]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qemu-doc.texi
Fix saving and loading of trap state
[mirror_qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4@settitle QEMU Emulator User Documentation
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
8
9@iftex
10@titlepage
11@sp 7
12@center @titlefont{QEMU Emulator}
13@sp 1
14@center @titlefont{User Documentation}
15@sp 3
16@end titlepage
17@end iftex
18
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
28* QEMU User space emulator::
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
37@chapter Introduction
38
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
44@section Features
45
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
48
49QEMU has two operating modes:
50
51@itemize @minus
52
53@item
54Full system emulation. In this mode, QEMU emulates a full system (for
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
58
59@item
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
64
65@end itemize
66
67QEMU can run without an host kernel driver and yet gives acceptable
68performance.
69
70For system emulation, the following hardware targets are supported:
71@itemize
72@item PC (x86 or x86_64 processor)
73@item ISA PC (old style PC without PCI bus)
74@item PREP (PowerPC processor)
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78@item Sun4u (64-bit Sparc processor, in progress)
79@item Malta board (32-bit and 64-bit MIPS processors)
80@item MIPS Magnum (64-bit MIPS processor)
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
84@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87@item Freescale MCF5208EVB (ColdFire V2).
88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89@item Palm Tungsten|E PDA (OMAP310 processor)
90@item N800 and N810 tablets (OMAP2420 processor)
91@item MusicPal (MV88W8618 ARM processor)
92@end itemize
93
94For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95
96@node Installation
97@chapter Installation
98
99If you want to compile QEMU yourself, see @ref{compilation}.
100
101@menu
102* install_linux:: Linux
103* install_windows:: Windows
104* install_mac:: Macintosh
105@end menu
106
107@node install_linux
108@section Linux
109
110If a precompiled package is available for your distribution - you just
111have to install it. Otherwise, see @ref{compilation}.
112
113@node install_windows
114@section Windows
115
116Download the experimental binary installer at
117@url{http://www.free.oszoo.org/@/download.html}.
118
119@node install_mac
120@section Mac OS X
121
122Download the experimental binary installer at
123@url{http://www.free.oszoo.org/@/download.html}.
124
125@node QEMU PC System emulator
126@chapter QEMU PC System emulator
127
128@menu
129* pcsys_introduction:: Introduction
130* pcsys_quickstart:: Quick Start
131* sec_invocation:: Invocation
132* pcsys_keys:: Keys
133* pcsys_monitor:: QEMU Monitor
134* disk_images:: Disk Images
135* pcsys_network:: Network emulation
136* direct_linux_boot:: Direct Linux Boot
137* pcsys_usb:: USB emulation
138* vnc_security:: VNC security
139* gdb_usage:: GDB usage
140* pcsys_os_specific:: Target OS specific information
141@end menu
142
143@node pcsys_introduction
144@section Introduction
145
146@c man begin DESCRIPTION
147
148The QEMU PC System emulator simulates the
149following peripherals:
150
151@itemize @minus
152@item
153i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154@item
155Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156extensions (hardware level, including all non standard modes).
157@item
158PS/2 mouse and keyboard
159@item
1602 PCI IDE interfaces with hard disk and CD-ROM support
161@item
162Floppy disk
163@item
164PCI/ISA PCI network adapters
165@item
166Serial ports
167@item
168Creative SoundBlaster 16 sound card
169@item
170ENSONIQ AudioPCI ES1370 sound card
171@item
172Intel 82801AA AC97 Audio compatible sound card
173@item
174Adlib(OPL2) - Yamaha YM3812 compatible chip
175@item
176Gravis Ultrasound GF1 sound card
177@item
178CS4231A compatible sound card
179@item
180PCI UHCI USB controller and a virtual USB hub.
181@end itemize
182
183SMP is supported with up to 255 CPUs.
184
185Note that adlib, ac97, gus and cs4231a are only available when QEMU
186was configured with --audio-card-list option containing the name(s) of
187required card(s).
188
189QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190VGA BIOS.
191
192QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193
194QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195by Tibor "TS" Schütz.
196
197CS4231A is the chip used in Windows Sound System and GUSMAX products
198
199@c man end
200
201@node pcsys_quickstart
202@section Quick Start
203
204Download and uncompress the linux image (@file{linux.img}) and type:
205
206@example
207qemu linux.img
208@end example
209
210Linux should boot and give you a prompt.
211
212@node sec_invocation
213@section Invocation
214
215@example
216@c man begin SYNOPSIS
217usage: qemu [options] [@var{disk_image}]
218@c man end
219@end example
220
221@c man begin OPTIONS
222@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223
224General options:
225@table @option
226@item -M @var{machine}
227Select the emulated @var{machine} (@code{-M ?} for list)
228
229@item -fda @var{file}
230@item -fdb @var{file}
231Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233
234@item -hda @var{file}
235@item -hdb @var{file}
236@item -hdc @var{file}
237@item -hdd @var{file}
238Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239
240@item -cdrom @var{file}
241Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242@option{-cdrom} at the same time). You can use the host CD-ROM by
243using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244
245@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246
247Define a new drive. Valid options are:
248
249@table @code
250@item file=@var{file}
251This option defines which disk image (@pxref{disk_images}) to use with
252this drive. If the filename contains comma, you must double it
253(for instance, "file=my,,file" to use file "my,file").
254@item if=@var{interface}
255This option defines on which type on interface the drive is connected.
256Available types are: ide, scsi, sd, mtd, floppy, pflash.
257@item bus=@var{bus},unit=@var{unit}
258These options define where is connected the drive by defining the bus number and
259the unit id.
260@item index=@var{index}
261This option defines where is connected the drive by using an index in the list
262of available connectors of a given interface type.
263@item media=@var{media}
264This option defines the type of the media: disk or cdrom.
265@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266These options have the same definition as they have in @option{-hdachs}.
267@item snapshot=@var{snapshot}
268@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269@item cache=@var{cache}
270@var{cache} is "on" or "off" and allows to disable host cache to access data.
271@item format=@var{format}
272Specify which disk @var{format} will be used rather than detecting
273the format. Can be used to specifiy format=raw to avoid interpreting
274an untrusted format header.
275@end table
276
277Instead of @option{-cdrom} you can use:
278@example
279qemu -drive file=file,index=2,media=cdrom
280@end example
281
282Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283use:
284@example
285qemu -drive file=file,index=0,media=disk
286qemu -drive file=file,index=1,media=disk
287qemu -drive file=file,index=2,media=disk
288qemu -drive file=file,index=3,media=disk
289@end example
290
291You can connect a CDROM to the slave of ide0:
292@example
293qemu -drive file=file,if=ide,index=1,media=cdrom
294@end example
295
296If you don't specify the "file=" argument, you define an empty drive:
297@example
298qemu -drive if=ide,index=1,media=cdrom
299@end example
300
301You can connect a SCSI disk with unit ID 6 on the bus #0:
302@example
303qemu -drive file=file,if=scsi,bus=0,unit=6
304@end example
305
306Instead of @option{-fda}, @option{-fdb}, you can use:
307@example
308qemu -drive file=file,index=0,if=floppy
309qemu -drive file=file,index=1,if=floppy
310@end example
311
312By default, @var{interface} is "ide" and @var{index} is automatically
313incremented:
314@example
315qemu -drive file=a -drive file=b"
316@end example
317is interpreted like:
318@example
319qemu -hda a -hdb b
320@end example
321
322@item -boot [a|c|d|n]
323Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324is the default.
325
326@item -snapshot
327Write to temporary files instead of disk image files. In this case,
328the raw disk image you use is not written back. You can however force
329the write back by pressing @key{C-a s} (@pxref{disk_images}).
330
331@item -no-fd-bootchk
332Disable boot signature checking for floppy disks in Bochs BIOS. It may
333be needed to boot from old floppy disks.
334
335@item -m @var{megs}
336Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
337a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338gigabytes respectively.
339
340@item -smp @var{n}
341Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343to 4.
344
345@item -audio-help
346
347Will show the audio subsystem help: list of drivers, tunable
348parameters.
349
350@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351
352Enable audio and selected sound hardware. Use ? to print all
353available sound hardware.
354
355@example
356qemu -soundhw sb16,adlib hda
357qemu -soundhw es1370 hda
358qemu -soundhw ac97 hda
359qemu -soundhw all hda
360qemu -soundhw ?
361@end example
362
363Note that Linux's i810_audio OSS kernel (for AC97) module might
364require manually specifying clocking.
365
366@example
367modprobe i810_audio clocking=48000
368@end example
369
370@item -localtime
371Set the real time clock to local time (the default is to UTC
372time). This option is needed to have correct date in MS-DOS or
373Windows.
374
375@item -startdate @var{date}
376Set the initial date of the real time clock. Valid format for
377@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378@code{2006-06-17}. The default value is @code{now}.
379
380@item -pidfile @var{file}
381Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382from a script.
383
384@item -daemonize
385Daemonize the QEMU process after initialization. QEMU will not detach from
386standard IO until it is ready to receive connections on any of its devices.
387This option is a useful way for external programs to launch QEMU without having
388to cope with initialization race conditions.
389
390@item -win2k-hack
391Use it when installing Windows 2000 to avoid a disk full bug. After
392Windows 2000 is installed, you no longer need this option (this option
393slows down the IDE transfers).
394
395@item -option-rom @var{file}
396Load the contents of @var{file} as an option ROM.
397This option is useful to load things like EtherBoot.
398
399@item -name @var{name}
400Sets the @var{name} of the guest.
401This name will be display in the SDL window caption.
402The @var{name} will also be used for the VNC server.
403
404@end table
405
406Display options:
407@table @option
408
409@item -nographic
410
411Normally, QEMU uses SDL to display the VGA output. With this option,
412you can totally disable graphical output so that QEMU is a simple
413command line application. The emulated serial port is redirected on
414the console. Therefore, you can still use QEMU to debug a Linux kernel
415with a serial console.
416
417@item -curses
418
419Normally, QEMU uses SDL to display the VGA output. With this option,
420QEMU can display the VGA output when in text mode using a
421curses/ncurses interface. Nothing is displayed in graphical mode.
422
423@item -no-frame
424
425Do not use decorations for SDL windows and start them using the whole
426available screen space. This makes the using QEMU in a dedicated desktop
427workspace more convenient.
428
429@item -no-quit
430
431Disable SDL window close capability.
432
433@item -full-screen
434Start in full screen.
435
436@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437
438Normally, QEMU uses SDL to display the VGA output. With this option,
439you can have QEMU listen on VNC display @var{display} and redirect the VGA
440display over the VNC session. It is very useful to enable the usb
441tablet device when using this option (option @option{-usbdevice
442tablet}). When using the VNC display, you must use the @option{-k}
443parameter to set the keyboard layout if you are not using en-us. Valid
444syntax for the @var{display} is
445
446@table @code
447
448@item @var{host}:@var{d}
449
450TCP connections will only be allowed from @var{host} on display @var{d}.
451By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452be omitted in which case the server will accept connections from any host.
453
454@item @code{unix}:@var{path}
455
456Connections will be allowed over UNIX domain sockets where @var{path} is the
457location of a unix socket to listen for connections on.
458
459@item none
460
461VNC is initialized but not started. The monitor @code{change} command
462can be used to later start the VNC server.
463
464@end table
465
466Following the @var{display} value there may be one or more @var{option} flags
467separated by commas. Valid options are
468
469@table @code
470
471@item reverse
472
473Connect to a listening VNC client via a ``reverse'' connection. The
474client is specified by the @var{display}. For reverse network
475connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476is a TCP port number, not a display number.
477
478@item password
479
480Require that password based authentication is used for client connections.
481The password must be set separately using the @code{change} command in the
482@ref{pcsys_monitor}
483
484@item tls
485
486Require that client use TLS when communicating with the VNC server. This
487uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488attack. It is recommended that this option be combined with either the
489@var{x509} or @var{x509verify} options.
490
491@item x509=@var{/path/to/certificate/dir}
492
493Valid if @option{tls} is specified. Require that x509 credentials are used
494for negotiating the TLS session. The server will send its x509 certificate
495to the client. It is recommended that a password be set on the VNC server
496to provide authentication of the client when this is used. The path following
497this option specifies where the x509 certificates are to be loaded from.
498See the @ref{vnc_security} section for details on generating certificates.
499
500@item x509verify=@var{/path/to/certificate/dir}
501
502Valid if @option{tls} is specified. Require that x509 credentials are used
503for negotiating the TLS session. The server will send its x509 certificate
504to the client, and request that the client send its own x509 certificate.
505The server will validate the client's certificate against the CA certificate,
506and reject clients when validation fails. If the certificate authority is
507trusted, this is a sufficient authentication mechanism. You may still wish
508to set a password on the VNC server as a second authentication layer. The
509path following this option specifies where the x509 certificates are to
510be loaded from. See the @ref{vnc_security} section for details on generating
511certificates.
512
513@end table
514
515@item -k @var{language}
516
517Use keyboard layout @var{language} (for example @code{fr} for
518French). This option is only needed where it is not easy to get raw PC
519keycodes (e.g. on Macs, with some X11 servers or with a VNC
520display). You don't normally need to use it on PC/Linux or PC/Windows
521hosts.
522
523The available layouts are:
524@example
525ar de-ch es fo fr-ca hu ja mk no pt-br sv
526da en-gb et fr fr-ch is lt nl pl ru th
527de en-us fi fr-be hr it lv nl-be pt sl tr
528@end example
529
530The default is @code{en-us}.
531
532@end table
533
534USB options:
535@table @option
536
537@item -usb
538Enable the USB driver (will be the default soon)
539
540@item -usbdevice @var{devname}
541Add the USB device @var{devname}. @xref{usb_devices}.
542
543@table @code
544
545@item mouse
546Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547
548@item tablet
549Pointer device that uses absolute coordinates (like a touchscreen). This
550means qemu is able to report the mouse position without having to grab the
551mouse. Also overrides the PS/2 mouse emulation when activated.
552
553@item disk:file
554Mass storage device based on file
555
556@item host:bus.addr
557Pass through the host device identified by bus.addr (Linux only).
558
559@item host:vendor_id:product_id
560Pass through the host device identified by vendor_id:product_id (Linux only).
561
562@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
563Serial converter to host character device @var{dev}, see @code{-serial} for the
564available devices.
565
566@item braille
567Braille device. This will use BrlAPI to display the braille output on a real
568or fake device.
569
570@end table
571
572@end table
573
574Network options:
575
576@table @option
577
578@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
579Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
580= 0 is the default). The NIC is an ne2k_pci by default on the PC
581target. Optionally, the MAC address can be changed. If no
582@option{-net} option is specified, a single NIC is created.
583Qemu can emulate several different models of network card.
584Valid values for @var{type} are
585@code{i82551}, @code{i82557b}, @code{i82559er},
586@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
587@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
588Not all devices are supported on all targets. Use -net nic,model=?
589for a list of available devices for your target.
590
591@item -net user[,vlan=@var{n}][,hostname=@var{name}]
592Use the user mode network stack which requires no administrator
593privilege to run. @option{hostname=name} can be used to specify the client
594hostname reported by the builtin DHCP server.
595
596@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
597Connect the host TAP network interface @var{name} to VLAN @var{n} and
598use the network script @var{file} to configure it. The default
599network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
600disable script execution. If @var{name} is not
601provided, the OS automatically provides one. @option{fd}=@var{h} can be
602used to specify the handle of an already opened host TAP interface. Example:
603
604@example
605qemu linux.img -net nic -net tap
606@end example
607
608More complicated example (two NICs, each one connected to a TAP device)
609@example
610qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
611 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
612@end example
613
614
615@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
616
617Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
618machine using a TCP socket connection. If @option{listen} is
619specified, QEMU waits for incoming connections on @var{port}
620(@var{host} is optional). @option{connect} is used to connect to
621another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
622specifies an already opened TCP socket.
623
624Example:
625@example
626# launch a first QEMU instance
627qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628 -net socket,listen=:1234
629# connect the VLAN 0 of this instance to the VLAN 0
630# of the first instance
631qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
632 -net socket,connect=127.0.0.1:1234
633@end example
634
635@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
636
637Create a VLAN @var{n} shared with another QEMU virtual
638machines using a UDP multicast socket, effectively making a bus for
639every QEMU with same multicast address @var{maddr} and @var{port}.
640NOTES:
641@enumerate
642@item
643Several QEMU can be running on different hosts and share same bus (assuming
644correct multicast setup for these hosts).
645@item
646mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
647@url{http://user-mode-linux.sf.net}.
648@item
649Use @option{fd=h} to specify an already opened UDP multicast socket.
650@end enumerate
651
652Example:
653@example
654# launch one QEMU instance
655qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
656 -net socket,mcast=230.0.0.1:1234
657# launch another QEMU instance on same "bus"
658qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
659 -net socket,mcast=230.0.0.1:1234
660# launch yet another QEMU instance on same "bus"
661qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
662 -net socket,mcast=230.0.0.1:1234
663@end example
664
665Example (User Mode Linux compat.):
666@example
667# launch QEMU instance (note mcast address selected
668# is UML's default)
669qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
670 -net socket,mcast=239.192.168.1:1102
671# launch UML
672/path/to/linux ubd0=/path/to/root_fs eth0=mcast
673@end example
674
675@item -net none
676Indicate that no network devices should be configured. It is used to
677override the default configuration (@option{-net nic -net user}) which
678is activated if no @option{-net} options are provided.
679
680@item -tftp @var{dir}
681When using the user mode network stack, activate a built-in TFTP
682server. The files in @var{dir} will be exposed as the root of a TFTP server.
683The TFTP client on the guest must be configured in binary mode (use the command
684@code{bin} of the Unix TFTP client). The host IP address on the guest is as
685usual 10.0.2.2.
686
687@item -bootp @var{file}
688When using the user mode network stack, broadcast @var{file} as the BOOTP
689filename. In conjunction with @option{-tftp}, this can be used to network boot
690a guest from a local directory.
691
692Example (using pxelinux):
693@example
694qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
695@end example
696
697@item -smb @var{dir}
698When using the user mode network stack, activate a built-in SMB
699server so that Windows OSes can access to the host files in @file{@var{dir}}
700transparently.
701
702In the guest Windows OS, the line:
703@example
70410.0.2.4 smbserver
705@end example
706must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
707or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
708
709Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
710
711Note that a SAMBA server must be installed on the host OS in
712@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
7132.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
714
715@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
716
717When using the user mode network stack, redirect incoming TCP or UDP
718connections to the host port @var{host-port} to the guest
719@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
720is not specified, its value is 10.0.2.15 (default address given by the
721built-in DHCP server).
722
723For example, to redirect host X11 connection from screen 1 to guest
724screen 0, use the following:
725
726@example
727# on the host
728qemu -redir tcp:6001::6000 [...]
729# this host xterm should open in the guest X11 server
730xterm -display :1
731@end example
732
733To redirect telnet connections from host port 5555 to telnet port on
734the guest, use the following:
735
736@example
737# on the host
738qemu -redir tcp:5555::23 [...]
739telnet localhost 5555
740@end example
741
742Then when you use on the host @code{telnet localhost 5555}, you
743connect to the guest telnet server.
744
745@end table
746
747Linux boot specific: When using these options, you can use a given
748Linux kernel without installing it in the disk image. It can be useful
749for easier testing of various kernels.
750
751@table @option
752
753@item -kernel @var{bzImage}
754Use @var{bzImage} as kernel image.
755
756@item -append @var{cmdline}
757Use @var{cmdline} as kernel command line
758
759@item -initrd @var{file}
760Use @var{file} as initial ram disk.
761
762@end table
763
764Debug/Expert options:
765@table @option
766
767@item -serial @var{dev}
768Redirect the virtual serial port to host character device
769@var{dev}. The default device is @code{vc} in graphical mode and
770@code{stdio} in non graphical mode.
771
772This option can be used several times to simulate up to 4 serials
773ports.
774
775Use @code{-serial none} to disable all serial ports.
776
777Available character devices are:
778@table @code
779@item vc[:WxH]
780Virtual console. Optionally, a width and height can be given in pixel with
781@example
782vc:800x600
783@end example
784It is also possible to specify width or height in characters:
785@example
786vc:80Cx24C
787@end example
788@item pty
789[Linux only] Pseudo TTY (a new PTY is automatically allocated)
790@item none
791No device is allocated.
792@item null
793void device
794@item /dev/XXX
795[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
796parameters are set according to the emulated ones.
797@item /dev/parport@var{N}
798[Linux only, parallel port only] Use host parallel port
799@var{N}. Currently SPP and EPP parallel port features can be used.
800@item file:@var{filename}
801Write output to @var{filename}. No character can be read.
802@item stdio
803[Unix only] standard input/output
804@item pipe:@var{filename}
805name pipe @var{filename}
806@item COM@var{n}
807[Windows only] Use host serial port @var{n}
808@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
809This implements UDP Net Console.
810When @var{remote_host} or @var{src_ip} are not specified
811they default to @code{0.0.0.0}.
812When not using a specified @var{src_port} a random port is automatically chosen.
813
814If you just want a simple readonly console you can use @code{netcat} or
815@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
816@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
817will appear in the netconsole session.
818
819If you plan to send characters back via netconsole or you want to stop
820and start qemu a lot of times, you should have qemu use the same
821source port each time by using something like @code{-serial
822udp::4555@@:4556} to qemu. Another approach is to use a patched
823version of netcat which can listen to a TCP port and send and receive
824characters via udp. If you have a patched version of netcat which
825activates telnet remote echo and single char transfer, then you can
826use the following options to step up a netcat redirector to allow
827telnet on port 5555 to access the qemu port.
828@table @code
829@item Qemu Options:
830-serial udp::4555@@:4556
831@item netcat options:
832-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
833@item telnet options:
834localhost 5555
835@end table
836
837
838@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
839The TCP Net Console has two modes of operation. It can send the serial
840I/O to a location or wait for a connection from a location. By default
841the TCP Net Console is sent to @var{host} at the @var{port}. If you use
842the @var{server} option QEMU will wait for a client socket application
843to connect to the port before continuing, unless the @code{nowait}
844option was specified. The @code{nodelay} option disables the Nagle buffering
845algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
846one TCP connection at a time is accepted. You can use @code{telnet} to
847connect to the corresponding character device.
848@table @code
849@item Example to send tcp console to 192.168.0.2 port 4444
850-serial tcp:192.168.0.2:4444
851@item Example to listen and wait on port 4444 for connection
852-serial tcp::4444,server
853@item Example to not wait and listen on ip 192.168.0.100 port 4444
854-serial tcp:192.168.0.100:4444,server,nowait
855@end table
856
857@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
858The telnet protocol is used instead of raw tcp sockets. The options
859work the same as if you had specified @code{-serial tcp}. The
860difference is that the port acts like a telnet server or client using
861telnet option negotiation. This will also allow you to send the
862MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
863sequence. Typically in unix telnet you do it with Control-] and then
864type "send break" followed by pressing the enter key.
865
866@item unix:@var{path}[,server][,nowait]
867A unix domain socket is used instead of a tcp socket. The option works the
868same as if you had specified @code{-serial tcp} except the unix domain socket
869@var{path} is used for connections.
870
871@item mon:@var{dev_string}
872This is a special option to allow the monitor to be multiplexed onto
873another serial port. The monitor is accessed with key sequence of
874@key{Control-a} and then pressing @key{c}. See monitor access
875@ref{pcsys_keys} in the -nographic section for more keys.
876@var{dev_string} should be any one of the serial devices specified
877above. An example to multiplex the monitor onto a telnet server
878listening on port 4444 would be:
879@table @code
880@item -serial mon:telnet::4444,server,nowait
881@end table
882
883@item braille
884Braille device. This will use BrlAPI to display the braille output on a real
885or fake device.
886
887@end table
888
889@item -parallel @var{dev}
890Redirect the virtual parallel port to host device @var{dev} (same
891devices as the serial port). On Linux hosts, @file{/dev/parportN} can
892be used to use hardware devices connected on the corresponding host
893parallel port.
894
895This option can be used several times to simulate up to 3 parallel
896ports.
897
898Use @code{-parallel none} to disable all parallel ports.
899
900@item -monitor @var{dev}
901Redirect the monitor to host device @var{dev} (same devices as the
902serial port).
903The default device is @code{vc} in graphical mode and @code{stdio} in
904non graphical mode.
905
906@item -echr numeric_ascii_value
907Change the escape character used for switching to the monitor when using
908monitor and serial sharing. The default is @code{0x01} when using the
909@code{-nographic} option. @code{0x01} is equal to pressing
910@code{Control-a}. You can select a different character from the ascii
911control keys where 1 through 26 map to Control-a through Control-z. For
912instance you could use the either of the following to change the escape
913character to Control-t.
914@table @code
915@item -echr 0x14
916@item -echr 20
917@end table
918
919@item -s
920Wait gdb connection to port 1234 (@pxref{gdb_usage}).
921@item -p @var{port}
922Change gdb connection port. @var{port} can be either a decimal number
923to specify a TCP port, or a host device (same devices as the serial port).
924@item -S
925Do not start CPU at startup (you must type 'c' in the monitor).
926@item -d
927Output log in /tmp/qemu.log
928@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
929Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
930@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
931translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
932all those parameters. This option is useful for old MS-DOS disk
933images.
934
935@item -L path
936Set the directory for the BIOS, VGA BIOS and keymaps.
937
938@item -std-vga
939Simulate a standard VGA card with Bochs VBE extensions (default is
940Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
941VBE extensions (e.g. Windows XP) and if you want to use high
942resolution modes (>= 1280x1024x16) then you should use this option.
943
944@item -no-acpi
945Disable ACPI (Advanced Configuration and Power Interface) support. Use
946it if your guest OS complains about ACPI problems (PC target machine
947only).
948
949@item -no-reboot
950Exit instead of rebooting.
951
952@item -no-shutdown
953Don't exit QEMU on guest shutdown, but instead only stop the emulation.
954This allows for instance switching to monitor to commit changes to the
955disk image.
956
957@item -loadvm file
958Start right away with a saved state (@code{loadvm} in monitor)
959
960@item -semihosting
961Enable semihosting syscall emulation (ARM and M68K target machines only).
962
963On ARM this implements the "Angel" interface.
964On M68K this implements the "ColdFire GDB" interface used by libgloss.
965
966Note that this allows guest direct access to the host filesystem,
967so should only be used with trusted guest OS.
968
969@item -icount [N|auto]
970Enable virtual instruction counter. The virtual cpu will execute one
971instruction every 2^N ns of virtual time. If @code{auto} is specified
972then the virtual cpu speed will be automatically adjusted to keep virtual
973time within a few seconds of real time.
974
975Note that while this option can give deterministic behavior, it does not
976provide cycle accurate emulation. Modern CPUs contain superscalar out of
977order cores with complex cache hierarchies. The number of instructions
978executed often has little or no correlation with actual performance.
979@end table
980
981@c man end
982
983@node pcsys_keys
984@section Keys
985
986@c man begin OPTIONS
987
988During the graphical emulation, you can use the following keys:
989@table @key
990@item Ctrl-Alt-f
991Toggle full screen
992
993@item Ctrl-Alt-n
994Switch to virtual console 'n'. Standard console mappings are:
995@table @emph
996@item 1
997Target system display
998@item 2
999Monitor
1000@item 3
1001Serial port
1002@end table
1003
1004@item Ctrl-Alt
1005Toggle mouse and keyboard grab.
1006@end table
1007
1008In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1009@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1010
1011During emulation, if you are using the @option{-nographic} option, use
1012@key{Ctrl-a h} to get terminal commands:
1013
1014@table @key
1015@item Ctrl-a h
1016Print this help
1017@item Ctrl-a x
1018Exit emulator
1019@item Ctrl-a s
1020Save disk data back to file (if -snapshot)
1021@item Ctrl-a t
1022toggle console timestamps
1023@item Ctrl-a b
1024Send break (magic sysrq in Linux)
1025@item Ctrl-a c
1026Switch between console and monitor
1027@item Ctrl-a Ctrl-a
1028Send Ctrl-a
1029@end table
1030@c man end
1031
1032@ignore
1033
1034@c man begin SEEALSO
1035The HTML documentation of QEMU for more precise information and Linux
1036user mode emulator invocation.
1037@c man end
1038
1039@c man begin AUTHOR
1040Fabrice Bellard
1041@c man end
1042
1043@end ignore
1044
1045@node pcsys_monitor
1046@section QEMU Monitor
1047
1048The QEMU monitor is used to give complex commands to the QEMU
1049emulator. You can use it to:
1050
1051@itemize @minus
1052
1053@item
1054Remove or insert removable media images
1055(such as CD-ROM or floppies).
1056
1057@item
1058Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1059from a disk file.
1060
1061@item Inspect the VM state without an external debugger.
1062
1063@end itemize
1064
1065@subsection Commands
1066
1067The following commands are available:
1068
1069@table @option
1070
1071@item help or ? [@var{cmd}]
1072Show the help for all commands or just for command @var{cmd}.
1073
1074@item commit
1075Commit changes to the disk images (if -snapshot is used).
1076
1077@item info @var{subcommand}
1078Show various information about the system state.
1079
1080@table @option
1081@item info network
1082show the various VLANs and the associated devices
1083@item info block
1084show the block devices
1085@item info registers
1086show the cpu registers
1087@item info history
1088show the command line history
1089@item info pci
1090show emulated PCI device
1091@item info usb
1092show USB devices plugged on the virtual USB hub
1093@item info usbhost
1094show all USB host devices
1095@item info capture
1096show information about active capturing
1097@item info snapshots
1098show list of VM snapshots
1099@item info mice
1100show which guest mouse is receiving events
1101@end table
1102
1103@item q or quit
1104Quit the emulator.
1105
1106@item eject [-f] @var{device}
1107Eject a removable medium (use -f to force it).
1108
1109@item change @var{device} @var{setting}
1110
1111Change the configuration of a device.
1112
1113@table @option
1114@item change @var{diskdevice} @var{filename}
1115Change the medium for a removable disk device to point to @var{filename}. eg
1116
1117@example
1118(qemu) change ide1-cd0 /path/to/some.iso
1119@end example
1120
1121@item change vnc @var{display},@var{options}
1122Change the configuration of the VNC server. The valid syntax for @var{display}
1123and @var{options} are described at @ref{sec_invocation}. eg
1124
1125@example
1126(qemu) change vnc localhost:1
1127@end example
1128
1129@item change vnc password
1130
1131Change the password associated with the VNC server. The monitor will prompt for
1132the new password to be entered. VNC passwords are only significant upto 8 letters.
1133eg.
1134
1135@example
1136(qemu) change vnc password
1137Password: ********
1138@end example
1139
1140@end table
1141
1142@item screendump @var{filename}
1143Save screen into PPM image @var{filename}.
1144
1145@item mouse_move @var{dx} @var{dy} [@var{dz}]
1146Move the active mouse to the specified coordinates @var{dx} @var{dy}
1147with optional scroll axis @var{dz}.
1148
1149@item mouse_button @var{val}
1150Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1151
1152@item mouse_set @var{index}
1153Set which mouse device receives events at given @var{index}, index
1154can be obtained with
1155@example
1156info mice
1157@end example
1158
1159@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1160Capture audio into @var{filename}. Using sample rate @var{frequency}
1161bits per sample @var{bits} and number of channels @var{channels}.
1162
1163Defaults:
1164@itemize @minus
1165@item Sample rate = 44100 Hz - CD quality
1166@item Bits = 16
1167@item Number of channels = 2 - Stereo
1168@end itemize
1169
1170@item stopcapture @var{index}
1171Stop capture with a given @var{index}, index can be obtained with
1172@example
1173info capture
1174@end example
1175
1176@item log @var{item1}[,...]
1177Activate logging of the specified items to @file{/tmp/qemu.log}.
1178
1179@item savevm [@var{tag}|@var{id}]
1180Create a snapshot of the whole virtual machine. If @var{tag} is
1181provided, it is used as human readable identifier. If there is already
1182a snapshot with the same tag or ID, it is replaced. More info at
1183@ref{vm_snapshots}.
1184
1185@item loadvm @var{tag}|@var{id}
1186Set the whole virtual machine to the snapshot identified by the tag
1187@var{tag} or the unique snapshot ID @var{id}.
1188
1189@item delvm @var{tag}|@var{id}
1190Delete the snapshot identified by @var{tag} or @var{id}.
1191
1192@item stop
1193Stop emulation.
1194
1195@item c or cont
1196Resume emulation.
1197
1198@item gdbserver [@var{port}]
1199Start gdbserver session (default @var{port}=1234)
1200
1201@item x/fmt @var{addr}
1202Virtual memory dump starting at @var{addr}.
1203
1204@item xp /@var{fmt} @var{addr}
1205Physical memory dump starting at @var{addr}.
1206
1207@var{fmt} is a format which tells the command how to format the
1208data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1209
1210@table @var
1211@item count
1212is the number of items to be dumped.
1213
1214@item format
1215can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1216c (char) or i (asm instruction).
1217
1218@item size
1219can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1220@code{h} or @code{w} can be specified with the @code{i} format to
1221respectively select 16 or 32 bit code instruction size.
1222
1223@end table
1224
1225Examples:
1226@itemize
1227@item
1228Dump 10 instructions at the current instruction pointer:
1229@example
1230(qemu) x/10i $eip
12310x90107063: ret
12320x90107064: sti
12330x90107065: lea 0x0(%esi,1),%esi
12340x90107069: lea 0x0(%edi,1),%edi
12350x90107070: ret
12360x90107071: jmp 0x90107080
12370x90107073: nop
12380x90107074: nop
12390x90107075: nop
12400x90107076: nop
1241@end example
1242
1243@item
1244Dump 80 16 bit values at the start of the video memory.
1245@smallexample
1246(qemu) xp/80hx 0xb8000
12470x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
12480x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
12490x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
12500x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
12510x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
12520x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
12530x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
12540x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
12550x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
12560x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1257@end smallexample
1258@end itemize
1259
1260@item p or print/@var{fmt} @var{expr}
1261
1262Print expression value. Only the @var{format} part of @var{fmt} is
1263used.
1264
1265@item sendkey @var{keys}
1266
1267Send @var{keys} to the emulator. Use @code{-} to press several keys
1268simultaneously. Example:
1269@example
1270sendkey ctrl-alt-f1
1271@end example
1272
1273This command is useful to send keys that your graphical user interface
1274intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1275
1276@item system_reset
1277
1278Reset the system.
1279
1280@item boot_set @var{bootdevicelist}
1281
1282Define new values for the boot device list. Those values will override
1283the values specified on the command line through the @code{-boot} option.
1284
1285The values that can be specified here depend on the machine type, but are
1286the same that can be specified in the @code{-boot} command line option.
1287
1288@item usb_add @var{devname}
1289
1290Add the USB device @var{devname}. For details of available devices see
1291@ref{usb_devices}
1292
1293@item usb_del @var{devname}
1294
1295Remove the USB device @var{devname} from the QEMU virtual USB
1296hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1297command @code{info usb} to see the devices you can remove.
1298
1299@end table
1300
1301@subsection Integer expressions
1302
1303The monitor understands integers expressions for every integer
1304argument. You can use register names to get the value of specifics
1305CPU registers by prefixing them with @emph{$}.
1306
1307@node disk_images
1308@section Disk Images
1309
1310Since version 0.6.1, QEMU supports many disk image formats, including
1311growable disk images (their size increase as non empty sectors are
1312written), compressed and encrypted disk images. Version 0.8.3 added
1313the new qcow2 disk image format which is essential to support VM
1314snapshots.
1315
1316@menu
1317* disk_images_quickstart:: Quick start for disk image creation
1318* disk_images_snapshot_mode:: Snapshot mode
1319* vm_snapshots:: VM snapshots
1320* qemu_img_invocation:: qemu-img Invocation
1321* qemu_nbd_invocation:: qemu-nbd Invocation
1322* host_drives:: Using host drives
1323* disk_images_fat_images:: Virtual FAT disk images
1324* disk_images_nbd:: NBD access
1325@end menu
1326
1327@node disk_images_quickstart
1328@subsection Quick start for disk image creation
1329
1330You can create a disk image with the command:
1331@example
1332qemu-img create myimage.img mysize
1333@end example
1334where @var{myimage.img} is the disk image filename and @var{mysize} is its
1335size in kilobytes. You can add an @code{M} suffix to give the size in
1336megabytes and a @code{G} suffix for gigabytes.
1337
1338See @ref{qemu_img_invocation} for more information.
1339
1340@node disk_images_snapshot_mode
1341@subsection Snapshot mode
1342
1343If you use the option @option{-snapshot}, all disk images are
1344considered as read only. When sectors in written, they are written in
1345a temporary file created in @file{/tmp}. You can however force the
1346write back to the raw disk images by using the @code{commit} monitor
1347command (or @key{C-a s} in the serial console).
1348
1349@node vm_snapshots
1350@subsection VM snapshots
1351
1352VM snapshots are snapshots of the complete virtual machine including
1353CPU state, RAM, device state and the content of all the writable
1354disks. In order to use VM snapshots, you must have at least one non
1355removable and writable block device using the @code{qcow2} disk image
1356format. Normally this device is the first virtual hard drive.
1357
1358Use the monitor command @code{savevm} to create a new VM snapshot or
1359replace an existing one. A human readable name can be assigned to each
1360snapshot in addition to its numerical ID.
1361
1362Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1363a VM snapshot. @code{info snapshots} lists the available snapshots
1364with their associated information:
1365
1366@example
1367(qemu) info snapshots
1368Snapshot devices: hda
1369Snapshot list (from hda):
1370ID TAG VM SIZE DATE VM CLOCK
13711 start 41M 2006-08-06 12:38:02 00:00:14.954
13722 40M 2006-08-06 12:43:29 00:00:18.633
13733 msys 40M 2006-08-06 12:44:04 00:00:23.514
1374@end example
1375
1376A VM snapshot is made of a VM state info (its size is shown in
1377@code{info snapshots}) and a snapshot of every writable disk image.
1378The VM state info is stored in the first @code{qcow2} non removable
1379and writable block device. The disk image snapshots are stored in
1380every disk image. The size of a snapshot in a disk image is difficult
1381to evaluate and is not shown by @code{info snapshots} because the
1382associated disk sectors are shared among all the snapshots to save
1383disk space (otherwise each snapshot would need a full copy of all the
1384disk images).
1385
1386When using the (unrelated) @code{-snapshot} option
1387(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1388but they are deleted as soon as you exit QEMU.
1389
1390VM snapshots currently have the following known limitations:
1391@itemize
1392@item
1393They cannot cope with removable devices if they are removed or
1394inserted after a snapshot is done.
1395@item
1396A few device drivers still have incomplete snapshot support so their
1397state is not saved or restored properly (in particular USB).
1398@end itemize
1399
1400@node qemu_img_invocation
1401@subsection @code{qemu-img} Invocation
1402
1403@include qemu-img.texi
1404
1405@node qemu_nbd_invocation
1406@subsection @code{qemu-nbd} Invocation
1407
1408@include qemu-nbd.texi
1409
1410@node host_drives
1411@subsection Using host drives
1412
1413In addition to disk image files, QEMU can directly access host
1414devices. We describe here the usage for QEMU version >= 0.8.3.
1415
1416@subsubsection Linux
1417
1418On Linux, you can directly use the host device filename instead of a
1419disk image filename provided you have enough privileges to access
1420it. For example, use @file{/dev/cdrom} to access to the CDROM or
1421@file{/dev/fd0} for the floppy.
1422
1423@table @code
1424@item CD
1425You can specify a CDROM device even if no CDROM is loaded. QEMU has
1426specific code to detect CDROM insertion or removal. CDROM ejection by
1427the guest OS is supported. Currently only data CDs are supported.
1428@item Floppy
1429You can specify a floppy device even if no floppy is loaded. Floppy
1430removal is currently not detected accurately (if you change floppy
1431without doing floppy access while the floppy is not loaded, the guest
1432OS will think that the same floppy is loaded).
1433@item Hard disks
1434Hard disks can be used. Normally you must specify the whole disk
1435(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1436see it as a partitioned disk. WARNING: unless you know what you do, it
1437is better to only make READ-ONLY accesses to the hard disk otherwise
1438you may corrupt your host data (use the @option{-snapshot} command
1439line option or modify the device permissions accordingly).
1440@end table
1441
1442@subsubsection Windows
1443
1444@table @code
1445@item CD
1446The preferred syntax is the drive letter (e.g. @file{d:}). The
1447alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1448supported as an alias to the first CDROM drive.
1449
1450Currently there is no specific code to handle removable media, so it
1451is better to use the @code{change} or @code{eject} monitor commands to
1452change or eject media.
1453@item Hard disks
1454Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1455where @var{N} is the drive number (0 is the first hard disk).
1456
1457WARNING: unless you know what you do, it is better to only make
1458READ-ONLY accesses to the hard disk otherwise you may corrupt your
1459host data (use the @option{-snapshot} command line so that the
1460modifications are written in a temporary file).
1461@end table
1462
1463
1464@subsubsection Mac OS X
1465
1466@file{/dev/cdrom} is an alias to the first CDROM.
1467
1468Currently there is no specific code to handle removable media, so it
1469is better to use the @code{change} or @code{eject} monitor commands to
1470change or eject media.
1471
1472@node disk_images_fat_images
1473@subsection Virtual FAT disk images
1474
1475QEMU can automatically create a virtual FAT disk image from a
1476directory tree. In order to use it, just type:
1477
1478@example
1479qemu linux.img -hdb fat:/my_directory
1480@end example
1481
1482Then you access access to all the files in the @file{/my_directory}
1483directory without having to copy them in a disk image or to export
1484them via SAMBA or NFS. The default access is @emph{read-only}.
1485
1486Floppies can be emulated with the @code{:floppy:} option:
1487
1488@example
1489qemu linux.img -fda fat:floppy:/my_directory
1490@end example
1491
1492A read/write support is available for testing (beta stage) with the
1493@code{:rw:} option:
1494
1495@example
1496qemu linux.img -fda fat:floppy:rw:/my_directory
1497@end example
1498
1499What you should @emph{never} do:
1500@itemize
1501@item use non-ASCII filenames ;
1502@item use "-snapshot" together with ":rw:" ;
1503@item expect it to work when loadvm'ing ;
1504@item write to the FAT directory on the host system while accessing it with the guest system.
1505@end itemize
1506
1507@node disk_images_nbd
1508@subsection NBD access
1509
1510QEMU can access directly to block device exported using the Network Block Device
1511protocol.
1512
1513@example
1514qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1515@end example
1516
1517If the NBD server is located on the same host, you can use an unix socket instead
1518of an inet socket:
1519
1520@example
1521qemu linux.img -hdb nbd:unix:/tmp/my_socket
1522@end example
1523
1524In this case, the block device must be exported using qemu-nbd:
1525
1526@example
1527qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1528@end example
1529
1530The use of qemu-nbd allows to share a disk between several guests:
1531@example
1532qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1533@end example
1534
1535and then you can use it with two guests:
1536@example
1537qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1538qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1539@end example
1540
1541@node pcsys_network
1542@section Network emulation
1543
1544QEMU can simulate several network cards (PCI or ISA cards on the PC
1545target) and can connect them to an arbitrary number of Virtual Local
1546Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1547VLAN. VLAN can be connected between separate instances of QEMU to
1548simulate large networks. For simpler usage, a non privileged user mode
1549network stack can replace the TAP device to have a basic network
1550connection.
1551
1552@subsection VLANs
1553
1554QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1555connection between several network devices. These devices can be for
1556example QEMU virtual Ethernet cards or virtual Host ethernet devices
1557(TAP devices).
1558
1559@subsection Using TAP network interfaces
1560
1561This is the standard way to connect QEMU to a real network. QEMU adds
1562a virtual network device on your host (called @code{tapN}), and you
1563can then configure it as if it was a real ethernet card.
1564
1565@subsubsection Linux host
1566
1567As an example, you can download the @file{linux-test-xxx.tar.gz}
1568archive and copy the script @file{qemu-ifup} in @file{/etc} and
1569configure properly @code{sudo} so that the command @code{ifconfig}
1570contained in @file{qemu-ifup} can be executed as root. You must verify
1571that your host kernel supports the TAP network interfaces: the
1572device @file{/dev/net/tun} must be present.
1573
1574See @ref{sec_invocation} to have examples of command lines using the
1575TAP network interfaces.
1576
1577@subsubsection Windows host
1578
1579There is a virtual ethernet driver for Windows 2000/XP systems, called
1580TAP-Win32. But it is not included in standard QEMU for Windows,
1581so you will need to get it separately. It is part of OpenVPN package,
1582so download OpenVPN from : @url{http://openvpn.net/}.
1583
1584@subsection Using the user mode network stack
1585
1586By using the option @option{-net user} (default configuration if no
1587@option{-net} option is specified), QEMU uses a completely user mode
1588network stack (you don't need root privilege to use the virtual
1589network). The virtual network configuration is the following:
1590
1591@example
1592
1593 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1594 | (10.0.2.2)
1595 |
1596 ----> DNS server (10.0.2.3)
1597 |
1598 ----> SMB server (10.0.2.4)
1599@end example
1600
1601The QEMU VM behaves as if it was behind a firewall which blocks all
1602incoming connections. You can use a DHCP client to automatically
1603configure the network in the QEMU VM. The DHCP server assign addresses
1604to the hosts starting from 10.0.2.15.
1605
1606In order to check that the user mode network is working, you can ping
1607the address 10.0.2.2 and verify that you got an address in the range
160810.0.2.x from the QEMU virtual DHCP server.
1609
1610Note that @code{ping} is not supported reliably to the internet as it
1611would require root privileges. It means you can only ping the local
1612router (10.0.2.2).
1613
1614When using the built-in TFTP server, the router is also the TFTP
1615server.
1616
1617When using the @option{-redir} option, TCP or UDP connections can be
1618redirected from the host to the guest. It allows for example to
1619redirect X11, telnet or SSH connections.
1620
1621@subsection Connecting VLANs between QEMU instances
1622
1623Using the @option{-net socket} option, it is possible to make VLANs
1624that span several QEMU instances. See @ref{sec_invocation} to have a
1625basic example.
1626
1627@node direct_linux_boot
1628@section Direct Linux Boot
1629
1630This section explains how to launch a Linux kernel inside QEMU without
1631having to make a full bootable image. It is very useful for fast Linux
1632kernel testing.
1633
1634The syntax is:
1635@example
1636qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1637@end example
1638
1639Use @option{-kernel} to provide the Linux kernel image and
1640@option{-append} to give the kernel command line arguments. The
1641@option{-initrd} option can be used to provide an INITRD image.
1642
1643When using the direct Linux boot, a disk image for the first hard disk
1644@file{hda} is required because its boot sector is used to launch the
1645Linux kernel.
1646
1647If you do not need graphical output, you can disable it and redirect
1648the virtual serial port and the QEMU monitor to the console with the
1649@option{-nographic} option. The typical command line is:
1650@example
1651qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1652 -append "root=/dev/hda console=ttyS0" -nographic
1653@end example
1654
1655Use @key{Ctrl-a c} to switch between the serial console and the
1656monitor (@pxref{pcsys_keys}).
1657
1658@node pcsys_usb
1659@section USB emulation
1660
1661QEMU emulates a PCI UHCI USB controller. You can virtually plug
1662virtual USB devices or real host USB devices (experimental, works only
1663on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1664as necessary to connect multiple USB devices.
1665
1666@menu
1667* usb_devices::
1668* host_usb_devices::
1669@end menu
1670@node usb_devices
1671@subsection Connecting USB devices
1672
1673USB devices can be connected with the @option{-usbdevice} commandline option
1674or the @code{usb_add} monitor command. Available devices are:
1675
1676@table @code
1677@item mouse
1678Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1679@item tablet
1680Pointer device that uses absolute coordinates (like a touchscreen).
1681This means qemu is able to report the mouse position without having
1682to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1683@item disk:@var{file}
1684Mass storage device based on @var{file} (@pxref{disk_images})
1685@item host:@var{bus.addr}
1686Pass through the host device identified by @var{bus.addr}
1687(Linux only)
1688@item host:@var{vendor_id:product_id}
1689Pass through the host device identified by @var{vendor_id:product_id}
1690(Linux only)
1691@item wacom-tablet
1692Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1693above but it can be used with the tslib library because in addition to touch
1694coordinates it reports touch pressure.
1695@item keyboard
1696Standard USB keyboard. Will override the PS/2 keyboard (if present).
1697@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1698Serial converter. This emulates an FTDI FT232BM chip connected to host character
1699device @var{dev}. The available character devices are the same as for the
1700@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1701used to override the default 0403:6001. For instance,
1702@example
1703usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1704@end example
1705will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1706serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1707@item braille
1708Braille device. This will use BrlAPI to display the braille output on a real
1709or fake device.
1710@end table
1711
1712@node host_usb_devices
1713@subsection Using host USB devices on a Linux host
1714
1715WARNING: this is an experimental feature. QEMU will slow down when
1716using it. USB devices requiring real time streaming (i.e. USB Video
1717Cameras) are not supported yet.
1718
1719@enumerate
1720@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1721is actually using the USB device. A simple way to do that is simply to
1722disable the corresponding kernel module by renaming it from @file{mydriver.o}
1723to @file{mydriver.o.disabled}.
1724
1725@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1726@example
1727ls /proc/bus/usb
1728001 devices drivers
1729@end example
1730
1731@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1732@example
1733chown -R myuid /proc/bus/usb
1734@end example
1735
1736@item Launch QEMU and do in the monitor:
1737@example
1738info usbhost
1739 Device 1.2, speed 480 Mb/s
1740 Class 00: USB device 1234:5678, USB DISK
1741@end example
1742You should see the list of the devices you can use (Never try to use
1743hubs, it won't work).
1744
1745@item Add the device in QEMU by using:
1746@example
1747usb_add host:1234:5678
1748@end example
1749
1750Normally the guest OS should report that a new USB device is
1751plugged. You can use the option @option{-usbdevice} to do the same.
1752
1753@item Now you can try to use the host USB device in QEMU.
1754
1755@end enumerate
1756
1757When relaunching QEMU, you may have to unplug and plug again the USB
1758device to make it work again (this is a bug).
1759
1760@node vnc_security
1761@section VNC security
1762
1763The VNC server capability provides access to the graphical console
1764of the guest VM across the network. This has a number of security
1765considerations depending on the deployment scenarios.
1766
1767@menu
1768* vnc_sec_none::
1769* vnc_sec_password::
1770* vnc_sec_certificate::
1771* vnc_sec_certificate_verify::
1772* vnc_sec_certificate_pw::
1773* vnc_generate_cert::
1774@end menu
1775@node vnc_sec_none
1776@subsection Without passwords
1777
1778The simplest VNC server setup does not include any form of authentication.
1779For this setup it is recommended to restrict it to listen on a UNIX domain
1780socket only. For example
1781
1782@example
1783qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1784@end example
1785
1786This ensures that only users on local box with read/write access to that
1787path can access the VNC server. To securely access the VNC server from a
1788remote machine, a combination of netcat+ssh can be used to provide a secure
1789tunnel.
1790
1791@node vnc_sec_password
1792@subsection With passwords
1793
1794The VNC protocol has limited support for password based authentication. Since
1795the protocol limits passwords to 8 characters it should not be considered
1796to provide high security. The password can be fairly easily brute-forced by
1797a client making repeat connections. For this reason, a VNC server using password
1798authentication should be restricted to only listen on the loopback interface
1799or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1800option, and then once QEMU is running the password is set with the monitor. Until
1801the monitor is used to set the password all clients will be rejected.
1802
1803@example
1804qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1805(qemu) change vnc password
1806Password: ********
1807(qemu)
1808@end example
1809
1810@node vnc_sec_certificate
1811@subsection With x509 certificates
1812
1813The QEMU VNC server also implements the VeNCrypt extension allowing use of
1814TLS for encryption of the session, and x509 certificates for authentication.
1815The use of x509 certificates is strongly recommended, because TLS on its
1816own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1817support provides a secure session, but no authentication. This allows any
1818client to connect, and provides an encrypted session.
1819
1820@example
1821qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1822@end example
1823
1824In the above example @code{/etc/pki/qemu} should contain at least three files,
1825@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1826users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1827NB the @code{server-key.pem} file should be protected with file mode 0600 to
1828only be readable by the user owning it.
1829
1830@node vnc_sec_certificate_verify
1831@subsection With x509 certificates and client verification
1832
1833Certificates can also provide a means to authenticate the client connecting.
1834The server will request that the client provide a certificate, which it will
1835then validate against the CA certificate. This is a good choice if deploying
1836in an environment with a private internal certificate authority.
1837
1838@example
1839qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1840@end example
1841
1842
1843@node vnc_sec_certificate_pw
1844@subsection With x509 certificates, client verification and passwords
1845
1846Finally, the previous method can be combined with VNC password authentication
1847to provide two layers of authentication for clients.
1848
1849@example
1850qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1851(qemu) change vnc password
1852Password: ********
1853(qemu)
1854@end example
1855
1856@node vnc_generate_cert
1857@subsection Generating certificates for VNC
1858
1859The GNU TLS packages provides a command called @code{certtool} which can
1860be used to generate certificates and keys in PEM format. At a minimum it
1861is neccessary to setup a certificate authority, and issue certificates to
1862each server. If using certificates for authentication, then each client
1863will also need to be issued a certificate. The recommendation is for the
1864server to keep its certificates in either @code{/etc/pki/qemu} or for
1865unprivileged users in @code{$HOME/.pki/qemu}.
1866
1867@menu
1868* vnc_generate_ca::
1869* vnc_generate_server::
1870* vnc_generate_client::
1871@end menu
1872@node vnc_generate_ca
1873@subsubsection Setup the Certificate Authority
1874
1875This step only needs to be performed once per organization / organizational
1876unit. First the CA needs a private key. This key must be kept VERY secret
1877and secure. If this key is compromised the entire trust chain of the certificates
1878issued with it is lost.
1879
1880@example
1881# certtool --generate-privkey > ca-key.pem
1882@end example
1883
1884A CA needs to have a public certificate. For simplicity it can be a self-signed
1885certificate, or one issue by a commercial certificate issuing authority. To
1886generate a self-signed certificate requires one core piece of information, the
1887name of the organization.
1888
1889@example
1890# cat > ca.info <<EOF
1891cn = Name of your organization
1892ca
1893cert_signing_key
1894EOF
1895# certtool --generate-self-signed \
1896 --load-privkey ca-key.pem
1897 --template ca.info \
1898 --outfile ca-cert.pem
1899@end example
1900
1901The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1902TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1903
1904@node vnc_generate_server
1905@subsubsection Issuing server certificates
1906
1907Each server (or host) needs to be issued with a key and certificate. When connecting
1908the certificate is sent to the client which validates it against the CA certificate.
1909The core piece of information for a server certificate is the hostname. This should
1910be the fully qualified hostname that the client will connect with, since the client
1911will typically also verify the hostname in the certificate. On the host holding the
1912secure CA private key:
1913
1914@example
1915# cat > server.info <<EOF
1916organization = Name of your organization
1917cn = server.foo.example.com
1918tls_www_server
1919encryption_key
1920signing_key
1921EOF
1922# certtool --generate-privkey > server-key.pem
1923# certtool --generate-certificate \
1924 --load-ca-certificate ca-cert.pem \
1925 --load-ca-privkey ca-key.pem \
1926 --load-privkey server server-key.pem \
1927 --template server.info \
1928 --outfile server-cert.pem
1929@end example
1930
1931The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1932to the server for which they were generated. The @code{server-key.pem} is security
1933sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1934
1935@node vnc_generate_client
1936@subsubsection Issuing client certificates
1937
1938If the QEMU VNC server is to use the @code{x509verify} option to validate client
1939certificates as its authentication mechanism, each client also needs to be issued
1940a certificate. The client certificate contains enough metadata to uniquely identify
1941the client, typically organization, state, city, building, etc. On the host holding
1942the secure CA private key:
1943
1944@example
1945# cat > client.info <<EOF
1946country = GB
1947state = London
1948locality = London
1949organiazation = Name of your organization
1950cn = client.foo.example.com
1951tls_www_client
1952encryption_key
1953signing_key
1954EOF
1955# certtool --generate-privkey > client-key.pem
1956# certtool --generate-certificate \
1957 --load-ca-certificate ca-cert.pem \
1958 --load-ca-privkey ca-key.pem \
1959 --load-privkey client-key.pem \
1960 --template client.info \
1961 --outfile client-cert.pem
1962@end example
1963
1964The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1965copied to the client for which they were generated.
1966
1967@node gdb_usage
1968@section GDB usage
1969
1970QEMU has a primitive support to work with gdb, so that you can do
1971'Ctrl-C' while the virtual machine is running and inspect its state.
1972
1973In order to use gdb, launch qemu with the '-s' option. It will wait for a
1974gdb connection:
1975@example
1976> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1977 -append "root=/dev/hda"
1978Connected to host network interface: tun0
1979Waiting gdb connection on port 1234
1980@end example
1981
1982Then launch gdb on the 'vmlinux' executable:
1983@example
1984> gdb vmlinux
1985@end example
1986
1987In gdb, connect to QEMU:
1988@example
1989(gdb) target remote localhost:1234
1990@end example
1991
1992Then you can use gdb normally. For example, type 'c' to launch the kernel:
1993@example
1994(gdb) c
1995@end example
1996
1997Here are some useful tips in order to use gdb on system code:
1998
1999@enumerate
2000@item
2001Use @code{info reg} to display all the CPU registers.
2002@item
2003Use @code{x/10i $eip} to display the code at the PC position.
2004@item
2005Use @code{set architecture i8086} to dump 16 bit code. Then use
2006@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2007@end enumerate
2008
2009Advanced debugging options:
2010
2011The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
2012@table @code
2013@item maintenance packet qqemu.sstepbits
2014
2015This will display the MASK bits used to control the single stepping IE:
2016@example
2017(gdb) maintenance packet qqemu.sstepbits
2018sending: "qqemu.sstepbits"
2019received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2020@end example
2021@item maintenance packet qqemu.sstep
2022
2023This will display the current value of the mask used when single stepping IE:
2024@example
2025(gdb) maintenance packet qqemu.sstep
2026sending: "qqemu.sstep"
2027received: "0x7"
2028@end example
2029@item maintenance packet Qqemu.sstep=HEX_VALUE
2030
2031This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2032@example
2033(gdb) maintenance packet Qqemu.sstep=0x5
2034sending: "qemu.sstep=0x5"
2035received: "OK"
2036@end example
2037@end table
2038
2039@node pcsys_os_specific
2040@section Target OS specific information
2041
2042@subsection Linux
2043
2044To have access to SVGA graphic modes under X11, use the @code{vesa} or
2045the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2046color depth in the guest and the host OS.
2047
2048When using a 2.6 guest Linux kernel, you should add the option
2049@code{clock=pit} on the kernel command line because the 2.6 Linux
2050kernels make very strict real time clock checks by default that QEMU
2051cannot simulate exactly.
2052
2053When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2054not activated because QEMU is slower with this patch. The QEMU
2055Accelerator Module is also much slower in this case. Earlier Fedora
2056Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2057patch by default. Newer kernels don't have it.
2058
2059@subsection Windows
2060
2061If you have a slow host, using Windows 95 is better as it gives the
2062best speed. Windows 2000 is also a good choice.
2063
2064@subsubsection SVGA graphic modes support
2065
2066QEMU emulates a Cirrus Logic GD5446 Video
2067card. All Windows versions starting from Windows 95 should recognize
2068and use this graphic card. For optimal performances, use 16 bit color
2069depth in the guest and the host OS.
2070
2071If you are using Windows XP as guest OS and if you want to use high
2072resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
20731280x1024x16), then you should use the VESA VBE virtual graphic card
2074(option @option{-std-vga}).
2075
2076@subsubsection CPU usage reduction
2077
2078Windows 9x does not correctly use the CPU HLT
2079instruction. The result is that it takes host CPU cycles even when
2080idle. You can install the utility from
2081@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2082problem. Note that no such tool is needed for NT, 2000 or XP.
2083
2084@subsubsection Windows 2000 disk full problem
2085
2086Windows 2000 has a bug which gives a disk full problem during its
2087installation. When installing it, use the @option{-win2k-hack} QEMU
2088option to enable a specific workaround. After Windows 2000 is
2089installed, you no longer need this option (this option slows down the
2090IDE transfers).
2091
2092@subsubsection Windows 2000 shutdown
2093
2094Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2095can. It comes from the fact that Windows 2000 does not automatically
2096use the APM driver provided by the BIOS.
2097
2098In order to correct that, do the following (thanks to Struan
2099Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2100Add/Troubleshoot a device => Add a new device & Next => No, select the
2101hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2102(again) a few times. Now the driver is installed and Windows 2000 now
2103correctly instructs QEMU to shutdown at the appropriate moment.
2104
2105@subsubsection Share a directory between Unix and Windows
2106
2107See @ref{sec_invocation} about the help of the option @option{-smb}.
2108
2109@subsubsection Windows XP security problem
2110
2111Some releases of Windows XP install correctly but give a security
2112error when booting:
2113@example
2114A problem is preventing Windows from accurately checking the
2115license for this computer. Error code: 0x800703e6.
2116@end example
2117
2118The workaround is to install a service pack for XP after a boot in safe
2119mode. Then reboot, and the problem should go away. Since there is no
2120network while in safe mode, its recommended to download the full
2121installation of SP1 or SP2 and transfer that via an ISO or using the
2122vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2123
2124@subsection MS-DOS and FreeDOS
2125
2126@subsubsection CPU usage reduction
2127
2128DOS does not correctly use the CPU HLT instruction. The result is that
2129it takes host CPU cycles even when idle. You can install the utility
2130from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2131problem.
2132
2133@node QEMU System emulator for non PC targets
2134@chapter QEMU System emulator for non PC targets
2135
2136QEMU is a generic emulator and it emulates many non PC
2137machines. Most of the options are similar to the PC emulator. The
2138differences are mentioned in the following sections.
2139
2140@menu
2141* QEMU PowerPC System emulator::
2142* Sparc32 System emulator::
2143* Sparc64 System emulator::
2144* MIPS System emulator::
2145* ARM System emulator::
2146* ColdFire System emulator::
2147@end menu
2148
2149@node QEMU PowerPC System emulator
2150@section QEMU PowerPC System emulator
2151
2152Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2153or PowerMac PowerPC system.
2154
2155QEMU emulates the following PowerMac peripherals:
2156
2157@itemize @minus
2158@item
2159UniNorth PCI Bridge
2160@item
2161PCI VGA compatible card with VESA Bochs Extensions
2162@item
21632 PMAC IDE interfaces with hard disk and CD-ROM support
2164@item
2165NE2000 PCI adapters
2166@item
2167Non Volatile RAM
2168@item
2169VIA-CUDA with ADB keyboard and mouse.
2170@end itemize
2171
2172QEMU emulates the following PREP peripherals:
2173
2174@itemize @minus
2175@item
2176PCI Bridge
2177@item
2178PCI VGA compatible card with VESA Bochs Extensions
2179@item
21802 IDE interfaces with hard disk and CD-ROM support
2181@item
2182Floppy disk
2183@item
2184NE2000 network adapters
2185@item
2186Serial port
2187@item
2188PREP Non Volatile RAM
2189@item
2190PC compatible keyboard and mouse.
2191@end itemize
2192
2193QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2194@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2195
2196@c man begin OPTIONS
2197
2198The following options are specific to the PowerPC emulation:
2199
2200@table @option
2201
2202@item -g WxH[xDEPTH]
2203
2204Set the initial VGA graphic mode. The default is 800x600x15.
2205
2206@end table
2207
2208@c man end
2209
2210
2211More information is available at
2212@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2213
2214@node Sparc32 System emulator
2215@section Sparc32 System emulator
2216
2217Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
22185, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2219architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2220or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2221complete. SMP up to 16 CPUs is supported, but Linux limits the number
2222of usable CPUs to 4.
2223
2224QEMU emulates the following sun4m/sun4d peripherals:
2225
2226@itemize @minus
2227@item
2228IOMMU or IO-UNITs
2229@item
2230TCX Frame buffer
2231@item
2232Lance (Am7990) Ethernet
2233@item
2234Non Volatile RAM M48T08
2235@item
2236Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2237and power/reset logic
2238@item
2239ESP SCSI controller with hard disk and CD-ROM support
2240@item
2241Floppy drive (not on SS-600MP)
2242@item
2243CS4231 sound device (only on SS-5, not working yet)
2244@end itemize
2245
2246The number of peripherals is fixed in the architecture. Maximum
2247memory size depends on the machine type, for SS-5 it is 256MB and for
2248others 2047MB.
2249
2250Since version 0.8.2, QEMU uses OpenBIOS
2251@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2252firmware implementation. The goal is to implement a 100% IEEE
22531275-1994 (referred to as Open Firmware) compliant firmware.
2254
2255A sample Linux 2.6 series kernel and ram disk image are available on
2256the QEMU web site. Please note that currently NetBSD, OpenBSD or
2257Solaris kernels don't work.
2258
2259@c man begin OPTIONS
2260
2261The following options are specific to the Sparc32 emulation:
2262
2263@table @option
2264
2265@item -g WxHx[xDEPTH]
2266
2267Set the initial TCX graphic mode. The default is 1024x768x8, currently
2268the only other possible mode is 1024x768x24.
2269
2270@item -prom-env string
2271
2272Set OpenBIOS variables in NVRAM, for example:
2273
2274@example
2275qemu-system-sparc -prom-env 'auto-boot?=false' \
2276 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2277@end example
2278
2279@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2280
2281Set the emulated machine type. Default is SS-5.
2282
2283@end table
2284
2285@c man end
2286
2287@node Sparc64 System emulator
2288@section Sparc64 System emulator
2289
2290Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2291The emulator is not usable for anything yet.
2292
2293QEMU emulates the following sun4u peripherals:
2294
2295@itemize @minus
2296@item
2297UltraSparc IIi APB PCI Bridge
2298@item
2299PCI VGA compatible card with VESA Bochs Extensions
2300@item
2301Non Volatile RAM M48T59
2302@item
2303PC-compatible serial ports
2304@end itemize
2305
2306@node MIPS System emulator
2307@section MIPS System emulator
2308
2309Four executables cover simulation of 32 and 64-bit MIPS systems in
2310both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2311@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2312Five different machine types are emulated:
2313
2314@itemize @minus
2315@item
2316A generic ISA PC-like machine "mips"
2317@item
2318The MIPS Malta prototype board "malta"
2319@item
2320An ACER Pica "pica61". This machine needs the 64-bit emulator.
2321@item
2322MIPS emulator pseudo board "mipssim"
2323@item
2324A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2325@end itemize
2326
2327The generic emulation is supported by Debian 'Etch' and is able to
2328install Debian into a virtual disk image. The following devices are
2329emulated:
2330
2331@itemize @minus
2332@item
2333A range of MIPS CPUs, default is the 24Kf
2334@item
2335PC style serial port
2336@item
2337PC style IDE disk
2338@item
2339NE2000 network card
2340@end itemize
2341
2342The Malta emulation supports the following devices:
2343
2344@itemize @minus
2345@item
2346Core board with MIPS 24Kf CPU and Galileo system controller
2347@item
2348PIIX4 PCI/USB/SMbus controller
2349@item
2350The Multi-I/O chip's serial device
2351@item
2352PCnet32 PCI network card
2353@item
2354Malta FPGA serial device
2355@item
2356Cirrus VGA graphics card
2357@end itemize
2358
2359The ACER Pica emulation supports:
2360
2361@itemize @minus
2362@item
2363MIPS R4000 CPU
2364@item
2365PC-style IRQ and DMA controllers
2366@item
2367PC Keyboard
2368@item
2369IDE controller
2370@end itemize
2371
2372The mipssim pseudo board emulation provides an environment similiar
2373to what the proprietary MIPS emulator uses for running Linux.
2374It supports:
2375
2376@itemize @minus
2377@item
2378A range of MIPS CPUs, default is the 24Kf
2379@item
2380PC style serial port
2381@item
2382MIPSnet network emulation
2383@end itemize
2384
2385The MIPS Magnum R4000 emulation supports:
2386
2387@itemize @minus
2388@item
2389MIPS R4000 CPU
2390@item
2391PC-style IRQ controller
2392@item
2393PC Keyboard
2394@item
2395SCSI controller
2396@item
2397G364 framebuffer
2398@end itemize
2399
2400
2401@node ARM System emulator
2402@section ARM System emulator
2403
2404Use the executable @file{qemu-system-arm} to simulate a ARM
2405machine. The ARM Integrator/CP board is emulated with the following
2406devices:
2407
2408@itemize @minus
2409@item
2410ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2411@item
2412Two PL011 UARTs
2413@item
2414SMC 91c111 Ethernet adapter
2415@item
2416PL110 LCD controller
2417@item
2418PL050 KMI with PS/2 keyboard and mouse.
2419@item
2420PL181 MultiMedia Card Interface with SD card.
2421@end itemize
2422
2423The ARM Versatile baseboard is emulated with the following devices:
2424
2425@itemize @minus
2426@item
2427ARM926E, ARM1136 or Cortex-A8 CPU
2428@item
2429PL190 Vectored Interrupt Controller
2430@item
2431Four PL011 UARTs
2432@item
2433SMC 91c111 Ethernet adapter
2434@item
2435PL110 LCD controller
2436@item
2437PL050 KMI with PS/2 keyboard and mouse.
2438@item
2439PCI host bridge. Note the emulated PCI bridge only provides access to
2440PCI memory space. It does not provide access to PCI IO space.
2441This means some devices (eg. ne2k_pci NIC) are not usable, and others
2442(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2443mapped control registers.
2444@item
2445PCI OHCI USB controller.
2446@item
2447LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2448@item
2449PL181 MultiMedia Card Interface with SD card.
2450@end itemize
2451
2452The ARM RealView Emulation baseboard is emulated with the following devices:
2453
2454@itemize @minus
2455@item
2456ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2457@item
2458ARM AMBA Generic/Distributed Interrupt Controller
2459@item
2460Four PL011 UARTs
2461@item
2462SMC 91c111 Ethernet adapter
2463@item
2464PL110 LCD controller
2465@item
2466PL050 KMI with PS/2 keyboard and mouse
2467@item
2468PCI host bridge
2469@item
2470PCI OHCI USB controller
2471@item
2472LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2473@item
2474PL181 MultiMedia Card Interface with SD card.
2475@end itemize
2476
2477The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2478and "Terrier") emulation includes the following peripherals:
2479
2480@itemize @minus
2481@item
2482Intel PXA270 System-on-chip (ARM V5TE core)
2483@item
2484NAND Flash memory
2485@item
2486IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2487@item
2488On-chip OHCI USB controller
2489@item
2490On-chip LCD controller
2491@item
2492On-chip Real Time Clock
2493@item
2494TI ADS7846 touchscreen controller on SSP bus
2495@item
2496Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2497@item
2498GPIO-connected keyboard controller and LEDs
2499@item
2500Secure Digital card connected to PXA MMC/SD host
2501@item
2502Three on-chip UARTs
2503@item
2504WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2505@end itemize
2506
2507The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2508following elements:
2509
2510@itemize @minus
2511@item
2512Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2513@item
2514ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2515@item
2516On-chip LCD controller
2517@item
2518On-chip Real Time Clock
2519@item
2520TI TSC2102i touchscreen controller / analog-digital converter / Audio
2521CODEC, connected through MicroWire and I@math{^2}S busses
2522@item
2523GPIO-connected matrix keypad
2524@item
2525Secure Digital card connected to OMAP MMC/SD host
2526@item
2527Three on-chip UARTs
2528@end itemize
2529
2530Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2531emulation supports the following elements:
2532
2533@itemize @minus
2534@item
2535Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2536@item
2537RAM and non-volatile OneNAND Flash memories
2538@item
2539Display connected to EPSON remote framebuffer chip and OMAP on-chip
2540display controller and a LS041y3 MIPI DBI-C controller
2541@item
2542TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2543driven through SPI bus
2544@item
2545National Semiconductor LM8323-controlled qwerty keyboard driven
2546through I@math{^2}C bus
2547@item
2548Secure Digital card connected to OMAP MMC/SD host
2549@item
2550Three OMAP on-chip UARTs and on-chip STI debugging console
2551@item
2552Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2553TUSB6010 chip - only USB host mode is supported
2554@item
2555TI TMP105 temperature sensor driven through I@math{^2}C bus
2556@item
2557TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2558@item
2559Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2560through CBUS
2561@end itemize
2562
2563The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2564devices:
2565
2566@itemize @minus
2567@item
2568Cortex-M3 CPU core.
2569@item
257064k Flash and 8k SRAM.
2571@item
2572Timers, UARTs, ADC and I@math{^2}C interface.
2573@item
2574OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2575@end itemize
2576
2577The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2578devices:
2579
2580@itemize @minus
2581@item
2582Cortex-M3 CPU core.
2583@item
2584256k Flash and 64k SRAM.
2585@item
2586Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2587@item
2588OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2589@end itemize
2590
2591The Freecom MusicPal internet radio emulation includes the following
2592elements:
2593
2594@itemize @minus
2595@item
2596Marvell MV88W8618 ARM core.
2597@item
259832 MB RAM, 256 KB SRAM, 8 MB flash.
2599@item
2600Up to 2 16550 UARTs
2601@item
2602MV88W8xx8 Ethernet controller
2603@item
2604MV88W8618 audio controller, WM8750 CODEC and mixer
2605@item
2606