]> git.proxmox.com Git - rustc.git/blame_incremental - src/llvm/include/llvm/IR/DataLayout.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / IR / DataLayout.h
... / ...
CommitLineData
1//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines layout properties related to datatype size/offset/alignment
11// information. It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&. None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_DATALAYOUT_H
21#define LLVM_IR_DATALAYOUT_H
22
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/DataTypes.h"
29
30// This needs to be outside of the namespace, to avoid conflict with llvm-c
31// decl.
32typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
33
34namespace llvm {
35
36class Value;
37class Type;
38class IntegerType;
39class StructType;
40class StructLayout;
41class Triple;
42class GlobalVariable;
43class LLVMContext;
44template<typename T>
45class ArrayRef;
46
47/// Enum used to categorize the alignment types stored by LayoutAlignElem
48enum AlignTypeEnum {
49 INVALID_ALIGN = 0,
50 INTEGER_ALIGN = 'i',
51 VECTOR_ALIGN = 'v',
52 FLOAT_ALIGN = 'f',
53 AGGREGATE_ALIGN = 'a'
54};
55
56/// \brief Layout alignment element.
57///
58/// Stores the alignment data associated with a given alignment type (integer,
59/// vector, float) and type bit width.
60///
61/// \note The unusual order of elements in the structure attempts to reduce
62/// padding and make the structure slightly more cache friendly.
63struct LayoutAlignElem {
64 /// \brief Alignment type from \c AlignTypeEnum
65 unsigned AlignType : 8;
66 unsigned TypeBitWidth : 24;
67 unsigned ABIAlign : 16;
68 unsigned PrefAlign : 16;
69
70 static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
71 unsigned pref_align, uint32_t bit_width);
72 bool operator==(const LayoutAlignElem &rhs) const;
73};
74
75/// \brief Layout pointer alignment element.
76///
77/// Stores the alignment data associated with a given pointer and address space.
78///
79/// \note The unusual order of elements in the structure attempts to reduce
80/// padding and make the structure slightly more cache friendly.
81struct PointerAlignElem {
82 unsigned ABIAlign;
83 unsigned PrefAlign;
84 uint32_t TypeByteWidth;
85 uint32_t AddressSpace;
86
87 /// Initializer
88 static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
89 unsigned PrefAlign, uint32_t TypeByteWidth);
90 bool operator==(const PointerAlignElem &rhs) const;
91};
92
93/// \brief A parsed version of the target data layout string in and methods for
94/// querying it.
95///
96/// The target data layout string is specified *by the target* - a frontend
97/// generating LLVM IR is required to generate the right target data for the
98/// target being codegen'd to.
99class DataLayout {
100private:
101 /// Defaults to false.
102 bool BigEndian;
103
104 unsigned StackNaturalAlign;
105
106 enum ManglingModeT { MM_None, MM_ELF, MM_MachO, MM_WINCOFF, MM_Mips };
107 ManglingModeT ManglingMode;
108
109 SmallVector<unsigned char, 8> LegalIntWidths;
110
111 /// \brief Primitive type alignment data.
112 SmallVector<LayoutAlignElem, 16> Alignments;
113
114 typedef SmallVector<PointerAlignElem, 8> PointersTy;
115 PointersTy Pointers;
116
117 PointersTy::const_iterator
118 findPointerLowerBound(uint32_t AddressSpace) const {
119 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
120 }
121
122 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
123
124 /// This member is a signal that a requested alignment type and bit width were
125 /// not found in the SmallVector.
126 static const LayoutAlignElem InvalidAlignmentElem;
127
128 /// This member is a signal that a requested pointer type and bit width were
129 /// not found in the DenseSet.
130 static const PointerAlignElem InvalidPointerElem;
131
132 // The StructType -> StructLayout map.
133 mutable void *LayoutMap;
134
135 void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
136 unsigned pref_align, uint32_t bit_width);
137 unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
138 bool ABIAlign, Type *Ty) const;
139 void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
140 unsigned PrefAlign, uint32_t TypeByteWidth);
141
142 /// Internal helper method that returns requested alignment for type.
143 unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
144
145 /// \brief Valid alignment predicate.
146 ///
147 /// Predicate that tests a LayoutAlignElem reference returned by get() against
148 /// InvalidAlignmentElem.
149 bool validAlignment(const LayoutAlignElem &align) const {
150 return &align != &InvalidAlignmentElem;
151 }
152
153 /// \brief Valid pointer predicate.
154 ///
155 /// Predicate that tests a PointerAlignElem reference returned by get()
156 /// against \c InvalidPointerElem.
157 bool validPointer(const PointerAlignElem &align) const {
158 return &align != &InvalidPointerElem;
159 }
160
161 /// Parses a target data specification string. Assert if the string is
162 /// malformed.
163 void parseSpecifier(StringRef LayoutDescription);
164
165 // Free all internal data structures.
166 void clear();
167
168public:
169 /// Constructs a DataLayout from a specification string. See reset().
170 explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
171 reset(LayoutDescription);
172 }
173
174 /// Initialize target data from properties stored in the module.
175 explicit DataLayout(const Module *M);
176
177 void init(const Module *M);
178
179 DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
180
181 DataLayout &operator=(const DataLayout &DL) {
182 clear();
183 BigEndian = DL.isBigEndian();
184 StackNaturalAlign = DL.StackNaturalAlign;
185 ManglingMode = DL.ManglingMode;
186 LegalIntWidths = DL.LegalIntWidths;
187 Alignments = DL.Alignments;
188 Pointers = DL.Pointers;
189 return *this;
190 }
191
192 bool operator==(const DataLayout &Other) const;
193 bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
194
195 ~DataLayout(); // Not virtual, do not subclass this class
196
197 /// Parse a data layout string (with fallback to default values).
198 void reset(StringRef LayoutDescription);
199
200 /// Layout endianness...
201 bool isLittleEndian() const { return !BigEndian; }
202 bool isBigEndian() const { return BigEndian; }
203
204 /// \brief Returns the string representation of the DataLayout.
205 ///
206 /// This representation is in the same format accepted by the string
207 /// constructor above.
208 std::string getStringRepresentation() const;
209
210 /// \brief Returns true if the specified type is known to be a native integer
211 /// type supported by the CPU.
212 ///
213 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
214 /// on any known one. This returns false if the integer width is not legal.
215 ///
216 /// The width is specified in bits.
217 bool isLegalInteger(unsigned Width) const {
218 for (unsigned LegalIntWidth : LegalIntWidths)
219 if (LegalIntWidth == Width)
220 return true;
221 return false;
222 }
223
224 bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
225
226 /// Returns true if the given alignment exceeds the natural stack alignment.
227 bool exceedsNaturalStackAlignment(unsigned Align) const {
228 return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
229 }
230
231 unsigned getStackAlignment() const { return StackNaturalAlign; }
232
233 bool hasMicrosoftFastStdCallMangling() const {
234 return ManglingMode == MM_WINCOFF;
235 }
236
237 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
238
239 const char *getLinkerPrivateGlobalPrefix() const {
240 if (ManglingMode == MM_MachO)
241 return "l";
242 return getPrivateGlobalPrefix();
243 }
244
245 char getGlobalPrefix() const {
246 switch (ManglingMode) {
247 case MM_None:
248 case MM_ELF:
249 case MM_Mips:
250 return '\0';
251 case MM_MachO:
252 case MM_WINCOFF:
253 return '_';
254 }
255 llvm_unreachable("invalid mangling mode");
256 }
257
258 const char *getPrivateGlobalPrefix() const {
259 switch (ManglingMode) {
260 case MM_None:
261 return "";
262 case MM_ELF:
263 return ".L";
264 case MM_Mips:
265 return "$";
266 case MM_MachO:
267 case MM_WINCOFF:
268 return "L";
269 }
270 llvm_unreachable("invalid mangling mode");
271 }
272
273 static const char *getManglingComponent(const Triple &T);
274
275 /// \brief Returns true if the specified type fits in a native integer type
276 /// supported by the CPU.
277 ///
278 /// For example, if the CPU only supports i32 as a native integer type, then
279 /// i27 fits in a legal integer type but i45 does not.
280 bool fitsInLegalInteger(unsigned Width) const {
281 for (unsigned LegalIntWidth : LegalIntWidths)
282 if (Width <= LegalIntWidth)
283 return true;
284 return false;
285 }
286
287 /// Layout pointer alignment
288 /// FIXME: The defaults need to be removed once all of
289 /// the backends/clients are updated.
290 unsigned getPointerABIAlignment(unsigned AS = 0) const;
291
292 /// Return target's alignment for stack-based pointers
293 /// FIXME: The defaults need to be removed once all of
294 /// the backends/clients are updated.
295 unsigned getPointerPrefAlignment(unsigned AS = 0) const;
296
297 /// Layout pointer size
298 /// FIXME: The defaults need to be removed once all of
299 /// the backends/clients are updated.
300 unsigned getPointerSize(unsigned AS = 0) const;
301
302 /// Layout pointer size, in bits
303 /// FIXME: The defaults need to be removed once all of
304 /// the backends/clients are updated.
305 unsigned getPointerSizeInBits(unsigned AS = 0) const {
306 return getPointerSize(AS) * 8;
307 }
308
309 /// Layout pointer size, in bits, based on the type. If this function is
310 /// called with a pointer type, then the type size of the pointer is returned.
311 /// If this function is called with a vector of pointers, then the type size
312 /// of the pointer is returned. This should only be called with a pointer or
313 /// vector of pointers.
314 unsigned getPointerTypeSizeInBits(Type *) const;
315
316 unsigned getPointerTypeSize(Type *Ty) const {
317 return getPointerTypeSizeInBits(Ty) / 8;
318 }
319
320 /// Size examples:
321 ///
322 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
323 /// ---- ---------- --------------- ---------------
324 /// i1 1 8 8
325 /// i8 8 8 8
326 /// i19 19 24 32
327 /// i32 32 32 32
328 /// i100 100 104 128
329 /// i128 128 128 128
330 /// Float 32 32 32
331 /// Double 64 64 64
332 /// X86_FP80 80 80 96
333 ///
334 /// [*] The alloc size depends on the alignment, and thus on the target.
335 /// These values are for x86-32 linux.
336
337 /// \brief Returns the number of bits necessary to hold the specified type.
338 ///
339 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
340 /// have a size (Type::isSized() must return true).
341 uint64_t getTypeSizeInBits(Type *Ty) const;
342
343 /// \brief Returns the maximum number of bytes that may be overwritten by
344 /// storing the specified type.
345 ///
346 /// For example, returns 5 for i36 and 10 for x86_fp80.
347 uint64_t getTypeStoreSize(Type *Ty) const {
348 return (getTypeSizeInBits(Ty) + 7) / 8;
349 }
350
351 /// \brief Returns the maximum number of bits that may be overwritten by
352 /// storing the specified type; always a multiple of 8.
353 ///
354 /// For example, returns 40 for i36 and 80 for x86_fp80.
355 uint64_t getTypeStoreSizeInBits(Type *Ty) const {
356 return 8 * getTypeStoreSize(Ty);
357 }
358
359 /// \brief Returns the offset in bytes between successive objects of the
360 /// specified type, including alignment padding.
361 ///
362 /// This is the amount that alloca reserves for this type. For example,
363 /// returns 12 or 16 for x86_fp80, depending on alignment.
364 uint64_t getTypeAllocSize(Type *Ty) const {
365 // Round up to the next alignment boundary.
366 return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
367 }
368
369 /// \brief Returns the offset in bits between successive objects of the
370 /// specified type, including alignment padding; always a multiple of 8.
371 ///
372 /// This is the amount that alloca reserves for this type. For example,
373 /// returns 96 or 128 for x86_fp80, depending on alignment.
374 uint64_t getTypeAllocSizeInBits(Type *Ty) const {
375 return 8 * getTypeAllocSize(Ty);
376 }
377
378 /// \brief Returns the minimum ABI-required alignment for the specified type.
379 unsigned getABITypeAlignment(Type *Ty) const;
380
381 /// \brief Returns the minimum ABI-required alignment for an integer type of
382 /// the specified bitwidth.
383 unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
384
385 /// \brief Returns the preferred stack/global alignment for the specified
386 /// type.
387 ///
388 /// This is always at least as good as the ABI alignment.
389 unsigned getPrefTypeAlignment(Type *Ty) const;
390
391 /// \brief Returns the preferred alignment for the specified type, returned as
392 /// log2 of the value (a shift amount).
393 unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
394
395 /// \brief Returns an integer type with size at least as big as that of a
396 /// pointer in the given address space.
397 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
398
399 /// \brief Returns an integer (vector of integer) type with size at least as
400 /// big as that of a pointer of the given pointer (vector of pointer) type.
401 Type *getIntPtrType(Type *) const;
402
403 /// \brief Returns the smallest integer type with size at least as big as
404 /// Width bits.
405 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
406
407 /// \brief Returns the largest legal integer type, or null if none are set.
408 Type *getLargestLegalIntType(LLVMContext &C) const {
409 unsigned LargestSize = getLargestLegalIntTypeSize();
410 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
411 }
412
413 /// \brief Returns the size of largest legal integer type size, or 0 if none
414 /// are set.
415 unsigned getLargestLegalIntTypeSize() const;
416
417 /// \brief Returns the offset from the beginning of the type for the specified
418 /// indices.
419 ///
420 /// This is used to implement getelementptr.
421 uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
422
423 /// \brief Returns a StructLayout object, indicating the alignment of the
424 /// struct, its size, and the offsets of its fields.
425 ///
426 /// Note that this information is lazily cached.
427 const StructLayout *getStructLayout(StructType *Ty) const;
428
429 /// \brief Returns the preferred alignment of the specified global.
430 ///
431 /// This includes an explicitly requested alignment (if the global has one).
432 unsigned getPreferredAlignment(const GlobalVariable *GV) const;
433
434 /// \brief Returns the preferred alignment of the specified global, returned
435 /// in log form.
436 ///
437 /// This includes an explicitly requested alignment (if the global has one).
438 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
439};
440
441inline DataLayout *unwrap(LLVMTargetDataRef P) {
442 return reinterpret_cast<DataLayout *>(P);
443}
444
445inline LLVMTargetDataRef wrap(const DataLayout *P) {
446 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
447}
448
449class DataLayoutPass : public ImmutablePass {
450 DataLayout DL;
451
452public:
453 /// This has to exist, because this is a pass, but it should never be used.
454 DataLayoutPass();
455 ~DataLayoutPass();
456
457 const DataLayout &getDataLayout() const { return DL; }
458
459 static char ID; // Pass identification, replacement for typeid
460
461 bool doFinalization(Module &M) override;
462 bool doInitialization(Module &M) override;
463};
464
465/// Used to lazily calculate structure layout information for a target machine,
466/// based on the DataLayout structure.
467class StructLayout {
468 uint64_t StructSize;
469 unsigned StructAlignment;
470 unsigned NumElements;
471 uint64_t MemberOffsets[1]; // variable sized array!
472public:
473 uint64_t getSizeInBytes() const { return StructSize; }
474
475 uint64_t getSizeInBits() const { return 8 * StructSize; }
476
477 unsigned getAlignment() const { return StructAlignment; }
478
479 /// \brief Given a valid byte offset into the structure, returns the structure
480 /// index that contains it.
481 unsigned getElementContainingOffset(uint64_t Offset) const;
482
483 uint64_t getElementOffset(unsigned Idx) const {
484 assert(Idx < NumElements && "Invalid element idx!");
485 return MemberOffsets[Idx];
486 }
487
488 uint64_t getElementOffsetInBits(unsigned Idx) const {
489 return getElementOffset(Idx) * 8;
490 }
491
492private:
493 friend class DataLayout; // Only DataLayout can create this class
494 StructLayout(StructType *ST, const DataLayout &DL);
495};
496
497// The implementation of this method is provided inline as it is particularly
498// well suited to constant folding when called on a specific Type subclass.
499inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
500 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
501 switch (Ty->getTypeID()) {
502 case Type::LabelTyID:
503 return getPointerSizeInBits(0);
504 case Type::PointerTyID:
505 return getPointerSizeInBits(Ty->getPointerAddressSpace());
506 case Type::ArrayTyID: {
507 ArrayType *ATy = cast<ArrayType>(Ty);
508 return ATy->getNumElements() *
509 getTypeAllocSizeInBits(ATy->getElementType());
510 }
511 case Type::StructTyID:
512 // Get the layout annotation... which is lazily created on demand.
513 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
514 case Type::IntegerTyID:
515 return Ty->getIntegerBitWidth();
516 case Type::HalfTyID:
517 return 16;
518 case Type::FloatTyID:
519 return 32;
520 case Type::DoubleTyID:
521 case Type::X86_MMXTyID:
522 return 64;
523 case Type::PPC_FP128TyID:
524 case Type::FP128TyID:
525 return 128;
526 // In memory objects this is always aligned to a higher boundary, but
527 // only 80 bits contain information.
528 case Type::X86_FP80TyID:
529 return 80;
530 case Type::VectorTyID: {
531 VectorType *VTy = cast<VectorType>(Ty);
532 return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
533 }
534 default:
535 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
536 }
537}
538
539} // End llvm namespace
540
541#endif