in SMB
620server so that Windows OSes can access to the host files in @file{@var{dir}}
621transparently.
622
623In the guest Windows OS, the line:
624@example
62510.0.2.4 smbserver
626@end example
627must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
628or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
629
630Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
631
632Note that a SAMBA server must be installed on the host OS in
633@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6342.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
635
636@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
637
638When using the user mode network stack, redirect incoming TCP or UDP
639connections to the host port @var{host-port} to the guest
640@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
641is not specified, its value is 10.0.2.15 (default address given by the
642built-in DHCP server).
643
644For example, to redirect host X11 connection from screen 1 to guest
645screen 0, use the following:
646
647@example
648# on the host
649qemu -redir tcp:6001::6000 [...]
650# this host xterm should open in the guest X11 server
651xterm -display :1
652@end example
653
654To redirect telnet connections from host port 5555 to telnet port on
655the guest, use the following:
656
657@example
658# on the host
659qemu -redir tcp:5555::23 [...]
660telnet localhost 5555
661@end example
662
663Then when you use on the host @code{telnet localhost 5555}, you
664connect to the guest telnet server.
665
666@end table
667
668Linux boot specific: When using these options, you can use a given
669Linux kernel without installing it in the disk image. It can be useful
670for easier testing of various kernels.
671
672@table @option
673
674@item -kernel @var{bzImage}
675Use @var{bzImage} as kernel image.
676
677@item -append @var{cmdline}
678Use @var{cmdline} as kernel command line
679
680@item -initrd @var{file}
681Use @var{file} as initial ram disk.
682
683@end table
684
685Debug/Expert options:
686@table @option
687
688@item -serial @var{dev}
689Redirect the virtual serial port to host character device
690@var{dev}. The default device is @code{vc} in graphical mode and
691@code{stdio} in non graphical mode.
692
693This option can be used several times to simulate up to 4 serials
694ports.
695
696Use @code{-serial none} to disable all serial ports.
697
698Available character devices are:
699@table @code
700@item vc[:WxH]
701Virtual console. Optionally, a width and height can be given in pixel with
702@example
703vc:800x600
704@end example
705It is also possible to specify width or height in characters:
706@example
707vc:80Cx24C
708@end example
709@item pty
710[Linux only] Pseudo TTY (a new PTY is automatically allocated)
711@item none
712No device is allocated.
713@item null
714void device
715@item /dev/XXX
716[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
717parameters are set according to the emulated ones.
718@item /dev/parport@var{N}
719[Linux only, parallel port only] Use host parallel port
720@var{N}. Currently SPP and EPP parallel port features can be used.
721@item file:@var{filename}
722Write output to @var{filename}. No character can be read.
723@item stdio
724[Unix only] standard input/output
725@item pipe:@var{filename}
726name pipe @var{filename}
727@item COM@var{n}
728[Windows only] Use host serial port @var{n}
729@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
730This implements UDP Net Console.
731When @var{remote_host} or @var{src_ip} are not specified
732they default to @code{0.0.0.0}.
733When not using a specified @var{src_port} a random port is automatically chosen.
734
735If you just want a simple readonly console you can use @code{netcat} or
736@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
737@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
738will appear in the netconsole session.
739
740If you plan to send characters back via netconsole or you want to stop
741and start qemu a lot of times, you should have qemu use the same
742source port each time by using something like @code{-serial
743udp::4555@@:4556} to qemu. Another approach is to use a patched
744version of netcat which can listen to a TCP port and send and receive
745characters via udp. If you have a patched version of netcat which
746activates telnet remote echo and single char transfer, then you can
747use the following options to step up a netcat redirector to allow
748telnet on port 5555 to access the qemu port.
749@table @code
750@item Qemu Options:
751-serial udp::4555@@:4556
752@item netcat options:
753-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
754@item telnet options:
755localhost 5555
756@end table
757
758
759@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
760The TCP Net Console has two modes of operation. It can send the serial
761I/O to a location or wait for a connection from a location. By default
762the TCP Net Console is sent to @var{host} at the @var{port}. If you use
763the @var{server} option QEMU will wait for a client socket application
764to connect to the port before continuing, unless the @code{nowait}
765option was specified. The @code{nodelay} option disables the Nagle buffering
766algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
767one TCP connection at a time is accepted. You can use @code{telnet} to
768connect to the corresponding character device.
769@table @code
770@item Example to send tcp console to 192.168.0.2 port 4444
771-serial tcp:192.168.0.2:4444
772@item Example to listen and wait on port 4444 for connection
773-serial tcp::4444,server
774@item Example to not wait and listen on ip 192.168.0.100 port 4444
775-serial tcp:192.168.0.100:4444,server,nowait
776@end table
777
778@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
779The telnet protocol is used instead of raw tcp sockets. The options
780work the same as if you had specified @code{-serial tcp}. The
781difference is that the port acts like a telnet server or client using
782telnet option negotiation. This will also allow you to send the
783MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
784sequence. Typically in unix telnet you do it with Control-] and then
785type "send break" followed by pressing the enter key.
786
787@item unix:@var{path}[,server][,nowait]
788A unix domain socket is used instead of a tcp socket. The option works the
789same as if you had specified @code{-serial tcp} except the unix domain socket
790@var{path} is used for connections.
791
792@item mon:@var{dev_string}
793This is a special option to allow the monitor to be multiplexed onto
794another serial port. The monitor is accessed with key sequence of
795@key{Control-a} and then pressing @key{c}. See monitor access
796@ref{pcsys_keys} in the -nographic section for more keys.
797@var{dev_string} should be any one of the serial devices specified
798above. An example to multiplex the monitor onto a telnet server
799listening on port 4444 would be:
800@table @code
801@item -serial mon:telnet::4444,server,nowait
802@end table
803
804@end table
805
806@item -parallel @var{dev}
807Redirect the virtual parallel port to host device @var{dev} (same
808devices as the serial port). On Linux hosts, @file{/dev/parportN} can
809be used to use hardware devices connected on the corresponding host
810parallel port.
811
812This option can be used several times to simulate up to 3 parallel
813ports.
814
815Use @code{-parallel none} to disable all parallel ports.
816
817@item -monitor @var{dev}
818Redirect the monitor to host device @var{dev} (same devices as the
819serial port).
820The default device is @code{vc} in graphical mode and @code{stdio} in
821non graphical mode.
822
823@item -echr numeric_ascii_value
824Change the escape character used for switching to the monitor when using
825monitor and serial sharing. The default is @code{0x01} when using the
826@code{-nographic} option. @code{0x01} is equal to pressing
827@code{Control-a}. You can select a different character from the ascii
828control keys where 1 through 26 map to Control-a through Control-z. For
829instance you could use the either of the following to change the escape
830character to Control-t.
831@table @code
832@item -echr 0x14
833@item -echr 20
834@end table
835
836@item -s
837Wait gdb connection to port 1234 (@pxref{gdb_usage}).
838@item -p @var{port}
839Change gdb connection port. @var{port} can be either a decimal number
840to specify a TCP port, or a host device (same devices as the serial port).
841@item -S
842Do not start CPU at startup (you must type 'c' in the monitor).
843@item -d
844Output log in /tmp/qemu.log
845@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
846Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
847@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
848translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
849all those parameters. This option is useful for old MS-DOS disk
850images.
851
852@item -L path
853Set the directory for the BIOS, VGA BIOS and keymaps.
854
855@item -std-vga
856Simulate a standard VGA card with Bochs VBE extensions (default is
857Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
858VBE extensions (e.g. Windows XP) and if you want to use high
859resolution modes (>= 1280x1024x16) then you should use this option.
860
861@item -no-acpi
862Disable ACPI (Advanced Configuration and Power Interface) support. Use
863it if your guest OS complains about ACPI problems (PC target machine
864only).
865
866@item -no-reboot
867Exit instead of rebooting.
868
869@item -loadvm file
870Start right away with a saved state (@code{loadvm} in monitor)
871
872@item -semihosting
873Enable semihosting syscall emulation (ARM and M68K target machines only).
874
875On ARM this implements the "Angel" interface.
876On M68K this implements the "ColdFire GDB" interface used by libgloss.
877
878Note that this allows guest direct access to the host filesystem,
879so should only be used with trusted guest OS.
880@end table
881
882@c man end
883
884@node pcsys_keys
885@section Keys
886
887@c man begin OPTIONS
888
889During the graphical emulation, you can use the following keys:
890@table @key
891@item Ctrl-Alt-f
892Toggle full screen
893
894@item Ctrl-Alt-n
895Switch to virtual console 'n'. Standard console mappings are:
896@table @emph
897@item 1
898Target system display
899@item 2
900Monitor
901@item 3
902Serial port
903@end table
904
905@item Ctrl-Alt
906Toggle mouse and keyboard grab.
907@end table
908
909In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
910@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
911
912During emulation, if you are using the @option{-nographic} option, use
913@key{Ctrl-a h} to get terminal commands:
914
915@table @key
916@item Ctrl-a h
917Print this help
918@item Ctrl-a x
919Exit emulator
920@item Ctrl-a s
921Save disk data back to file (if -snapshot)
922@item Ctrl-a t
923toggle console timestamps
924@item Ctrl-a b
925Send break (magic sysrq in Linux)
926@item Ctrl-a c
927Switch between console and monitor
928@item Ctrl-a Ctrl-a
929Send Ctrl-a
930@end table
931@c man end
932
933@ignore
934
935@c man begin SEEALSO
936The HTML documentation of QEMU for more precise information and Linux
937user mode emulator invocation.
938@c man end
939
940@c man begin AUTHOR
941Fabrice Bellard
942@c man end
943
944@end ignore
945
946@node pcsys_monitor
947@section QEMU Monitor
948
949The QEMU monitor is used to give complex commands to the QEMU
950emulator. You can use it to:
951
952@itemize @minus
953
954@item
955Remove or insert removable media images
956(such as CD-ROM or floppies).
957
958@item
959Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
960from a disk file.
961
962@item Inspect the VM state without an external debugger.
963
964@end itemize
965
966@subsection Commands
967
968The following commands are available:
969
970@table @option
971
972@item help or ? [@var{cmd}]
973Show the help for all commands or just for command @var{cmd}.
974
975@item commit
976Commit changes to the disk images (if -snapshot is used).
977
978@item info @var{subcommand}
979Show various information about the system state.
980
981@table @option
982@item info network
983show the various VLANs and the associated devices
984@item info block
985show the block devices
986@item info registers
987show the cpu registers
988@item info history
989show the command line history
990@item info pci
991show emulated PCI device
992@item info usb
993show USB devices plugged on the virtual USB hub
994@item info usbhost
995show all USB host devices
996@item info capture
997show information about active capturing
998@item info snapshots
999show list of VM snapshots
1000@item info mice
1001show which guest mouse is receiving events
1002@end table
1003
1004@item q or quit
1005Quit the emulator.
1006
1007@item eject [-f] @var{device}
1008Eject a removable medium (use -f to force it).
1009
1010@item change @var{device} @var{setting}
1011
1012Change the configuration of a device.
1013
1014@table @option
1015@item change @var{diskdevice} @var{filename}
1016Change the medium for a removable disk device to point to @var{filename}. eg
1017
1018@example
1019(qemu) change cdrom /path/to/some.iso
1020@end example
1021
1022@item change vnc @var{display},@var{options}
1023Change the configuration of the VNC server. The valid syntax for @var{display}
1024and @var{options} are described at @ref{sec_invocation}. eg
1025
1026@example
1027(qemu) change vnc localhost:1
1028@end example
1029
1030@item change vnc password
1031
1032Change the password associated with the VNC server. The monitor will prompt for
1033the new password to be entered. VNC passwords are only significant upto 8 letters.
1034eg.
1035
1036@example
1037(qemu) change vnc password
1038Password: ********
1039@end example
1040
1041@end table
1042
1043@item screendump @var{filename}
1044Save screen into PPM image @var{filename}.
1045
1046@item mouse_move @var{dx} @var{dy} [@var{dz}]
1047Move the active mouse to the specified coordinates @var{dx} @var{dy}
1048with optional scroll axis @var{dz}.
1049
1050@item mouse_button @var{val}
1051Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1052
1053@item mouse_set @var{index}
1054Set which mouse device receives events at given @var{index}, index
1055can be obtained with
1056@example
1057info mice
1058@end example
1059
1060@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1061Capture audio into @var{filename}. Using sample rate @var{frequency}
1062bits per sample @var{bits} and number of channels @var{channels}.
1063
1064Defaults:
1065@itemize @minus
1066@item Sample rate = 44100 Hz - CD quality
1067@item Bits = 16
1068@item Number of channels = 2 - Stereo
1069@end itemize
1070
1071@item stopcapture @var{index}
1072Stop capture with a given @var{index}, index can be obtained with
1073@example
1074info capture
1075@end example
1076
1077@item log @var{item1}[,...]
1078Activate logging of the specified items to @file{/tmp/qemu.log}.
1079
1080@item savevm [@var{tag}|@var{id}]
1081Create a snapshot of the whole virtual machine. If @var{tag} is
1082provided, it is used as human readable identifier. If there is already
1083a snapshot with the same tag or ID, it is replaced. More info at
1084@ref{vm_snapshots}.
1085
1086@item loadvm @var{tag}|@var{id}
1087Set the whole virtual machine to the snapshot identified by the tag
1088@var{tag} or the unique snapshot ID @var{id}.
1089
1090@item delvm @var{tag}|@var{id}
1091Delete the snapshot identified by @var{tag} or @var{id}.
1092
1093@item stop
1094Stop emulation.
1095
1096@item c or cont
1097Resume emulation.
1098
1099@item gdbserver [@var{port}]
1100Start gdbserver session (default @var{port}=1234)
1101
1102@item x/fmt @var{addr}
1103Virtual memory dump starting at @var{addr}.
1104
1105@item xp /@var{fmt} @var{addr}
1106Physical memory dump starting at @var{addr}.
1107
1108@var{fmt} is a format which tells the command how to format the
1109data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1110
1111@table @var
1112@item count
1113is the number of items to be dumped.
1114
1115@item format
1116can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1117c (char) or i (asm instruction).
1118
1119@item size
1120can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1121@code{h} or @code{w} can be specified with the @code{i} format to
1122respectively select 16 or 32 bit code instruction size.
1123
1124@end table
1125
1126Examples:
1127@itemize
1128@item
1129Dump 10 instructions at the current instruction pointer:
1130@example
1131(qemu) x/10i $eip
11320x90107063: ret
11330x90107064: sti
11340x90107065: lea 0x0(%esi,1),%esi
11350x90107069: lea 0x0(%edi,1),%edi
11360x90107070: ret
11370x90107071: jmp 0x90107080
11380x90107073: nop
11390x90107074: nop
11400x90107075: nop
11410x90107076: nop
1142@end example
1143
1144@item
1145Dump 80 16 bit values at the start of the video memory.
1146@smallexample
1147(qemu) xp/80hx 0xb8000
11480x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
11490x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
11500x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
11510x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
11520x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
11530x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
11540x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
11550x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
11560x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
11570x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1158@end smallexample
1159@end itemize
1160
1161@item p or print/@var{fmt} @var{expr}
1162
1163Print expression value. Only the @var{format} part of @var{fmt} is
1164used.
1165
1166@item sendkey @var{keys}
1167
1168Send @var{keys} to the emulator. Use @code{-} to press several keys
1169simultaneously. Example:
1170@example
1171sendkey ctrl-alt-f1
1172@end example
1173
1174This command is useful to send keys that your graphical user interface
1175intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1176
1177@item system_reset
1178
1179Reset the system.
1180
1181@item usb_add @var{devname}
1182
1183Add the USB device @var{devname}. For details of available devices see
1184@ref{usb_devices}
1185
1186@item usb_del @var{devname}
1187
1188Remove the USB device @var{devname} from the QEMU virtual USB
1189hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1190command @code{info usb} to see the devices you can remove.
1191
1192@end table
1193
1194@subsection Integer expressions
1195
1196The monitor understands integers expressions for every integer
1197argument. You can use register names to get the value of specifics
1198CPU registers by prefixing them with @emph{$}.
1199
1200@node disk_images
1201@section Disk Images
1202
1203Since version 0.6.1, QEMU supports many disk image formats, including
1204growable disk images (their size increase as non empty sectors are
1205written), compressed and encrypted disk images. Version 0.8.3 added
1206the new qcow2 disk image format which is essential to support VM
1207snapshots.
1208
1209@menu
1210* disk_images_quickstart:: Quick start for disk image creation
1211* disk_images_snapshot_mode:: Snapshot mode
1212* vm_snapshots:: VM snapshots
1213* qemu_img_invocation:: qemu-img Invocation
1214* host_drives:: Using host drives
1215* disk_images_fat_images:: Virtual FAT disk images
1216@end menu
1217
1218@node disk_images_quickstart
1219@subsection Quick start for disk image creation
1220
1221You can create a disk image with the command:
1222@example
1223qemu-img create myimage.img mysize
1224@end example
1225where @var{myimage.img} is the disk image filename and @var{mysize} is its
1226size in kilobytes. You can add an @code{M} suffix to give the size in
1227megabytes and a @code{G} suffix for gigabytes.
1228
1229See @ref{qemu_img_invocation} for more information.
1230
1231@node disk_images_snapshot_mode
1232@subsection Snapshot mode
1233
1234If you use the option @option{-snapshot}, all disk images are
1235considered as read only. When sectors in written, they are written in
1236a temporary file created in @file{/tmp}. You can however force the
1237write back to the raw disk images by using the @code{commit} monitor
1238command (or @key{C-a s} in the serial console).
1239
1240@node vm_snapshots
1241@subsection VM snapshots
1242
1243VM snapshots are snapshots of the complete virtual machine including
1244CPU state, RAM, device state and the content of all the writable
1245disks. In order to use VM snapshots, you must have at least one non
1246removable and writable block device using the @code{qcow2} disk image
1247format. Normally this device is the first virtual hard drive.
1248
1249Use the monitor command @code{savevm} to create a new VM snapshot or
1250replace an existing one. A human readable name can be assigned to each
1251snapshot in addition to its numerical ID.
1252
1253Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1254a VM snapshot. @code{info snapshots} lists the available snapshots
1255with their associated information:
1256
1257@example
1258(qemu) info snapshots
1259Snapshot devices: hda
1260Snapshot list (from hda):
1261ID TAG VM SIZE DATE VM CLOCK
12621 start 41M 2006-08-06 12:38:02 00:00:14.954
12632 40M 2006-08-06 12:43:29 00:00:18.633
12643 msys 40M 2006-08-06 12:44:04 00:00:23.514
1265@end example
1266
1267A VM snapshot is made of a VM state info (its size is shown in
1268@code{info snapshots}) and a snapshot of every writable disk image.
1269The VM state info is stored in the first @code{qcow2} non removable
1270and writable block device. The disk image snapshots are stored in
1271every disk image. The size of a snapshot in a disk image is difficult
1272to evaluate and is not shown by @code{info snapshots} because the
1273associated disk sectors are shared among all the snapshots to save
1274disk space (otherwise each snapshot would need a full copy of all the
1275disk images).
1276
1277When using the (unrelated) @code{-snapshot} option
1278(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1279but they are deleted as soon as you exit QEMU.
1280
1281VM snapshots currently have the following known limitations:
1282@itemize
1283@item
1284They cannot cope with removable devices if they are removed or
1285inserted after a snapshot is done.
1286@item
1287A few device drivers still have incomplete snapshot support so their
1288state is not saved or restored properly (in particular USB).
1289@end itemize
1290
1291@node qemu_img_invocation
1292@subsection @code{qemu-img} Invocation
1293
1294@include qemu-img.texi
1295
1296@node host_drives
1297@subsection Using host drives
1298
1299In addition to disk image files, QEMU can directly access host
1300devices. We describe here the usage for QEMU version >= 0.8.3.
1301
1302@subsubsection Linux
1303
1304On Linux, you can directly use the host device filename instead of a
1305disk image filename provided you have enough privileges to access
1306it. For example, use @file{/dev/cdrom} to access to the CDROM or
1307@file{/dev/fd0} for the floppy.
1308
1309@table @code
1310@item CD
1311You can specify a CDROM device even if no CDROM is loaded. QEMU has
1312specific code to detect CDROM insertion or removal. CDROM ejection by
1313the guest OS is supported. Currently only data CDs are supported.
1314@item Floppy
1315You can specify a floppy device even if no floppy is loaded. Floppy
1316removal is currently not detected accurately (if you change floppy
1317without doing floppy access while the floppy is not loaded, the guest
1318OS will think that the same floppy is loaded).
1319@item Hard disks
1320Hard disks can be used. Normally you must specify the whole disk
1321(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1322see it as a partitioned disk. WARNING: unless you know what you do, it
1323is better to only make READ-ONLY accesses to the hard disk otherwise
1324you may corrupt your host data (use the @option{-snapshot} command
1325line option or modify the device permissions accordingly).
1326@end table
1327
1328@subsubsection Windows
1329
1330@table @code
1331@item CD
1332The preferred syntax is the drive letter (e.g. @file{d:}). The
1333alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1334supported as an alias to the first CDROM drive.
1335
1336Currently there is no specific code to handle removable media, so it
1337is better to use the @code{change} or @code{eject} monitor commands to
1338change or eject media.
1339@item Hard disks
1340Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1341where @var{N} is the drive number (0 is the first hard disk).
1342
1343WARNING: unless you know what you do, it is better to only make
1344READ-ONLY accesses to the hard disk otherwise you may corrupt your
1345host data (use the @option{-snapshot} command line so that the
1346modifications are written in a temporary file).
1347@end table
1348
1349
1350@subsubsection Mac OS X
1351
1352@file{/dev/cdrom} is an alias to the first CDROM.
1353
1354Currently there is no specific code to handle removable media, so it
1355is better to use the @code{change} or @code{eject} monitor commands to
1356change or eject media.
1357
1358@node disk_images_fat_images
1359@subsection Virtual FAT disk images
1360
1361QEMU can automatically create a virtual FAT disk image from a
1362directory tree. In order to use it, just type:
1363
1364@example
1365qemu linux.img -hdb fat:/my_directory
1366@end example
1367
1368Then you access access to all the files in the @file{/my_directory}
1369directory without having to copy them in a disk image or to export
1370them via SAMBA or NFS. The default access is @emph{read-only}.
1371
1372Floppies can be emulated with the @code{:floppy:} option:
1373
1374@example
1375qemu linux.img -fda fat:floppy:/my_directory
1376@end example
1377
1378A read/write support is available for testing (beta stage) with the
1379@code{:rw:} option:
1380
1381@example
1382qemu linux.img -fda fat:floppy:rw:/my_directory
1383@end example
1384
1385What you should @emph{never} do:
1386@itemize
1387@item use non-ASCII filenames ;
1388@item use "-snapshot" together with ":rw:" ;
1389@item expect it to work when loadvm'ing ;
1390@item write to the FAT directory on the host system while accessing it with the guest system.
1391@end itemize
1392
1393@node pcsys_network
1394@section Network emulation
1395
1396QEMU can simulate several network cards (PCI or ISA cards on the PC
1397target) and can connect them to an arbitrary number of Virtual Local
1398Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1399VLAN. VLAN can be connected between separate instances of QEMU to
1400simulate large networks. For simpler usage, a non privileged user mode
1401network stack can replace the TAP device to have a basic network
1402connection.
1403
1404@subsection VLANs
1405
1406QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1407connection between several network devices. These devices can be for
1408example QEMU virtual Ethernet cards or virtual Host ethernet devices
1409(TAP devices).
1410
1411@subsection Using TAP network interfaces
1412
1413This is the standard way to connect QEMU to a real network. QEMU adds
1414a virtual network device on your host (called @code{tapN}), and you
1415can then configure it as if it was a real ethernet card.
1416
1417@subsubsection Linux host
1418
1419As an example, you can download the @file{linux-test-xxx.tar.gz}
1420archive and copy the script @file{qemu-ifup} in @file{/etc} and
1421configure properly @code{sudo} so that the command @code{ifconfig}
1422contained in @file{qemu-ifup} can be executed as root. You must verify
1423that your host kernel supports the TAP network interfaces: the
1424device @file{/dev/net/tun} must be present.
1425
1426See @ref{sec_invocation} to have examples of command lines using the
1427TAP network interfaces.
1428
1429@subsubsection Windows host
1430
1431There is a virtual ethernet driver for Windows 2000/XP systems, called
1432TAP-Win32. But it is not included in standard QEMU for Windows,
1433so you will need to get it separately. It is part of OpenVPN package,
1434so download OpenVPN from : @url{http://openvpn.net/}.
1435
1436@subsection Using the user mode network stack
1437
1438By using the option @option{-net user} (default configuration if no
1439@option{-net} option is specified), QEMU uses a completely user mode
1440network stack (you don't need root privilege to use the virtual
1441network). The virtual network configuration is the following:
1442
1443@example
1444
1445 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1446 | (10.0.2.2)
1447 |
1448 ----> DNS server (10.0.2.3)
1449 |
1450 ----> SMB server (10.0.2.4)
1451@end example
1452
1453The QEMU VM behaves as if it was behind a firewall which blocks all
1454incoming connections. You can use a DHCP client to automatically
1455configure the network in the QEMU VM. The DHCP server assign addresses
1456to the hosts starting from 10.0.2.15.
1457
1458In order to check that the user mode network is working, you can ping
1459the address 10.0.2.2 and verify that you got an address in the range
146010.0.2.x from the QEMU virtual DHCP server.
1461
1462Note that @code{ping} is not supported reliably to the internet as it
1463would require root privileges. It means you can only ping the local
1464router (10.0.2.2).
1465
1466When using the built-in TFTP server, the router is also the TFTP
1467server.
1468
1469When using the @option{-redir} option, TCP or UDP connections can be
1470redirected from the host to the guest. It allows for example to
1471redirect X11, telnet or SSH connections.
1472
1473@subsection Connecting VLANs between QEMU instances
1474
1475Using the @option{-net socket} option, it is possible to make VLANs
1476that span several QEMU instances. See @ref{sec_invocation} to have a
1477basic example.
1478
1479@node direct_linux_boot
1480@section Direct Linux Boot
1481
1482This section explains how to launch a Linux kernel inside QEMU without
1483having to make a full bootable image. It is very useful for fast Linux
1484kernel testing.
1485
1486The syntax is:
1487@example
1488qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1489@end example
1490
1491Use @option{-kernel} to provide the Linux kernel image and
1492@option{-append} to give the kernel command line arguments. The
1493@option{-initrd} option can be used to provide an INITRD image.
1494
1495When using the direct Linux boot, a disk image for the first hard disk
1496@file{hda} is required because its boot sector is used to launch the
1497Linux kernel.
1498
1499If you do not need graphical output, you can disable it and redirect
1500the virtual serial port and the QEMU monitor to the console with the
1501@option{-nographic} option. The typical command line is:
1502@example
1503qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1504 -append "root=/dev/hda console=ttyS0" -nographic
1505@end example
1506
1507Use @key{Ctrl-a c} to switch between the serial console and the
1508monitor (@pxref{pcsys_keys}).
1509
1510@node pcsys_usb
1511@section USB emulation
1512
1513QEMU emulates a PCI UHCI USB controller. You can virtually plug
1514virtual USB devices or real host USB devices (experimental, works only
1515on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1516as necessary to connect multiple USB devices.
1517
1518@menu
1519* usb_devices::
1520* host_usb_devices::
1521@end menu
1522@node usb_devices
1523@subsection Connecting USB devices
1524
1525USB devices can be connected with the @option{-usbdevice} commandline option
1526or the @code{usb_add} monitor command. Available devices are:
1527
1528@table @var
1529@item @code{mouse}
1530Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1531@item @code{tablet}
1532Pointer device that uses absolute coordinates (like a touchscreen).
1533This means qemu is able to report the mouse position without having
1534to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1535@item @code{disk:@var{file}}
1536Mass storage device based on @var{file} (@pxref{disk_images})
1537@item @code{host:@var{bus.addr}}
1538Pass through the host device identified by @var{bus.addr}
1539(Linux only)
1540@item @code{host:@var{vendor_id:product_id}}
1541Pass through the host device identified by @var{vendor_id:product_id}
1542(Linux only)
1543@item @code{wacom-tablet}
1544Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1545above but it can be used with the tslib library because in addition to touch
1546coordinates it reports touch pressure.
1547@item @code{keyboard}
1548Standard USB keyboard. Will override the PS/2 keyboard (if present).
1549@end table
1550
1551@node host_usb_devices
1552@subsection Using host USB devices on a Linux host
1553
1554WARNING: this is an experimental feature. QEMU will slow down when
1555using it. USB devices requiring real time streaming (i.e. USB Video
1556Cameras) are not supported yet.
1557
1558@enumerate
1559@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1560is actually using the USB device. A simple way to do that is simply to
1561disable the corresponding kernel module by renaming it from @file{mydriver.o}
1562to @file{mydriver.o.disabled}.
1563
1564@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1565@example
1566ls /proc/bus/usb
1567001 devices drivers
1568@end example
1569
1570@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1571@example
1572chown -R myuid /proc/bus/usb
1573@end example
1574
1575@item Launch QEMU and do in the monitor:
1576@example
1577info usbhost
1578 Device 1.2, speed 480 Mb/s
1579 Class 00: USB device 1234:5678, USB DISK
1580@end example
1581You should see the list of the devices you can use (Never try to use
1582hubs, it won't work).
1583
1584@item Add the device in QEMU by using:
1585@example
1586usb_add host:1234:5678
1587@end example
1588
1589Normally the guest OS should report that a new USB device is
1590plugged. You can use the option @option{-usbdevice} to do the same.
1591
1592@item Now you can try to use the host USB device in QEMU.
1593
1594@end enumerate
1595
1596When relaunching QEMU, you may have to unplug and plug again the USB
1597device to make it work again (this is a bug).
1598
1599@node vnc_security
1600@section VNC security
1601
1602The VNC server capability provides access to the graphical console
1603of the guest VM across the network. This has a number of security
1604considerations depending on the deployment scenarios.
1605
1606@menu
1607* vnc_sec_none::
1608* vnc_sec_password::
1609* vnc_sec_certificate::
1610* vnc_sec_certificate_verify::
1611* vnc_sec_certificate_pw::
1612* vnc_generate_cert::
1613@end menu
1614@node vnc_sec_none
1615@subsection Without passwords
1616
1617The simplest VNC server setup does not include any form of authentication.
1618For this setup it is recommended to restrict it to listen on a UNIX domain
1619socket only. For example
1620
1621@example
1622qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1623@end example
1624
1625This ensures that only users on local box with read/write access to that
1626path can access the VNC server. To securely access the VNC server from a
1627remote machine, a combination of netcat+ssh can be used to provide a secure
1628tunnel.
1629
1630@node vnc_sec_password
1631@subsection With passwords
1632
1633The VNC protocol has limited support for password based authentication. Since
1634the protocol limits passwords to 8 characters it should not be considered
1635to provide high security. The password can be fairly easily brute-forced by
1636a client making repeat connections. For this reason, a VNC server using password
1637authentication should be restricted to only listen on the loopback interface
1638or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1639option, and then once QEMU is running the password is set with the monitor. Until
1640the monitor is used to set the password all clients will be rejected.
1641
1642@example
1643qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1644(qemu) change vnc password
1645Password: ********
1646(qemu)
1647@end example
1648
1649@node vnc_sec_certificate
1650@subsection With x509 certificates
1651
1652The QEMU VNC server also implements the VeNCrypt extension allowing use of
1653TLS for encryption of the session, and x509 certificates for authentication.
1654The use of x509 certificates is strongly recommended, because TLS on its
1655own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1656support provides a secure session, but no authentication. This allows any
1657client to connect, and provides an encrypted session.
1658
1659@example
1660qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1661@end example
1662
1663In the above example @code{/etc/pki/qemu} should contain at least three files,
1664@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1665users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1666NB the @code{server-key.pem} file should be protected with file mode 0600 to
1667only be readable by the user owning it.
1668
1669@node vnc_sec_certificate_verify
1670@subsection With x509 certificates and client verification
1671
1672Certificates can also provide a means to authenticate the client connecting.
1673The server will request that the client provide a certificate, which it will
1674then validate against the CA certificate. This is a good choice if deploying
1675in an environment with a private internal certificate authority.
1676
1677@example
1678qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1679@end example
1680
1681
1682@node vnc_sec_certificate_pw
1683@subsection With x509 certificates, client verification and passwords
1684
1685Finally, the previous method can be combined with VNC password authentication
1686to provide two layers of authentication for clients.
1687
1688@example
1689qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1690(qemu) change vnc password
1691Password: ********
1692(qemu)
1693@end example
1694
1695@node vnc_generate_cert
1696@subsection Generating certificates for VNC
1697
1698The GNU TLS packages provides a command called @code{certtool} which can
1699be used to generate certificates and keys in PEM format. At a minimum it
1700is neccessary to setup a certificate authority, and issue certificates to
1701each server. If using certificates for authentication, then each client
1702will also need to be issued a certificate. The recommendation is for the
1703server to keep its certificates in either @code{/etc/pki/qemu} or for
1704unprivileged users in @code{$HOME/.pki/qemu}.
1705
1706@menu
1707* vnc_generate_ca::
1708* vnc_generate_server::
1709* vnc_generate_client::
1710@end menu
1711@node vnc_generate_ca
1712@subsubsection Setup the Certificate Authority
1713
1714This step only needs to be performed once per organization / organizational
1715unit. First the CA needs a private key. This key must be kept VERY secret
1716and secure. If this key is compromised the entire trust chain of the certificates
1717issued with it is lost.
1718
1719@example
1720# certtool --generate-privkey > ca-key.pem
1721@end example
1722
1723A CA needs to have a public certificate. For simplicity it can be a self-signed
1724certificate, or one issue by a commercial certificate issuing authority. To
1725generate a self-signed certificate requires one core piece of information, the
1726name of the organization.
1727
1728@example
1729# cat > ca.info <<EOF
1730cn = Name of your organization
1731ca
1732cert_signing_key
1733EOF
1734# certtool --generate-self-signed \
1735 --load-privkey ca-key.pem
1736 --template ca.info \
1737 --outfile ca-cert.pem
1738@end example
1739
1740The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1741TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1742
1743@node vnc_generate_server
1744@subsubsection Issuing server certificates
1745
1746Each server (or host) needs to be issued with a key and certificate. When connecting
1747the certificate is sent to the client which validates it against the CA certificate.
1748The core piece of information for a server certificate is the hostname. This should
1749be the fully qualified hostname that the client will connect with, since the client
1750will typically also verify the hostname in the certificate. On the host holding the
1751secure CA private key:
1752
1753@example
1754# cat > server.info <<EOF
1755organization = Name of your organization
1756cn = server.foo.example.com
1757tls_www_server
1758encryption_key
1759signing_key
1760EOF
1761# certtool --generate-privkey > server-key.pem
1762# certtool --generate-certificate \
1763 --load-ca-certificate ca-cert.pem \
1764 --load-ca-privkey ca-key.pem \
1765 --load-privkey server server-key.pem \
1766 --template server.info \
1767 --outfile server-cert.pem
1768@end example
1769
1770The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1771to the server for which they were generated. The @code{server-key.pem} is security
1772sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1773
1774@node vnc_generate_client
1775@subsubsection Issuing client certificates
1776
1777If the QEMU VNC server is to use the @code{x509verify} option to validate client
1778certificates as its authentication mechanism, each client also needs to be issued
1779a certificate. The client certificate contains enough metadata to uniquely identify
1780the client, typically organization, state, city, building, etc. On the host holding
1781the secure CA private key:
1782
1783@example
1784# cat > client.info <<EOF
1785country = GB
1786state = London
1787locality = London
1788organiazation = Name of your organization
1789cn = client.foo.example.com
1790tls_www_client
1791encryption_key
1792signing_key
1793EOF
1794# certtool --generate-privkey > client-key.pem
1795# certtool --generate-certificate \
1796 --load-ca-certificate ca-cert.pem \
1797 --load-ca-privkey ca-key.pem \
1798 --load-privkey client-key.pem \
1799 --template client.info \
1800 --outfile client-cert.pem
1801@end example
1802
1803The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1804copied to the client for which they were generated.
1805
1806@node gdb_usage
1807@section GDB usage
1808
1809QEMU has a primitive support to work with gdb, so that you can do
1810'Ctrl-C' while the virtual machine is running and inspect its state.
1811
1812In order to use gdb, launch qemu with the '-s' option. It will wait for a
1813gdb connection:
1814@example
1815> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1816 -append "root=/dev/hda"
1817Connected to host network interface: tun0
1818Waiting gdb connection on port 1234
1819@end example
1820
1821Then launch gdb on the 'vmlinux' executable:
1822@example
1823> gdb vmlinux
1824@end example
1825
1826In gdb, connect to QEMU:
1827@example
1828(gdb) target remote localhost:1234
1829@end example
1830
1831Then you can use gdb normally. For example, type 'c' to launch the kernel:
1832@example
1833(gdb) c
1834@end example
1835
1836Here are some useful tips in order to use gdb on system code:
1837
1838@enumerate
1839@item
1840Use @code{info reg} to display all the CPU registers.
1841@item
1842Use @code{x/10i $eip} to display the code at the PC position.
1843@item
1844Use @code{set architecture i8086} to dump 16 bit code. Then use
1845@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1846@end enumerate
1847
1848@node pcsys_os_specific
1849@section Target OS specific information
1850
1851@subsection Linux
1852
1853To have access to SVGA graphic modes under X11, use the @code{vesa} or
1854the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1855color depth in the guest and the host OS.
1856
1857When using a 2.6 guest Linux kernel, you should add the option
1858@code{clock=pit} on the kernel command line because the 2.6 Linux
1859kernels make very strict real time clock checks by default that QEMU
1860cannot simulate exactly.
1861
1862When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1863not activated because QEMU is slower with this patch. The QEMU
1864Accelerator Module is also much slower in this case. Earlier Fedora
1865Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1866patch by default. Newer kernels don't have it.
1867
1868@subsection Windows
1869
1870If you have a slow host, using Windows 95 is better as it gives the
1871best speed. Windows 2000 is also a good choice.
1872
1873@subsubsection SVGA graphic modes support
1874
1875QEMU emulates a Cirrus Logic GD5446 Video
1876card. All Windows versions starting from Windows 95 should recognize
1877and use this graphic card. For optimal performances, use 16 bit color
1878depth in the guest and the host OS.
1879
1880If you are using Windows XP as guest OS and if you want to use high
1881resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18821280x1024x16), then you should use the VESA VBE virtual graphic card
1883(option @option{-std-vga}).
1884
1885@subsubsection CPU usage reduction
1886
1887Windows 9x does not correctly use the CPU HLT
1888instruction. The result is that it takes host CPU cycles even when
1889idle. You can install the utility from
1890@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1891problem. Note that no such tool is needed for NT, 2000 or XP.
1892
1893@subsubsection Windows 2000 disk full problem
1894
1895Windows 2000 has a bug which gives a disk full problem during its
1896installation. When installing it, use the @option{-win2k-hack} QEMU
1897option to enable a specific workaround. After Windows 2000 is
1898installed, you no longer need this option (this option slows down the
1899IDE transfers).
1900
1901@subsubsection Windows 2000 shutdown
1902
1903Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1904can. It comes from the fact that Windows 2000 does not automatically
1905use the APM driver provided by the BIOS.
1906
1907In order to correct that, do the following (thanks to Struan
1908Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1909Add/Troubleshoot a device => Add a new device & Next => No, select the
1910hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1911(again) a few times. Now the driver is installed and Windows 2000 now
1912correctly instructs QEMU to shutdown at the appropriate moment.
1913
1914@subsubsection Share a directory between Unix and Windows
1915
1916See @ref{sec_invocation} about the help of the option @option{-smb}.
1917
1918@subsubsection Windows XP security problem
1919
1920Some releases of Windows XP install correctly but give a security
1921error when booting:
1922@example
1923A problem is preventing Windows from accurately checking the
1924license for this computer. Error code: 0x800703e6.
1925@end example
1926
1927The workaround is to install a service pack for XP after a boot in safe
1928mode. Then reboot, and the problem should go away. Since there is no
1929network while in safe mode, its recommended to download the full
1930installation of SP1 or SP2 and transfer that via an ISO or using the
1931vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1932
1933@subsection MS-DOS and FreeDOS
1934
1935@subsubsection CPU usage reduction
1936
1937DOS does not correctly use the CPU HLT instruction. The result is that
1938it takes host CPU cycles even when idle. You can install the utility
1939from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1940problem.
1941
1942@node QEMU System emulator for non PC targets
1943@chapter QEMU System emulator for non PC targets
1944
1945QEMU is a generic emulator and it emulates many non PC
1946machines. Most of the options are similar to the PC emulator. The
1947differences are mentioned in the following sections.
1948
1949@menu
1950* QEMU PowerPC System emulator::
1951* Sparc32 System emulator::
1952* Sparc64 System emulator::
1953* MIPS System emulator::
1954* ARM System emulator::
1955* ColdFire System emulator::
1956@end menu
1957
1958@node QEMU PowerPC System emulator
1959@section QEMU PowerPC System emulator
1960
1961Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1962or PowerMac PowerPC system.
1963
1964QEMU emulates the following PowerMac peripherals:
1965
1966@itemize @minus
1967@item
1968UniNorth PCI Bridge
1969@item
1970PCI VGA compatible card with VESA Bochs Extensions
1971@item
19722 PMAC IDE interfaces with hard disk and CD-ROM support
1973@item
1974NE2000 PCI adapters
1975@item
1976Non Volatile RAM
1977@item
1978VIA-CUDA with ADB keyboard and mouse.
1979@end itemize
1980
1981QEMU emulates the following PREP peripherals:
1982
1983@itemize @minus
1984@item
1985PCI Bridge
1986@item
1987PCI VGA compatible card with VESA Bochs Extensions
1988@item
19892 IDE interfaces with hard disk and CD-ROM support
1990@item
1991Floppy disk
1992@item
1993NE2000 network adapters
1994@item
1995Serial port
1996@item
1997PREP Non Volatile RAM
1998@item
1999PC compatible keyboard and mouse.
2000@end itemize
2001
2002QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2003@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2004
2005@c man begin OPTIONS
2006
2007The following options are specific to the PowerPC emulation:
2008
2009@table @option
2010
2011@item -g WxH[xDEPTH]
2012
2013Set the initial VGA graphic mode. The default is 800x600x15.
2014
2015@end table
2016
2017@c man end
2018
2019
2020More information is available at
2021@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2022
2023@node Sparc32 System emulator
2024@section Sparc32 System emulator
2025
2026Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
20275, SPARCstation 10, or SPARCserver 600MP (sun4m architecture). The
2028emulation is somewhat complete. SMP up to 16 CPUs is supported, but
2029Linux limits the number of usable CPUs to 4.
2030
2031QEMU emulates the following sun4m peripherals:
2032
2033@itemize @minus
2034@item
2035IOMMU
2036@item
2037TCX Frame buffer
2038@item
2039Lance (Am7990) Ethernet
2040@item
2041Non Volatile RAM M48T08
2042@item
2043Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2044and power/reset logic
2045@item
2046ESP SCSI controller with hard disk and CD-ROM support
2047@item
2048Floppy drive (not on SS-600MP)
2049@item
2050CS4231 sound device (only on SS-5, not working yet)
2051@end itemize
2052
2053The number of peripherals is fixed in the architecture. Maximum
2054memory size depends on the machine type, for SS-5 it is 256MB and for
2055SS-10 and SS-600MP 2047MB.
2056
2057Since version 0.8.2, QEMU uses OpenBIOS
2058@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2059firmware implementation. The goal is to implement a 100% IEEE
20601275-1994 (referred to as Open Firmware) compliant firmware.
2061
2062A sample Linux 2.6 series kernel and ram disk image are available on
2063the QEMU web site. Please note that currently NetBSD, OpenBSD or
2064Solaris kernels don't work.
2065
2066@c man begin OPTIONS
2067
2068The following options are specific to the Sparc32 emulation:
2069
2070@table @option
2071
2072@item -g WxHx[xDEPTH]
2073
2074Set the initial TCX graphic mode. The default is 1024x768x8, currently
2075the only other possible mode is 1024x768x24.
2076
2077@item -prom-env string
2078
2079Set OpenBIOS variables in NVRAM, for example:
2080
2081@example
2082qemu-system-sparc -prom-env 'auto-boot?=false' \
2083 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2084@end example
2085
2086@item -M [SS-5|SS-10|SS-600MP]
2087
2088Set the emulated machine type. Default is SS-5.
2089
2090@end table
2091
2092@c man end
2093
2094@node Sparc64 System emulator
2095@section Sparc64 System emulator
2096
2097Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2098The emulator is not usable for anything yet.
2099
2100QEMU emulates the following sun4u peripherals:
2101
2102@itemize @minus
2103@item
2104UltraSparc IIi APB PCI Bridge
2105@item
2106PCI VGA compatible card with VESA Bochs Extensions
2107@item
2108Non Volatile RAM M48T59
2109@item
2110PC-compatible serial ports
2111@end itemize
2112
2113@node MIPS System emulator
2114@section MIPS System emulator
2115
2116Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2117Three different machine types are emulated:
2118
2119@itemize @minus
2120@item
2121A generic ISA PC-like machine "mips"
2122@item
2123The MIPS Malta prototype board "malta"
2124@item
2125An ACER Pica "pica61"
2126@item
2127MIPS emulator pseudo board "mipssim"
2128@end itemize
2129
2130The generic emulation is supported by Debian 'Etch' and is able to
2131install Debian into a virtual disk image. The following devices are
2132emulated:
2133
2134@itemize @minus
2135@item
2136A range of MIPS CPUs, default is the 24Kf
2137@item
2138PC style serial port
2139@item
2140PC style IDE disk
2141@item
2142NE2000 network card
2143@end itemize
2144
2145The Malta emulation supports the following devices:
2146
2147@itemize @minus
2148@item
2149Core board with MIPS 24Kf CPU and Galileo system controller
2150@item
2151PIIX4 PCI/USB/SMbus controller
2152@item
2153The Multi-I/O chip's serial device
2154@item
2155PCnet32 PCI network card
2156@item
2157Malta FPGA serial device
2158@item
2159Cirrus VGA graphics card
2160@end itemize
2161
2162The ACER Pica emulation supports:
2163
2164@itemize @minus
2165@item
2166MIPS R4000 CPU
2167@item
2168PC-style IRQ and DMA controllers
2169@item
2170PC Keyboard
2171@item
2172IDE controller
2173@end itemize
2174
2175The mipssim pseudo board emulation provides an environment similiar
2176to what the proprietary MIPS emulator uses for running Linux.
2177It supports:
2178
2179@itemize @minus
2180@item
2181A range of MIPS CPUs, default is the 24Kf
2182@item
2183PC style serial port
2184@item
2185MIPSnet network emulation
2186@end itemize
2187
2188@node ARM System emulator
2189@section ARM System emulator
2190
2191Use the executable @file{qemu-system-arm} to simulate a ARM
2192machine. The ARM Integrator/CP board is emulated with the following
2193devices:
2194
2195@itemize @minus
2196@item
2197ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2198@item
2199Two PL011 UARTs
2200@item
2201SMC 91c111 Ethernet adapter
2202@item
2203PL110 LCD controller
2204@item
2205PL050 KMI with PS/2 keyboard and mouse.
2206@item
2207PL181 MultiMedia Card Interface with SD card.
2208@end itemize
2209
2210The ARM Versatile baseboard is emulated with the following devices:
2211
2212@itemize @minus
2213@item
2214ARM926E, ARM1136 or Cortex-A8 CPU
2215@item
2216PL190 Vectored Interrupt Controller
2217@item
2218Four PL011 UARTs
2219@item
2220SMC 91c111 Ethernet adapter
2221@item
2222PL110 LCD controller
2223@item
2224PL050 KMI with PS/2 keyboard and mouse.
2225@item
2226PCI host bridge. Note the emulated PCI bridge only provides access to
2227PCI memory space. It does not provide access to PCI IO space.
2228This means some devices (eg. ne2k_pci NIC) are not usable, and others
2229(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2230mapped control registers.
2231@item
2232PCI OHCI USB controller.
2233@item
2234LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2235@item
2236PL181 MultiMedia Card Interface with SD card.
2237@end itemize
2238
2239The ARM RealView Emulation baseboard is emulated with the following devices:
2240
2241@itemize @minus
2242@item
2243ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2244@item
2245ARM AMBA Generic/Distributed Interrupt Controller
2246@item
2247Four PL011 UARTs
2248@item
2249SMC 91c111 Ethernet adapter
2250@item
2251PL110 LCD controller
2252@item
2253PL050 KMI with PS/2 keyboard and mouse
2254@item
2255PCI host bridge
2256@item
2257PCI OHCI USB controller
2258@item
2259LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2260@item
2261PL181 MultiMedia Card Interface with SD card.
2262@end itemize
2263
2264The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2265and "Terrier") emulation includes the following peripherals:
2266
2267@itemize @minus
2268@item
2269Intel PXA270 System-on-chip (ARM V5TE core)
2270@item
2271NAND Flash memory
2272@item
2273IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2274@item
2275On-chip OHCI USB controller
2276@item
2277On-chip LCD controller
2278@item
2279On-chip Real Time Clock
2280@item
2281TI ADS7846 touchscreen controller on SSP bus
2282@item
2283Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2284@item
2285GPIO-connected keyboard controller and LEDs
2286@item
2287Secure Digital card connected to PXA MMC/SD host
2288@item
2289Three on-chip UARTs
2290@item
2291WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2292@end itemize
2293
2294The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2295following elements:
2296
2297@itemize @minus
2298@item
2299Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2300@item
2301ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2302@item
2303On-chip LCD controller
2304@item
2305On-chip Real Time Clock
2306@item
2307TI TSC2102i touchscreen controller / analog-digital converter / Audio
2308CODEC, connected through MicroWire and I@math{^2}S busses
2309@item
2310GPIO-connected matrix keypad
2311@item
2312Secure Digital card connected to OMAP MMC/SD host
2313@item
2314Three on-chip UARTs
2315@end itemize
2316
2317The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2318devices:
2319
2320@itemize @minus
2321@item
2322Cortex-M3 CPU core.
2323@item
232464k Flash and 8k SRAM.
2325@item
2326Timers, UARTs, ADC and I@math{^2}C interface.
2327@item
2328OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2329@end itemize
2330
2331The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2332devices:
2333
2334@itemize @minus
2335@item
2336Cortex-M3 CPU core.
2337@item
2338256k Flash and 64k SRAM.
2339@item
2340Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2341@item
2342OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2343@end itemize
2344
2345A Linux 2.6 test image is available on the QEMU web site. More
2346information is available in the QEMU mailing-list archive.
2347
2348@node ColdFire System emulator
2349@section ColdFire System emulator
2350
2351Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2352The emulator is able to boot a uClinux kernel.
2353
2354The M5208EVB emulation includes the following devices:
2355
2356@itemize @minus
2357@item
2358MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2359@item
2360Three Two on-chip UARTs.
2361@item
2362Fast Ethernet Controller (FEC)
2363@end itemize
2364
2365The AN5206 emulation includes the following devices:
2366
2367@itemize @minus
2368@item
2369MCF5206 ColdFire V2 Microprocessor.
2370@item
2371Two on-chip UARTs.
2372@end itemize
2373
2374@node QEMU User space emulator
2375@chapter QEMU User space emulator
2376
2377@menu
2378* Supported Operating Systems ::
2379* Linux User space emulator::
2380* Mac OS X/Darwin User space emulator ::
2381@end menu
2382
2383@node Supported Operating Systems
2384@section Supported Operating Systems
2385
2386The following OS are supported in user space emulation:
2387
2388@itemize @minus
2389@item
2390Linux (referred as qemu-linux-user)
2391@item
2392Mac OS X/Darwin (referred as qemu-darwin-user)
2393@end itemize
2394
2395@node Linux User space emulator
2396@section Linux User space emulator
2397
2398@menu
2399* Quick Start::
2400* Wine launch::
2401* Command line options::
2402* Other binaries::
2403@end menu
2404
2405@node Quick Start
2406@subsection Quick Start
2407
2408In order to launch a Linux process, QEMU needs the process executable
2409itself and all the target (x86) dynamic libraries used by it.
2410
2411@itemize
2412
2413@item On x86, you can just try to launch any process by using the native
2414libraries:
2415
2416@example
2417qemu-i386 -L / /bin/ls
2418@end example
2419
2420@code{-L /} tells that the x86 dynamic linker must be searched with a
2421@file{/} prefix.
2422
2423@item Since QEMU is also a linux process, you can launch qemu with
2424qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2425
2426@example
2427qemu-i386 -L / qemu-i386 -L / /bin/ls
2428@end example
2429
2430@item On non x86 CPUs, you need first to download at least an x86 glibc
2431(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2432@code{LD_LIBRARY_PATH} is not set:
2433
2434@example
2435unset LD_LIBRARY_PATH
2436@end example
2437
2438Then you can launch the precompiled @file{ls} x86 executable:
2439
2440@example
2441qemu-i386 tests/i386/ls
2442@end example
2443You can look at @file{qemu-binfmt-conf.sh} so that
2444QEMU is automatically launched by the Linux kernel when you try to
2445launch x86 executables. It requires the @code{binfmt_misc} module in the
2446Linux kernel.
2447
2448@item The x86 version of QEMU is also included. You can try weird things such as:
2449@example
2450qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2451 /usr/local/qemu-i386/bin/ls-i386
2452@end example
2453
2454@end itemize
2455
2456@node Wine launch
2457@subsection Wine launch
2458
2459@itemize
2460
2461@item Ensure that you have a working QEMU with the x86 glibc
2462distribution (see previous section). In order to verify it, you must be
2463able to do:
2464
2465@example
2466qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2467@end example
2468
2469@item Download the binary x86 Wine install
2470(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2471
2472@item Configure Wine on your account. Look at the provided script
2473@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2474@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2475
2476@item Then you can try the example @file{putty.exe}:
2477
2478@example
2479qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2480 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2481@end example
2482
2483@end itemize
2484
2485@node Command line options
2486@subsection Command line options
2487
2488@example
2489usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2490@end example
2491
2492@table @option
2493@item -h
2494Print the help
2495@item -L path
2496Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2497@item -s size
2498Set the x86 stack size in bytes (default=524288)
2499@end table
2500
2501Debug options:
2502
2503@table @option
2504@item -d
2505Activate log (logfile=/tmp/qemu.log)
2506@item -p pagesize
2507Act as if the host page size was 'pagesize' bytes
2508@end table
2509
2510@node Other binaries
2511@subsection Other binaries
2512
2513@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2514binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2515configurations), and arm-uclinux bFLT format binaries.
2516
2517@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2518(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2519coldfire uClinux bFLT format binaries.
2520
2521The binary format is detected automatically.
2522
2523@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2524(Sparc64 CPU, 32 bit ABI).
2525
2526@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2527SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2528
2529@node Mac OS X/Darwin User space emulator
2530@section Mac OS X/Darwin User space emulator
2531
2532@menu
2533* Mac OS X/Darwin Status::
2534* Mac OS X/Darwin Quick Start::
2535* Mac OS X/Darwin Command line options::
2536@end menu
2537
2538@node Mac OS X/Darwin Status
2539@subsection Mac OS X/Darwin Status
2540
2541@itemize @minus
2542@item
2543target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2544@item
2545target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2546@item
2547target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2548@item
2549target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2550@end itemize
2551
2552[1] If you're host commpage can be executed by qemu.
2553
2554@node Mac OS X/Darwin Quick Start
2555@subsection Quick Start
2556
2557In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2558itself and all the target dynamic libraries used by it. If you don't have the FAT
2559libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2560CD or compile them by hand.
2561
2562@itemize
2563
2564@item On x86, you can just try to launch any process by using the native
2565libraries:
2566
2567@example
2568qemu-i386 /bin/ls
2569@end example
2570
2571or to run the ppc version of the executable:
2572
2573@example
2574qemu-ppc /bin/ls
2575@end example
2576
2577@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2578are installed:
2579
2580@example
2581qemu-i386 -L /opt/x86_root/ /bin/ls
2582@end example
2583
2584@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2585@file{/opt/x86_root/usr/bin/dyld}.
2586
2587@end itemize
2588
2589@node Mac OS X/Darwin Command line options
2590@subsection Command line options
2591
2592@example
2593usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2594@end example
2595
2596@table @option
2597@item -h
2598Print the help
2599@item -L path
2600Set the library root path (default=/)
2601@item -s size
2602Set the stack size in bytes (default=524288)
2603@end table
2604
2605Debug options:
2606
2607@table @option
2608@item -d
2609Activate log (logfile=/tmp/qemu.log)
2610@item -p pagesize
2611Act as if the host page size was 'pagesize' bytes
2612@end table
2613
2614@node compilation
2615@chapter Compilation from the sources
2616
2617@menu
2618* Linux/Unix::
2619* Windows::
2620* Cross compilation for Windows with Linux::
2621* Mac OS X::
2622@end menu
2623
2624@node Linux/Unix
2625@section Linux/Unix
2626
2627@subsection Compilation
2628
2629First you must decompress the sources:
2630@example
2631cd /tmp
2632tar zxvf qemu-x.y.z.tar.gz
2633cd qemu-x.y.z
2634@end example
2635
2636Then you configure QEMU and build it (usually no options are needed):
2637@example
2638./configure
2639make
2640@end example
2641
2642Then type as root user:
2643@example
2644make install
2645@end example
2646to install QEMU in @file{/usr/local}.
2647
2648@subsection GCC version
2649
2650In order to compile QEMU successfully, it is very important that you
2651have the right tools. The most important one is gcc. On most hosts and
2652in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2653Linux distribution includes a gcc 4.x compiler, you can usually
2654install an older version (it is invoked by @code{gcc32} or
2655@code{gcc34}). The QEMU configure script automatically probes for
2656these older versions so that usually you don't have to do anything.
2657
2658@node Windows
2659@section Windows
2660
2661@itemize
2662@item Install the current versions of MSYS and MinGW from
2663@url{http://www.mingw.org/}. You can find detailed installation
2664instructions in the download section and the FAQ.
2665
2666@item Download
2667the MinGW development library of SDL 1.2.x
2668(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2669@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2670unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2671directory. Edit the @file{sdl-config} script so that it gives the
2672correct SDL directory when invoked.
2673
2674@item Extract the current version of QEMU.
2675
2676@item Start the MSYS shell (file @file{msys.bat}).
2677
2678@item Change to the QEMU directory. Launch @file{./configure} and
2679@file{make}. If you have problems using SDL, verify that
2680@file{sdl-config} can be launched from the MSYS command line.
2681
2682@item You can install QEMU in @file{Program Files/Qemu} by typing
2683@file{make install}. Don't forget to copy @file{SDL.dll} in
2684@file{Program Files/Qemu}.
2685
2686@end itemize
2687
2688@node Cross compilation for Windows with Linux
2689@section Cross compilation for Windows with Linux
2690
2691@itemize
2692@item
2693Install the MinGW cross compilation tools available at
2694@url{http://www.mingw.org/}.
2695
2696@item
2697Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2698unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2699variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2700the QEMU configuration script.
2701
2702@item
2703Configure QEMU for Windows cross compilation:
2704@example
2705./configure --enable-mingw32
2706@end example
2707If necessary, you can change the cross-prefix according to the prefix
2708chosen for the MinGW tools with --cross-prefix. You can also use
2709--prefix to set the Win32 install path.
2710
2711@item You can install QEMU in the installation directory by typing
2712@file{make install}. Don't forget to copy @file{SDL.dll} in the
2713installation directory.
2714
2715@end itemize
2716
2717Note: Currently, Wine does not seem able to launch
2718QEMU for Win32.
2719
2720@node Mac OS X
2721@section Mac OS X
2722
2723The Mac OS X patches are not fully merged in QEMU, so you should look
2724at the QEMU mailing list archive to have all the necessary
2725information.
2726
2727@node Index
2728@chapter Index
2729@printindex cp
2730
2731@bye