]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - softmmu_template.h
virtio: decrement vq->inuse in virtqueue_discard()
[mirror_qemu.git] / softmmu_template.h
... / ...
CommitLineData
1/*
2 * Software MMU support
3 *
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
6 *
7 * Included from target op helpers and exec.c.
8 *
9 * Copyright (c) 2003 Fabrice Bellard
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24#include "qemu/timer.h"
25#include "exec/address-spaces.h"
26#include "exec/memory.h"
27
28#define DATA_SIZE (1 << SHIFT)
29
30#if DATA_SIZE == 8
31#define SUFFIX q
32#define LSUFFIX q
33#define SDATA_TYPE int64_t
34#define DATA_TYPE uint64_t
35#elif DATA_SIZE == 4
36#define SUFFIX l
37#define LSUFFIX l
38#define SDATA_TYPE int32_t
39#define DATA_TYPE uint32_t
40#elif DATA_SIZE == 2
41#define SUFFIX w
42#define LSUFFIX uw
43#define SDATA_TYPE int16_t
44#define DATA_TYPE uint16_t
45#elif DATA_SIZE == 1
46#define SUFFIX b
47#define LSUFFIX ub
48#define SDATA_TYPE int8_t
49#define DATA_TYPE uint8_t
50#else
51#error unsupported data size
52#endif
53
54
55/* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61# define WORD_TYPE DATA_TYPE
62# define USUFFIX SUFFIX
63#else
64# define WORD_TYPE tcg_target_ulong
65# define USUFFIX glue(u, SUFFIX)
66# define SSUFFIX glue(s, SUFFIX)
67#endif
68
69#ifdef SOFTMMU_CODE_ACCESS
70#define READ_ACCESS_TYPE MMU_INST_FETCH
71#define ADDR_READ addr_code
72#else
73#define READ_ACCESS_TYPE MMU_DATA_LOAD
74#define ADDR_READ addr_read
75#endif
76
77#if DATA_SIZE == 8
78# define BSWAP(X) bswap64(X)
79#elif DATA_SIZE == 4
80# define BSWAP(X) bswap32(X)
81#elif DATA_SIZE == 2
82# define BSWAP(X) bswap16(X)
83#else
84# define BSWAP(X) (X)
85#endif
86
87#ifdef TARGET_WORDS_BIGENDIAN
88# define TGT_BE(X) (X)
89# define TGT_LE(X) BSWAP(X)
90#else
91# define TGT_BE(X) BSWAP(X)
92# define TGT_LE(X) (X)
93#endif
94
95#if DATA_SIZE == 1
96# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97# define helper_be_ld_name helper_le_ld_name
98# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99# define helper_be_lds_name helper_le_lds_name
100# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101# define helper_be_st_name helper_le_st_name
102#else
103# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109#endif
110
111#ifdef TARGET_WORDS_BIGENDIAN
112# define helper_te_ld_name helper_be_ld_name
113# define helper_te_st_name helper_be_st_name
114#else
115# define helper_te_ld_name helper_le_ld_name
116# define helper_te_st_name helper_le_st_name
117#endif
118
119#ifndef SOFTMMU_CODE_ACCESS
120static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
121 CPUIOTLBEntry *iotlbentry,
122 target_ulong addr,
123 uintptr_t retaddr)
124{
125 uint64_t val;
126 CPUState *cpu = ENV_GET_CPU(env);
127 hwaddr physaddr = iotlbentry->addr;
128 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
129
130 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
131 cpu->mem_io_pc = retaddr;
132 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
133 cpu_io_recompile(cpu, retaddr);
134 }
135
136 cpu->mem_io_vaddr = addr;
137 memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
138 iotlbentry->attrs);
139 return val;
140}
141#endif
142
143WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
144 TCGMemOpIdx oi, uintptr_t retaddr)
145{
146 unsigned mmu_idx = get_mmuidx(oi);
147 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
148 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
149 int a_bits = get_alignment_bits(get_memop(oi));
150 uintptr_t haddr;
151 DATA_TYPE res;
152
153 /* Adjust the given return address. */
154 retaddr -= GETPC_ADJ;
155
156 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
157 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
158 mmu_idx, retaddr);
159 }
160
161 /* If the TLB entry is for a different page, reload and try again. */
162 if ((addr & TARGET_PAGE_MASK)
163 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
164 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
165 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
166 mmu_idx, retaddr);
167 }
168 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
169 }
170
171 /* Handle an IO access. */
172 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
173 CPUIOTLBEntry *iotlbentry;
174 if ((addr & (DATA_SIZE - 1)) != 0) {
175 goto do_unaligned_access;
176 }
177 iotlbentry = &env->iotlb[mmu_idx][index];
178
179 /* ??? Note that the io helpers always read data in the target
180 byte ordering. We should push the LE/BE request down into io. */
181 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
182 res = TGT_LE(res);
183 return res;
184 }
185
186 /* Handle slow unaligned access (it spans two pages or IO). */
187 if (DATA_SIZE > 1
188 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
189 >= TARGET_PAGE_SIZE)) {
190 target_ulong addr1, addr2;
191 DATA_TYPE res1, res2;
192 unsigned shift;
193 do_unaligned_access:
194 addr1 = addr & ~(DATA_SIZE - 1);
195 addr2 = addr1 + DATA_SIZE;
196 /* Note the adjustment at the beginning of the function.
197 Undo that for the recursion. */
198 res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
199 res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
200 shift = (addr & (DATA_SIZE - 1)) * 8;
201
202 /* Little-endian combine. */
203 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
204 return res;
205 }
206
207 haddr = addr + env->tlb_table[mmu_idx][index].addend;
208#if DATA_SIZE == 1
209 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
210#else
211 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
212#endif
213 return res;
214}
215
216#if DATA_SIZE > 1
217WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
218 TCGMemOpIdx oi, uintptr_t retaddr)
219{
220 unsigned mmu_idx = get_mmuidx(oi);
221 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
222 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
223 int a_bits = get_alignment_bits(get_memop(oi));
224 uintptr_t haddr;
225 DATA_TYPE res;
226
227 /* Adjust the given return address. */
228 retaddr -= GETPC_ADJ;
229
230 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
231 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
232 mmu_idx, retaddr);
233 }
234
235 /* If the TLB entry is for a different page, reload and try again. */
236 if ((addr & TARGET_PAGE_MASK)
237 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
238 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
239 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
240 mmu_idx, retaddr);
241 }
242 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
243 }
244
245 /* Handle an IO access. */
246 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
247 CPUIOTLBEntry *iotlbentry;
248 if ((addr & (DATA_SIZE - 1)) != 0) {
249 goto do_unaligned_access;
250 }
251 iotlbentry = &env->iotlb[mmu_idx][index];
252
253 /* ??? Note that the io helpers always read data in the target
254 byte ordering. We should push the LE/BE request down into io. */
255 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
256 res = TGT_BE(res);
257 return res;
258 }
259
260 /* Handle slow unaligned access (it spans two pages or IO). */
261 if (DATA_SIZE > 1
262 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
263 >= TARGET_PAGE_SIZE)) {
264 target_ulong addr1, addr2;
265 DATA_TYPE res1, res2;
266 unsigned shift;
267 do_unaligned_access:
268 addr1 = addr & ~(DATA_SIZE - 1);
269 addr2 = addr1 + DATA_SIZE;
270 /* Note the adjustment at the beginning of the function.
271 Undo that for the recursion. */
272 res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
273 res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
274 shift = (addr & (DATA_SIZE - 1)) * 8;
275
276 /* Big-endian combine. */
277 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
278 return res;
279 }
280
281 haddr = addr + env->tlb_table[mmu_idx][index].addend;
282 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
283 return res;
284}
285#endif /* DATA_SIZE > 1 */
286
287#ifndef SOFTMMU_CODE_ACCESS
288
289/* Provide signed versions of the load routines as well. We can of course
290 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
291#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
292WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
293 TCGMemOpIdx oi, uintptr_t retaddr)
294{
295 return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
296}
297
298# if DATA_SIZE > 1
299WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
300 TCGMemOpIdx oi, uintptr_t retaddr)
301{
302 return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
303}
304# endif
305#endif
306
307static inline void glue(io_write, SUFFIX)(CPUArchState *env,
308 CPUIOTLBEntry *iotlbentry,
309 DATA_TYPE val,
310 target_ulong addr,
311 uintptr_t retaddr)
312{
313 CPUState *cpu = ENV_GET_CPU(env);
314 hwaddr physaddr = iotlbentry->addr;
315 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
316
317 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
318 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
319 cpu_io_recompile(cpu, retaddr);
320 }
321
322 cpu->mem_io_vaddr = addr;
323 cpu->mem_io_pc = retaddr;
324 memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
325 iotlbentry->attrs);
326}
327
328void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
329 TCGMemOpIdx oi, uintptr_t retaddr)
330{
331 unsigned mmu_idx = get_mmuidx(oi);
332 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
333 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
334 int a_bits = get_alignment_bits(get_memop(oi));
335 uintptr_t haddr;
336
337 /* Adjust the given return address. */
338 retaddr -= GETPC_ADJ;
339
340 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
341 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
342 mmu_idx, retaddr);
343 }
344
345 /* If the TLB entry is for a different page, reload and try again. */
346 if ((addr & TARGET_PAGE_MASK)
347 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
348 if (!VICTIM_TLB_HIT(addr_write, addr)) {
349 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
350 }
351 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
352 }
353
354 /* Handle an IO access. */
355 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
356 CPUIOTLBEntry *iotlbentry;
357 if ((addr & (DATA_SIZE - 1)) != 0) {
358 goto do_unaligned_access;
359 }
360 iotlbentry = &env->iotlb[mmu_idx][index];
361
362 /* ??? Note that the io helpers always read data in the target
363 byte ordering. We should push the LE/BE request down into io. */
364 val = TGT_LE(val);
365 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
366 return;
367 }
368
369 /* Handle slow unaligned access (it spans two pages or IO). */
370 if (DATA_SIZE > 1
371 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
372 >= TARGET_PAGE_SIZE)) {
373 int i, index2;
374 target_ulong page2, tlb_addr2;
375 do_unaligned_access:
376 /* Ensure the second page is in the TLB. Note that the first page
377 is already guaranteed to be filled, and that the second page
378 cannot evict the first. */
379 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
380 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
381 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
382 if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
383 && !VICTIM_TLB_HIT(addr_write, page2)) {
384 tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
385 mmu_idx, retaddr);
386 }
387
388 /* XXX: not efficient, but simple. */
389 /* This loop must go in the forward direction to avoid issues
390 with self-modifying code in Windows 64-bit. */
391 for (i = 0; i < DATA_SIZE; ++i) {
392 /* Little-endian extract. */
393 uint8_t val8 = val >> (i * 8);
394 /* Note the adjustment at the beginning of the function.
395 Undo that for the recursion. */
396 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
397 oi, retaddr + GETPC_ADJ);
398 }
399 return;
400 }
401
402 haddr = addr + env->tlb_table[mmu_idx][index].addend;
403#if DATA_SIZE == 1
404 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
405#else
406 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
407#endif
408}
409
410#if DATA_SIZE > 1
411void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
412 TCGMemOpIdx oi, uintptr_t retaddr)
413{
414 unsigned mmu_idx = get_mmuidx(oi);
415 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
416 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
417 int a_bits = get_alignment_bits(get_memop(oi));
418 uintptr_t haddr;
419
420 /* Adjust the given return address. */
421 retaddr -= GETPC_ADJ;
422
423 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
424 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
425 mmu_idx, retaddr);
426 }
427
428 /* If the TLB entry is for a different page, reload and try again. */
429 if ((addr & TARGET_PAGE_MASK)
430 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
431 if (!VICTIM_TLB_HIT(addr_write, addr)) {
432 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
433 }
434 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
435 }
436
437 /* Handle an IO access. */
438 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
439 CPUIOTLBEntry *iotlbentry;
440 if ((addr & (DATA_SIZE - 1)) != 0) {
441 goto do_unaligned_access;
442 }
443 iotlbentry = &env->iotlb[mmu_idx][index];
444
445 /* ??? Note that the io helpers always read data in the target
446 byte ordering. We should push the LE/BE request down into io. */
447 val = TGT_BE(val);
448 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
449 return;
450 }
451
452 /* Handle slow unaligned access (it spans two pages or IO). */
453 if (DATA_SIZE > 1
454 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
455 >= TARGET_PAGE_SIZE)) {
456 int i, index2;
457 target_ulong page2, tlb_addr2;
458 do_unaligned_access:
459 /* Ensure the second page is in the TLB. Note that the first page
460 is already guaranteed to be filled, and that the second page
461 cannot evict the first. */
462 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
463 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
464 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
465 if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
466 && !VICTIM_TLB_HIT(addr_write, page2)) {
467 tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
468 mmu_idx, retaddr);
469 }
470
471 /* XXX: not efficient, but simple */
472 /* This loop must go in the forward direction to avoid issues
473 with self-modifying code. */
474 for (i = 0; i < DATA_SIZE; ++i) {
475 /* Big-endian extract. */
476 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
477 /* Note the adjustment at the beginning of the function.
478 Undo that for the recursion. */
479 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
480 oi, retaddr + GETPC_ADJ);
481 }
482 return;
483 }
484
485 haddr = addr + env->tlb_table[mmu_idx][index].addend;
486 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
487}
488#endif /* DATA_SIZE > 1 */
489
490#if DATA_SIZE == 1
491/* Probe for whether the specified guest write access is permitted.
492 * If it is not permitted then an exception will be taken in the same
493 * way as if this were a real write access (and we will not return).
494 * Otherwise the function will return, and there will be a valid
495 * entry in the TLB for this access.
496 */
497void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
498 uintptr_t retaddr)
499{
500 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
501 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
502
503 if ((addr & TARGET_PAGE_MASK)
504 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
505 /* TLB entry is for a different page */
506 if (!VICTIM_TLB_HIT(addr_write, addr)) {
507 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
508 }
509 }
510}
511#endif
512#endif /* !defined(SOFTMMU_CODE_ACCESS) */
513
514#undef READ_ACCESS_TYPE
515#undef SHIFT
516#undef DATA_TYPE
517#undef SUFFIX
518#undef LSUFFIX
519#undef DATA_SIZE
520#undef ADDR_READ
521#undef WORD_TYPE
522#undef SDATA_TYPE
523#undef USUFFIX
524#undef SSUFFIX
525#undef BSWAP
526#undef TGT_BE
527#undef TGT_LE
528#undef CPU_BE
529#undef CPU_LE
530#undef helper_le_ld_name
531#undef helper_be_ld_name
532#undef helper_le_lds_name
533#undef helper_be_lds_name
534#undef helper_le_st_name
535#undef helper_be_st_name
536#undef helper_te_ld_name
537#undef helper_te_st_name