]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - security/security.c
mm, hugetlb: fix race in region tracking
[mirror_ubuntu-bionic-kernel.git] / security / security.c
... / ...
CommitLineData
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/security.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <net/flow.h>
29
30#define MAX_LSM_EVM_XATTR 2
31
32/* Boot-time LSM user choice */
33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34 CONFIG_DEFAULT_SECURITY;
35
36static struct security_operations *security_ops;
37static struct security_operations default_security_ops = {
38 .name = "default",
39};
40
41static inline int __init verify(struct security_operations *ops)
42{
43 /* verify the security_operations structure exists */
44 if (!ops)
45 return -EINVAL;
46 security_fixup_ops(ops);
47 return 0;
48}
49
50static void __init do_security_initcalls(void)
51{
52 initcall_t *call;
53 call = __security_initcall_start;
54 while (call < __security_initcall_end) {
55 (*call) ();
56 call++;
57 }
58}
59
60/**
61 * security_init - initializes the security framework
62 *
63 * This should be called early in the kernel initialization sequence.
64 */
65int __init security_init(void)
66{
67 printk(KERN_INFO "Security Framework initialized\n");
68
69 security_fixup_ops(&default_security_ops);
70 security_ops = &default_security_ops;
71 do_security_initcalls();
72
73 return 0;
74}
75
76void reset_security_ops(void)
77{
78 security_ops = &default_security_ops;
79}
80
81/* Save user chosen LSM */
82static int __init choose_lsm(char *str)
83{
84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85 return 1;
86}
87__setup("security=", choose_lsm);
88
89/**
90 * security_module_enable - Load given security module on boot ?
91 * @ops: a pointer to the struct security_operations that is to be checked.
92 *
93 * Each LSM must pass this method before registering its own operations
94 * to avoid security registration races. This method may also be used
95 * to check if your LSM is currently loaded during kernel initialization.
96 *
97 * Return true if:
98 * -The passed LSM is the one chosen by user at boot time,
99 * -or the passed LSM is configured as the default and the user did not
100 * choose an alternate LSM at boot time.
101 * Otherwise, return false.
102 */
103int __init security_module_enable(struct security_operations *ops)
104{
105 return !strcmp(ops->name, chosen_lsm);
106}
107
108/**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem. Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned. Otherwise %0 is returned on success.
119 */
120int __init register_security(struct security_operations *ops)
121{
122 if (verify(ops)) {
123 printk(KERN_DEBUG "%s could not verify "
124 "security_operations structure.\n", __func__);
125 return -EINVAL;
126 }
127
128 if (security_ops != &default_security_ops)
129 return -EAGAIN;
130
131 security_ops = ops;
132
133 return 0;
134}
135
136/* Security operations */
137
138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139{
140#ifdef CONFIG_SECURITY_YAMA_STACKED
141 int rc;
142 rc = yama_ptrace_access_check(child, mode);
143 if (rc)
144 return rc;
145#endif
146 return security_ops->ptrace_access_check(child, mode);
147}
148
149int security_ptrace_traceme(struct task_struct *parent)
150{
151#ifdef CONFIG_SECURITY_YAMA_STACKED
152 int rc;
153 rc = yama_ptrace_traceme(parent);
154 if (rc)
155 return rc;
156#endif
157 return security_ops->ptrace_traceme(parent);
158}
159
160int security_capget(struct task_struct *target,
161 kernel_cap_t *effective,
162 kernel_cap_t *inheritable,
163 kernel_cap_t *permitted)
164{
165 return security_ops->capget(target, effective, inheritable, permitted);
166}
167
168int security_capset(struct cred *new, const struct cred *old,
169 const kernel_cap_t *effective,
170 const kernel_cap_t *inheritable,
171 const kernel_cap_t *permitted)
172{
173 return security_ops->capset(new, old,
174 effective, inheritable, permitted);
175}
176
177int security_capable(const struct cred *cred, struct user_namespace *ns,
178 int cap)
179{
180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181}
182
183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184 int cap)
185{
186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187}
188
189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190{
191 return security_ops->quotactl(cmds, type, id, sb);
192}
193
194int security_quota_on(struct dentry *dentry)
195{
196 return security_ops->quota_on(dentry);
197}
198
199int security_syslog(int type)
200{
201 return security_ops->syslog(type);
202}
203
204int security_settime(const struct timespec *ts, const struct timezone *tz)
205{
206 return security_ops->settime(ts, tz);
207}
208
209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210{
211 return security_ops->vm_enough_memory(mm, pages);
212}
213
214int security_bprm_set_creds(struct linux_binprm *bprm)
215{
216 return security_ops->bprm_set_creds(bprm);
217}
218
219int security_bprm_check(struct linux_binprm *bprm)
220{
221 int ret;
222
223 ret = security_ops->bprm_check_security(bprm);
224 if (ret)
225 return ret;
226 return ima_bprm_check(bprm);
227}
228
229void security_bprm_committing_creds(struct linux_binprm *bprm)
230{
231 security_ops->bprm_committing_creds(bprm);
232}
233
234void security_bprm_committed_creds(struct linux_binprm *bprm)
235{
236 security_ops->bprm_committed_creds(bprm);
237}
238
239int security_bprm_secureexec(struct linux_binprm *bprm)
240{
241 return security_ops->bprm_secureexec(bprm);
242}
243
244int security_sb_alloc(struct super_block *sb)
245{
246 return security_ops->sb_alloc_security(sb);
247}
248
249void security_sb_free(struct super_block *sb)
250{
251 security_ops->sb_free_security(sb);
252}
253
254int security_sb_copy_data(char *orig, char *copy)
255{
256 return security_ops->sb_copy_data(orig, copy);
257}
258EXPORT_SYMBOL(security_sb_copy_data);
259
260int security_sb_remount(struct super_block *sb, void *data)
261{
262 return security_ops->sb_remount(sb, data);
263}
264
265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266{
267 return security_ops->sb_kern_mount(sb, flags, data);
268}
269
270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271{
272 return security_ops->sb_show_options(m, sb);
273}
274
275int security_sb_statfs(struct dentry *dentry)
276{
277 return security_ops->sb_statfs(dentry);
278}
279
280int security_sb_mount(const char *dev_name, struct path *path,
281 const char *type, unsigned long flags, void *data)
282{
283 return security_ops->sb_mount(dev_name, path, type, flags, data);
284}
285
286int security_sb_umount(struct vfsmount *mnt, int flags)
287{
288 return security_ops->sb_umount(mnt, flags);
289}
290
291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292{
293 return security_ops->sb_pivotroot(old_path, new_path);
294}
295
296int security_sb_set_mnt_opts(struct super_block *sb,
297 struct security_mnt_opts *opts,
298 unsigned long kern_flags,
299 unsigned long *set_kern_flags)
300{
301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302 set_kern_flags);
303}
304EXPORT_SYMBOL(security_sb_set_mnt_opts);
305
306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307 struct super_block *newsb)
308{
309 return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310}
311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312
313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314{
315 return security_ops->sb_parse_opts_str(options, opts);
316}
317EXPORT_SYMBOL(security_sb_parse_opts_str);
318
319int security_inode_alloc(struct inode *inode)
320{
321 inode->i_security = NULL;
322 return security_ops->inode_alloc_security(inode);
323}
324
325void security_inode_free(struct inode *inode)
326{
327 integrity_inode_free(inode);
328 security_ops->inode_free_security(inode);
329}
330
331int security_dentry_init_security(struct dentry *dentry, int mode,
332 struct qstr *name, void **ctx,
333 u32 *ctxlen)
334{
335 return security_ops->dentry_init_security(dentry, mode, name,
336 ctx, ctxlen);
337}
338EXPORT_SYMBOL(security_dentry_init_security);
339
340int security_inode_init_security(struct inode *inode, struct inode *dir,
341 const struct qstr *qstr,
342 const initxattrs initxattrs, void *fs_data)
343{
344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345 struct xattr *lsm_xattr, *evm_xattr, *xattr;
346 int ret;
347
348 if (unlikely(IS_PRIVATE(inode)))
349 return 0;
350
351 if (!initxattrs)
352 return security_ops->inode_init_security(inode, dir, qstr,
353 NULL, NULL, NULL);
354 memset(new_xattrs, 0, sizeof(new_xattrs));
355 lsm_xattr = new_xattrs;
356 ret = security_ops->inode_init_security(inode, dir, qstr,
357 &lsm_xattr->name,
358 &lsm_xattr->value,
359 &lsm_xattr->value_len);
360 if (ret)
361 goto out;
362
363 evm_xattr = lsm_xattr + 1;
364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365 if (ret)
366 goto out;
367 ret = initxattrs(inode, new_xattrs, fs_data);
368out:
369 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
370 kfree(xattr->value);
371 return (ret == -EOPNOTSUPP) ? 0 : ret;
372}
373EXPORT_SYMBOL(security_inode_init_security);
374
375int security_old_inode_init_security(struct inode *inode, struct inode *dir,
376 const struct qstr *qstr, const char **name,
377 void **value, size_t *len)
378{
379 if (unlikely(IS_PRIVATE(inode)))
380 return -EOPNOTSUPP;
381 return security_ops->inode_init_security(inode, dir, qstr, name, value,
382 len);
383}
384EXPORT_SYMBOL(security_old_inode_init_security);
385
386#ifdef CONFIG_SECURITY_PATH
387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
388 unsigned int dev)
389{
390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391 return 0;
392 return security_ops->path_mknod(dir, dentry, mode, dev);
393}
394EXPORT_SYMBOL(security_path_mknod);
395
396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
397{
398 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399 return 0;
400 return security_ops->path_mkdir(dir, dentry, mode);
401}
402EXPORT_SYMBOL(security_path_mkdir);
403
404int security_path_rmdir(struct path *dir, struct dentry *dentry)
405{
406 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
407 return 0;
408 return security_ops->path_rmdir(dir, dentry);
409}
410
411int security_path_unlink(struct path *dir, struct dentry *dentry)
412{
413 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414 return 0;
415 return security_ops->path_unlink(dir, dentry);
416}
417EXPORT_SYMBOL(security_path_unlink);
418
419int security_path_symlink(struct path *dir, struct dentry *dentry,
420 const char *old_name)
421{
422 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
423 return 0;
424 return security_ops->path_symlink(dir, dentry, old_name);
425}
426
427int security_path_link(struct dentry *old_dentry, struct path *new_dir,
428 struct dentry *new_dentry)
429{
430 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
431 return 0;
432 return security_ops->path_link(old_dentry, new_dir, new_dentry);
433}
434
435int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
436 struct path *new_dir, struct dentry *new_dentry)
437{
438 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
439 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
440 return 0;
441 return security_ops->path_rename(old_dir, old_dentry, new_dir,
442 new_dentry);
443}
444EXPORT_SYMBOL(security_path_rename);
445
446int security_path_truncate(struct path *path)
447{
448 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
449 return 0;
450 return security_ops->path_truncate(path);
451}
452
453int security_path_chmod(struct path *path, umode_t mode)
454{
455 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
456 return 0;
457 return security_ops->path_chmod(path, mode);
458}
459
460int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
461{
462 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
463 return 0;
464 return security_ops->path_chown(path, uid, gid);
465}
466
467int security_path_chroot(struct path *path)
468{
469 return security_ops->path_chroot(path);
470}
471#endif
472
473int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
474{
475 if (unlikely(IS_PRIVATE(dir)))
476 return 0;
477 return security_ops->inode_create(dir, dentry, mode);
478}
479EXPORT_SYMBOL_GPL(security_inode_create);
480
481int security_inode_link(struct dentry *old_dentry, struct inode *dir,
482 struct dentry *new_dentry)
483{
484 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
485 return 0;
486 return security_ops->inode_link(old_dentry, dir, new_dentry);
487}
488
489int security_inode_unlink(struct inode *dir, struct dentry *dentry)
490{
491 if (unlikely(IS_PRIVATE(dentry->d_inode)))
492 return 0;
493 return security_ops->inode_unlink(dir, dentry);
494}
495
496int security_inode_symlink(struct inode *dir, struct dentry *dentry,
497 const char *old_name)
498{
499 if (unlikely(IS_PRIVATE(dir)))
500 return 0;
501 return security_ops->inode_symlink(dir, dentry, old_name);
502}
503
504int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
505{
506 if (unlikely(IS_PRIVATE(dir)))
507 return 0;
508 return security_ops->inode_mkdir(dir, dentry, mode);
509}
510EXPORT_SYMBOL_GPL(security_inode_mkdir);
511
512int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
513{
514 if (unlikely(IS_PRIVATE(dentry->d_inode)))
515 return 0;
516 return security_ops->inode_rmdir(dir, dentry);
517}
518
519int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
520{
521 if (unlikely(IS_PRIVATE(dir)))
522 return 0;
523 return security_ops->inode_mknod(dir, dentry, mode, dev);
524}
525
526int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
527 struct inode *new_dir, struct dentry *new_dentry)
528{
529 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
530 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
531 return 0;
532 return security_ops->inode_rename(old_dir, old_dentry,
533 new_dir, new_dentry);
534}
535
536int security_inode_readlink(struct dentry *dentry)
537{
538 if (unlikely(IS_PRIVATE(dentry->d_inode)))
539 return 0;
540 return security_ops->inode_readlink(dentry);
541}
542
543int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
544{
545 if (unlikely(IS_PRIVATE(dentry->d_inode)))
546 return 0;
547 return security_ops->inode_follow_link(dentry, nd);
548}
549
550int security_inode_permission(struct inode *inode, int mask)
551{
552 if (unlikely(IS_PRIVATE(inode)))
553 return 0;
554 return security_ops->inode_permission(inode, mask);
555}
556
557int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
558{
559 int ret;
560
561 if (unlikely(IS_PRIVATE(dentry->d_inode)))
562 return 0;
563 ret = security_ops->inode_setattr(dentry, attr);
564 if (ret)
565 return ret;
566 return evm_inode_setattr(dentry, attr);
567}
568EXPORT_SYMBOL_GPL(security_inode_setattr);
569
570int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
571{
572 if (unlikely(IS_PRIVATE(dentry->d_inode)))
573 return 0;
574 return security_ops->inode_getattr(mnt, dentry);
575}
576
577int security_inode_setxattr(struct dentry *dentry, const char *name,
578 const void *value, size_t size, int flags)
579{
580 int ret;
581
582 if (unlikely(IS_PRIVATE(dentry->d_inode)))
583 return 0;
584 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
585 if (ret)
586 return ret;
587 ret = ima_inode_setxattr(dentry, name, value, size);
588 if (ret)
589 return ret;
590 return evm_inode_setxattr(dentry, name, value, size);
591}
592
593void security_inode_post_setxattr(struct dentry *dentry, const char *name,
594 const void *value, size_t size, int flags)
595{
596 if (unlikely(IS_PRIVATE(dentry->d_inode)))
597 return;
598 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
599 evm_inode_post_setxattr(dentry, name, value, size);
600}
601
602int security_inode_getxattr(struct dentry *dentry, const char *name)
603{
604 if (unlikely(IS_PRIVATE(dentry->d_inode)))
605 return 0;
606 return security_ops->inode_getxattr(dentry, name);
607}
608
609int security_inode_listxattr(struct dentry *dentry)
610{
611 if (unlikely(IS_PRIVATE(dentry->d_inode)))
612 return 0;
613 return security_ops->inode_listxattr(dentry);
614}
615
616int security_inode_removexattr(struct dentry *dentry, const char *name)
617{
618 int ret;
619
620 if (unlikely(IS_PRIVATE(dentry->d_inode)))
621 return 0;
622 ret = security_ops->inode_removexattr(dentry, name);
623 if (ret)
624 return ret;
625 ret = ima_inode_removexattr(dentry, name);
626 if (ret)
627 return ret;
628 return evm_inode_removexattr(dentry, name);
629}
630
631int security_inode_need_killpriv(struct dentry *dentry)
632{
633 return security_ops->inode_need_killpriv(dentry);
634}
635
636int security_inode_killpriv(struct dentry *dentry)
637{
638 return security_ops->inode_killpriv(dentry);
639}
640
641int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
642{
643 if (unlikely(IS_PRIVATE(inode)))
644 return -EOPNOTSUPP;
645 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
646}
647
648int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
649{
650 if (unlikely(IS_PRIVATE(inode)))
651 return -EOPNOTSUPP;
652 return security_ops->inode_setsecurity(inode, name, value, size, flags);
653}
654
655int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
656{
657 if (unlikely(IS_PRIVATE(inode)))
658 return 0;
659 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
660}
661EXPORT_SYMBOL(security_inode_listsecurity);
662
663void security_inode_getsecid(const struct inode *inode, u32 *secid)
664{
665 security_ops->inode_getsecid(inode, secid);
666}
667
668int security_file_permission(struct file *file, int mask)
669{
670 int ret;
671
672 ret = security_ops->file_permission(file, mask);
673 if (ret)
674 return ret;
675
676 return fsnotify_perm(file, mask);
677}
678
679int security_file_alloc(struct file *file)
680{
681 return security_ops->file_alloc_security(file);
682}
683
684void security_file_free(struct file *file)
685{
686 security_ops->file_free_security(file);
687}
688
689int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
690{
691 return security_ops->file_ioctl(file, cmd, arg);
692}
693
694static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
695{
696 /*
697 * Does we have PROT_READ and does the application expect
698 * it to imply PROT_EXEC? If not, nothing to talk about...
699 */
700 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
701 return prot;
702 if (!(current->personality & READ_IMPLIES_EXEC))
703 return prot;
704 /*
705 * if that's an anonymous mapping, let it.
706 */
707 if (!file)
708 return prot | PROT_EXEC;
709 /*
710 * ditto if it's not on noexec mount, except that on !MMU we need
711 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
712 */
713 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
714#ifndef CONFIG_MMU
715 unsigned long caps = 0;
716 struct address_space *mapping = file->f_mapping;
717 if (mapping && mapping->backing_dev_info)
718 caps = mapping->backing_dev_info->capabilities;
719 if (!(caps & BDI_CAP_EXEC_MAP))
720 return prot;
721#endif
722 return prot | PROT_EXEC;
723 }
724 /* anything on noexec mount won't get PROT_EXEC */
725 return prot;
726}
727
728int security_mmap_file(struct file *file, unsigned long prot,
729 unsigned long flags)
730{
731 int ret;
732 ret = security_ops->mmap_file(file, prot,
733 mmap_prot(file, prot), flags);
734 if (ret)
735 return ret;
736 return ima_file_mmap(file, prot);
737}
738
739int security_mmap_addr(unsigned long addr)
740{
741 return security_ops->mmap_addr(addr);
742}
743
744int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
745 unsigned long prot)
746{
747 return security_ops->file_mprotect(vma, reqprot, prot);
748}
749
750int security_file_lock(struct file *file, unsigned int cmd)
751{
752 return security_ops->file_lock(file, cmd);
753}
754
755int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
756{
757 return security_ops->file_fcntl(file, cmd, arg);
758}
759
760int security_file_set_fowner(struct file *file)
761{
762 return security_ops->file_set_fowner(file);
763}
764
765int security_file_send_sigiotask(struct task_struct *tsk,
766 struct fown_struct *fown, int sig)
767{
768 return security_ops->file_send_sigiotask(tsk, fown, sig);
769}
770
771int security_file_receive(struct file *file)
772{
773 return security_ops->file_receive(file);
774}
775
776int security_file_open(struct file *file, const struct cred *cred)
777{
778 int ret;
779
780 ret = security_ops->file_open(file, cred);
781 if (ret)
782 return ret;
783
784 return fsnotify_perm(file, MAY_OPEN);
785}
786
787int security_task_create(unsigned long clone_flags)
788{
789 return security_ops->task_create(clone_flags);
790}
791
792void security_task_free(struct task_struct *task)
793{
794#ifdef CONFIG_SECURITY_YAMA_STACKED
795 yama_task_free(task);
796#endif
797 security_ops->task_free(task);
798}
799
800int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
801{
802 return security_ops->cred_alloc_blank(cred, gfp);
803}
804
805void security_cred_free(struct cred *cred)
806{
807 security_ops->cred_free(cred);
808}
809
810int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
811{
812 return security_ops->cred_prepare(new, old, gfp);
813}
814
815void security_transfer_creds(struct cred *new, const struct cred *old)
816{
817 security_ops->cred_transfer(new, old);
818}
819
820int security_kernel_act_as(struct cred *new, u32 secid)
821{
822 return security_ops->kernel_act_as(new, secid);
823}
824
825int security_kernel_create_files_as(struct cred *new, struct inode *inode)
826{
827 return security_ops->kernel_create_files_as(new, inode);
828}
829
830int security_kernel_module_request(char *kmod_name)
831{
832 return security_ops->kernel_module_request(kmod_name);
833}
834
835int security_kernel_module_from_file(struct file *file)
836{
837 int ret;
838
839 ret = security_ops->kernel_module_from_file(file);
840 if (ret)
841 return ret;
842 return ima_module_check(file);
843}
844
845int security_task_fix_setuid(struct cred *new, const struct cred *old,
846 int flags)
847{
848 return security_ops->task_fix_setuid(new, old, flags);
849}
850
851int security_task_setpgid(struct task_struct *p, pid_t pgid)
852{
853 return security_ops->task_setpgid(p, pgid);
854}
855
856int security_task_getpgid(struct task_struct *p)
857{
858 return security_ops->task_getpgid(p);
859}
860
861int security_task_getsid(struct task_struct *p)
862{
863 return security_ops->task_getsid(p);
864}
865
866void security_task_getsecid(struct task_struct *p, u32 *secid)
867{
868 security_ops->task_getsecid(p, secid);
869}
870EXPORT_SYMBOL(security_task_getsecid);
871
872int security_task_setnice(struct task_struct *p, int nice)
873{
874 return security_ops->task_setnice(p, nice);
875}
876
877int security_task_setioprio(struct task_struct *p, int ioprio)
878{
879 return security_ops->task_setioprio(p, ioprio);
880}
881
882int security_task_getioprio(struct task_struct *p)
883{
884 return security_ops->task_getioprio(p);
885}
886
887int security_task_setrlimit(struct task_struct *p, unsigned int resource,
888 struct rlimit *new_rlim)
889{
890 return security_ops->task_setrlimit(p, resource, new_rlim);
891}
892
893int security_task_setscheduler(struct task_struct *p)
894{
895 return security_ops->task_setscheduler(p);
896}
897
898int security_task_getscheduler(struct task_struct *p)
899{
900 return security_ops->task_getscheduler(p);
901}
902
903int security_task_movememory(struct task_struct *p)
904{
905 return security_ops->task_movememory(p);
906}
907
908int security_task_kill(struct task_struct *p, struct siginfo *info,
909 int sig, u32 secid)
910{
911 return security_ops->task_kill(p, info, sig, secid);
912}
913
914int security_task_wait(struct task_struct *p)
915{
916 return security_ops->task_wait(p);
917}
918
919int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
920 unsigned long arg4, unsigned long arg5)
921{
922#ifdef CONFIG_SECURITY_YAMA_STACKED
923 int rc;
924 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
925 if (rc != -ENOSYS)
926 return rc;
927#endif
928 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
929}
930
931void security_task_to_inode(struct task_struct *p, struct inode *inode)
932{
933 security_ops->task_to_inode(p, inode);
934}
935
936int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
937{
938 return security_ops->ipc_permission(ipcp, flag);
939}
940
941void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
942{
943 security_ops->ipc_getsecid(ipcp, secid);
944}
945
946int security_msg_msg_alloc(struct msg_msg *msg)
947{
948 return security_ops->msg_msg_alloc_security(msg);
949}
950
951void security_msg_msg_free(struct msg_msg *msg)
952{
953 security_ops->msg_msg_free_security(msg);
954}
955
956int security_msg_queue_alloc(struct msg_queue *msq)
957{
958 return security_ops->msg_queue_alloc_security(msq);
959}
960
961void security_msg_queue_free(struct msg_queue *msq)
962{
963 security_ops->msg_queue_free_security(msq);
964}
965
966int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
967{
968 return security_ops->msg_queue_associate(msq, msqflg);
969}
970
971int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
972{
973 return security_ops->msg_queue_msgctl(msq, cmd);
974}
975
976int security_msg_queue_msgsnd(struct msg_queue *msq,
977 struct msg_msg *msg, int msqflg)
978{
979 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
980}
981
982int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
983 struct task_struct *target, long type, int mode)
984{
985 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
986}
987
988int security_shm_alloc(struct shmid_kernel *shp)
989{
990 return security_ops->shm_alloc_security(shp);
991}
992
993void security_shm_free(struct shmid_kernel *shp)
994{
995 security_ops->shm_free_security(shp);
996}
997
998int security_shm_associate(struct shmid_kernel *shp, int shmflg)
999{
1000 return security_ops->shm_associate(shp, shmflg);
1001}
1002
1003int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1004{
1005 return security_ops->shm_shmctl(shp, cmd);
1006}
1007
1008int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1009{
1010 return security_ops->shm_shmat(shp, shmaddr, shmflg);
1011}
1012
1013int security_sem_alloc(struct sem_array *sma)
1014{
1015 return security_ops->sem_alloc_security(sma);
1016}
1017
1018void security_sem_free(struct sem_array *sma)
1019{
1020 security_ops->sem_free_security(sma);
1021}
1022
1023int security_sem_associate(struct sem_array *sma, int semflg)
1024{
1025 return security_ops->sem_associate(sma, semflg);
1026}
1027
1028int security_sem_semctl(struct sem_array *sma, int cmd)
1029{
1030 return security_ops->sem_semctl(sma, cmd);
1031}
1032
1033int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1034 unsigned nsops, int alter)
1035{
1036 return security_ops->sem_semop(sma, sops, nsops, alter);
1037}
1038
1039void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1040{
1041 if (unlikely(inode && IS_PRIVATE(inode)))
1042 return;
1043 security_ops->d_instantiate(dentry, inode);
1044}
1045EXPORT_SYMBOL(security_d_instantiate);
1046
1047int security_getprocattr(struct task_struct *p, char *name, char **value)
1048{
1049 return security_ops->getprocattr(p, name, value);
1050}
1051
1052int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1053{
1054 return security_ops->setprocattr(p, name, value, size);
1055}
1056
1057int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1058{
1059 return security_ops->netlink_send(sk, skb);
1060}
1061
1062int security_ismaclabel(const char *name)
1063{
1064 return security_ops->ismaclabel(name);
1065}
1066EXPORT_SYMBOL(security_ismaclabel);
1067
1068int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1069{
1070 return security_ops->secid_to_secctx(secid, secdata, seclen);
1071}
1072EXPORT_SYMBOL(security_secid_to_secctx);
1073
1074int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1075{
1076 return security_ops->secctx_to_secid(secdata, seclen, secid);
1077}
1078EXPORT_SYMBOL(security_secctx_to_secid);
1079
1080void security_release_secctx(char *secdata, u32 seclen)
1081{
1082 security_ops->release_secctx(secdata, seclen);
1083}
1084EXPORT_SYMBOL(security_release_secctx);
1085
1086int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1087{
1088 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1089}
1090EXPORT_SYMBOL(security_inode_notifysecctx);
1091
1092int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1093{
1094 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1095}
1096EXPORT_SYMBOL(security_inode_setsecctx);
1097
1098int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1099{
1100 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1101}
1102EXPORT_SYMBOL(security_inode_getsecctx);
1103
1104#ifdef CONFIG_SECURITY_NETWORK
1105
1106int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1107{
1108 return security_ops->unix_stream_connect(sock, other, newsk);
1109}
1110EXPORT_SYMBOL(security_unix_stream_connect);
1111
1112int security_unix_may_send(struct socket *sock, struct socket *other)
1113{
1114 return security_ops->unix_may_send(sock, other);
1115}
1116EXPORT_SYMBOL(security_unix_may_send);
1117
1118int security_socket_create(int family, int type, int protocol, int kern)
1119{
1120 return security_ops->socket_create(family, type, protocol, kern);
1121}
1122
1123int security_socket_post_create(struct socket *sock, int family,
1124 int type, int protocol, int kern)
1125{
1126 return security_ops->socket_post_create(sock, family, type,
1127 protocol, kern);
1128}
1129
1130int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1131{
1132 return security_ops->socket_bind(sock, address, addrlen);
1133}
1134
1135int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1136{
1137 return security_ops->socket_connect(sock, address, addrlen);
1138}
1139
1140int security_socket_listen(struct socket *sock, int backlog)
1141{
1142 return security_ops->socket_listen(sock, backlog);
1143}
1144
1145int security_socket_accept(struct socket *sock, struct socket *newsock)
1146{
1147 return security_ops->socket_accept(sock, newsock);
1148}
1149
1150int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1151{
1152 return security_ops->socket_sendmsg(sock, msg, size);
1153}
1154
1155int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1156 int size, int flags)
1157{
1158 return security_ops->socket_recvmsg(sock, msg, size, flags);
1159}
1160
1161int security_socket_getsockname(struct socket *sock)
1162{
1163 return security_ops->socket_getsockname(sock);
1164}
1165
1166int security_socket_getpeername(struct socket *sock)
1167{
1168 return security_ops->socket_getpeername(sock);
1169}
1170
1171int security_socket_getsockopt(struct socket *sock, int level, int optname)
1172{
1173 return security_ops->socket_getsockopt(sock, level, optname);
1174}
1175
1176int security_socket_setsockopt(struct socket *sock, int level, int optname)
1177{
1178 return security_ops->socket_setsockopt(sock, level, optname);
1179}
1180
1181int security_socket_shutdown(struct socket *sock, int how)
1182{
1183 return security_ops->socket_shutdown(sock, how);
1184}
1185
1186int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1187{
1188 return security_ops->socket_sock_rcv_skb(sk, skb);
1189}
1190EXPORT_SYMBOL(security_sock_rcv_skb);
1191
1192int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1193 int __user *optlen, unsigned len)
1194{
1195 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1196}
1197
1198int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1199{
1200 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1201}
1202EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1203
1204int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1205{
1206 return security_ops->sk_alloc_security(sk, family, priority);
1207}
1208
1209void security_sk_free(struct sock *sk)
1210{
1211 security_ops->sk_free_security(sk);
1212}
1213
1214void security_sk_clone(const struct sock *sk, struct sock *newsk)
1215{
1216 security_ops->sk_clone_security(sk, newsk);
1217}
1218EXPORT_SYMBOL(security_sk_clone);
1219
1220void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1221{
1222 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1223}
1224EXPORT_SYMBOL(security_sk_classify_flow);
1225
1226void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1227{
1228 security_ops->req_classify_flow(req, fl);
1229}
1230EXPORT_SYMBOL(security_req_classify_flow);
1231
1232void security_sock_graft(struct sock *sk, struct socket *parent)
1233{
1234 security_ops->sock_graft(sk, parent);
1235}
1236EXPORT_SYMBOL(security_sock_graft);
1237
1238int security_inet_conn_request(struct sock *sk,
1239 struct sk_buff *skb, struct request_sock *req)
1240{
1241 return security_ops->inet_conn_request(sk, skb, req);
1242}
1243EXPORT_SYMBOL(security_inet_conn_request);
1244
1245void security_inet_csk_clone(struct sock *newsk,
1246 const struct request_sock *req)
1247{
1248 security_ops->inet_csk_clone(newsk, req);
1249}
1250
1251void security_inet_conn_established(struct sock *sk,
1252 struct sk_buff *skb)
1253{
1254 security_ops->inet_conn_established(sk, skb);
1255}
1256
1257int security_secmark_relabel_packet(u32 secid)
1258{
1259 return security_ops->secmark_relabel_packet(secid);
1260}
1261EXPORT_SYMBOL(security_secmark_relabel_packet);
1262
1263void security_secmark_refcount_inc(void)
1264{
1265 security_ops->secmark_refcount_inc();
1266}
1267EXPORT_SYMBOL(security_secmark_refcount_inc);
1268
1269void security_secmark_refcount_dec(void)
1270{
1271 security_ops->secmark_refcount_dec();
1272}
1273EXPORT_SYMBOL(security_secmark_refcount_dec);
1274
1275int security_tun_dev_alloc_security(void **security)
1276{
1277 return security_ops->tun_dev_alloc_security(security);
1278}
1279EXPORT_SYMBOL(security_tun_dev_alloc_security);
1280
1281void security_tun_dev_free_security(void *security)
1282{
1283 security_ops->tun_dev_free_security(security);
1284}
1285EXPORT_SYMBOL(security_tun_dev_free_security);
1286
1287int security_tun_dev_create(void)
1288{
1289 return security_ops->tun_dev_create();
1290}
1291EXPORT_SYMBOL(security_tun_dev_create);
1292
1293int security_tun_dev_attach_queue(void *security)
1294{
1295 return security_ops->tun_dev_attach_queue(security);
1296}
1297EXPORT_SYMBOL(security_tun_dev_attach_queue);
1298
1299int security_tun_dev_attach(struct sock *sk, void *security)
1300{
1301 return security_ops->tun_dev_attach(sk, security);
1302}
1303EXPORT_SYMBOL(security_tun_dev_attach);
1304
1305int security_tun_dev_open(void *security)
1306{
1307 return security_ops->tun_dev_open(security);
1308}
1309EXPORT_SYMBOL(security_tun_dev_open);
1310
1311void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1312{
1313 security_ops->skb_owned_by(skb, sk);
1314}
1315
1316#endif /* CONFIG_SECURITY_NETWORK */
1317
1318#ifdef CONFIG_SECURITY_NETWORK_XFRM
1319
1320int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1321 struct xfrm_user_sec_ctx *sec_ctx,
1322 gfp_t gfp)
1323{
1324 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1325}
1326EXPORT_SYMBOL(security_xfrm_policy_alloc);
1327
1328int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1329 struct xfrm_sec_ctx **new_ctxp)
1330{
1331 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1332}
1333
1334void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1335{
1336 security_ops->xfrm_policy_free_security(ctx);
1337}
1338EXPORT_SYMBOL(security_xfrm_policy_free);
1339
1340int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1341{
1342 return security_ops->xfrm_policy_delete_security(ctx);
1343}
1344
1345int security_xfrm_state_alloc(struct xfrm_state *x,
1346 struct xfrm_user_sec_ctx *sec_ctx)
1347{
1348 return security_ops->xfrm_state_alloc(x, sec_ctx);
1349}
1350EXPORT_SYMBOL(security_xfrm_state_alloc);
1351
1352int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1353 struct xfrm_sec_ctx *polsec, u32 secid)
1354{
1355 return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1356}
1357
1358int security_xfrm_state_delete(struct xfrm_state *x)
1359{
1360 return security_ops->xfrm_state_delete_security(x);
1361}
1362EXPORT_SYMBOL(security_xfrm_state_delete);
1363
1364void security_xfrm_state_free(struct xfrm_state *x)
1365{
1366 security_ops->xfrm_state_free_security(x);
1367}
1368
1369int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1370{
1371 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1372}
1373
1374int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1375 struct xfrm_policy *xp,
1376 const struct flowi *fl)
1377{
1378 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1379}
1380
1381int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1382{
1383 return security_ops->xfrm_decode_session(skb, secid, 1);
1384}
1385
1386void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1387{
1388 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1389
1390 BUG_ON(rc);
1391}
1392EXPORT_SYMBOL(security_skb_classify_flow);
1393
1394#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1395
1396#ifdef CONFIG_KEYS
1397
1398int security_key_alloc(struct key *key, const struct cred *cred,
1399 unsigned long flags)
1400{
1401 return security_ops->key_alloc(key, cred, flags);
1402}
1403
1404void security_key_free(struct key *key)
1405{
1406 security_ops->key_free(key);
1407}
1408
1409int security_key_permission(key_ref_t key_ref,
1410 const struct cred *cred, key_perm_t perm)
1411{
1412 return security_ops->key_permission(key_ref, cred, perm);
1413}
1414
1415int security_key_getsecurity(struct key *key, char **_buffer)
1416{
1417 return security_ops->key_getsecurity(key, _buffer);
1418}
1419
1420#endif /* CONFIG_KEYS */
1421
1422#ifdef CONFIG_AUDIT
1423
1424int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1425{
1426 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1427}
1428
1429int security_audit_rule_known(struct audit_krule *krule)
1430{
1431 return security_ops->audit_rule_known(krule);
1432}
1433
1434void security_audit_rule_free(void *lsmrule)
1435{
1436 security_ops->audit_rule_free(lsmrule);
1437}
1438
1439int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1440 struct audit_context *actx)
1441{
1442 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1443}
1444
1445#endif /* CONFIG_AUDIT */