]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - target/i386/cpu.c
Merge remote-tracking branch 'remotes/lersek/tags/edk2-pull-2019-04-22' into staging
[mirror_qemu.git] / target / i386 / cpu.c
... / ...
CommitLineData
1/*
2 * i386 CPUID helper functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/units.h"
22#include "qemu/cutils.h"
23#include "qemu/bitops.h"
24#include "qemu/qemu-print.h"
25
26#include "cpu.h"
27#include "exec/exec-all.h"
28#include "sysemu/kvm.h"
29#include "sysemu/hvf.h"
30#include "sysemu/cpus.h"
31#include "kvm_i386.h"
32#include "sev_i386.h"
33
34#include "qemu/error-report.h"
35#include "qemu/option.h"
36#include "qemu/config-file.h"
37#include "qapi/error.h"
38#include "qapi/qapi-visit-misc.h"
39#include "qapi/qapi-visit-run-state.h"
40#include "qapi/qmp/qdict.h"
41#include "qapi/qmp/qerror.h"
42#include "qapi/visitor.h"
43#include "qom/qom-qobject.h"
44#include "sysemu/arch_init.h"
45#include "qapi/qapi-commands-target.h"
46
47#include "standard-headers/asm-x86/kvm_para.h"
48
49#include "sysemu/sysemu.h"
50#include "hw/qdev-properties.h"
51#include "hw/i386/topology.h"
52#ifndef CONFIG_USER_ONLY
53#include "exec/address-spaces.h"
54#include "hw/hw.h"
55#include "hw/xen/xen.h"
56#include "hw/i386/apic_internal.h"
57#endif
58
59#include "disas/capstone.h"
60
61/* Helpers for building CPUID[2] descriptors: */
62
63struct CPUID2CacheDescriptorInfo {
64 enum CacheType type;
65 int level;
66 int size;
67 int line_size;
68 int associativity;
69};
70
71/*
72 * Known CPUID 2 cache descriptors.
73 * From Intel SDM Volume 2A, CPUID instruction
74 */
75struct CPUID2CacheDescriptorInfo cpuid2_cache_descriptors[] = {
76 [0x06] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 8 * KiB,
77 .associativity = 4, .line_size = 32, },
78 [0x08] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 16 * KiB,
79 .associativity = 4, .line_size = 32, },
80 [0x09] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB,
81 .associativity = 4, .line_size = 64, },
82 [0x0A] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB,
83 .associativity = 2, .line_size = 32, },
84 [0x0C] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
85 .associativity = 4, .line_size = 32, },
86 [0x0D] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
87 .associativity = 4, .line_size = 64, },
88 [0x0E] = { .level = 1, .type = DATA_CACHE, .size = 24 * KiB,
89 .associativity = 6, .line_size = 64, },
90 [0x1D] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
91 .associativity = 2, .line_size = 64, },
92 [0x21] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
93 .associativity = 8, .line_size = 64, },
94 /* lines per sector is not supported cpuid2_cache_descriptor(),
95 * so descriptors 0x22, 0x23 are not included
96 */
97 [0x24] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
98 .associativity = 16, .line_size = 64, },
99 /* lines per sector is not supported cpuid2_cache_descriptor(),
100 * so descriptors 0x25, 0x20 are not included
101 */
102 [0x2C] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB,
103 .associativity = 8, .line_size = 64, },
104 [0x30] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB,
105 .associativity = 8, .line_size = 64, },
106 [0x41] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
107 .associativity = 4, .line_size = 32, },
108 [0x42] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
109 .associativity = 4, .line_size = 32, },
110 [0x43] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
111 .associativity = 4, .line_size = 32, },
112 [0x44] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
113 .associativity = 4, .line_size = 32, },
114 [0x45] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
115 .associativity = 4, .line_size = 32, },
116 [0x46] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
117 .associativity = 4, .line_size = 64, },
118 [0x47] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
119 .associativity = 8, .line_size = 64, },
120 [0x48] = { .level = 2, .type = UNIFIED_CACHE, .size = 3 * MiB,
121 .associativity = 12, .line_size = 64, },
122 /* Descriptor 0x49 depends on CPU family/model, so it is not included */
123 [0x4A] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
124 .associativity = 12, .line_size = 64, },
125 [0x4B] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
126 .associativity = 16, .line_size = 64, },
127 [0x4C] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
128 .associativity = 12, .line_size = 64, },
129 [0x4D] = { .level = 3, .type = UNIFIED_CACHE, .size = 16 * MiB,
130 .associativity = 16, .line_size = 64, },
131 [0x4E] = { .level = 2, .type = UNIFIED_CACHE, .size = 6 * MiB,
132 .associativity = 24, .line_size = 64, },
133 [0x60] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
134 .associativity = 8, .line_size = 64, },
135 [0x66] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB,
136 .associativity = 4, .line_size = 64, },
137 [0x67] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
138 .associativity = 4, .line_size = 64, },
139 [0x68] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB,
140 .associativity = 4, .line_size = 64, },
141 [0x78] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
142 .associativity = 4, .line_size = 64, },
143 /* lines per sector is not supported cpuid2_cache_descriptor(),
144 * so descriptors 0x79, 0x7A, 0x7B, 0x7C are not included.
145 */
146 [0x7D] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
147 .associativity = 8, .line_size = 64, },
148 [0x7F] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
149 .associativity = 2, .line_size = 64, },
150 [0x80] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
151 .associativity = 8, .line_size = 64, },
152 [0x82] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
153 .associativity = 8, .line_size = 32, },
154 [0x83] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
155 .associativity = 8, .line_size = 32, },
156 [0x84] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
157 .associativity = 8, .line_size = 32, },
158 [0x85] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
159 .associativity = 8, .line_size = 32, },
160 [0x86] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
161 .associativity = 4, .line_size = 64, },
162 [0x87] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
163 .associativity = 8, .line_size = 64, },
164 [0xD0] = { .level = 3, .type = UNIFIED_CACHE, .size = 512 * KiB,
165 .associativity = 4, .line_size = 64, },
166 [0xD1] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
167 .associativity = 4, .line_size = 64, },
168 [0xD2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
169 .associativity = 4, .line_size = 64, },
170 [0xD6] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
171 .associativity = 8, .line_size = 64, },
172 [0xD7] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
173 .associativity = 8, .line_size = 64, },
174 [0xD8] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
175 .associativity = 8, .line_size = 64, },
176 [0xDC] = { .level = 3, .type = UNIFIED_CACHE, .size = 1.5 * MiB,
177 .associativity = 12, .line_size = 64, },
178 [0xDD] = { .level = 3, .type = UNIFIED_CACHE, .size = 3 * MiB,
179 .associativity = 12, .line_size = 64, },
180 [0xDE] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
181 .associativity = 12, .line_size = 64, },
182 [0xE2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
183 .associativity = 16, .line_size = 64, },
184 [0xE3] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
185 .associativity = 16, .line_size = 64, },
186 [0xE4] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
187 .associativity = 16, .line_size = 64, },
188 [0xEA] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
189 .associativity = 24, .line_size = 64, },
190 [0xEB] = { .level = 3, .type = UNIFIED_CACHE, .size = 18 * MiB,
191 .associativity = 24, .line_size = 64, },
192 [0xEC] = { .level = 3, .type = UNIFIED_CACHE, .size = 24 * MiB,
193 .associativity = 24, .line_size = 64, },
194};
195
196/*
197 * "CPUID leaf 2 does not report cache descriptor information,
198 * use CPUID leaf 4 to query cache parameters"
199 */
200#define CACHE_DESCRIPTOR_UNAVAILABLE 0xFF
201
202/*
203 * Return a CPUID 2 cache descriptor for a given cache.
204 * If no known descriptor is found, return CACHE_DESCRIPTOR_UNAVAILABLE
205 */
206static uint8_t cpuid2_cache_descriptor(CPUCacheInfo *cache)
207{
208 int i;
209
210 assert(cache->size > 0);
211 assert(cache->level > 0);
212 assert(cache->line_size > 0);
213 assert(cache->associativity > 0);
214 for (i = 0; i < ARRAY_SIZE(cpuid2_cache_descriptors); i++) {
215 struct CPUID2CacheDescriptorInfo *d = &cpuid2_cache_descriptors[i];
216 if (d->level == cache->level && d->type == cache->type &&
217 d->size == cache->size && d->line_size == cache->line_size &&
218 d->associativity == cache->associativity) {
219 return i;
220 }
221 }
222
223 return CACHE_DESCRIPTOR_UNAVAILABLE;
224}
225
226/* CPUID Leaf 4 constants: */
227
228/* EAX: */
229#define CACHE_TYPE_D 1
230#define CACHE_TYPE_I 2
231#define CACHE_TYPE_UNIFIED 3
232
233#define CACHE_LEVEL(l) (l << 5)
234
235#define CACHE_SELF_INIT_LEVEL (1 << 8)
236
237/* EDX: */
238#define CACHE_NO_INVD_SHARING (1 << 0)
239#define CACHE_INCLUSIVE (1 << 1)
240#define CACHE_COMPLEX_IDX (1 << 2)
241
242/* Encode CacheType for CPUID[4].EAX */
243#define CACHE_TYPE(t) (((t) == DATA_CACHE) ? CACHE_TYPE_D : \
244 ((t) == INSTRUCTION_CACHE) ? CACHE_TYPE_I : \
245 ((t) == UNIFIED_CACHE) ? CACHE_TYPE_UNIFIED : \
246 0 /* Invalid value */)
247
248
249/* Encode cache info for CPUID[4] */
250static void encode_cache_cpuid4(CPUCacheInfo *cache,
251 int num_apic_ids, int num_cores,
252 uint32_t *eax, uint32_t *ebx,
253 uint32_t *ecx, uint32_t *edx)
254{
255 assert(cache->size == cache->line_size * cache->associativity *
256 cache->partitions * cache->sets);
257
258 assert(num_apic_ids > 0);
259 *eax = CACHE_TYPE(cache->type) |
260 CACHE_LEVEL(cache->level) |
261 (cache->self_init ? CACHE_SELF_INIT_LEVEL : 0) |
262 ((num_cores - 1) << 26) |
263 ((num_apic_ids - 1) << 14);
264
265 assert(cache->line_size > 0);
266 assert(cache->partitions > 0);
267 assert(cache->associativity > 0);
268 /* We don't implement fully-associative caches */
269 assert(cache->associativity < cache->sets);
270 *ebx = (cache->line_size - 1) |
271 ((cache->partitions - 1) << 12) |
272 ((cache->associativity - 1) << 22);
273
274 assert(cache->sets > 0);
275 *ecx = cache->sets - 1;
276
277 *edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) |
278 (cache->inclusive ? CACHE_INCLUSIVE : 0) |
279 (cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
280}
281
282/* Encode cache info for CPUID[0x80000005].ECX or CPUID[0x80000005].EDX */
283static uint32_t encode_cache_cpuid80000005(CPUCacheInfo *cache)
284{
285 assert(cache->size % 1024 == 0);
286 assert(cache->lines_per_tag > 0);
287 assert(cache->associativity > 0);
288 assert(cache->line_size > 0);
289 return ((cache->size / 1024) << 24) | (cache->associativity << 16) |
290 (cache->lines_per_tag << 8) | (cache->line_size);
291}
292
293#define ASSOC_FULL 0xFF
294
295/* AMD associativity encoding used on CPUID Leaf 0x80000006: */
296#define AMD_ENC_ASSOC(a) (a <= 1 ? a : \
297 a == 2 ? 0x2 : \
298 a == 4 ? 0x4 : \
299 a == 8 ? 0x6 : \
300 a == 16 ? 0x8 : \
301 a == 32 ? 0xA : \
302 a == 48 ? 0xB : \
303 a == 64 ? 0xC : \
304 a == 96 ? 0xD : \
305 a == 128 ? 0xE : \
306 a == ASSOC_FULL ? 0xF : \
307 0 /* invalid value */)
308
309/*
310 * Encode cache info for CPUID[0x80000006].ECX and CPUID[0x80000006].EDX
311 * @l3 can be NULL.
312 */
313static void encode_cache_cpuid80000006(CPUCacheInfo *l2,
314 CPUCacheInfo *l3,
315 uint32_t *ecx, uint32_t *edx)
316{
317 assert(l2->size % 1024 == 0);
318 assert(l2->associativity > 0);
319 assert(l2->lines_per_tag > 0);
320 assert(l2->line_size > 0);
321 *ecx = ((l2->size / 1024) << 16) |
322 (AMD_ENC_ASSOC(l2->associativity) << 12) |
323 (l2->lines_per_tag << 8) | (l2->line_size);
324
325 if (l3) {
326 assert(l3->size % (512 * 1024) == 0);
327 assert(l3->associativity > 0);
328 assert(l3->lines_per_tag > 0);
329 assert(l3->line_size > 0);
330 *edx = ((l3->size / (512 * 1024)) << 18) |
331 (AMD_ENC_ASSOC(l3->associativity) << 12) |
332 (l3->lines_per_tag << 8) | (l3->line_size);
333 } else {
334 *edx = 0;
335 }
336}
337
338/*
339 * Definitions used for building CPUID Leaf 0x8000001D and 0x8000001E
340 * Please refer to the AMD64 Architecture Programmer’s Manual Volume 3.
341 * Define the constants to build the cpu topology. Right now, TOPOEXT
342 * feature is enabled only on EPYC. So, these constants are based on
343 * EPYC supported configurations. We may need to handle the cases if
344 * these values change in future.
345 */
346/* Maximum core complexes in a node */
347#define MAX_CCX 2
348/* Maximum cores in a core complex */
349#define MAX_CORES_IN_CCX 4
350/* Maximum cores in a node */
351#define MAX_CORES_IN_NODE 8
352/* Maximum nodes in a socket */
353#define MAX_NODES_PER_SOCKET 4
354
355/*
356 * Figure out the number of nodes required to build this config.
357 * Max cores in a node is 8
358 */
359static int nodes_in_socket(int nr_cores)
360{
361 int nodes;
362
363 nodes = DIV_ROUND_UP(nr_cores, MAX_CORES_IN_NODE);
364
365 /* Hardware does not support config with 3 nodes, return 4 in that case */
366 return (nodes == 3) ? 4 : nodes;
367}
368
369/*
370 * Decide the number of cores in a core complex with the given nr_cores using
371 * following set constants MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE and
372 * MAX_NODES_PER_SOCKET. Maintain symmetry as much as possible
373 * L3 cache is shared across all cores in a core complex. So, this will also
374 * tell us how many cores are sharing the L3 cache.
375 */
376static int cores_in_core_complex(int nr_cores)
377{
378 int nodes;
379
380 /* Check if we can fit all the cores in one core complex */
381 if (nr_cores <= MAX_CORES_IN_CCX) {
382 return nr_cores;
383 }
384 /* Get the number of nodes required to build this config */
385 nodes = nodes_in_socket(nr_cores);
386
387 /*
388 * Divide the cores accros all the core complexes
389 * Return rounded up value
390 */
391 return DIV_ROUND_UP(nr_cores, nodes * MAX_CCX);
392}
393
394/* Encode cache info for CPUID[8000001D] */
395static void encode_cache_cpuid8000001d(CPUCacheInfo *cache, CPUState *cs,
396 uint32_t *eax, uint32_t *ebx,
397 uint32_t *ecx, uint32_t *edx)
398{
399 uint32_t l3_cores;
400 assert(cache->size == cache->line_size * cache->associativity *
401 cache->partitions * cache->sets);
402
403 *eax = CACHE_TYPE(cache->type) | CACHE_LEVEL(cache->level) |
404 (cache->self_init ? CACHE_SELF_INIT_LEVEL : 0);
405
406 /* L3 is shared among multiple cores */
407 if (cache->level == 3) {
408 l3_cores = cores_in_core_complex(cs->nr_cores);
409 *eax |= ((l3_cores * cs->nr_threads) - 1) << 14;
410 } else {
411 *eax |= ((cs->nr_threads - 1) << 14);
412 }
413
414 assert(cache->line_size > 0);
415 assert(cache->partitions > 0);
416 assert(cache->associativity > 0);
417 /* We don't implement fully-associative caches */
418 assert(cache->associativity < cache->sets);
419 *ebx = (cache->line_size - 1) |
420 ((cache->partitions - 1) << 12) |
421 ((cache->associativity - 1) << 22);
422
423 assert(cache->sets > 0);
424 *ecx = cache->sets - 1;
425
426 *edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) |
427 (cache->inclusive ? CACHE_INCLUSIVE : 0) |
428 (cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
429}
430
431/* Data structure to hold the configuration info for a given core index */
432struct core_topology {
433 /* core complex id of the current core index */
434 int ccx_id;
435 /*
436 * Adjusted core index for this core in the topology
437 * This can be 0,1,2,3 with max 4 cores in a core complex
438 */
439 int core_id;
440 /* Node id for this core index */
441 int node_id;
442 /* Number of nodes in this config */
443 int num_nodes;
444};
445
446/*
447 * Build the configuration closely match the EPYC hardware. Using the EPYC
448 * hardware configuration values (MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE)
449 * right now. This could change in future.
450 * nr_cores : Total number of cores in the config
451 * core_id : Core index of the current CPU
452 * topo : Data structure to hold all the config info for this core index
453 */
454static void build_core_topology(int nr_cores, int core_id,
455 struct core_topology *topo)
456{
457 int nodes, cores_in_ccx;
458
459 /* First get the number of nodes required */
460 nodes = nodes_in_socket(nr_cores);
461
462 cores_in_ccx = cores_in_core_complex(nr_cores);
463
464 topo->node_id = core_id / (cores_in_ccx * MAX_CCX);
465 topo->ccx_id = (core_id % (cores_in_ccx * MAX_CCX)) / cores_in_ccx;
466 topo->core_id = core_id % cores_in_ccx;
467 topo->num_nodes = nodes;
468}
469
470/* Encode cache info for CPUID[8000001E] */
471static void encode_topo_cpuid8000001e(CPUState *cs, X86CPU *cpu,
472 uint32_t *eax, uint32_t *ebx,
473 uint32_t *ecx, uint32_t *edx)
474{
475 struct core_topology topo = {0};
476 unsigned long nodes;
477 int shift;
478
479 build_core_topology(cs->nr_cores, cpu->core_id, &topo);
480 *eax = cpu->apic_id;
481 /*
482 * CPUID_Fn8000001E_EBX
483 * 31:16 Reserved
484 * 15:8 Threads per core (The number of threads per core is
485 * Threads per core + 1)
486 * 7:0 Core id (see bit decoding below)
487 * SMT:
488 * 4:3 node id
489 * 2 Core complex id
490 * 1:0 Core id
491 * Non SMT:
492 * 5:4 node id
493 * 3 Core complex id
494 * 1:0 Core id
495 */
496 if (cs->nr_threads - 1) {
497 *ebx = ((cs->nr_threads - 1) << 8) | (topo.node_id << 3) |
498 (topo.ccx_id << 2) | topo.core_id;
499 } else {
500 *ebx = (topo.node_id << 4) | (topo.ccx_id << 3) | topo.core_id;
501 }
502 /*
503 * CPUID_Fn8000001E_ECX
504 * 31:11 Reserved
505 * 10:8 Nodes per processor (Nodes per processor is number of nodes + 1)
506 * 7:0 Node id (see bit decoding below)
507 * 2 Socket id
508 * 1:0 Node id
509 */
510 if (topo.num_nodes <= 4) {
511 *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << 2) |
512 topo.node_id;
513 } else {
514 /*
515 * Node id fix up. Actual hardware supports up to 4 nodes. But with
516 * more than 32 cores, we may end up with more than 4 nodes.
517 * Node id is a combination of socket id and node id. Only requirement
518 * here is that this number should be unique accross the system.
519 * Shift the socket id to accommodate more nodes. We dont expect both
520 * socket id and node id to be big number at the same time. This is not
521 * an ideal config but we need to to support it. Max nodes we can have
522 * is 32 (255/8) with 8 cores per node and 255 max cores. We only need
523 * 5 bits for nodes. Find the left most set bit to represent the total
524 * number of nodes. find_last_bit returns last set bit(0 based). Left
525 * shift(+1) the socket id to represent all the nodes.
526 */
527 nodes = topo.num_nodes - 1;
528 shift = find_last_bit(&nodes, 8);
529 *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << (shift + 1)) |
530 topo.node_id;
531 }
532 *edx = 0;
533}
534
535/*
536 * Definitions of the hardcoded cache entries we expose:
537 * These are legacy cache values. If there is a need to change any
538 * of these values please use builtin_x86_defs
539 */
540
541/* L1 data cache: */
542static CPUCacheInfo legacy_l1d_cache = {
543 .type = DATA_CACHE,
544 .level = 1,
545 .size = 32 * KiB,
546 .self_init = 1,
547 .line_size = 64,
548 .associativity = 8,
549 .sets = 64,
550 .partitions = 1,
551 .no_invd_sharing = true,
552};
553
554/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
555static CPUCacheInfo legacy_l1d_cache_amd = {
556 .type = DATA_CACHE,
557 .level = 1,
558 .size = 64 * KiB,
559 .self_init = 1,
560 .line_size = 64,
561 .associativity = 2,
562 .sets = 512,
563 .partitions = 1,
564 .lines_per_tag = 1,
565 .no_invd_sharing = true,
566};
567
568/* L1 instruction cache: */
569static CPUCacheInfo legacy_l1i_cache = {
570 .type = INSTRUCTION_CACHE,
571 .level = 1,
572 .size = 32 * KiB,
573 .self_init = 1,
574 .line_size = 64,
575 .associativity = 8,
576 .sets = 64,
577 .partitions = 1,
578 .no_invd_sharing = true,
579};
580
581/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
582static CPUCacheInfo legacy_l1i_cache_amd = {
583 .type = INSTRUCTION_CACHE,
584 .level = 1,
585 .size = 64 * KiB,
586 .self_init = 1,
587 .line_size = 64,
588 .associativity = 2,
589 .sets = 512,
590 .partitions = 1,
591 .lines_per_tag = 1,
592 .no_invd_sharing = true,
593};
594
595/* Level 2 unified cache: */
596static CPUCacheInfo legacy_l2_cache = {
597 .type = UNIFIED_CACHE,
598 .level = 2,
599 .size = 4 * MiB,
600 .self_init = 1,
601 .line_size = 64,
602 .associativity = 16,
603 .sets = 4096,
604 .partitions = 1,
605 .no_invd_sharing = true,
606};
607
608/*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */
609static CPUCacheInfo legacy_l2_cache_cpuid2 = {
610 .type = UNIFIED_CACHE,
611 .level = 2,
612 .size = 2 * MiB,
613 .line_size = 64,
614 .associativity = 8,
615};
616
617
618/*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */
619static CPUCacheInfo legacy_l2_cache_amd = {
620 .type = UNIFIED_CACHE,
621 .level = 2,
622 .size = 512 * KiB,
623 .line_size = 64,
624 .lines_per_tag = 1,
625 .associativity = 16,
626 .sets = 512,
627 .partitions = 1,
628};
629
630/* Level 3 unified cache: */
631static CPUCacheInfo legacy_l3_cache = {
632 .type = UNIFIED_CACHE,
633 .level = 3,
634 .size = 16 * MiB,
635 .line_size = 64,
636 .associativity = 16,
637 .sets = 16384,
638 .partitions = 1,
639 .lines_per_tag = 1,
640 .self_init = true,
641 .inclusive = true,
642 .complex_indexing = true,
643};
644
645/* TLB definitions: */
646
647#define L1_DTLB_2M_ASSOC 1
648#define L1_DTLB_2M_ENTRIES 255
649#define L1_DTLB_4K_ASSOC 1
650#define L1_DTLB_4K_ENTRIES 255
651
652#define L1_ITLB_2M_ASSOC 1
653#define L1_ITLB_2M_ENTRIES 255
654#define L1_ITLB_4K_ASSOC 1
655#define L1_ITLB_4K_ENTRIES 255
656
657#define L2_DTLB_2M_ASSOC 0 /* disabled */
658#define L2_DTLB_2M_ENTRIES 0 /* disabled */
659#define L2_DTLB_4K_ASSOC 4
660#define L2_DTLB_4K_ENTRIES 512
661
662#define L2_ITLB_2M_ASSOC 0 /* disabled */
663#define L2_ITLB_2M_ENTRIES 0 /* disabled */
664#define L2_ITLB_4K_ASSOC 4
665#define L2_ITLB_4K_ENTRIES 512
666
667/* CPUID Leaf 0x14 constants: */
668#define INTEL_PT_MAX_SUBLEAF 0x1
669/*
670 * bit[00]: IA32_RTIT_CTL.CR3 filter can be set to 1 and IA32_RTIT_CR3_MATCH
671 * MSR can be accessed;
672 * bit[01]: Support Configurable PSB and Cycle-Accurate Mode;
673 * bit[02]: Support IP Filtering, TraceStop filtering, and preservation
674 * of Intel PT MSRs across warm reset;
675 * bit[03]: Support MTC timing packet and suppression of COFI-based packets;
676 */
677#define INTEL_PT_MINIMAL_EBX 0xf
678/*
679 * bit[00]: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1 and
680 * IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be
681 * accessed;
682 * bit[01]: ToPA tables can hold any number of output entries, up to the
683 * maximum allowed by the MaskOrTableOffset field of
684 * IA32_RTIT_OUTPUT_MASK_PTRS;
685 * bit[02]: Support Single-Range Output scheme;
686 */
687#define INTEL_PT_MINIMAL_ECX 0x7
688/* generated packets which contain IP payloads have LIP values */
689#define INTEL_PT_IP_LIP (1 << 31)
690#define INTEL_PT_ADDR_RANGES_NUM 0x2 /* Number of configurable address ranges */
691#define INTEL_PT_ADDR_RANGES_NUM_MASK 0x3
692#define INTEL_PT_MTC_BITMAP (0x0249 << 16) /* Support ART(0,3,6,9) */
693#define INTEL_PT_CYCLE_BITMAP 0x1fff /* Support 0,2^(0~11) */
694#define INTEL_PT_PSB_BITMAP (0x003f << 16) /* Support 2K,4K,8K,16K,32K,64K */
695
696static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
697 uint32_t vendor2, uint32_t vendor3)
698{
699 int i;
700 for (i = 0; i < 4; i++) {
701 dst[i] = vendor1 >> (8 * i);
702 dst[i + 4] = vendor2 >> (8 * i);
703 dst[i + 8] = vendor3 >> (8 * i);
704 }
705 dst[CPUID_VENDOR_SZ] = '\0';
706}
707
708#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
709#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
710 CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
711#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
712 CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
713 CPUID_PSE36 | CPUID_FXSR)
714#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
715#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
716 CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
717 CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
718 CPUID_PAE | CPUID_SEP | CPUID_APIC)
719
720#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
721 CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
722 CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
723 CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
724 CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE)
725 /* partly implemented:
726 CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */
727 /* missing:
728 CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
729#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
730 CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
731 CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
732 CPUID_EXT_XSAVE | /* CPUID_EXT_OSXSAVE is dynamic */ \
733 CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR)
734 /* missing:
735 CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
736 CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
737 CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
738 CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_AVX,
739 CPUID_EXT_F16C, CPUID_EXT_RDRAND */
740
741#ifdef TARGET_X86_64
742#define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM)
743#else
744#define TCG_EXT2_X86_64_FEATURES 0
745#endif
746
747#define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
748 CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
749 CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \
750 TCG_EXT2_X86_64_FEATURES)
751#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
752 CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
753#define TCG_EXT4_FEATURES 0
754#define TCG_SVM_FEATURES CPUID_SVM_NPT
755#define TCG_KVM_FEATURES 0
756#define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \
757 CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX | \
758 CPUID_7_0_EBX_PCOMMIT | CPUID_7_0_EBX_CLFLUSHOPT | \
759 CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_FSGSBASE | \
760 CPUID_7_0_EBX_ERMS)
761 /* missing:
762 CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
763 CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
764 CPUID_7_0_EBX_RDSEED */
765#define TCG_7_0_ECX_FEATURES (CPUID_7_0_ECX_PKU | \
766 /* CPUID_7_0_ECX_OSPKE is dynamic */ \
767 CPUID_7_0_ECX_LA57)
768#define TCG_7_0_EDX_FEATURES 0
769#define TCG_APM_FEATURES 0
770#define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT
771#define TCG_XSAVE_FEATURES (CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XGETBV1)
772 /* missing:
773 CPUID_XSAVE_XSAVEC, CPUID_XSAVE_XSAVES */
774
775typedef enum FeatureWordType {
776 CPUID_FEATURE_WORD,
777 MSR_FEATURE_WORD,
778} FeatureWordType;
779
780typedef struct FeatureWordInfo {
781 FeatureWordType type;
782 /* feature flags names are taken from "Intel Processor Identification and
783 * the CPUID Instruction" and AMD's "CPUID Specification".
784 * In cases of disagreement between feature naming conventions,
785 * aliases may be added.
786 */
787 const char *feat_names[32];
788 union {
789 /* If type==CPUID_FEATURE_WORD */
790 struct {
791 uint32_t eax; /* Input EAX for CPUID */
792 bool needs_ecx; /* CPUID instruction uses ECX as input */
793 uint32_t ecx; /* Input ECX value for CPUID */
794 int reg; /* output register (R_* constant) */
795 } cpuid;
796 /* If type==MSR_FEATURE_WORD */
797 struct {
798 uint32_t index;
799 struct { /*CPUID that enumerate this MSR*/
800 FeatureWord cpuid_class;
801 uint32_t cpuid_flag;
802 } cpuid_dep;
803 } msr;
804 };
805 uint32_t tcg_features; /* Feature flags supported by TCG */
806 uint32_t unmigratable_flags; /* Feature flags known to be unmigratable */
807 uint32_t migratable_flags; /* Feature flags known to be migratable */
808 /* Features that shouldn't be auto-enabled by "-cpu host" */
809 uint32_t no_autoenable_flags;
810} FeatureWordInfo;
811
812static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
813 [FEAT_1_EDX] = {
814 .type = CPUID_FEATURE_WORD,
815 .feat_names = {
816 "fpu", "vme", "de", "pse",
817 "tsc", "msr", "pae", "mce",
818 "cx8", "apic", NULL, "sep",
819 "mtrr", "pge", "mca", "cmov",
820 "pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
821 NULL, "ds" /* Intel dts */, "acpi", "mmx",
822 "fxsr", "sse", "sse2", "ss",
823 "ht" /* Intel htt */, "tm", "ia64", "pbe",
824 },
825 .cpuid = {.eax = 1, .reg = R_EDX, },
826 .tcg_features = TCG_FEATURES,
827 },
828 [FEAT_1_ECX] = {
829 .type = CPUID_FEATURE_WORD,
830 .feat_names = {
831 "pni" /* Intel,AMD sse3 */, "pclmulqdq", "dtes64", "monitor",
832 "ds-cpl", "vmx", "smx", "est",
833 "tm2", "ssse3", "cid", NULL,
834 "fma", "cx16", "xtpr", "pdcm",
835 NULL, "pcid", "dca", "sse4.1",
836 "sse4.2", "x2apic", "movbe", "popcnt",
837 "tsc-deadline", "aes", "xsave", NULL /* osxsave */,
838 "avx", "f16c", "rdrand", "hypervisor",
839 },
840 .cpuid = { .eax = 1, .reg = R_ECX, },
841 .tcg_features = TCG_EXT_FEATURES,
842 },
843 /* Feature names that are already defined on feature_name[] but
844 * are set on CPUID[8000_0001].EDX on AMD CPUs don't have their
845 * names on feat_names below. They are copied automatically
846 * to features[FEAT_8000_0001_EDX] if and only if CPU vendor is AMD.
847 */
848 [FEAT_8000_0001_EDX] = {
849 .type = CPUID_FEATURE_WORD,
850 .feat_names = {
851 NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
852 NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
853 NULL /* cx8 */, NULL /* apic */, NULL, "syscall",
854 NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
855 NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
856 "nx", NULL, "mmxext", NULL /* mmx */,
857 NULL /* fxsr */, "fxsr-opt", "pdpe1gb", "rdtscp",
858 NULL, "lm", "3dnowext", "3dnow",
859 },
860 .cpuid = { .eax = 0x80000001, .reg = R_EDX, },
861 .tcg_features = TCG_EXT2_FEATURES,
862 },
863 [FEAT_8000_0001_ECX] = {
864 .type = CPUID_FEATURE_WORD,
865 .feat_names = {
866 "lahf-lm", "cmp-legacy", "svm", "extapic",
867 "cr8legacy", "abm", "sse4a", "misalignsse",
868 "3dnowprefetch", "osvw", "ibs", "xop",
869 "skinit", "wdt", NULL, "lwp",
870 "fma4", "tce", NULL, "nodeid-msr",
871 NULL, "tbm", "topoext", "perfctr-core",
872 "perfctr-nb", NULL, NULL, NULL,
873 NULL, NULL, NULL, NULL,
874 },
875 .cpuid = { .eax = 0x80000001, .reg = R_ECX, },
876 .tcg_features = TCG_EXT3_FEATURES,
877 /*
878 * TOPOEXT is always allowed but can't be enabled blindly by
879 * "-cpu host", as it requires consistent cache topology info
880 * to be provided so it doesn't confuse guests.
881 */
882 .no_autoenable_flags = CPUID_EXT3_TOPOEXT,
883 },
884 [FEAT_C000_0001_EDX] = {
885 .type = CPUID_FEATURE_WORD,
886 .feat_names = {
887 NULL, NULL, "xstore", "xstore-en",
888 NULL, NULL, "xcrypt", "xcrypt-en",
889 "ace2", "ace2-en", "phe", "phe-en",
890 "pmm", "pmm-en", NULL, NULL,
891 NULL, NULL, NULL, NULL,
892 NULL, NULL, NULL, NULL,
893 NULL, NULL, NULL, NULL,
894 NULL, NULL, NULL, NULL,
895 },
896 .cpuid = { .eax = 0xC0000001, .reg = R_EDX, },
897 .tcg_features = TCG_EXT4_FEATURES,
898 },
899 [FEAT_KVM] = {
900 .type = CPUID_FEATURE_WORD,
901 .feat_names = {
902 "kvmclock", "kvm-nopiodelay", "kvm-mmu", "kvmclock",
903 "kvm-asyncpf", "kvm-steal-time", "kvm-pv-eoi", "kvm-pv-unhalt",
904 NULL, "kvm-pv-tlb-flush", NULL, "kvm-pv-ipi",
905 NULL, NULL, NULL, NULL,
906 NULL, NULL, NULL, NULL,
907 NULL, NULL, NULL, NULL,
908 "kvmclock-stable-bit", NULL, NULL, NULL,
909 NULL, NULL, NULL, NULL,
910 },
911 .cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EAX, },
912 .tcg_features = TCG_KVM_FEATURES,
913 },
914 [FEAT_KVM_HINTS] = {
915 .type = CPUID_FEATURE_WORD,
916 .feat_names = {
917 "kvm-hint-dedicated", NULL, NULL, NULL,
918 NULL, NULL, NULL, NULL,
919 NULL, NULL, NULL, NULL,
920 NULL, NULL, NULL, NULL,
921 NULL, NULL, NULL, NULL,
922 NULL, NULL, NULL, NULL,
923 NULL, NULL, NULL, NULL,
924 NULL, NULL, NULL, NULL,
925 },
926 .cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EDX, },
927 .tcg_features = TCG_KVM_FEATURES,
928 /*
929 * KVM hints aren't auto-enabled by -cpu host, they need to be
930 * explicitly enabled in the command-line.
931 */
932 .no_autoenable_flags = ~0U,
933 },
934 /*
935 * .feat_names are commented out for Hyper-V enlightenments because we
936 * don't want to have two different ways for enabling them on QEMU command
937 * line. Some features (e.g. "hyperv_time", "hyperv_vapic", ...) require
938 * enabling several feature bits simultaneously, exposing these bits
939 * individually may just confuse guests.
940 */
941 [FEAT_HYPERV_EAX] = {
942 .type = CPUID_FEATURE_WORD,
943 .feat_names = {
944 NULL /* hv_msr_vp_runtime_access */, NULL /* hv_msr_time_refcount_access */,
945 NULL /* hv_msr_synic_access */, NULL /* hv_msr_stimer_access */,
946 NULL /* hv_msr_apic_access */, NULL /* hv_msr_hypercall_access */,
947 NULL /* hv_vpindex_access */, NULL /* hv_msr_reset_access */,
948 NULL /* hv_msr_stats_access */, NULL /* hv_reftsc_access */,
949 NULL /* hv_msr_idle_access */, NULL /* hv_msr_frequency_access */,
950 NULL /* hv_msr_debug_access */, NULL /* hv_msr_reenlightenment_access */,
951 NULL, NULL,
952 NULL, NULL, NULL, NULL,
953 NULL, NULL, NULL, NULL,
954 NULL, NULL, NULL, NULL,
955 NULL, NULL, NULL, NULL,
956 },
957 .cpuid = { .eax = 0x40000003, .reg = R_EAX, },
958 },
959 [FEAT_HYPERV_EBX] = {
960 .type = CPUID_FEATURE_WORD,
961 .feat_names = {
962 NULL /* hv_create_partitions */, NULL /* hv_access_partition_id */,
963 NULL /* hv_access_memory_pool */, NULL /* hv_adjust_message_buffers */,
964 NULL /* hv_post_messages */, NULL /* hv_signal_events */,
965 NULL /* hv_create_port */, NULL /* hv_connect_port */,
966 NULL /* hv_access_stats */, NULL, NULL, NULL /* hv_debugging */,
967 NULL /* hv_cpu_power_management */, NULL /* hv_configure_profiler */,
968 NULL, NULL,
969 NULL, NULL, NULL, NULL,
970 NULL, NULL, NULL, NULL,
971 NULL, NULL, NULL, NULL,
972 NULL, NULL, NULL, NULL,
973 },
974 .cpuid = { .eax = 0x40000003, .reg = R_EBX, },
975 },
976 [FEAT_HYPERV_EDX] = {
977 .type = CPUID_FEATURE_WORD,
978 .feat_names = {
979 NULL /* hv_mwait */, NULL /* hv_guest_debugging */,
980 NULL /* hv_perf_monitor */, NULL /* hv_cpu_dynamic_part */,
981 NULL /* hv_hypercall_params_xmm */, NULL /* hv_guest_idle_state */,
982 NULL, NULL,
983 NULL, NULL, NULL /* hv_guest_crash_msr */, NULL,
984 NULL, NULL, NULL, NULL,
985 NULL, NULL, NULL, NULL,
986 NULL, NULL, NULL, NULL,
987 NULL, NULL, NULL, NULL,
988 NULL, NULL, NULL, NULL,
989 },
990 .cpuid = { .eax = 0x40000003, .reg = R_EDX, },
991 },
992 [FEAT_HV_RECOMM_EAX] = {
993 .type = CPUID_FEATURE_WORD,
994 .feat_names = {
995 NULL /* hv_recommend_pv_as_switch */,
996 NULL /* hv_recommend_pv_tlbflush_local */,
997 NULL /* hv_recommend_pv_tlbflush_remote */,
998 NULL /* hv_recommend_msr_apic_access */,
999 NULL /* hv_recommend_msr_reset */,
1000 NULL /* hv_recommend_relaxed_timing */,
1001 NULL /* hv_recommend_dma_remapping */,
1002 NULL /* hv_recommend_int_remapping */,
1003 NULL /* hv_recommend_x2apic_msrs */,
1004 NULL /* hv_recommend_autoeoi_deprecation */,
1005 NULL /* hv_recommend_pv_ipi */,
1006 NULL /* hv_recommend_ex_hypercalls */,
1007 NULL /* hv_hypervisor_is_nested */,
1008 NULL /* hv_recommend_int_mbec */,
1009 NULL /* hv_recommend_evmcs */,
1010 NULL,
1011 NULL, NULL, NULL, NULL,
1012 NULL, NULL, NULL, NULL,
1013 NULL, NULL, NULL, NULL,
1014 NULL, NULL, NULL, NULL,
1015 },
1016 .cpuid = { .eax = 0x40000004, .reg = R_EAX, },
1017 },
1018 [FEAT_HV_NESTED_EAX] = {
1019 .type = CPUID_FEATURE_WORD,
1020 .cpuid = { .eax = 0x4000000A, .reg = R_EAX, },
1021 },
1022 [FEAT_SVM] = {
1023 .type = CPUID_FEATURE_WORD,
1024 .feat_names = {
1025 "npt", "lbrv", "svm-lock", "nrip-save",
1026 "tsc-scale", "vmcb-clean", "flushbyasid", "decodeassists",
1027 NULL, NULL, "pause-filter", NULL,
1028 "pfthreshold", NULL, NULL, NULL,
1029 NULL, NULL, NULL, NULL,
1030 NULL, NULL, NULL, NULL,
1031 NULL, NULL, NULL, NULL,
1032 NULL, NULL, NULL, NULL,
1033 },
1034 .cpuid = { .eax = 0x8000000A, .reg = R_EDX, },
1035 .tcg_features = TCG_SVM_FEATURES,
1036 },
1037 [FEAT_7_0_EBX] = {
1038 .type = CPUID_FEATURE_WORD,
1039 .feat_names = {
1040 "fsgsbase", "tsc-adjust", NULL, "bmi1",
1041 "hle", "avx2", NULL, "smep",
1042 "bmi2", "erms", "invpcid", "rtm",
1043 NULL, NULL, "mpx", NULL,
1044 "avx512f", "avx512dq", "rdseed", "adx",
1045 "smap", "avx512ifma", "pcommit", "clflushopt",
1046 "clwb", "intel-pt", "avx512pf", "avx512er",
1047 "avx512cd", "sha-ni", "avx512bw", "avx512vl",
1048 },
1049 .cpuid = {
1050 .eax = 7,
1051 .needs_ecx = true, .ecx = 0,
1052 .reg = R_EBX,
1053 },
1054 .tcg_features = TCG_7_0_EBX_FEATURES,
1055 },
1056 [FEAT_7_0_ECX] = {
1057 .type = CPUID_FEATURE_WORD,
1058 .feat_names = {
1059 NULL, "avx512vbmi", "umip", "pku",
1060 NULL /* ospke */, NULL, "avx512vbmi2", NULL,
1061 "gfni", "vaes", "vpclmulqdq", "avx512vnni",
1062 "avx512bitalg", NULL, "avx512-vpopcntdq", NULL,
1063 "la57", NULL, NULL, NULL,
1064 NULL, NULL, "rdpid", NULL,
1065 NULL, "cldemote", NULL, "movdiri",
1066 "movdir64b", NULL, NULL, NULL,
1067 },
1068 .cpuid = {
1069 .eax = 7,
1070 .needs_ecx = true, .ecx = 0,
1071 .reg = R_ECX,
1072 },
1073 .tcg_features = TCG_7_0_ECX_FEATURES,
1074 },
1075 [FEAT_7_0_EDX] = {
1076 .type = CPUID_FEATURE_WORD,
1077 .feat_names = {
1078 NULL, NULL, "avx512-4vnniw", "avx512-4fmaps",
1079 NULL, NULL, NULL, NULL,
1080 NULL, NULL, NULL, NULL,
1081 NULL, NULL, NULL, NULL,
1082 NULL, NULL, NULL, NULL,
1083 NULL, NULL, NULL, NULL,
1084 NULL, NULL, "spec-ctrl", "stibp",
1085 NULL, "arch-capabilities", NULL, "ssbd",
1086 },
1087 .cpuid = {
1088 .eax = 7,
1089 .needs_ecx = true, .ecx = 0,
1090 .reg = R_EDX,
1091 },
1092 .tcg_features = TCG_7_0_EDX_FEATURES,
1093 },
1094 [FEAT_8000_0007_EDX] = {
1095 .type = CPUID_FEATURE_WORD,
1096 .feat_names = {
1097 NULL, NULL, NULL, NULL,
1098 NULL, NULL, NULL, NULL,
1099 "invtsc", NULL, NULL, NULL,
1100 NULL, NULL, NULL, NULL,
1101 NULL, NULL, NULL, NULL,
1102 NULL, NULL, NULL, NULL,
1103 NULL, NULL, NULL, NULL,
1104 NULL, NULL, NULL, NULL,
1105 },
1106 .cpuid = { .eax = 0x80000007, .reg = R_EDX, },
1107 .tcg_features = TCG_APM_FEATURES,
1108 .unmigratable_flags = CPUID_APM_INVTSC,
1109 },
1110 [FEAT_8000_0008_EBX] = {
1111 .type = CPUID_FEATURE_WORD,
1112 .feat_names = {
1113 NULL, NULL, NULL, NULL,
1114 NULL, NULL, NULL, NULL,
1115 NULL, "wbnoinvd", NULL, NULL,
1116 "ibpb", NULL, NULL, NULL,
1117 NULL, NULL, NULL, NULL,
1118 NULL, NULL, NULL, NULL,
1119 "amd-ssbd", "virt-ssbd", "amd-no-ssb", NULL,
1120 NULL, NULL, NULL, NULL,
1121 },
1122 .cpuid = { .eax = 0x80000008, .reg = R_EBX, },
1123 .tcg_features = 0,
1124 .unmigratable_flags = 0,
1125 },
1126 [FEAT_XSAVE] = {
1127 .type = CPUID_FEATURE_WORD,
1128 .feat_names = {
1129 "xsaveopt", "xsavec", "xgetbv1", "xsaves",
1130 NULL, NULL, NULL, NULL,
1131 NULL, NULL, NULL, NULL,
1132 NULL, NULL, NULL, NULL,
1133 NULL, NULL, NULL, NULL,
1134 NULL, NULL, NULL, NULL,
1135 NULL, NULL, NULL, NULL,
1136 NULL, NULL, NULL, NULL,
1137 },
1138 .cpuid = {
1139 .eax = 0xd,
1140 .needs_ecx = true, .ecx = 1,
1141 .reg = R_EAX,
1142 },
1143 .tcg_features = TCG_XSAVE_FEATURES,
1144 },
1145 [FEAT_6_EAX] = {
1146 .type = CPUID_FEATURE_WORD,
1147 .feat_names = {
1148 NULL, NULL, "arat", NULL,
1149 NULL, NULL, NULL, NULL,
1150 NULL, NULL, NULL, NULL,
1151 NULL, NULL, NULL, NULL,
1152 NULL, NULL, NULL, NULL,
1153 NULL, NULL, NULL, NULL,
1154 NULL, NULL, NULL, NULL,
1155 NULL, NULL, NULL, NULL,
1156 },
1157 .cpuid = { .eax = 6, .reg = R_EAX, },
1158 .tcg_features = TCG_6_EAX_FEATURES,
1159 },
1160 [FEAT_XSAVE_COMP_LO] = {
1161 .type = CPUID_FEATURE_WORD,
1162 .cpuid = {
1163 .eax = 0xD,
1164 .needs_ecx = true, .ecx = 0,
1165 .reg = R_EAX,
1166 },
1167 .tcg_features = ~0U,
1168 .migratable_flags = XSTATE_FP_MASK | XSTATE_SSE_MASK |
1169 XSTATE_YMM_MASK | XSTATE_BNDREGS_MASK | XSTATE_BNDCSR_MASK |
1170 XSTATE_OPMASK_MASK | XSTATE_ZMM_Hi256_MASK | XSTATE_Hi16_ZMM_MASK |
1171 XSTATE_PKRU_MASK,
1172 },
1173 [FEAT_XSAVE_COMP_HI] = {
1174 .type = CPUID_FEATURE_WORD,
1175 .cpuid = {
1176 .eax = 0xD,
1177 .needs_ecx = true, .ecx = 0,
1178 .reg = R_EDX,
1179 },
1180 .tcg_features = ~0U,
1181 },
1182 /*Below are MSR exposed features*/
1183 [FEAT_ARCH_CAPABILITIES] = {
1184 .type = MSR_FEATURE_WORD,
1185 .feat_names = {
1186 "rdctl-no", "ibrs-all", "rsba", "skip-l1dfl-vmentry",
1187 "ssb-no", NULL, NULL, NULL,
1188 NULL, NULL, NULL, NULL,
1189 NULL, NULL, NULL, NULL,
1190 NULL, NULL, NULL, NULL,
1191 NULL, NULL, NULL, NULL,
1192 NULL, NULL, NULL, NULL,
1193 NULL, NULL, NULL, NULL,
1194 },
1195 .msr = {
1196 .index = MSR_IA32_ARCH_CAPABILITIES,
1197 .cpuid_dep = {
1198 FEAT_7_0_EDX,
1199 CPUID_7_0_EDX_ARCH_CAPABILITIES
1200 }
1201 },
1202 },
1203};
1204
1205typedef struct X86RegisterInfo32 {
1206 /* Name of register */
1207 const char *name;
1208 /* QAPI enum value register */
1209 X86CPURegister32 qapi_enum;
1210} X86RegisterInfo32;
1211
1212#define REGISTER(reg) \
1213 [R_##reg] = { .name = #reg, .qapi_enum = X86_CPU_REGISTER32_##reg }
1214static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
1215 REGISTER(EAX),
1216 REGISTER(ECX),
1217 REGISTER(EDX),
1218 REGISTER(EBX),
1219 REGISTER(ESP),
1220 REGISTER(EBP),
1221 REGISTER(ESI),
1222 REGISTER(EDI),
1223};
1224#undef REGISTER
1225
1226typedef struct ExtSaveArea {
1227 uint32_t feature, bits;
1228 uint32_t offset, size;
1229} ExtSaveArea;
1230
1231static const ExtSaveArea x86_ext_save_areas[] = {
1232 [XSTATE_FP_BIT] = {
1233 /* x87 FP state component is always enabled if XSAVE is supported */
1234 .feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
1235 /* x87 state is in the legacy region of the XSAVE area */
1236 .offset = 0,
1237 .size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
1238 },
1239 [XSTATE_SSE_BIT] = {
1240 /* SSE state component is always enabled if XSAVE is supported */
1241 .feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
1242 /* SSE state is in the legacy region of the XSAVE area */
1243 .offset = 0,
1244 .size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
1245 },
1246 [XSTATE_YMM_BIT] =
1247 { .feature = FEAT_1_ECX, .bits = CPUID_EXT_AVX,
1248 .offset = offsetof(X86XSaveArea, avx_state),
1249 .size = sizeof(XSaveAVX) },
1250 [XSTATE_BNDREGS_BIT] =
1251 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
1252 .offset = offsetof(X86XSaveArea, bndreg_state),
1253 .size = sizeof(XSaveBNDREG) },
1254 [XSTATE_BNDCSR_BIT] =
1255 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
1256 .offset = offsetof(X86XSaveArea, bndcsr_state),
1257 .size = sizeof(XSaveBNDCSR) },
1258 [XSTATE_OPMASK_BIT] =
1259 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
1260 .offset = offsetof(X86XSaveArea, opmask_state),
1261 .size = sizeof(XSaveOpmask) },
1262 [XSTATE_ZMM_Hi256_BIT] =
1263 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
1264 .offset = offsetof(X86XSaveArea, zmm_hi256_state),
1265 .size = sizeof(XSaveZMM_Hi256) },
1266 [XSTATE_Hi16_ZMM_BIT] =
1267 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
1268 .offset = offsetof(X86XSaveArea, hi16_zmm_state),
1269 .size = sizeof(XSaveHi16_ZMM) },
1270 [XSTATE_PKRU_BIT] =
1271 { .feature = FEAT_7_0_ECX, .bits = CPUID_7_0_ECX_PKU,
1272 .offset = offsetof(X86XSaveArea, pkru_state),
1273 .size = sizeof(XSavePKRU) },
1274};
1275
1276static uint32_t xsave_area_size(uint64_t mask)
1277{
1278 int i;
1279 uint64_t ret = 0;
1280
1281 for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
1282 const ExtSaveArea *esa = &x86_ext_save_areas[i];
1283 if ((mask >> i) & 1) {
1284 ret = MAX(ret, esa->offset + esa->size);
1285 }
1286 }
1287 return ret;
1288}
1289
1290static inline bool accel_uses_host_cpuid(void)
1291{
1292 return kvm_enabled() || hvf_enabled();
1293}
1294
1295static inline uint64_t x86_cpu_xsave_components(X86CPU *cpu)
1296{
1297 return ((uint64_t)cpu->env.features[FEAT_XSAVE_COMP_HI]) << 32 |
1298 cpu->env.features[FEAT_XSAVE_COMP_LO];
1299}
1300
1301const char *get_register_name_32(unsigned int reg)
1302{
1303 if (reg >= CPU_NB_REGS32) {
1304 return NULL;
1305 }
1306 return x86_reg_info_32[reg].name;
1307}
1308
1309/*
1310 * Returns the set of feature flags that are supported and migratable by
1311 * QEMU, for a given FeatureWord.
1312 */
1313static uint32_t x86_cpu_get_migratable_flags(FeatureWord w)
1314{
1315 FeatureWordInfo *wi = &feature_word_info[w];
1316 uint32_t r = 0;
1317 int i;
1318
1319 for (i = 0; i < 32; i++) {
1320 uint32_t f = 1U << i;
1321
1322 /* If the feature name is known, it is implicitly considered migratable,
1323 * unless it is explicitly set in unmigratable_flags */
1324 if ((wi->migratable_flags & f) ||
1325 (wi->feat_names[i] && !(wi->unmigratable_flags & f))) {
1326 r |= f;
1327 }
1328 }
1329 return r;
1330}
1331
1332void host_cpuid(uint32_t function, uint32_t count,
1333 uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
1334{
1335 uint32_t vec[4];
1336
1337#ifdef __x86_64__
1338 asm volatile("cpuid"
1339 : "=a"(vec[0]), "=b"(vec[1]),
1340 "=c"(vec[2]), "=d"(vec[3])
1341 : "0"(function), "c"(count) : "cc");
1342#elif defined(__i386__)
1343 asm volatile("pusha \n\t"
1344 "cpuid \n\t"
1345 "mov %%eax, 0(%2) \n\t"
1346 "mov %%ebx, 4(%2) \n\t"
1347 "mov %%ecx, 8(%2) \n\t"
1348 "mov %%edx, 12(%2) \n\t"
1349 "popa"
1350 : : "a"(function), "c"(count), "S"(vec)
1351 : "memory", "cc");
1352#else
1353 abort();
1354#endif
1355
1356 if (eax)
1357 *eax = vec[0];
1358 if (ebx)
1359 *ebx = vec[1];
1360 if (ecx)
1361 *ecx = vec[2];
1362 if (edx)
1363 *edx = vec[3];
1364}
1365
1366void host_vendor_fms(char *vendor, int *family, int *model, int *stepping)
1367{
1368 uint32_t eax, ebx, ecx, edx;
1369
1370 host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
1371 x86_cpu_vendor_words2str(vendor, ebx, edx, ecx);
1372
1373 host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
1374 if (family) {
1375 *family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
1376 }
1377 if (model) {
1378 *model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
1379 }
1380 if (stepping) {
1381 *stepping = eax & 0x0F;
1382 }
1383}
1384
1385/* CPU class name definitions: */
1386
1387/* Return type name for a given CPU model name
1388 * Caller is responsible for freeing the returned string.
1389 */
1390static char *x86_cpu_type_name(const char *model_name)
1391{
1392 return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name);
1393}
1394
1395static ObjectClass *x86_cpu_class_by_name(const char *cpu_model)
1396{
1397 ObjectClass *oc;
1398 char *typename = x86_cpu_type_name(cpu_model);
1399 oc = object_class_by_name(typename);
1400 g_free(typename);
1401 return oc;
1402}
1403
1404static char *x86_cpu_class_get_model_name(X86CPUClass *cc)
1405{
1406 const char *class_name = object_class_get_name(OBJECT_CLASS(cc));
1407 assert(g_str_has_suffix(class_name, X86_CPU_TYPE_SUFFIX));
1408 return g_strndup(class_name,
1409 strlen(class_name) - strlen(X86_CPU_TYPE_SUFFIX));
1410}
1411
1412struct X86CPUDefinition {
1413 const char *name;
1414 uint32_t level;
1415 uint32_t xlevel;
1416 /* vendor is zero-terminated, 12 character ASCII string */
1417 char vendor[CPUID_VENDOR_SZ + 1];
1418 int family;
1419 int model;
1420 int stepping;
1421 FeatureWordArray features;
1422 const char *model_id;
1423 CPUCaches *cache_info;
1424};
1425
1426static CPUCaches epyc_cache_info = {
1427 .l1d_cache = &(CPUCacheInfo) {
1428 .type = DATA_CACHE,
1429 .level = 1,
1430 .size = 32 * KiB,
1431 .line_size = 64,
1432 .associativity = 8,
1433 .partitions = 1,
1434 .sets = 64,
1435 .lines_per_tag = 1,
1436 .self_init = 1,
1437 .no_invd_sharing = true,
1438 },
1439 .l1i_cache = &(CPUCacheInfo) {
1440 .type = INSTRUCTION_CACHE,
1441 .level = 1,
1442 .size = 64 * KiB,
1443 .line_size = 64,
1444 .associativity = 4,
1445 .partitions = 1,
1446 .sets = 256,
1447 .lines_per_tag = 1,
1448 .self_init = 1,
1449 .no_invd_sharing = true,
1450 },
1451 .l2_cache = &(CPUCacheInfo) {
1452 .type = UNIFIED_CACHE,
1453 .level = 2,
1454 .size = 512 * KiB,
1455 .line_size = 64,
1456 .associativity = 8,
1457 .partitions = 1,
1458 .sets = 1024,
1459 .lines_per_tag = 1,
1460 },
1461 .l3_cache = &(CPUCacheInfo) {
1462 .type = UNIFIED_CACHE,
1463 .level = 3,
1464 .size = 8 * MiB,
1465 .line_size = 64,
1466 .associativity = 16,
1467 .partitions = 1,
1468 .sets = 8192,
1469 .lines_per_tag = 1,
1470 .self_init = true,
1471 .inclusive = true,
1472 .complex_indexing = true,
1473 },
1474};
1475
1476static X86CPUDefinition builtin_x86_defs[] = {
1477 {
1478 .name = "qemu64",
1479 .level = 0xd,
1480 .vendor = CPUID_VENDOR_AMD,
1481 .family = 6,
1482 .model = 6,
1483 .stepping = 3,
1484 .features[FEAT_1_EDX] =
1485 PPRO_FEATURES |
1486 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1487 CPUID_PSE36,
1488 .features[FEAT_1_ECX] =
1489 CPUID_EXT_SSE3 | CPUID_EXT_CX16,
1490 .features[FEAT_8000_0001_EDX] =
1491 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1492 .features[FEAT_8000_0001_ECX] =
1493 CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM,
1494 .xlevel = 0x8000000A,
1495 .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
1496 },
1497 {
1498 .name = "phenom",
1499 .level = 5,
1500 .vendor = CPUID_VENDOR_AMD,
1501 .family = 16,
1502 .model = 2,
1503 .stepping = 3,
1504 /* Missing: CPUID_HT */
1505 .features[FEAT_1_EDX] =
1506 PPRO_FEATURES |
1507 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1508 CPUID_PSE36 | CPUID_VME,
1509 .features[FEAT_1_ECX] =
1510 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
1511 CPUID_EXT_POPCNT,
1512 .features[FEAT_8000_0001_EDX] =
1513 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
1514 CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
1515 CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
1516 /* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
1517 CPUID_EXT3_CR8LEG,
1518 CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
1519 CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
1520 .features[FEAT_8000_0001_ECX] =
1521 CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
1522 CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
1523 /* Missing: CPUID_SVM_LBRV */
1524 .features[FEAT_SVM] =
1525 CPUID_SVM_NPT,
1526 .xlevel = 0x8000001A,
1527 .model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
1528 },
1529 {
1530 .name = "core2duo",
1531 .level = 10,
1532 .vendor = CPUID_VENDOR_INTEL,
1533 .family = 6,
1534 .model = 15,
1535 .stepping = 11,
1536 /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
1537 .features[FEAT_1_EDX] =
1538 PPRO_FEATURES |
1539 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1540 CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS,
1541 /* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST,
1542 * CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */
1543 .features[FEAT_1_ECX] =
1544 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
1545 CPUID_EXT_CX16,
1546 .features[FEAT_8000_0001_EDX] =
1547 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1548 .features[FEAT_8000_0001_ECX] =
1549 CPUID_EXT3_LAHF_LM,
1550 .xlevel = 0x80000008,
1551 .model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
1552 },
1553 {
1554 .name = "kvm64",
1555 .level = 0xd,
1556 .vendor = CPUID_VENDOR_INTEL,
1557 .family = 15,
1558 .model = 6,
1559 .stepping = 1,
1560 /* Missing: CPUID_HT */
1561 .features[FEAT_1_EDX] =
1562 PPRO_FEATURES | CPUID_VME |
1563 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1564 CPUID_PSE36,
1565 /* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
1566 .features[FEAT_1_ECX] =
1567 CPUID_EXT_SSE3 | CPUID_EXT_CX16,
1568 /* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
1569 .features[FEAT_8000_0001_EDX] =
1570 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1571 /* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
1572 CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
1573 CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
1574 CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
1575 .features[FEAT_8000_0001_ECX] =
1576 0,
1577 .xlevel = 0x80000008,
1578 .model_id = "Common KVM processor"
1579 },
1580 {
1581 .name = "qemu32",
1582 .level = 4,
1583 .vendor = CPUID_VENDOR_INTEL,
1584 .family = 6,
1585 .model = 6,
1586 .stepping = 3,
1587 .features[FEAT_1_EDX] =
1588 PPRO_FEATURES,
1589 .features[FEAT_1_ECX] =
1590 CPUID_EXT_SSE3,
1591 .xlevel = 0x80000004,
1592 .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
1593 },
1594 {
1595 .name = "kvm32",
1596 .level = 5,
1597 .vendor = CPUID_VENDOR_INTEL,
1598 .family = 15,
1599 .model = 6,
1600 .stepping = 1,
1601 .features[FEAT_1_EDX] =
1602 PPRO_FEATURES | CPUID_VME |
1603 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
1604 .features[FEAT_1_ECX] =
1605 CPUID_EXT_SSE3,
1606 .features[FEAT_8000_0001_ECX] =
1607 0,
1608 .xlevel = 0x80000008,
1609 .model_id = "Common 32-bit KVM processor"
1610 },
1611 {
1612 .name = "coreduo",
1613 .level = 10,
1614 .vendor = CPUID_VENDOR_INTEL,
1615 .family = 6,
1616 .model = 14,
1617 .stepping = 8,
1618 /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
1619 .features[FEAT_1_EDX] =
1620 PPRO_FEATURES | CPUID_VME |
1621 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI |
1622 CPUID_SS,
1623 /* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR,
1624 * CPUID_EXT_PDCM, CPUID_EXT_VMX */
1625 .features[FEAT_1_ECX] =
1626 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
1627 .features[FEAT_8000_0001_EDX] =
1628 CPUID_EXT2_NX,
1629 .xlevel = 0x80000008,
1630 .model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
1631 },
1632 {
1633 .name = "486",
1634 .level = 1,
1635 .vendor = CPUID_VENDOR_INTEL,
1636 .family = 4,
1637 .model = 8,
1638 .stepping = 0,
1639 .features[FEAT_1_EDX] =
1640 I486_FEATURES,
1641 .xlevel = 0,
1642 .model_id = "",
1643 },
1644 {
1645 .name = "pentium",
1646 .level = 1,
1647 .vendor = CPUID_VENDOR_INTEL,
1648 .family = 5,
1649 .model = 4,
1650 .stepping = 3,
1651 .features[FEAT_1_EDX] =
1652 PENTIUM_FEATURES,
1653 .xlevel = 0,
1654 .model_id = "",
1655 },
1656 {
1657 .name = "pentium2",
1658 .level = 2,
1659 .vendor = CPUID_VENDOR_INTEL,
1660 .family = 6,
1661 .model = 5,
1662 .stepping = 2,
1663 .features[FEAT_1_EDX] =
1664 PENTIUM2_FEATURES,
1665 .xlevel = 0,
1666 .model_id = "",
1667 },
1668 {
1669 .name = "pentium3",
1670 .level = 3,
1671 .vendor = CPUID_VENDOR_INTEL,
1672 .family = 6,
1673 .model = 7,
1674 .stepping = 3,
1675 .features[FEAT_1_EDX] =
1676 PENTIUM3_FEATURES,
1677 .xlevel = 0,
1678 .model_id = "",
1679 },
1680 {
1681 .name = "athlon",
1682 .level = 2,
1683 .vendor = CPUID_VENDOR_AMD,
1684 .family = 6,
1685 .model = 2,
1686 .stepping = 3,
1687 .features[FEAT_1_EDX] =
1688 PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
1689 CPUID_MCA,
1690 .features[FEAT_8000_0001_EDX] =
1691 CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
1692 .xlevel = 0x80000008,
1693 .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
1694 },
1695 {
1696 .name = "n270",
1697 .level = 10,
1698 .vendor = CPUID_VENDOR_INTEL,
1699 .family = 6,
1700 .model = 28,
1701 .stepping = 2,
1702 /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
1703 .features[FEAT_1_EDX] =
1704 PPRO_FEATURES |
1705 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME |
1706 CPUID_ACPI | CPUID_SS,
1707 /* Some CPUs got no CPUID_SEP */
1708 /* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2,
1709 * CPUID_EXT_XTPR */
1710 .features[FEAT_1_ECX] =
1711 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
1712 CPUID_EXT_MOVBE,
1713 .features[FEAT_8000_0001_EDX] =
1714 CPUID_EXT2_NX,
1715 .features[FEAT_8000_0001_ECX] =
1716 CPUID_EXT3_LAHF_LM,
1717 .xlevel = 0x80000008,
1718 .model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
1719 },
1720 {
1721 .name = "Conroe",
1722 .level = 10,
1723 .vendor = CPUID_VENDOR_INTEL,
1724 .family = 6,
1725 .model = 15,
1726 .stepping = 3,
1727 .features[FEAT_1_EDX] =
1728 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1729 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1730 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1731 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1732 CPUID_DE | CPUID_FP87,
1733 .features[FEAT_1_ECX] =
1734 CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
1735 .features[FEAT_8000_0001_EDX] =
1736 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
1737 .features[FEAT_8000_0001_ECX] =
1738 CPUID_EXT3_LAHF_LM,
1739 .xlevel = 0x80000008,
1740 .model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
1741 },
1742 {
1743 .name = "Penryn",
1744 .level = 10,
1745 .vendor = CPUID_VENDOR_INTEL,
1746 .family = 6,
1747 .model = 23,
1748 .stepping = 3,
1749 .features[FEAT_1_EDX] =
1750 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1751 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1752 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1753 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1754 CPUID_DE | CPUID_FP87,
1755 .features[FEAT_1_ECX] =
1756 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
1757 CPUID_EXT_SSE3,
1758 .features[FEAT_8000_0001_EDX] =
1759 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
1760 .features[FEAT_8000_0001_ECX] =
1761 CPUID_EXT3_LAHF_LM,
1762 .xlevel = 0x80000008,
1763 .model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
1764 },
1765 {
1766 .name = "Nehalem",
1767 .level = 11,
1768 .vendor = CPUID_VENDOR_INTEL,
1769 .family = 6,
1770 .model = 26,
1771 .stepping = 3,
1772 .features[FEAT_1_EDX] =
1773 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1774 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1775 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1776 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1777 CPUID_DE | CPUID_FP87,
1778 .features[FEAT_1_ECX] =
1779 CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1780 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
1781 .features[FEAT_8000_0001_EDX] =
1782 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1783 .features[FEAT_8000_0001_ECX] =
1784 CPUID_EXT3_LAHF_LM,
1785 .xlevel = 0x80000008,
1786 .model_id = "Intel Core i7 9xx (Nehalem Class Core i7)",
1787 },
1788 {
1789 .name = "Nehalem-IBRS",
1790 .level = 11,
1791 .vendor = CPUID_VENDOR_INTEL,
1792 .family = 6,
1793 .model = 26,
1794 .stepping = 3,
1795 .features[FEAT_1_EDX] =
1796 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1797 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1798 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1799 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1800 CPUID_DE | CPUID_FP87,
1801 .features[FEAT_1_ECX] =
1802 CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1803 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
1804 .features[FEAT_7_0_EDX] =
1805 CPUID_7_0_EDX_SPEC_CTRL,
1806 .features[FEAT_8000_0001_EDX] =
1807 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1808 .features[FEAT_8000_0001_ECX] =
1809 CPUID_EXT3_LAHF_LM,
1810 .xlevel = 0x80000008,
1811 .model_id = "Intel Core i7 9xx (Nehalem Core i7, IBRS update)",
1812 },
1813 {
1814 .name = "Westmere",
1815 .level = 11,
1816 .vendor = CPUID_VENDOR_INTEL,
1817 .family = 6,
1818 .model = 44,
1819 .stepping = 1,
1820 .features[FEAT_1_EDX] =
1821 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1822 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1823 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1824 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1825 CPUID_DE | CPUID_FP87,
1826 .features[FEAT_1_ECX] =
1827 CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
1828 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
1829 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
1830 .features[FEAT_8000_0001_EDX] =
1831 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1832 .features[FEAT_8000_0001_ECX] =
1833 CPUID_EXT3_LAHF_LM,
1834 .features[FEAT_6_EAX] =
1835 CPUID_6_EAX_ARAT,
1836 .xlevel = 0x80000008,
1837 .model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)",
1838 },
1839 {
1840 .name = "Westmere-IBRS",
1841 .level = 11,
1842 .vendor = CPUID_VENDOR_INTEL,
1843 .family = 6,
1844 .model = 44,
1845 .stepping = 1,
1846 .features[FEAT_1_EDX] =
1847 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1848 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1849 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1850 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1851 CPUID_DE | CPUID_FP87,
1852 .features[FEAT_1_ECX] =
1853 CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
1854 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
1855 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
1856 .features[FEAT_8000_0001_EDX] =
1857 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1858 .features[FEAT_8000_0001_ECX] =
1859 CPUID_EXT3_LAHF_LM,
1860 .features[FEAT_7_0_EDX] =
1861 CPUID_7_0_EDX_SPEC_CTRL,
1862 .features[FEAT_6_EAX] =
1863 CPUID_6_EAX_ARAT,
1864 .xlevel = 0x80000008,
1865 .model_id = "Westmere E56xx/L56xx/X56xx (IBRS update)",
1866 },
1867 {
1868 .name = "SandyBridge",
1869 .level = 0xd,
1870 .vendor = CPUID_VENDOR_INTEL,
1871 .family = 6,
1872 .model = 42,
1873 .stepping = 1,
1874 .features[FEAT_1_EDX] =
1875 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1876 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1877 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1878 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1879 CPUID_DE | CPUID_FP87,
1880 .features[FEAT_1_ECX] =
1881 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
1882 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
1883 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1884 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
1885 CPUID_EXT_SSE3,
1886 .features[FEAT_8000_0001_EDX] =
1887 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
1888 CPUID_EXT2_SYSCALL,
1889 .features[FEAT_8000_0001_ECX] =
1890 CPUID_EXT3_LAHF_LM,
1891 .features[FEAT_XSAVE] =
1892 CPUID_XSAVE_XSAVEOPT,
1893 .features[FEAT_6_EAX] =
1894 CPUID_6_EAX_ARAT,
1895 .xlevel = 0x80000008,
1896 .model_id = "Intel Xeon E312xx (Sandy Bridge)",
1897 },
1898 {
1899 .name = "SandyBridge-IBRS",
1900 .level = 0xd,
1901 .vendor = CPUID_VENDOR_INTEL,
1902 .family = 6,
1903 .model = 42,
1904 .stepping = 1,
1905 .features[FEAT_1_EDX] =
1906 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1907 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1908 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1909 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1910 CPUID_DE | CPUID_FP87,
1911 .features[FEAT_1_ECX] =
1912 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
1913 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
1914 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1915 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
1916 CPUID_EXT_SSE3,
1917 .features[FEAT_8000_0001_EDX] =
1918 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
1919 CPUID_EXT2_SYSCALL,
1920 .features[FEAT_8000_0001_ECX] =
1921 CPUID_EXT3_LAHF_LM,
1922 .features[FEAT_7_0_EDX] =
1923 CPUID_7_0_EDX_SPEC_CTRL,
1924 .features[FEAT_XSAVE] =
1925 CPUID_XSAVE_XSAVEOPT,
1926 .features[FEAT_6_EAX] =
1927 CPUID_6_EAX_ARAT,
1928 .xlevel = 0x80000008,
1929 .model_id = "Intel Xeon E312xx (Sandy Bridge, IBRS update)",
1930 },
1931 {
1932 .name = "IvyBridge",
1933 .level = 0xd,
1934 .vendor = CPUID_VENDOR_INTEL,
1935 .family = 6,
1936 .model = 58,
1937 .stepping = 9,
1938 .features[FEAT_1_EDX] =
1939 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1940 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1941 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1942 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1943 CPUID_DE | CPUID_FP87,
1944 .features[FEAT_1_ECX] =
1945 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
1946 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
1947 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1948 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
1949 CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
1950 .features[FEAT_7_0_EBX] =
1951 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
1952 CPUID_7_0_EBX_ERMS,
1953 .features[FEAT_8000_0001_EDX] =
1954 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
1955 CPUID_EXT2_SYSCALL,
1956 .features[FEAT_8000_0001_ECX] =
1957 CPUID_EXT3_LAHF_LM,
1958 .features[FEAT_XSAVE] =
1959 CPUID_XSAVE_XSAVEOPT,
1960 .features[FEAT_6_EAX] =
1961 CPUID_6_EAX_ARAT,
1962 .xlevel = 0x80000008,
1963 .model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)",
1964 },
1965 {
1966 .name = "IvyBridge-IBRS",
1967 .level = 0xd,
1968 .vendor = CPUID_VENDOR_INTEL,
1969 .family = 6,
1970 .model = 58,
1971 .stepping = 9,
1972 .features[FEAT_1_EDX] =
1973 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1974 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1975 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1976 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1977 CPUID_DE | CPUID_FP87,
1978 .features[FEAT_1_ECX] =
1979 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
1980 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
1981 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1982 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
1983 CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
1984 .features[FEAT_7_0_EBX] =
1985 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
1986 CPUID_7_0_EBX_ERMS,
1987 .features[FEAT_8000_0001_EDX] =
1988 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
1989 CPUID_EXT2_SYSCALL,
1990 .features[FEAT_8000_0001_ECX] =
1991 CPUID_EXT3_LAHF_LM,
1992 .features[FEAT_7_0_EDX] =
1993 CPUID_7_0_EDX_SPEC_CTRL,
1994 .features[FEAT_XSAVE] =
1995 CPUID_XSAVE_XSAVEOPT,
1996 .features[FEAT_6_EAX] =
1997 CPUID_6_EAX_ARAT,
1998 .xlevel = 0x80000008,
1999 .model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS)",
2000 },
2001 {
2002 .name = "Haswell-noTSX",
2003 .level = 0xd,
2004 .vendor = CPUID_VENDOR_INTEL,
2005 .family = 6,
2006 .model = 60,
2007 .stepping = 1,
2008 .features[FEAT_1_EDX] =
2009 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2010 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2011 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2012 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2013 CPUID_DE | CPUID_FP87,
2014 .features[FEAT_1_ECX] =
2015 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2016 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2017 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2018 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2019 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2020 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2021 .features[FEAT_8000_0001_EDX] =
2022 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2023 CPUID_EXT2_SYSCALL,
2024 .features[FEAT_8000_0001_ECX] =
2025 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2026 .features[FEAT_7_0_EBX] =
2027 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2028 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2029 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
2030 .features[FEAT_XSAVE] =
2031 CPUID_XSAVE_XSAVEOPT,
2032 .features[FEAT_6_EAX] =
2033 CPUID_6_EAX_ARAT,
2034 .xlevel = 0x80000008,
2035 .model_id = "Intel Core Processor (Haswell, no TSX)",
2036 },
2037 {
2038 .name = "Haswell-noTSX-IBRS",
2039 .level = 0xd,
2040 .vendor = CPUID_VENDOR_INTEL,
2041 .family = 6,
2042 .model = 60,
2043 .stepping = 1,
2044 .features[FEAT_1_EDX] =
2045 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2046 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2047 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2048 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2049 CPUID_DE | CPUID_FP87,
2050 .features[FEAT_1_ECX] =
2051 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2052 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2053 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2054 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2055 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2056 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2057 .features[FEAT_8000_0001_EDX] =
2058 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2059 CPUID_EXT2_SYSCALL,
2060 .features[FEAT_8000_0001_ECX] =
2061 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2062 .features[FEAT_7_0_EDX] =
2063 CPUID_7_0_EDX_SPEC_CTRL,
2064 .features[FEAT_7_0_EBX] =
2065 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2066 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2067 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
2068 .features[FEAT_XSAVE] =
2069 CPUID_XSAVE_XSAVEOPT,
2070 .features[FEAT_6_EAX] =
2071 CPUID_6_EAX_ARAT,
2072 .xlevel = 0x80000008,
2073 .model_id = "Intel Core Processor (Haswell, no TSX, IBRS)",
2074 },
2075 {
2076 .name = "Haswell",
2077 .level = 0xd,
2078 .vendor = CPUID_VENDOR_INTEL,
2079 .family = 6,
2080 .model = 60,
2081 .stepping = 4,
2082 .features[FEAT_1_EDX] =
2083 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2084 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2085 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2086 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2087 CPUID_DE | CPUID_FP87,
2088 .features[FEAT_1_ECX] =
2089 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2090 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2091 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2092 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2093 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2094 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2095 .features[FEAT_8000_0001_EDX] =
2096 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2097 CPUID_EXT2_SYSCALL,
2098 .features[FEAT_8000_0001_ECX] =
2099 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2100 .features[FEAT_7_0_EBX] =
2101 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2102 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2103 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2104 CPUID_7_0_EBX_RTM,
2105 .features[FEAT_XSAVE] =
2106 CPUID_XSAVE_XSAVEOPT,
2107 .features[FEAT_6_EAX] =
2108 CPUID_6_EAX_ARAT,
2109 .xlevel = 0x80000008,
2110 .model_id = "Intel Core Processor (Haswell)",
2111 },
2112 {
2113 .name = "Haswell-IBRS",
2114 .level = 0xd,
2115 .vendor = CPUID_VENDOR_INTEL,
2116 .family = 6,
2117 .model = 60,
2118 .stepping = 4,
2119 .features[FEAT_1_EDX] =
2120 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2121 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2122 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2123 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2124 CPUID_DE | CPUID_FP87,
2125 .features[FEAT_1_ECX] =
2126 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2127 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2128 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2129 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2130 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2131 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2132 .features[FEAT_8000_0001_EDX] =
2133 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2134 CPUID_EXT2_SYSCALL,
2135 .features[FEAT_8000_0001_ECX] =
2136 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2137 .features[FEAT_7_0_EDX] =
2138 CPUID_7_0_EDX_SPEC_CTRL,
2139 .features[FEAT_7_0_EBX] =
2140 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2141 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2142 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2143 CPUID_7_0_EBX_RTM,
2144 .features[FEAT_XSAVE] =
2145 CPUID_XSAVE_XSAVEOPT,
2146 .features[FEAT_6_EAX] =
2147 CPUID_6_EAX_ARAT,
2148 .xlevel = 0x80000008,
2149 .model_id = "Intel Core Processor (Haswell, IBRS)",
2150 },
2151 {
2152 .name = "Broadwell-noTSX",
2153 .level = 0xd,
2154 .vendor = CPUID_VENDOR_INTEL,
2155 .family = 6,
2156 .model = 61,
2157 .stepping = 2,
2158 .features[FEAT_1_EDX] =
2159 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2160 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2161 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2162 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2163 CPUID_DE | CPUID_FP87,
2164 .features[FEAT_1_ECX] =
2165 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2166 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2167 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2168 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2169 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2170 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2171 .features[FEAT_8000_0001_EDX] =
2172 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2173 CPUID_EXT2_SYSCALL,
2174 .features[FEAT_8000_0001_ECX] =
2175 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2176 .features[FEAT_7_0_EBX] =
2177 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2178 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2179 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2180 CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2181 CPUID_7_0_EBX_SMAP,
2182 .features[FEAT_XSAVE] =
2183 CPUID_XSAVE_XSAVEOPT,
2184 .features[FEAT_6_EAX] =
2185 CPUID_6_EAX_ARAT,
2186 .xlevel = 0x80000008,
2187 .model_id = "Intel Core Processor (Broadwell, no TSX)",
2188 },
2189 {
2190 .name = "Broadwell-noTSX-IBRS",
2191 .level = 0xd,
2192 .vendor = CPUID_VENDOR_INTEL,
2193 .family = 6,
2194 .model = 61,
2195 .stepping = 2,
2196 .features[FEAT_1_EDX] =
2197 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2198 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2199 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2200 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2201 CPUID_DE | CPUID_FP87,
2202 .features[FEAT_1_ECX] =
2203 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2204 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2205 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2206 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2207 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2208 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2209 .features[FEAT_8000_0001_EDX] =
2210 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2211 CPUID_EXT2_SYSCALL,
2212 .features[FEAT_8000_0001_ECX] =
2213 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2214 .features[FEAT_7_0_EDX] =
2215 CPUID_7_0_EDX_SPEC_CTRL,
2216 .features[FEAT_7_0_EBX] =
2217 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2218 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2219 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2220 CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2221 CPUID_7_0_EBX_SMAP,
2222 .features[FEAT_XSAVE] =
2223 CPUID_XSAVE_XSAVEOPT,
2224 .features[FEAT_6_EAX] =
2225 CPUID_6_EAX_ARAT,
2226 .xlevel = 0x80000008,
2227 .model_id = "Intel Core Processor (Broadwell, no TSX, IBRS)",
2228 },
2229 {
2230 .name = "Broadwell",
2231 .level = 0xd,
2232 .vendor = CPUID_VENDOR_INTEL,
2233 .family = 6,
2234 .model = 61,
2235 .stepping = 2,
2236 .features[FEAT_1_EDX] =
2237 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2238 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2239 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2240 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2241 CPUID_DE | CPUID_FP87,
2242 .features[FEAT_1_ECX] =
2243 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2244 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2245 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2246 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2247 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2248 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2249 .features[FEAT_8000_0001_EDX] =
2250 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2251 CPUID_EXT2_SYSCALL,
2252 .features[FEAT_8000_0001_ECX] =
2253 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2254 .features[FEAT_7_0_EBX] =
2255 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2256 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2257 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2258 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2259 CPUID_7_0_EBX_SMAP,
2260 .features[FEAT_XSAVE] =
2261 CPUID_XSAVE_XSAVEOPT,
2262 .features[FEAT_6_EAX] =
2263 CPUID_6_EAX_ARAT,
2264 .xlevel = 0x80000008,
2265 .model_id = "Intel Core Processor (Broadwell)",
2266 },
2267 {
2268 .name = "Broadwell-IBRS",
2269 .level = 0xd,
2270 .vendor = CPUID_VENDOR_INTEL,
2271 .family = 6,
2272 .model = 61,
2273 .stepping = 2,
2274 .features[FEAT_1_EDX] =
2275 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2276 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2277 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2278 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2279 CPUID_DE | CPUID_FP87,
2280 .features[FEAT_1_ECX] =
2281 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2282 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2283 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2284 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2285 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2286 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2287 .features[FEAT_8000_0001_EDX] =
2288 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2289 CPUID_EXT2_SYSCALL,
2290 .features[FEAT_8000_0001_ECX] =
2291 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2292 .features[FEAT_7_0_EDX] =
2293 CPUID_7_0_EDX_SPEC_CTRL,
2294 .features[FEAT_7_0_EBX] =
2295 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2296 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2297 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2298 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2299 CPUID_7_0_EBX_SMAP,
2300 .features[FEAT_XSAVE] =
2301 CPUID_XSAVE_XSAVEOPT,
2302 .features[FEAT_6_EAX] =
2303 CPUID_6_EAX_ARAT,
2304 .xlevel = 0x80000008,
2305 .model_id = "Intel Core Processor (Broadwell, IBRS)",
2306 },
2307 {
2308 .name = "Skylake-Client",
2309 .level = 0xd,
2310 .vendor = CPUID_VENDOR_INTEL,
2311 .family = 6,
2312 .model = 94,
2313 .stepping = 3,
2314 .features[FEAT_1_EDX] =
2315 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2316 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2317 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2318 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2319 CPUID_DE | CPUID_FP87,
2320 .features[FEAT_1_ECX] =
2321 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2322 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2323 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2324 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2325 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2326 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2327 .features[FEAT_8000_0001_EDX] =
2328 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2329 CPUID_EXT2_SYSCALL,
2330 .features[FEAT_8000_0001_ECX] =
2331 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2332 .features[FEAT_7_0_EBX] =
2333 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2334 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2335 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2336 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2337 CPUID_7_0_EBX_SMAP,
2338 /* Missing: XSAVES (not supported by some Linux versions,
2339 * including v4.1 to v4.12).
2340 * KVM doesn't yet expose any XSAVES state save component,
2341 * and the only one defined in Skylake (processor tracing)
2342 * probably will block migration anyway.
2343 */
2344 .features[FEAT_XSAVE] =
2345 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2346 CPUID_XSAVE_XGETBV1,
2347 .features[FEAT_6_EAX] =
2348 CPUID_6_EAX_ARAT,
2349 .xlevel = 0x80000008,
2350 .model_id = "Intel Core Processor (Skylake)",
2351 },
2352 {
2353 .name = "Skylake-Client-IBRS",
2354 .level = 0xd,
2355 .vendor = CPUID_VENDOR_INTEL,
2356 .family = 6,
2357 .model = 94,
2358 .stepping = 3,
2359 .features[FEAT_1_EDX] =
2360 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2361 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2362 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2363 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2364 CPUID_DE | CPUID_FP87,
2365 .features[FEAT_1_ECX] =
2366 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2367 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2368 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2369 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2370 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2371 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2372 .features[FEAT_8000_0001_EDX] =
2373 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2374 CPUID_EXT2_SYSCALL,
2375 .features[FEAT_8000_0001_ECX] =
2376 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2377 .features[FEAT_7_0_EDX] =
2378 CPUID_7_0_EDX_SPEC_CTRL,
2379 .features[FEAT_7_0_EBX] =
2380 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2381 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2382 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2383 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2384 CPUID_7_0_EBX_SMAP,
2385 /* Missing: XSAVES (not supported by some Linux versions,
2386 * including v4.1 to v4.12).
2387 * KVM doesn't yet expose any XSAVES state save component,
2388 * and the only one defined in Skylake (processor tracing)
2389 * probably will block migration anyway.
2390 */
2391 .features[FEAT_XSAVE] =
2392 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2393 CPUID_XSAVE_XGETBV1,
2394 .features[FEAT_6_EAX] =
2395 CPUID_6_EAX_ARAT,
2396 .xlevel = 0x80000008,
2397 .model_id = "Intel Core Processor (Skylake, IBRS)",
2398 },
2399 {
2400 .name = "Skylake-Server",
2401 .level = 0xd,
2402 .vendor = CPUID_VENDOR_INTEL,
2403 .family = 6,
2404 .model = 85,
2405 .stepping = 4,
2406 .features[FEAT_1_EDX] =
2407 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2408 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2409 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2410 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2411 CPUID_DE | CPUID_FP87,
2412 .features[FEAT_1_ECX] =
2413 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2414 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2415 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2416 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2417 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2418 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2419 .features[FEAT_8000_0001_EDX] =
2420 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2421 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2422 .features[FEAT_8000_0001_ECX] =
2423 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2424 .features[FEAT_7_0_EBX] =
2425 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2426 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2427 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2428 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2429 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2430 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2431 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2432 CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
2433 .features[FEAT_7_0_ECX] =
2434 CPUID_7_0_ECX_PKU,
2435 /* Missing: XSAVES (not supported by some Linux versions,
2436 * including v4.1 to v4.12).
2437 * KVM doesn't yet expose any XSAVES state save component,
2438 * and the only one defined in Skylake (processor tracing)
2439 * probably will block migration anyway.
2440 */
2441 .features[FEAT_XSAVE] =
2442 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2443 CPUID_XSAVE_XGETBV1,
2444 .features[FEAT_6_EAX] =
2445 CPUID_6_EAX_ARAT,
2446 .xlevel = 0x80000008,
2447 .model_id = "Intel Xeon Processor (Skylake)",
2448 },
2449 {
2450 .name = "Skylake-Server-IBRS",
2451 .level = 0xd,
2452 .vendor = CPUID_VENDOR_INTEL,
2453 .family = 6,
2454 .model = 85,
2455 .stepping = 4,
2456 .features[FEAT_1_EDX] =
2457 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2458 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2459 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2460 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2461 CPUID_DE | CPUID_FP87,
2462 .features[FEAT_1_ECX] =
2463 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2464 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2465 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2466 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2467 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2468 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2469 .features[FEAT_8000_0001_EDX] =
2470 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2471 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2472 .features[FEAT_8000_0001_ECX] =
2473 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2474 .features[FEAT_7_0_EDX] =
2475 CPUID_7_0_EDX_SPEC_CTRL,
2476 .features[FEAT_7_0_EBX] =
2477 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2478 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2479 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2480 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2481 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2482 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2483 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2484 CPUID_7_0_EBX_AVX512VL,
2485 .features[FEAT_7_0_ECX] =
2486 CPUID_7_0_ECX_PKU,
2487 /* Missing: XSAVES (not supported by some Linux versions,
2488 * including v4.1 to v4.12).
2489 * KVM doesn't yet expose any XSAVES state save component,
2490 * and the only one defined in Skylake (processor tracing)
2491 * probably will block migration anyway.
2492 */
2493 .features[FEAT_XSAVE] =
2494 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2495 CPUID_XSAVE_XGETBV1,
2496 .features[FEAT_6_EAX] =
2497 CPUID_6_EAX_ARAT,
2498 .xlevel = 0x80000008,
2499 .model_id = "Intel Xeon Processor (Skylake, IBRS)",
2500 },
2501 {
2502 .name = "Cascadelake-Server",
2503 .level = 0xd,
2504 .vendor = CPUID_VENDOR_INTEL,
2505 .family = 6,
2506 .model = 85,
2507 .stepping = 6,
2508 .features[FEAT_1_EDX] =
2509 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2510 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2511 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2512 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2513 CPUID_DE | CPUID_FP87,
2514 .features[FEAT_1_ECX] =
2515 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2516 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2517 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2518 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2519 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2520 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2521 .features[FEAT_8000_0001_EDX] =
2522 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2523 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2524 .features[FEAT_8000_0001_ECX] =
2525 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2526 .features[FEAT_7_0_EBX] =
2527 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2528 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2529 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2530 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2531 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2532 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2533 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2534 CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
2535 .features[FEAT_7_0_ECX] =
2536 CPUID_7_0_ECX_PKU |
2537 CPUID_7_0_ECX_AVX512VNNI,
2538 .features[FEAT_7_0_EDX] =
2539 CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
2540 /* Missing: XSAVES (not supported by some Linux versions,
2541 * including v4.1 to v4.12).
2542 * KVM doesn't yet expose any XSAVES state save component,
2543 * and the only one defined in Skylake (processor tracing)
2544 * probably will block migration anyway.
2545 */
2546 .features[FEAT_XSAVE] =
2547 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2548 CPUID_XSAVE_XGETBV1,
2549 .features[FEAT_6_EAX] =
2550 CPUID_6_EAX_ARAT,
2551 .xlevel = 0x80000008,
2552 .model_id = "Intel Xeon Processor (Cascadelake)",
2553 },
2554 {
2555 .name = "Icelake-Client",
2556 .level = 0xd,
2557 .vendor = CPUID_VENDOR_INTEL,
2558 .family = 6,
2559 .model = 126,
2560 .stepping = 0,
2561 .features[FEAT_1_EDX] =
2562 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2563 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2564 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2565 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2566 CPUID_DE | CPUID_FP87,
2567 .features[FEAT_1_ECX] =
2568 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2569 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2570 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2571 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2572 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2573 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2574 .features[FEAT_8000_0001_EDX] =
2575 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2576 CPUID_EXT2_SYSCALL,
2577 .features[FEAT_8000_0001_ECX] =
2578 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2579 .features[FEAT_8000_0008_EBX] =
2580 CPUID_8000_0008_EBX_WBNOINVD,
2581 .features[FEAT_7_0_EBX] =
2582 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2583 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2584 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2585 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2586 CPUID_7_0_EBX_SMAP,
2587 .features[FEAT_7_0_ECX] =
2588 CPUID_7_0_ECX_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU |
2589 CPUID_7_0_ECX_VBMI2 | CPUID_7_0_ECX_GFNI |
2590 CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ |
2591 CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG |
2592 CPUID_7_0_ECX_AVX512_VPOPCNTDQ,
2593 .features[FEAT_7_0_EDX] =
2594 CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
2595 /* Missing: XSAVES (not supported by some Linux versions,
2596 * including v4.1 to v4.12).
2597 * KVM doesn't yet expose any XSAVES state save component,
2598 * and the only one defined in Skylake (processor tracing)
2599 * probably will block migration anyway.
2600 */
2601 .features[FEAT_XSAVE] =
2602 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2603 CPUID_XSAVE_XGETBV1,
2604 .features[FEAT_6_EAX] =
2605 CPUID_6_EAX_ARAT,
2606 .xlevel = 0x80000008,
2607 .model_id = "Intel Core Processor (Icelake)",
2608 },
2609 {
2610 .name = "Icelake-Server",
2611 .level = 0xd,
2612 .vendor = CPUID_VENDOR_INTEL,
2613 .family = 6,
2614 .model = 134,
2615 .stepping = 0,
2616 .features[FEAT_1_EDX] =
2617 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2618 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2619 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2620 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2621 CPUID_DE | CPUID_FP87,
2622 .features[FEAT_1_ECX] =
2623 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2624 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2625 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2626 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2627 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2628 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2629 .features[FEAT_8000_0001_EDX] =
2630 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2631 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2632 .features[FEAT_8000_0001_ECX] =
2633 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2634 .features[FEAT_8000_0008_EBX] =
2635 CPUID_8000_0008_EBX_WBNOINVD,
2636 .features[FEAT_7_0_EBX] =
2637 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2638 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2639 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2640 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2641 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2642 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2643 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2644 CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
2645 .features[FEAT_7_0_ECX] =
2646 CPUID_7_0_ECX_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU |
2647 CPUID_7_0_ECX_VBMI2 | CPUID_7_0_ECX_GFNI |
2648 CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ |
2649 CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG |
2650 CPUID_7_0_ECX_AVX512_VPOPCNTDQ | CPUID_7_0_ECX_LA57,
2651 .features[FEAT_7_0_EDX] =
2652 CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
2653 /* Missing: XSAVES (not supported by some Linux versions,
2654 * including v4.1 to v4.12).
2655 * KVM doesn't yet expose any XSAVES state save component,
2656 * and the only one defined in Skylake (processor tracing)
2657 * probably will block migration anyway.
2658 */
2659 .features[FEAT_XSAVE] =
2660 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2661 CPUID_XSAVE_XGETBV1,
2662 .features[FEAT_6_EAX] =
2663 CPUID_6_EAX_ARAT,
2664 .xlevel = 0x80000008,
2665 .model_id = "Intel Xeon Processor (Icelake)",
2666 },
2667 {
2668 .name = "KnightsMill",
2669 .level = 0xd,
2670 .vendor = CPUID_VENDOR_INTEL,
2671 .family = 6,
2672 .model = 133,
2673 .stepping = 0,
2674 .features[FEAT_1_EDX] =
2675 CPUID_VME | CPUID_SS | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR |
2676 CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV |
2677 CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC |
2678 CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC |
2679 CPUID_PSE | CPUID_DE | CPUID_FP87,
2680 .features[FEAT_1_ECX] =
2681 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2682 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2683 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2684 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2685 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2686 CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2687 .features[FEAT_8000_0001_EDX] =
2688 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2689 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2690 .features[FEAT_8000_0001_ECX] =
2691 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2692 .features[FEAT_7_0_EBX] =
2693 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
2694 CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS |
2695 CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_AVX512F |
2696 CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512PF |
2697 CPUID_7_0_EBX_AVX512ER,
2698 .features[FEAT_7_0_ECX] =
2699 CPUID_7_0_ECX_AVX512_VPOPCNTDQ,
2700 .features[FEAT_7_0_EDX] =
2701 CPUID_7_0_EDX_AVX512_4VNNIW | CPUID_7_0_EDX_AVX512_4FMAPS,
2702 .features[FEAT_XSAVE] =
2703 CPUID_XSAVE_XSAVEOPT,
2704 .features[FEAT_6_EAX] =
2705 CPUID_6_EAX_ARAT,
2706 .xlevel = 0x80000008,
2707 .model_id = "Intel Xeon Phi Processor (Knights Mill)",
2708 },
2709 {
2710 .name = "Opteron_G1",
2711 .level = 5,
2712 .vendor = CPUID_VENDOR_AMD,
2713 .family = 15,
2714 .model = 6,
2715 .stepping = 1,
2716 .features[FEAT_1_EDX] =
2717 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2718 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2719 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2720 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2721 CPUID_DE | CPUID_FP87,
2722 .features[FEAT_1_ECX] =
2723 CPUID_EXT_SSE3,
2724 .features[FEAT_8000_0001_EDX] =
2725 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2726 .xlevel = 0x80000008,
2727 .model_id = "AMD Opteron 240 (Gen 1 Class Opteron)",
2728 },
2729 {
2730 .name = "Opteron_G2",
2731 .level = 5,
2732 .vendor = CPUID_VENDOR_AMD,
2733 .family = 15,
2734 .model = 6,
2735 .stepping = 1,
2736 .features[FEAT_1_EDX] =
2737 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2738 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2739 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2740 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2741 CPUID_DE | CPUID_FP87,
2742 .features[FEAT_1_ECX] =
2743 CPUID_EXT_CX16 | CPUID_EXT_SSE3,
2744 .features[FEAT_8000_0001_EDX] =
2745 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2746 .features[FEAT_8000_0001_ECX] =
2747 CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
2748 .xlevel = 0x80000008,
2749 .model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)",
2750 },
2751 {
2752 .name = "Opteron_G3",
2753 .level = 5,
2754 .vendor = CPUID_VENDOR_AMD,
2755 .family = 16,
2756 .model = 2,
2757 .stepping = 3,
2758 .features[FEAT_1_EDX] =
2759 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2760 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2761 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2762 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2763 CPUID_DE | CPUID_FP87,
2764 .features[FEAT_1_ECX] =
2765 CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
2766 CPUID_EXT_SSE3,
2767 .features[FEAT_8000_0001_EDX] =
2768 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL |
2769 CPUID_EXT2_RDTSCP,
2770 .features[FEAT_8000_0001_ECX] =
2771 CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
2772 CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
2773 .xlevel = 0x80000008,
2774 .model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)",
2775 },
2776 {
2777 .name = "Opteron_G4",
2778 .level = 0xd,
2779 .vendor = CPUID_VENDOR_AMD,
2780 .family = 21,
2781 .model = 1,
2782 .stepping = 2,
2783 .features[FEAT_1_EDX] =
2784 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2785 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2786 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2787 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2788 CPUID_DE | CPUID_FP87,
2789 .features[FEAT_1_ECX] =
2790 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2791 CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2792 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
2793 CPUID_EXT_SSE3,
2794 .features[FEAT_8000_0001_EDX] =
2795 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
2796 CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP,
2797 .features[FEAT_8000_0001_ECX] =
2798 CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
2799 CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
2800 CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
2801 CPUID_EXT3_LAHF_LM,
2802 .features[FEAT_SVM] =
2803 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2804 /* no xsaveopt! */
2805 .xlevel = 0x8000001A,
2806 .model_id = "AMD Opteron 62xx class CPU",
2807 },
2808 {
2809 .name = "Opteron_G5",
2810 .level = 0xd,
2811 .vendor = CPUID_VENDOR_AMD,
2812 .family = 21,
2813 .model = 2,
2814 .stepping = 0,
2815 .features[FEAT_1_EDX] =
2816 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2817 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2818 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2819 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2820 CPUID_DE | CPUID_FP87,
2821 .features[FEAT_1_ECX] =
2822 CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
2823 CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
2824 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
2825 CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
2826 .features[FEAT_8000_0001_EDX] =
2827 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
2828 CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP,
2829 .features[FEAT_8000_0001_ECX] =
2830 CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
2831 CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
2832 CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
2833 CPUID_EXT3_LAHF_LM,
2834 .features[FEAT_SVM] =
2835 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2836 /* no xsaveopt! */
2837 .xlevel = 0x8000001A,
2838 .model_id = "AMD Opteron 63xx class CPU",
2839 },
2840 {
2841 .name = "EPYC",
2842 .level = 0xd,
2843 .vendor = CPUID_VENDOR_AMD,
2844 .family = 23,
2845 .model = 1,
2846 .stepping = 2,
2847 .features[FEAT_1_EDX] =
2848 CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
2849 CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
2850 CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
2851 CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
2852 CPUID_VME | CPUID_FP87,
2853 .features[FEAT_1_ECX] =
2854 CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
2855 CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
2856 CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2857 CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
2858 CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
2859 .features[FEAT_8000_0001_EDX] =
2860 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
2861 CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
2862 CPUID_EXT2_SYSCALL,
2863 .features[FEAT_8000_0001_ECX] =
2864 CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
2865 CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
2866 CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM |
2867 CPUID_EXT3_TOPOEXT,
2868 .features[FEAT_7_0_EBX] =
2869 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
2870 CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
2871 CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
2872 CPUID_7_0_EBX_SHA_NI,
2873 /* Missing: XSAVES (not supported by some Linux versions,
2874 * including v4.1 to v4.12).
2875 * KVM doesn't yet expose any XSAVES state save component.
2876 */
2877 .features[FEAT_XSAVE] =
2878 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2879 CPUID_XSAVE_XGETBV1,
2880 .features[FEAT_6_EAX] =
2881 CPUID_6_EAX_ARAT,
2882 .features[FEAT_SVM] =
2883 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2884 .xlevel = 0x8000001E,
2885 .model_id = "AMD EPYC Processor",
2886 .cache_info = &epyc_cache_info,
2887 },
2888 {
2889 .name = "EPYC-IBPB",
2890 .level = 0xd,
2891 .vendor = CPUID_VENDOR_AMD,
2892 .family = 23,
2893 .model = 1,
2894 .stepping = 2,
2895 .features[FEAT_1_EDX] =
2896 CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
2897 CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
2898 CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
2899 CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
2900 CPUID_VME | CPUID_FP87,
2901 .features[FEAT_1_ECX] =
2902 CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
2903 CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
2904 CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2905 CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
2906 CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
2907 .features[FEAT_8000_0001_EDX] =
2908 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
2909 CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
2910 CPUID_EXT2_SYSCALL,
2911 .features[FEAT_8000_0001_ECX] =
2912 CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
2913 CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
2914 CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM |
2915 CPUID_EXT3_TOPOEXT,
2916 .features[FEAT_8000_0008_EBX] =
2917 CPUID_8000_0008_EBX_IBPB,
2918 .features[FEAT_7_0_EBX] =
2919 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
2920 CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
2921 CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
2922 CPUID_7_0_EBX_SHA_NI,
2923 /* Missing: XSAVES (not supported by some Linux versions,
2924 * including v4.1 to v4.12).
2925 * KVM doesn't yet expose any XSAVES state save component.
2926 */
2927 .features[FEAT_XSAVE] =
2928 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2929 CPUID_XSAVE_XGETBV1,
2930 .features[FEAT_6_EAX] =
2931 CPUID_6_EAX_ARAT,
2932 .features[FEAT_SVM] =
2933 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2934 .xlevel = 0x8000001E,
2935 .model_id = "AMD EPYC Processor (with IBPB)",
2936 .cache_info = &epyc_cache_info,
2937 },
2938};
2939
2940typedef struct PropValue {
2941 const char *prop, *value;
2942} PropValue;
2943
2944/* KVM-specific features that are automatically added/removed
2945 * from all CPU models when KVM is enabled.
2946 */
2947static PropValue kvm_default_props[] = {
2948 { "kvmclock", "on" },
2949 { "kvm-nopiodelay", "on" },
2950 { "kvm-asyncpf", "on" },
2951 { "kvm-steal-time", "on" },
2952 { "kvm-pv-eoi", "on" },
2953 { "kvmclock-stable-bit", "on" },
2954 { "x2apic", "on" },
2955 { "acpi", "off" },
2956 { "monitor", "off" },
2957 { "svm", "off" },
2958 { NULL, NULL },
2959};
2960
2961/* TCG-specific defaults that override all CPU models when using TCG
2962 */
2963static PropValue tcg_default_props[] = {
2964 { "vme", "off" },
2965 { NULL, NULL },
2966};
2967
2968
2969void x86_cpu_change_kvm_default(const char *prop, const char *value)
2970{
2971 PropValue *pv;
2972 for (pv = kvm_default_props; pv->prop; pv++) {
2973 if (!strcmp(pv->prop, prop)) {
2974 pv->value = value;
2975 break;
2976 }
2977 }
2978
2979 /* It is valid to call this function only for properties that
2980 * are already present in the kvm_default_props table.
2981 */
2982 assert(pv->prop);
2983}
2984
2985static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
2986 bool migratable_only);
2987
2988static bool lmce_supported(void)
2989{
2990 uint64_t mce_cap = 0;
2991
2992#ifdef CONFIG_KVM
2993 if (kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, &mce_cap) < 0) {
2994 return false;
2995 }
2996#endif
2997
2998 return !!(mce_cap & MCG_LMCE_P);
2999}
3000
3001#define CPUID_MODEL_ID_SZ 48
3002
3003/**
3004 * cpu_x86_fill_model_id:
3005 * Get CPUID model ID string from host CPU.
3006 *
3007 * @str should have at least CPUID_MODEL_ID_SZ bytes
3008 *
3009 * The function does NOT add a null terminator to the string
3010 * automatically.
3011 */
3012static int cpu_x86_fill_model_id(char *str)
3013{
3014 uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
3015 int i;
3016
3017 for (i = 0; i < 3; i++) {
3018 host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
3019 memcpy(str + i * 16 + 0, &eax, 4);
3020 memcpy(str + i * 16 + 4, &ebx, 4);
3021 memcpy(str + i * 16 + 8, &ecx, 4);
3022 memcpy(str + i * 16 + 12, &edx, 4);
3023 }
3024 return 0;
3025}
3026
3027static Property max_x86_cpu_properties[] = {
3028 DEFINE_PROP_BOOL("migratable", X86CPU, migratable, true),
3029 DEFINE_PROP_BOOL("host-cache-info", X86CPU, cache_info_passthrough, false),
3030 DEFINE_PROP_END_OF_LIST()
3031};
3032
3033static void max_x86_cpu_class_init(ObjectClass *oc, void *data)
3034{
3035 DeviceClass *dc = DEVICE_CLASS(oc);
3036 X86CPUClass *xcc = X86_CPU_CLASS(oc);
3037
3038 xcc->ordering = 9;
3039
3040 xcc->model_description =
3041 "Enables all features supported by the accelerator in the current host";
3042
3043 dc->props = max_x86_cpu_properties;
3044}
3045
3046static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp);
3047
3048static void max_x86_cpu_initfn(Object *obj)
3049{
3050 X86CPU *cpu = X86_CPU(obj);
3051 CPUX86State *env = &cpu->env;
3052 KVMState *s = kvm_state;
3053
3054 /* We can't fill the features array here because we don't know yet if
3055 * "migratable" is true or false.
3056 */
3057 cpu->max_features = true;
3058
3059 if (accel_uses_host_cpuid()) {
3060 char vendor[CPUID_VENDOR_SZ + 1] = { 0 };
3061 char model_id[CPUID_MODEL_ID_SZ + 1] = { 0 };
3062 int family, model, stepping;
3063 X86CPUDefinition host_cpudef = { };
3064 uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
3065
3066 host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
3067 x86_cpu_vendor_words2str(host_cpudef.vendor, ebx, edx, ecx);
3068
3069 host_vendor_fms(vendor, &family, &model, &stepping);
3070
3071 cpu_x86_fill_model_id(model_id);
3072
3073 object_property_set_str(OBJECT(cpu), vendor, "vendor", &error_abort);
3074 object_property_set_int(OBJECT(cpu), family, "family", &error_abort);
3075 object_property_set_int(OBJECT(cpu), model, "model", &error_abort);
3076 object_property_set_int(OBJECT(cpu), stepping, "stepping",
3077 &error_abort);
3078 object_property_set_str(OBJECT(cpu), model_id, "model-id",
3079 &error_abort);
3080
3081 if (kvm_enabled()) {
3082 env->cpuid_min_level =
3083 kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX);
3084 env->cpuid_min_xlevel =
3085 kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX);
3086 env->cpuid_min_xlevel2 =
3087 kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX);
3088 } else {
3089 env->cpuid_min_level =
3090 hvf_get_supported_cpuid(0x0, 0, R_EAX);
3091 env->cpuid_min_xlevel =
3092 hvf_get_supported_cpuid(0x80000000, 0, R_EAX);
3093 env->cpuid_min_xlevel2 =
3094 hvf_get_supported_cpuid(0xC0000000, 0, R_EAX);
3095 }
3096
3097 if (lmce_supported()) {
3098 object_property_set_bool(OBJECT(cpu), true, "lmce", &error_abort);
3099 }
3100 } else {
3101 object_property_set_str(OBJECT(cpu), CPUID_VENDOR_AMD,
3102 "vendor", &error_abort);
3103 object_property_set_int(OBJECT(cpu), 6, "family", &error_abort);
3104 object_property_set_int(OBJECT(cpu), 6, "model", &error_abort);
3105 object_property_set_int(OBJECT(cpu), 3, "stepping", &error_abort);
3106 object_property_set_str(OBJECT(cpu),
3107 "QEMU TCG CPU version " QEMU_HW_VERSION,
3108 "model-id", &error_abort);
3109 }
3110
3111 object_property_set_bool(OBJECT(cpu), true, "pmu", &error_abort);
3112}
3113
3114static const TypeInfo max_x86_cpu_type_info = {
3115 .name = X86_CPU_TYPE_NAME("max"),
3116 .parent = TYPE_X86_CPU,
3117 .instance_init = max_x86_cpu_initfn,
3118 .class_init = max_x86_cpu_class_init,
3119};
3120
3121#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3122static void host_x86_cpu_class_init(ObjectClass *oc, void *data)
3123{
3124 X86CPUClass *xcc = X86_CPU_CLASS(oc);
3125
3126 xcc->host_cpuid_required = true;
3127 xcc->ordering = 8;
3128
3129#if defined(CONFIG_KVM)
3130 xcc->model_description =
3131 "KVM processor with all supported host features ";
3132#elif defined(CONFIG_HVF)
3133 xcc->model_description =
3134 "HVF processor with all supported host features ";
3135#endif
3136}
3137
3138static const TypeInfo host_x86_cpu_type_info = {
3139 .name = X86_CPU_TYPE_NAME("host"),
3140 .parent = X86_CPU_TYPE_NAME("max"),
3141 .class_init = host_x86_cpu_class_init,
3142};
3143
3144#endif
3145
3146static char *feature_word_description(FeatureWordInfo *f, uint32_t bit)
3147{
3148 assert(f->type == CPUID_FEATURE_WORD || f->type == MSR_FEATURE_WORD);
3149
3150 switch (f->type) {
3151 case CPUID_FEATURE_WORD:
3152 {
3153 const char *reg = get_register_name_32(f->cpuid.reg);
3154 assert(reg);
3155 return g_strdup_printf("CPUID.%02XH:%s",
3156 f->cpuid.eax, reg);
3157 }
3158 case MSR_FEATURE_WORD:
3159 return g_strdup_printf("MSR(%02XH)",
3160 f->msr.index);
3161 }
3162
3163 return NULL;
3164}
3165
3166static void report_unavailable_features(FeatureWord w, uint32_t mask)
3167{
3168 FeatureWordInfo *f = &feature_word_info[w];
3169 int i;
3170 char *feat_word_str;
3171
3172 for (i = 0; i < 32; ++i) {
3173 if ((1UL << i) & mask) {
3174 feat_word_str = feature_word_description(f, i);
3175 warn_report("%s doesn't support requested feature: %s%s%s [bit %d]",
3176 accel_uses_host_cpuid() ? "host" : "TCG",
3177 feat_word_str,
3178 f->feat_names[i] ? "." : "",
3179 f->feat_names[i] ? f->feat_names[i] : "", i);
3180 g_free(feat_word_str);
3181 }
3182 }
3183}
3184
3185static void x86_cpuid_version_get_family(Object *obj, Visitor *v,
3186 const char *name, void *opaque,
3187 Error **errp)
3188{
3189 X86CPU *cpu = X86_CPU(obj);
3190 CPUX86State *env = &cpu->env;
3191 int64_t value;
3192
3193 value = (env->cpuid_version >> 8) & 0xf;
3194 if (value == 0xf) {
3195 value += (env->cpuid_version >> 20) & 0xff;
3196 }
3197 visit_type_int(v, name, &value, errp);
3198}
3199
3200static void x86_cpuid_version_set_family(Object *obj, Visitor *v,
3201 const char *name, void *opaque,
3202 Error **errp)
3203{
3204 X86CPU *cpu = X86_CPU(obj);
3205 CPUX86State *env = &cpu->env;
3206 const int64_t min = 0;
3207 const int64_t max = 0xff + 0xf;
3208 Error *local_err = NULL;
3209 int64_t value;
3210
3211 visit_type_int(v, name, &value, &local_err);
3212 if (local_err) {
3213 error_propagate(errp, local_err);
3214 return;
3215 }
3216 if (value < min || value > max) {
3217 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3218 name ? name : "null", value, min, max);
3219 return;
3220 }
3221
3222 env->cpuid_version &= ~0xff00f00;
3223 if (value > 0x0f) {
3224 env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
3225 } else {
3226 env->cpuid_version |= value << 8;
3227 }
3228}
3229
3230static void x86_cpuid_version_get_model(Object *obj, Visitor *v,
3231 const char *name, void *opaque,
3232 Error **errp)
3233{
3234 X86CPU *cpu = X86_CPU(obj);
3235 CPUX86State *env = &cpu->env;
3236 int64_t value;
3237
3238 value = (env->cpuid_version >> 4) & 0xf;
3239 value |= ((env->cpuid_version >> 16) & 0xf) << 4;
3240 visit_type_int(v, name, &value, errp);
3241}
3242
3243static void x86_cpuid_version_set_model(Object *obj, Visitor *v,
3244 const char *name, void *opaque,
3245 Error **errp)
3246{
3247 X86CPU *cpu = X86_CPU(obj);
3248 CPUX86State *env = &cpu->env;
3249 const int64_t min = 0;
3250 const int64_t max = 0xff;
3251 Error *local_err = NULL;
3252 int64_t value;
3253
3254 visit_type_int(v, name, &value, &local_err);
3255 if (local_err) {
3256 error_propagate(errp, local_err);
3257 return;
3258 }
3259 if (value < min || value > max) {
3260 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3261 name ? name : "null", value, min, max);
3262 return;
3263 }
3264
3265 env->cpuid_version &= ~0xf00f0;
3266 env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
3267}
3268
3269static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
3270 const char *name, void *opaque,
3271 Error **errp)
3272{
3273 X86CPU *cpu = X86_CPU(obj);
3274 CPUX86State *env = &cpu->env;
3275 int64_t value;
3276
3277 value = env->cpuid_version & 0xf;
3278 visit_type_int(v, name, &value, errp);
3279}
3280
3281static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
3282 const char *name, void *opaque,
3283 Error **errp)
3284{
3285 X86CPU *cpu = X86_CPU(obj);
3286 CPUX86State *env = &cpu->env;
3287 const int64_t min = 0;
3288 const int64_t max = 0xf;
3289 Error *local_err = NULL;
3290 int64_t value;
3291
3292 visit_type_int(v, name, &value, &local_err);
3293 if (local_err) {
3294 error_propagate(errp, local_err);
3295 return;
3296 }
3297 if (value < min || value > max) {
3298 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3299 name ? name : "null", value, min, max);
3300 return;
3301 }
3302
3303 env->cpuid_version &= ~0xf;
3304 env->cpuid_version |= value & 0xf;
3305}
3306
3307static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
3308{
3309 X86CPU *cpu = X86_CPU(obj);
3310 CPUX86State *env = &cpu->env;
3311 char *value;
3312
3313 value = g_malloc(CPUID_VENDOR_SZ + 1);
3314 x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
3315 env->cpuid_vendor3);
3316 return value;
3317}
3318
3319static void x86_cpuid_set_vendor(Object *obj, const char *value,
3320 Error **errp)
3321{
3322 X86CPU *cpu = X86_CPU(obj);
3323 CPUX86State *env = &cpu->env;
3324 int i;
3325
3326 if (strlen(value) != CPUID_VENDOR_SZ) {
3327 error_setg(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value);
3328 return;
3329 }
3330
3331 env->cpuid_vendor1 = 0;
3332 env->cpuid_vendor2 = 0;
3333 env->cpuid_vendor3 = 0;
3334 for (i = 0; i < 4; i++) {
3335 env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
3336 env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
3337 env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
3338 }
3339}
3340
3341static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
3342{
3343 X86CPU *cpu = X86_CPU(obj);
3344 CPUX86State *env = &cpu->env;
3345 char *value;
3346 int i;
3347
3348 value = g_malloc(48 + 1);
3349 for (i = 0; i < 48; i++) {
3350 value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
3351 }
3352 value[48] = '\0';
3353 return value;
3354}
3355
3356static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
3357 Error **errp)
3358{
3359 X86CPU *cpu = X86_CPU(obj);
3360 CPUX86State *env = &cpu->env;
3361 int c, len, i;
3362
3363 if (model_id == NULL) {
3364 model_id = "";
3365 }
3366 len = strlen(model_id);
3367 memset(env->cpuid_model, 0, 48);
3368 for (i = 0; i < 48; i++) {
3369 if (i >= len) {
3370 c = '\0';
3371 } else {
3372 c = (uint8_t)model_id[i];
3373 }
3374 env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
3375 }
3376}
3377
3378static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, const char *name,
3379 void *opaque, Error **errp)
3380{
3381 X86CPU *cpu = X86_CPU(obj);
3382 int64_t value;
3383
3384 value = cpu->env.tsc_khz * 1000;
3385 visit_type_int(v, name, &value, errp);
3386}
3387
3388static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, const char *name,
3389 void *opaque, Error **errp)
3390{
3391 X86CPU *cpu = X86_CPU(obj);
3392 const int64_t min = 0;
3393 const int64_t max = INT64_MAX;
3394 Error *local_err = NULL;
3395 int64_t value;
3396
3397 visit_type_int(v, name, &value, &local_err);
3398 if (local_err) {
3399 error_propagate(errp, local_err);
3400 return;
3401 }
3402 if (value < min || value > max) {
3403 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3404 name ? name : "null", value, min, max);
3405 return;
3406 }
3407
3408 cpu->env.tsc_khz = cpu->env.user_tsc_khz = value / 1000;
3409}
3410
3411/* Generic getter for "feature-words" and "filtered-features" properties */
3412static void x86_cpu_get_feature_words(Object *obj, Visitor *v,
3413 const char *name, void *opaque,
3414 Error **errp)
3415{
3416 uint32_t *array = (uint32_t *)opaque;
3417 FeatureWord w;
3418 X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { };
3419 X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { };
3420 X86CPUFeatureWordInfoList *list = NULL;
3421
3422 for (w = 0; w < FEATURE_WORDS; w++) {
3423 FeatureWordInfo *wi = &feature_word_info[w];
3424 /*
3425 * We didn't have MSR features when "feature-words" was
3426 * introduced. Therefore skipped other type entries.
3427 */
3428 if (wi->type != CPUID_FEATURE_WORD) {
3429 continue;
3430 }
3431 X86CPUFeatureWordInfo *qwi = &word_infos[w];
3432 qwi->cpuid_input_eax = wi->cpuid.eax;
3433 qwi->has_cpuid_input_ecx = wi->cpuid.needs_ecx;
3434 qwi->cpuid_input_ecx = wi->cpuid.ecx;
3435 qwi->cpuid_register = x86_reg_info_32[wi->cpuid.reg].qapi_enum;
3436 qwi->features = array[w];
3437
3438 /* List will be in reverse order, but order shouldn't matter */
3439 list_entries[w].next = list;
3440 list_entries[w].value = &word_infos[w];
3441 list = &list_entries[w];
3442 }
3443
3444 visit_type_X86CPUFeatureWordInfoList(v, "feature-words", &list, errp);
3445}
3446
3447static void x86_get_hv_spinlocks(Object *obj, Visitor *v, const char *name,
3448 void *opaque, Error **errp)
3449{
3450 X86CPU *cpu = X86_CPU(obj);
3451 int64_t value = cpu->hyperv_spinlock_attempts;
3452
3453 visit_type_int(v, name, &value, errp);
3454}
3455
3456static void x86_set_hv_spinlocks(Object *obj, Visitor *v, const char *name,
3457 void *opaque, Error **errp)
3458{
3459 const int64_t min = 0xFFF;
3460 const int64_t max = UINT_MAX;
3461 X86CPU *cpu = X86_CPU(obj);
3462 Error *err = NULL;
3463 int64_t value;
3464
3465 visit_type_int(v, name, &value, &err);
3466 if (err) {
3467 error_propagate(errp, err);
3468 return;
3469 }
3470
3471 if (value < min || value > max) {
3472 error_setg(errp, "Property %s.%s doesn't take value %" PRId64
3473 " (minimum: %" PRId64 ", maximum: %" PRId64 ")",
3474 object_get_typename(obj), name ? name : "null",
3475 value, min, max);
3476 return;
3477 }
3478 cpu->hyperv_spinlock_attempts = value;
3479}
3480
3481static const PropertyInfo qdev_prop_spinlocks = {
3482 .name = "int",
3483 .get = x86_get_hv_spinlocks,
3484 .set = x86_set_hv_spinlocks,
3485};
3486
3487/* Convert all '_' in a feature string option name to '-', to make feature
3488 * name conform to QOM property naming rule, which uses '-' instead of '_'.
3489 */
3490static inline void feat2prop(char *s)
3491{
3492 while ((s = strchr(s, '_'))) {
3493 *s = '-';
3494 }
3495}
3496
3497/* Return the feature property name for a feature flag bit */
3498static const char *x86_cpu_feature_name(FeatureWord w, int bitnr)
3499{
3500 /* XSAVE components are automatically enabled by other features,
3501 * so return the original feature name instead
3502 */
3503 if (w == FEAT_XSAVE_COMP_LO || w == FEAT_XSAVE_COMP_HI) {
3504 int comp = (w == FEAT_XSAVE_COMP_HI) ? bitnr + 32 : bitnr;
3505
3506 if (comp < ARRAY_SIZE(x86_ext_save_areas) &&
3507 x86_ext_save_areas[comp].bits) {
3508 w = x86_ext_save_areas[comp].feature;
3509 bitnr = ctz32(x86_ext_save_areas[comp].bits);
3510 }
3511 }
3512
3513 assert(bitnr < 32);
3514 assert(w < FEATURE_WORDS);
3515 return feature_word_info[w].feat_names[bitnr];
3516}
3517
3518/* Compatibily hack to maintain legacy +-feat semantic,
3519 * where +-feat overwrites any feature set by
3520 * feat=on|feat even if the later is parsed after +-feat
3521 * (i.e. "-x2apic,x2apic=on" will result in x2apic disabled)
3522 */
3523static GList *plus_features, *minus_features;
3524
3525static gint compare_string(gconstpointer a, gconstpointer b)
3526{
3527 return g_strcmp0(a, b);
3528}
3529
3530/* Parse "+feature,-feature,feature=foo" CPU feature string
3531 */
3532static void x86_cpu_parse_featurestr(const char *typename, char *features,
3533 Error **errp)
3534{
3535 char *featurestr; /* Single 'key=value" string being parsed */
3536 static bool cpu_globals_initialized;
3537 bool ambiguous = false;
3538
3539 if (cpu_globals_initialized) {
3540 return;
3541 }
3542 cpu_globals_initialized = true;
3543
3544 if (!features) {
3545 return;
3546 }
3547
3548 for (featurestr = strtok(features, ",");
3549 featurestr;
3550 featurestr = strtok(NULL, ",")) {
3551 const char *name;
3552 const char *val = NULL;
3553 char *eq = NULL;
3554 char num[32];
3555 GlobalProperty *prop;
3556
3557 /* Compatibility syntax: */
3558 if (featurestr[0] == '+') {
3559 plus_features = g_list_append(plus_features,
3560 g_strdup(featurestr + 1));
3561 continue;
3562 } else if (featurestr[0] == '-') {
3563 minus_features = g_list_append(minus_features,
3564 g_strdup(featurestr + 1));
3565 continue;
3566 }
3567
3568 eq = strchr(featurestr, '=');
3569 if (eq) {
3570 *eq++ = 0;
3571 val = eq;
3572 } else {
3573 val = "on";
3574 }
3575
3576 feat2prop(featurestr);
3577 name = featurestr;
3578
3579 if (g_list_find_custom(plus_features, name, compare_string)) {
3580 warn_report("Ambiguous CPU model string. "
3581 "Don't mix both \"+%s\" and \"%s=%s\"",
3582 name, name, val);
3583 ambiguous = true;
3584 }
3585 if (g_list_find_custom(minus_features, name, compare_string)) {
3586 warn_report("Ambiguous CPU model string. "
3587 "Don't mix both \"-%s\" and \"%s=%s\"",
3588 name, name, val);
3589 ambiguous = true;
3590 }
3591
3592 /* Special case: */
3593 if (!strcmp(name, "tsc-freq")) {
3594 int ret;
3595 uint64_t tsc_freq;
3596
3597 ret = qemu_strtosz_metric(val, NULL, &tsc_freq);
3598 if (ret < 0 || tsc_freq > INT64_MAX) {
3599 error_setg(errp, "bad numerical value %s", val);
3600 return;
3601 }
3602 snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
3603 val = num;
3604 name = "tsc-frequency";
3605 }
3606
3607 prop = g_new0(typeof(*prop), 1);
3608 prop->driver = typename;
3609 prop->property = g_strdup(name);
3610 prop->value = g_strdup(val);
3611 qdev_prop_register_global(prop);
3612 }
3613
3614 if (ambiguous) {
3615 warn_report("Compatibility of ambiguous CPU model "
3616 "strings won't be kept on future QEMU versions");
3617 }
3618}
3619
3620static void x86_cpu_expand_features(X86CPU *cpu, Error **errp);
3621static int x86_cpu_filter_features(X86CPU *cpu);
3622
3623/* Check for missing features that may prevent the CPU class from
3624 * running using the current machine and accelerator.
3625 */
3626static void x86_cpu_class_check_missing_features(X86CPUClass *xcc,
3627 strList **missing_feats)
3628{
3629 X86CPU *xc;
3630 FeatureWord w;
3631 Error *err = NULL;
3632 strList **next = missing_feats;
3633
3634 if (xcc->host_cpuid_required && !accel_uses_host_cpuid()) {
3635 strList *new = g_new0(strList, 1);
3636 new->value = g_strdup("kvm");
3637 *missing_feats = new;
3638 return;
3639 }
3640
3641 xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
3642
3643 x86_cpu_expand_features(xc, &err);
3644 if (err) {
3645 /* Errors at x86_cpu_expand_features should never happen,
3646 * but in case it does, just report the model as not
3647 * runnable at all using the "type" property.
3648 */
3649 strList *new = g_new0(strList, 1);
3650 new->value = g_strdup("type");
3651 *next = new;
3652 next = &new->next;
3653 }
3654
3655 x86_cpu_filter_features(xc);
3656
3657 for (w = 0; w < FEATURE_WORDS; w++) {
3658 uint32_t filtered = xc->filtered_features[w];
3659 int i;
3660 for (i = 0; i < 32; i++) {
3661 if (filtered & (1UL << i)) {
3662 strList *new = g_new0(strList, 1);
3663 new->value = g_strdup(x86_cpu_feature_name(w, i));
3664 *next = new;
3665 next = &new->next;
3666 }
3667 }
3668 }
3669
3670 object_unref(OBJECT(xc));
3671}
3672
3673/* Print all cpuid feature names in featureset
3674 */
3675static void listflags(GList *features)
3676{
3677 size_t len = 0;
3678 GList *tmp;
3679
3680 for (tmp = features; tmp; tmp = tmp->next) {
3681 const char *name = tmp->data;
3682 if ((len + strlen(name) + 1) >= 75) {
3683 qemu_printf("\n");
3684 len = 0;
3685 }
3686 qemu_printf("%s%s", len == 0 ? " " : " ", name);
3687 len += strlen(name) + 1;
3688 }
3689 qemu_printf("\n");
3690}
3691
3692/* Sort alphabetically by type name, respecting X86CPUClass::ordering. */
3693static gint x86_cpu_list_compare(gconstpointer a, gconstpointer b)
3694{
3695 ObjectClass *class_a = (ObjectClass *)a;
3696 ObjectClass *class_b = (ObjectClass *)b;
3697 X86CPUClass *cc_a = X86_CPU_CLASS(class_a);
3698 X86CPUClass *cc_b = X86_CPU_CLASS(class_b);
3699 char *name_a, *name_b;
3700 int ret;
3701
3702 if (cc_a->ordering != cc_b->ordering) {
3703 ret = cc_a->ordering - cc_b->ordering;
3704 } else {
3705 name_a = x86_cpu_class_get_model_name(cc_a);
3706 name_b = x86_cpu_class_get_model_name(cc_b);
3707 ret = strcmp(name_a, name_b);
3708 g_free(name_a);
3709 g_free(name_b);
3710 }
3711 return ret;
3712}
3713
3714static GSList *get_sorted_cpu_model_list(void)
3715{
3716 GSList *list = object_class_get_list(TYPE_X86_CPU, false);
3717 list = g_slist_sort(list, x86_cpu_list_compare);
3718 return list;
3719}
3720
3721static void x86_cpu_list_entry(gpointer data, gpointer user_data)
3722{
3723 ObjectClass *oc = data;
3724 X86CPUClass *cc = X86_CPU_CLASS(oc);
3725 char *name = x86_cpu_class_get_model_name(cc);
3726 const char *desc = cc->model_description;
3727 if (!desc && cc->cpu_def) {
3728 desc = cc->cpu_def->model_id;
3729 }
3730
3731 qemu_printf("x86 %-20s %-48s\n", name, desc);
3732 g_free(name);
3733}
3734
3735/* list available CPU models and flags */
3736void x86_cpu_list(void)
3737{
3738 int i, j;
3739 GSList *list;
3740 GList *names = NULL;
3741
3742 qemu_printf("Available CPUs:\n");
3743 list = get_sorted_cpu_model_list();
3744 g_slist_foreach(list, x86_cpu_list_entry, NULL);
3745 g_slist_free(list);
3746
3747 names = NULL;
3748 for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) {
3749 FeatureWordInfo *fw = &feature_word_info[i];
3750 for (j = 0; j < 32; j++) {
3751 if (fw->feat_names[j]) {
3752 names = g_list_append(names, (gpointer)fw->feat_names[j]);
3753 }
3754 }
3755 }
3756
3757 names = g_list_sort(names, (GCompareFunc)strcmp);
3758
3759 qemu_printf("\nRecognized CPUID flags:\n");
3760 listflags(names);
3761 qemu_printf("\n");
3762 g_list_free(names);
3763}
3764
3765static void x86_cpu_definition_entry(gpointer data, gpointer user_data)
3766{
3767 ObjectClass *oc = data;
3768 X86CPUClass *cc = X86_CPU_CLASS(oc);
3769 CpuDefinitionInfoList **cpu_list = user_data;
3770 CpuDefinitionInfoList *entry;
3771 CpuDefinitionInfo *info;
3772
3773 info = g_malloc0(sizeof(*info));
3774 info->name = x86_cpu_class_get_model_name(cc);
3775 x86_cpu_class_check_missing_features(cc, &info->unavailable_features);
3776 info->has_unavailable_features = true;
3777 info->q_typename = g_strdup(object_class_get_name(oc));
3778 info->migration_safe = cc->migration_safe;
3779 info->has_migration_safe = true;
3780 info->q_static = cc->static_model;
3781
3782 entry = g_malloc0(sizeof(*entry));
3783 entry->value = info;
3784 entry->next = *cpu_list;
3785 *cpu_list = entry;
3786}
3787
3788CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
3789{
3790 CpuDefinitionInfoList *cpu_list = NULL;
3791 GSList *list = get_sorted_cpu_model_list();
3792 g_slist_foreach(list, x86_cpu_definition_entry, &cpu_list);
3793 g_slist_free(list);
3794 return cpu_list;
3795}
3796
3797static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
3798 bool migratable_only)
3799{
3800 FeatureWordInfo *wi = &feature_word_info[w];
3801 uint32_t r = 0;
3802
3803 if (kvm_enabled()) {
3804 switch (wi->type) {
3805 case CPUID_FEATURE_WORD:
3806 r = kvm_arch_get_supported_cpuid(kvm_state, wi->cpuid.eax,
3807 wi->cpuid.ecx,
3808 wi->cpuid.reg);
3809 break;
3810 case MSR_FEATURE_WORD:
3811 r = kvm_arch_get_supported_msr_feature(kvm_state,
3812 wi->msr.index);
3813 break;
3814 }
3815 } else if (hvf_enabled()) {
3816 if (wi->type != CPUID_FEATURE_WORD) {
3817 return 0;
3818 }
3819 r = hvf_get_supported_cpuid(wi->cpuid.eax,
3820 wi->cpuid.ecx,
3821 wi->cpuid.reg);
3822 } else if (tcg_enabled()) {
3823 r = wi->tcg_features;
3824 } else {
3825 return ~0;
3826 }
3827 if (migratable_only) {
3828 r &= x86_cpu_get_migratable_flags(w);
3829 }
3830 return r;
3831}
3832
3833static void x86_cpu_report_filtered_features(X86CPU *cpu)
3834{
3835 FeatureWord w;
3836
3837 for (w = 0; w < FEATURE_WORDS; w++) {
3838 report_unavailable_features(w, cpu->filtered_features[w]);
3839 }
3840}
3841
3842static void x86_cpu_apply_props(X86CPU *cpu, PropValue *props)
3843{
3844 PropValue *pv;
3845 for (pv = props; pv->prop; pv++) {
3846 if (!pv->value) {
3847 continue;
3848 }
3849 object_property_parse(OBJECT(cpu), pv->value, pv->prop,
3850 &error_abort);
3851 }
3852}
3853
3854/* Load data from X86CPUDefinition into a X86CPU object
3855 */
3856static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp)
3857{
3858 CPUX86State *env = &cpu->env;
3859 const char *vendor;
3860 char host_vendor[CPUID_VENDOR_SZ + 1];
3861 FeatureWord w;
3862
3863 /*NOTE: any property set by this function should be returned by
3864 * x86_cpu_static_props(), so static expansion of
3865 * query-cpu-model-expansion is always complete.
3866 */
3867
3868 /* CPU models only set _minimum_ values for level/xlevel: */
3869 object_property_set_uint(OBJECT(cpu), def->level, "min-level", errp);
3870 object_property_set_uint(OBJECT(cpu), def->xlevel, "min-xlevel", errp);
3871
3872 object_property_set_int(OBJECT(cpu), def->family, "family", errp);
3873 object_property_set_int(OBJECT(cpu), def->model, "model", errp);
3874 object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp);
3875 object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp);
3876 for (w = 0; w < FEATURE_WORDS; w++) {
3877 env->features[w] = def->features[w];
3878 }
3879
3880 /* legacy-cache defaults to 'off' if CPU model provides cache info */
3881 cpu->legacy_cache = !def->cache_info;
3882
3883 /* Special cases not set in the X86CPUDefinition structs: */
3884 /* TODO: in-kernel irqchip for hvf */
3885 if (kvm_enabled()) {
3886 if (!kvm_irqchip_in_kernel()) {
3887 x86_cpu_change_kvm_default("x2apic", "off");
3888 }
3889
3890 x86_cpu_apply_props(cpu, kvm_default_props);
3891 } else if (tcg_enabled()) {
3892 x86_cpu_apply_props(cpu, tcg_default_props);
3893 }
3894
3895 env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
3896
3897 /* sysenter isn't supported in compatibility mode on AMD,
3898 * syscall isn't supported in compatibility mode on Intel.
3899 * Normally we advertise the actual CPU vendor, but you can
3900 * override this using the 'vendor' property if you want to use
3901 * KVM's sysenter/syscall emulation in compatibility mode and
3902 * when doing cross vendor migration
3903 */
3904 vendor = def->vendor;
3905 if (accel_uses_host_cpuid()) {
3906 uint32_t ebx = 0, ecx = 0, edx = 0;
3907 host_cpuid(0, 0, NULL, &ebx, &ecx, &edx);
3908 x86_cpu_vendor_words2str(host_vendor, ebx, edx, ecx);
3909 vendor = host_vendor;
3910 }
3911
3912 object_property_set_str(OBJECT(cpu), vendor, "vendor", errp);
3913
3914}
3915
3916#ifndef CONFIG_USER_ONLY
3917/* Return a QDict containing keys for all properties that can be included
3918 * in static expansion of CPU models. All properties set by x86_cpu_load_def()
3919 * must be included in the dictionary.
3920 */
3921static QDict *x86_cpu_static_props(void)
3922{
3923 FeatureWord w;
3924 int i;
3925 static const char *props[] = {
3926 "min-level",
3927 "min-xlevel",
3928 "family",
3929 "model",
3930 "stepping",
3931 "model-id",
3932 "vendor",
3933 "lmce",
3934 NULL,
3935 };
3936 static QDict *d;
3937
3938 if (d) {
3939 return d;
3940 }
3941
3942 d = qdict_new();
3943 for (i = 0; props[i]; i++) {
3944 qdict_put_null(d, props[i]);
3945 }
3946
3947 for (w = 0; w < FEATURE_WORDS; w++) {
3948 FeatureWordInfo *fi = &feature_word_info[w];
3949 int bit;
3950 for (bit = 0; bit < 32; bit++) {
3951 if (!fi->feat_names[bit]) {
3952 continue;
3953 }
3954 qdict_put_null(d, fi->feat_names[bit]);
3955 }
3956 }
3957
3958 return d;
3959}
3960
3961/* Add an entry to @props dict, with the value for property. */
3962static void x86_cpu_expand_prop(X86CPU *cpu, QDict *props, const char *prop)
3963{
3964 QObject *value = object_property_get_qobject(OBJECT(cpu), prop,
3965 &error_abort);
3966
3967 qdict_put_obj(props, prop, value);
3968}
3969
3970/* Convert CPU model data from X86CPU object to a property dictionary
3971 * that can recreate exactly the same CPU model.
3972 */
3973static void x86_cpu_to_dict(X86CPU *cpu, QDict *props)
3974{
3975 QDict *sprops = x86_cpu_static_props();
3976 const QDictEntry *e;
3977
3978 for (e = qdict_first(sprops); e; e = qdict_next(sprops, e)) {
3979 const char *prop = qdict_entry_key(e);
3980 x86_cpu_expand_prop(cpu, props, prop);
3981 }
3982}
3983
3984/* Convert CPU model data from X86CPU object to a property dictionary
3985 * that can recreate exactly the same CPU model, including every
3986 * writeable QOM property.
3987 */
3988static void x86_cpu_to_dict_full(X86CPU *cpu, QDict *props)
3989{
3990 ObjectPropertyIterator iter;
3991 ObjectProperty *prop;
3992
3993 object_property_iter_init(&iter, OBJECT(cpu));
3994 while ((prop = object_property_iter_next(&iter))) {
3995 /* skip read-only or write-only properties */
3996 if (!prop->get || !prop->set) {
3997 continue;
3998 }
3999
4000 /* "hotplugged" is the only property that is configurable
4001 * on the command-line but will be set differently on CPUs
4002 * created using "-cpu ... -smp ..." and by CPUs created
4003 * on the fly by x86_cpu_from_model() for querying. Skip it.
4004 */
4005 if (!strcmp(prop->name, "hotplugged")) {
4006 continue;
4007 }
4008 x86_cpu_expand_prop(cpu, props, prop->name);
4009 }
4010}
4011
4012static void object_apply_props(Object *obj, QDict *props, Error **errp)
4013{
4014 const QDictEntry *prop;
4015 Error *err = NULL;
4016
4017 for (prop = qdict_first(props); prop; prop = qdict_next(props, prop)) {
4018 object_property_set_qobject(obj, qdict_entry_value(prop),
4019 qdict_entry_key(prop), &err);
4020 if (err) {
4021 break;
4022 }
4023 }
4024
4025 error_propagate(errp, err);
4026}
4027
4028/* Create X86CPU object according to model+props specification */
4029static X86CPU *x86_cpu_from_model(const char *model, QDict *props, Error **errp)
4030{
4031 X86CPU *xc = NULL;
4032 X86CPUClass *xcc;
4033 Error *err = NULL;
4034
4035 xcc = X86_CPU_CLASS(cpu_class_by_name(TYPE_X86_CPU, model));
4036 if (xcc == NULL) {
4037 error_setg(&err, "CPU model '%s' not found", model);
4038 goto out;
4039 }
4040
4041 xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
4042 if (props) {
4043 object_apply_props(OBJECT(xc), props, &err);
4044 if (err) {
4045 goto out;
4046 }
4047 }
4048
4049 x86_cpu_expand_features(xc, &err);
4050 if (err) {
4051 goto out;
4052 }
4053
4054out:
4055 if (err) {
4056 error_propagate(errp, err);
4057 object_unref(OBJECT(xc));
4058 xc = NULL;
4059 }
4060 return xc;
4061}
4062
4063CpuModelExpansionInfo *
4064qmp_query_cpu_model_expansion(CpuModelExpansionType type,
4065 CpuModelInfo *model,
4066 Error **errp)
4067{
4068 X86CPU *xc = NULL;
4069 Error *err = NULL;
4070 CpuModelExpansionInfo *ret = g_new0(CpuModelExpansionInfo, 1);
4071 QDict *props = NULL;
4072 const char *base_name;
4073
4074 xc = x86_cpu_from_model(model->name,
4075 model->has_props ?
4076 qobject_to(QDict, model->props) :
4077 NULL, &err);
4078 if (err) {
4079 goto out;
4080 }
4081
4082 props = qdict_new();
4083 ret->model = g_new0(CpuModelInfo, 1);
4084 ret->model->props = QOBJECT(props);
4085 ret->model->has_props = true;
4086
4087 switch (type) {
4088 case CPU_MODEL_EXPANSION_TYPE_STATIC:
4089 /* Static expansion will be based on "base" only */
4090 base_name = "base";
4091 x86_cpu_to_dict(xc, props);
4092 break;
4093 case CPU_MODEL_EXPANSION_TYPE_FULL:
4094 /* As we don't return every single property, full expansion needs
4095 * to keep the original model name+props, and add extra
4096 * properties on top of that.
4097 */
4098 base_name = model->name;
4099 x86_cpu_to_dict_full(xc, props);
4100 break;
4101 default:
4102 error_setg(&err, "Unsupported expansion type");
4103 goto out;
4104 }
4105
4106 x86_cpu_to_dict(xc, props);
4107
4108 ret->model->name = g_strdup(base_name);
4109
4110out:
4111 object_unref(OBJECT(xc));
4112 if (err) {
4113 error_propagate(errp, err);
4114 qapi_free_CpuModelExpansionInfo(ret);
4115 ret = NULL;
4116 }
4117 return ret;
4118}
4119#endif /* !CONFIG_USER_ONLY */
4120
4121static gchar *x86_gdb_arch_name(CPUState *cs)
4122{
4123#ifdef TARGET_X86_64
4124 return g_strdup("i386:x86-64");
4125#else
4126 return g_strdup("i386");
4127#endif
4128}
4129
4130static void x86_cpu_cpudef_class_init(ObjectClass *oc, void *data)
4131{
4132 X86CPUDefinition *cpudef = data;
4133 X86CPUClass *xcc = X86_CPU_CLASS(oc);
4134
4135 xcc->cpu_def = cpudef;
4136 xcc->migration_safe = true;
4137}
4138
4139static void x86_register_cpudef_type(X86CPUDefinition *def)
4140{
4141 char *typename = x86_cpu_type_name(def->name);
4142 TypeInfo ti = {
4143 .name = typename,
4144 .parent = TYPE_X86_CPU,
4145 .class_init = x86_cpu_cpudef_class_init,
4146 .class_data = def,
4147 };
4148
4149 /* AMD aliases are handled at runtime based on CPUID vendor, so
4150 * they shouldn't be set on the CPU model table.
4151 */
4152 assert(!(def->features[FEAT_8000_0001_EDX] & CPUID_EXT2_AMD_ALIASES));
4153 /* catch mistakes instead of silently truncating model_id when too long */
4154 assert(def->model_id && strlen(def->model_id) <= 48);
4155
4156
4157 type_register(&ti);
4158 g_free(typename);
4159}
4160
4161#if !defined(CONFIG_USER_ONLY)
4162
4163void cpu_clear_apic_feature(CPUX86State *env)
4164{
4165 env->features[FEAT_1_EDX] &= ~CPUID_APIC;
4166}
4167
4168#endif /* !CONFIG_USER_ONLY */
4169
4170void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
4171 uint32_t *eax, uint32_t *ebx,
4172 uint32_t *ecx, uint32_t *edx)
4173{
4174 X86CPU *cpu = x86_env_get_cpu(env);
4175 CPUState *cs = CPU(cpu);
4176 uint32_t pkg_offset;
4177 uint32_t limit;
4178 uint32_t signature[3];
4179
4180 /* Calculate & apply limits for different index ranges */
4181 if (index >= 0xC0000000) {
4182 limit = env->cpuid_xlevel2;
4183 } else if (index >= 0x80000000) {
4184 limit = env->cpuid_xlevel;
4185 } else if (index >= 0x40000000) {
4186 limit = 0x40000001;
4187 } else {
4188 limit = env->cpuid_level;
4189 }
4190
4191 if (index > limit) {
4192 /* Intel documentation states that invalid EAX input will
4193 * return the same information as EAX=cpuid_level
4194 * (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
4195 */
4196 index = env->cpuid_level;
4197 }
4198
4199 switch(index) {
4200 case 0:
4201 *eax = env->cpuid_level;
4202 *ebx = env->cpuid_vendor1;
4203 *edx = env->cpuid_vendor2;
4204 *ecx = env->cpuid_vendor3;
4205 break;
4206 case 1:
4207 *eax = env->cpuid_version;
4208 *ebx = (cpu->apic_id << 24) |
4209 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
4210 *ecx = env->features[FEAT_1_ECX];
4211 if ((*ecx & CPUID_EXT_XSAVE) && (env->cr[4] & CR4_OSXSAVE_MASK)) {
4212 *ecx |= CPUID_EXT_OSXSAVE;
4213 }
4214 *edx = env->features[FEAT_1_EDX];
4215 if (cs->nr_cores * cs->nr_threads > 1) {
4216 *ebx |= (cs->nr_cores * cs->nr_threads) << 16;
4217 *edx |= CPUID_HT;
4218 }
4219 break;
4220 case 2:
4221 /* cache info: needed for Pentium Pro compatibility */
4222 if (cpu->cache_info_passthrough) {
4223 host_cpuid(index, 0, eax, ebx, ecx, edx);
4224 break;
4225 }
4226 *eax = 1; /* Number of CPUID[EAX=2] calls required */
4227 *ebx = 0;
4228 if (!cpu->enable_l3_cache) {
4229 *ecx = 0;
4230 } else {
4231 *ecx = cpuid2_cache_descriptor(env->cache_info_cpuid2.l3_cache);
4232 }
4233 *edx = (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1d_cache) << 16) |
4234 (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1i_cache) << 8) |
4235 (cpuid2_cache_descriptor(env->cache_info_cpuid2.l2_cache));
4236 break;
4237 case 4:
4238 /* cache info: needed for Core compatibility */
4239 if (cpu->cache_info_passthrough) {
4240 host_cpuid(index, count, eax, ebx, ecx, edx);
4241 /* QEMU gives out its own APIC IDs, never pass down bits 31..26. */
4242 *eax &= ~0xFC000000;
4243 if ((*eax & 31) && cs->nr_cores > 1) {
4244 *eax |= (cs->nr_cores - 1) << 26;
4245 }
4246 } else {
4247 *eax = 0;
4248 switch (count) {
4249 case 0: /* L1 dcache info */
4250 encode_cache_cpuid4(env->cache_info_cpuid4.l1d_cache,
4251 1, cs->nr_cores,
4252 eax, ebx, ecx, edx);
4253 break;
4254 case 1: /* L1 icache info */
4255 encode_cache_cpuid4(env->cache_info_cpuid4.l1i_cache,
4256 1, cs->nr_cores,
4257 eax, ebx, ecx, edx);
4258 break;
4259 case 2: /* L2 cache info */
4260 encode_cache_cpuid4(env->cache_info_cpuid4.l2_cache,
4261 cs->nr_threads, cs->nr_cores,
4262 eax, ebx, ecx, edx);
4263 break;
4264 case 3: /* L3 cache info */
4265 pkg_offset = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
4266 if (cpu->enable_l3_cache) {
4267 encode_cache_cpuid4(env->cache_info_cpuid4.l3_cache,
4268 (1 << pkg_offset), cs->nr_cores,
4269 eax, ebx, ecx, edx);
4270 break;
4271 }
4272 /* fall through */
4273 default: /* end of info */
4274 *eax = *ebx = *ecx = *edx = 0;
4275 break;
4276 }
4277 }
4278 break;
4279 case 5:
4280 /* MONITOR/MWAIT Leaf */
4281 *eax = cpu->mwait.eax; /* Smallest monitor-line size in bytes */
4282 *ebx = cpu->mwait.ebx; /* Largest monitor-line size in bytes */
4283 *ecx = cpu->mwait.ecx; /* flags */
4284 *edx = cpu->mwait.edx; /* mwait substates */
4285 break;
4286 case 6:
4287 /* Thermal and Power Leaf */
4288 *eax = env->features[FEAT_6_EAX];
4289 *ebx = 0;
4290 *ecx = 0;
4291 *edx = 0;
4292 break;
4293 case 7:
4294 /* Structured Extended Feature Flags Enumeration Leaf */
4295 if (count == 0) {
4296 *eax = 0; /* Maximum ECX value for sub-leaves */
4297 *ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
4298 *ecx = env->features[FEAT_7_0_ECX]; /* Feature flags */
4299 if ((*ecx & CPUID_7_0_ECX_PKU) && env->cr[4] & CR4_PKE_MASK) {
4300 *ecx |= CPUID_7_0_ECX_OSPKE;
4301 }
4302 *edx = env->features[FEAT_7_0_EDX]; /* Feature flags */
4303 } else {
4304 *eax = 0;
4305 *ebx = 0;
4306 *ecx = 0;
4307 *edx = 0;
4308 }
4309 break;
4310 case 9:
4311 /* Direct Cache Access Information Leaf */
4312 *eax = 0; /* Bits 0-31 in DCA_CAP MSR */
4313 *ebx = 0;
4314 *ecx = 0;
4315 *edx = 0;
4316 break;
4317 case 0xA:
4318 /* Architectural Performance Monitoring Leaf */
4319 if (kvm_enabled() && cpu->enable_pmu) {
4320 KVMState *s = cs->kvm_state;
4321
4322 *eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
4323 *ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
4324 *ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
4325 *edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
4326 } else if (hvf_enabled() && cpu->enable_pmu) {
4327 *eax = hvf_get_supported_cpuid(0xA, count, R_EAX);
4328 *ebx = hvf_get_supported_cpuid(0xA, count, R_EBX);
4329 *ecx = hvf_get_supported_cpuid(0xA, count, R_ECX);
4330 *edx = hvf_get_supported_cpuid(0xA, count, R_EDX);
4331 } else {
4332 *eax = 0;
4333 *ebx = 0;
4334 *ecx = 0;
4335 *edx = 0;
4336 }
4337 break;
4338 case 0xB:
4339 /* Extended Topology Enumeration Leaf */
4340 if (!cpu->enable_cpuid_0xb) {
4341 *eax = *ebx = *ecx = *edx = 0;
4342 break;
4343 }
4344
4345 *ecx = count & 0xff;
4346 *edx = cpu->apic_id;
4347
4348 switch (count) {
4349 case 0:
4350 *eax = apicid_core_offset(cs->nr_cores, cs->nr_threads);
4351 *ebx = cs->nr_threads;
4352 *ecx |= CPUID_TOPOLOGY_LEVEL_SMT;
4353 break;
4354 case 1:
4355 *eax = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
4356 *ebx = cs->nr_cores * cs->nr_threads;
4357 *ecx |= CPUID_TOPOLOGY_LEVEL_CORE;
4358 break;
4359 default:
4360 *eax = 0;
4361 *ebx = 0;
4362 *ecx |= CPUID_TOPOLOGY_LEVEL_INVALID;
4363 }
4364
4365 assert(!(*eax & ~0x1f));
4366 *ebx &= 0xffff; /* The count doesn't need to be reliable. */
4367 break;
4368 case 0xD: {
4369 /* Processor Extended State */
4370 *eax = 0;
4371 *ebx = 0;
4372 *ecx = 0;
4373 *edx = 0;
4374 if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
4375 break;
4376 }
4377
4378 if (count == 0) {
4379 *ecx = xsave_area_size(x86_cpu_xsave_components(cpu));
4380 *eax = env->features[FEAT_XSAVE_COMP_LO];
4381 *edx = env->features[FEAT_XSAVE_COMP_HI];
4382 *ebx = xsave_area_size(env->xcr0);
4383 } else if (count == 1) {
4384 *eax = env->features[FEAT_XSAVE];
4385 } else if (count < ARRAY_SIZE(x86_ext_save_areas)) {
4386 if ((x86_cpu_xsave_components(cpu) >> count) & 1) {
4387 const ExtSaveArea *esa = &x86_ext_save_areas[count];
4388 *eax = esa->size;
4389 *ebx = esa->offset;
4390 }
4391 }
4392 break;
4393 }
4394 case 0x14: {
4395 /* Intel Processor Trace Enumeration */
4396 *eax = 0;
4397 *ebx = 0;
4398 *ecx = 0;
4399 *edx = 0;
4400 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) ||
4401 !kvm_enabled()) {
4402 break;
4403 }
4404
4405 if (count == 0) {
4406 *eax = INTEL_PT_MAX_SUBLEAF;
4407 *ebx = INTEL_PT_MINIMAL_EBX;
4408 *ecx = INTEL_PT_MINIMAL_ECX;
4409 } else if (count == 1) {
4410 *eax = INTEL_PT_MTC_BITMAP | INTEL_PT_ADDR_RANGES_NUM;
4411 *ebx = INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP;
4412 }
4413 break;
4414 }
4415 case 0x40000000:
4416 /*
4417 * CPUID code in kvm_arch_init_vcpu() ignores stuff
4418 * set here, but we restrict to TCG none the less.
4419 */
4420 if (tcg_enabled() && cpu->expose_tcg) {
4421 memcpy(signature, "TCGTCGTCGTCG", 12);
4422 *eax = 0x40000001;
4423 *ebx = signature[0];
4424 *ecx = signature[1];
4425 *edx = signature[2];
4426 } else {
4427 *eax = 0;
4428 *ebx = 0;
4429 *ecx = 0;
4430 *edx = 0;
4431 }
4432 break;
4433 case 0x40000001:
4434 *eax = 0;
4435 *ebx = 0;
4436 *ecx = 0;
4437 *edx = 0;
4438 break;
4439 case 0x80000000:
4440 *eax = env->cpuid_xlevel;
4441 *ebx = env->cpuid_vendor1;
4442 *edx = env->cpuid_vendor2;
4443 *ecx = env->cpuid_vendor3;
4444 break;
4445 case 0x80000001:
4446 *eax = env->cpuid_version;
4447 *ebx = 0;
4448 *ecx = env->features[FEAT_8000_0001_ECX];
4449 *edx = env->features[FEAT_8000_0001_EDX];
4450
4451 /* The Linux kernel checks for the CMPLegacy bit and
4452 * discards multiple thread information if it is set.
4453 * So don't set it here for Intel to make Linux guests happy.
4454 */
4455 if (cs->nr_cores * cs->nr_threads > 1) {
4456 if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 ||
4457 env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 ||
4458 env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) {
4459 *ecx |= 1 << 1; /* CmpLegacy bit */
4460 }
4461 }
4462 break;
4463 case 0x80000002:
4464 case 0x80000003:
4465 case 0x80000004:
4466 *eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
4467 *ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
4468 *ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
4469 *edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
4470 break;
4471 case 0x80000005:
4472 /* cache info (L1 cache) */
4473 if (cpu->cache_info_passthrough) {
4474 host_cpuid(index, 0, eax, ebx, ecx, edx);
4475 break;
4476 }
4477 *eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \
4478 (L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES);
4479 *ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \
4480 (L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES);
4481 *ecx = encode_cache_cpuid80000005(env->cache_info_amd.l1d_cache);
4482 *edx = encode_cache_cpuid80000005(env->cache_info_amd.l1i_cache);
4483 break;
4484 case 0x80000006:
4485 /* cache info (L2 cache) */
4486 if (cpu->cache_info_passthrough) {
4487 host_cpuid(index, 0, eax, ebx, ecx, edx);
4488 break;
4489 }
4490 *eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \
4491 (L2_DTLB_2M_ENTRIES << 16) | \
4492 (AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \
4493 (L2_ITLB_2M_ENTRIES);
4494 *ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \
4495 (L2_DTLB_4K_ENTRIES << 16) | \
4496 (AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \
4497 (L2_ITLB_4K_ENTRIES);
4498 encode_cache_cpuid80000006(env->cache_info_amd.l2_cache,
4499 cpu->enable_l3_cache ?
4500 env->cache_info_amd.l3_cache : NULL,
4501 ecx, edx);
4502 break;
4503 case 0x80000007:
4504 *eax = 0;
4505 *ebx = 0;
4506 *ecx = 0;
4507 *edx = env->features[FEAT_8000_0007_EDX];
4508 break;
4509 case 0x80000008:
4510 /* virtual & phys address size in low 2 bytes. */
4511 if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
4512 /* 64 bit processor */
4513 *eax = cpu->phys_bits; /* configurable physical bits */
4514 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_LA57) {
4515 *eax |= 0x00003900; /* 57 bits virtual */
4516 } else {
4517 *eax |= 0x00003000; /* 48 bits virtual */
4518 }
4519 } else {
4520 *eax = cpu->phys_bits;
4521 }
4522 *ebx = env->features[FEAT_8000_0008_EBX];
4523 *ecx = 0;
4524 *edx = 0;
4525 if (cs->nr_cores * cs->nr_threads > 1) {
4526 *ecx |= (cs->nr_cores * cs->nr_threads) - 1;
4527 }
4528 break;
4529 case 0x8000000A:
4530 if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
4531 *eax = 0x00000001; /* SVM Revision */
4532 *ebx = 0x00000010; /* nr of ASIDs */
4533 *ecx = 0;
4534 *edx = env->features[FEAT_SVM]; /* optional features */
4535 } else {
4536 *eax = 0;
4537 *ebx = 0;
4538 *ecx = 0;
4539 *edx = 0;
4540 }
4541 break;
4542 case 0x8000001D:
4543 *eax = 0;
4544 switch (count) {
4545 case 0: /* L1 dcache info */
4546 encode_cache_cpuid8000001d(env->cache_info_amd.l1d_cache, cs,
4547 eax, ebx, ecx, edx);
4548 break;
4549 case 1: /* L1 icache info */
4550 encode_cache_cpuid8000001d(env->cache_info_amd.l1i_cache, cs,
4551 eax, ebx, ecx, edx);
4552 break;
4553 case 2: /* L2 cache info */
4554 encode_cache_cpuid8000001d(env->cache_info_amd.l2_cache, cs,
4555 eax, ebx, ecx, edx);
4556 break;
4557 case 3: /* L3 cache info */
4558 encode_cache_cpuid8000001d(env->cache_info_amd.l3_cache, cs,
4559 eax, ebx, ecx, edx);
4560 break;
4561 default: /* end of info */
4562 *eax = *ebx = *ecx = *edx = 0;
4563 break;
4564 }
4565 break;
4566 case 0x8000001E:
4567 assert(cpu->core_id <= 255);
4568 encode_topo_cpuid8000001e(cs, cpu,
4569 eax, ebx, ecx, edx);
4570 break;
4571 case 0xC0000000:
4572 *eax = env->cpuid_xlevel2;
4573 *ebx = 0;
4574 *ecx = 0;
4575 *edx = 0;
4576 break;
4577 case 0xC0000001:
4578 /* Support for VIA CPU's CPUID instruction */
4579 *eax = env->cpuid_version;
4580 *ebx = 0;
4581 *ecx = 0;
4582 *edx = env->features[FEAT_C000_0001_EDX];
4583 break;
4584 case 0xC0000002:
4585 case 0xC0000003:
4586 case 0xC0000004:
4587 /* Reserved for the future, and now filled with zero */
4588 *eax = 0;
4589 *ebx = 0;
4590 *ecx = 0;
4591 *edx = 0;
4592 break;
4593 case 0x8000001F:
4594 *eax = sev_enabled() ? 0x2 : 0;
4595 *ebx = sev_get_cbit_position();
4596 *ebx |= sev_get_reduced_phys_bits() << 6;
4597 *ecx = 0;
4598 *edx = 0;
4599 break;
4600 default:
4601 /* reserved values: zero */
4602 *eax = 0;
4603 *ebx = 0;
4604 *ecx = 0;
4605 *edx = 0;
4606 break;
4607 }
4608}
4609
4610/* CPUClass::reset() */
4611static void x86_cpu_reset(CPUState *s)
4612{
4613 X86CPU *cpu = X86_CPU(s);
4614 X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
4615 CPUX86State *env = &cpu->env;
4616 target_ulong cr4;
4617 uint64_t xcr0;
4618 int i;
4619
4620 xcc->parent_reset(s);
4621
4622 memset(env, 0, offsetof(CPUX86State, end_reset_fields));
4623
4624 env->old_exception = -1;
4625
4626 /* init to reset state */
4627
4628 env->hflags2 |= HF2_GIF_MASK;
4629
4630 cpu_x86_update_cr0(env, 0x60000010);
4631 env->a20_mask = ~0x0;
4632 env->smbase = 0x30000;
4633 env->msr_smi_count = 0;
4634
4635 env->idt.limit = 0xffff;
4636 env->gdt.limit = 0xffff;
4637 env->ldt.limit = 0xffff;
4638 env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
4639 env->tr.limit = 0xffff;
4640 env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
4641
4642 cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
4643 DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
4644 DESC_R_MASK | DESC_A_MASK);
4645 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
4646 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4647 DESC_A_MASK);
4648 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
4649 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4650 DESC_A_MASK);
4651 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
4652 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4653 DESC_A_MASK);
4654 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
4655 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4656 DESC_A_MASK);
4657 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
4658 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4659 DESC_A_MASK);
4660
4661 env->eip = 0xfff0;
4662 env->regs[R_EDX] = env->cpuid_version;
4663
4664 env->eflags = 0x2;
4665
4666 /* FPU init */
4667 for (i = 0; i < 8; i++) {
4668 env->fptags[i] = 1;
4669 }
4670 cpu_set_fpuc(env, 0x37f);
4671
4672 env->mxcsr = 0x1f80;
4673 /* All units are in INIT state. */
4674 env->xstate_bv = 0;
4675
4676 env->pat = 0x0007040600070406ULL;
4677 env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
4678
4679 memset(env->dr, 0, sizeof(env->dr));
4680 env->dr[6] = DR6_FIXED_1;
4681 env->dr[7] = DR7_FIXED_1;
4682 cpu_breakpoint_remove_all(s, BP_CPU);
4683 cpu_watchpoint_remove_all(s, BP_CPU);
4684
4685 cr4 = 0;
4686 xcr0 = XSTATE_FP_MASK;
4687
4688#ifdef CONFIG_USER_ONLY
4689 /* Enable all the features for user-mode. */
4690 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4691 xcr0 |= XSTATE_SSE_MASK;
4692 }
4693 for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
4694 const ExtSaveArea *esa = &x86_ext_save_areas[i];
4695 if (env->features[esa->feature] & esa->bits) {
4696 xcr0 |= 1ull << i;
4697 }
4698 }
4699
4700 if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) {
4701 cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK;
4702 }
4703 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) {
4704 cr4 |= CR4_FSGSBASE_MASK;
4705 }
4706#endif
4707
4708 env->xcr0 = xcr0;
4709 cpu_x86_update_cr4(env, cr4);
4710
4711 /*
4712 * SDM 11.11.5 requires:
4713 * - IA32_MTRR_DEF_TYPE MSR.E = 0
4714 * - IA32_MTRR_PHYSMASKn.V = 0
4715 * All other bits are undefined. For simplification, zero it all.
4716 */
4717 env->mtrr_deftype = 0;
4718 memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
4719 memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
4720
4721 env->interrupt_injected = -1;
4722 env->exception_injected = -1;
4723 env->nmi_injected = false;
4724#if !defined(CONFIG_USER_ONLY)
4725 /* We hard-wire the BSP to the first CPU. */
4726 apic_designate_bsp(cpu->apic_state, s->cpu_index == 0);
4727
4728 s->halted = !cpu_is_bsp(cpu);
4729
4730 if (kvm_enabled()) {
4731 kvm_arch_reset_vcpu(cpu);
4732 }
4733 else if (hvf_enabled()) {
4734 hvf_reset_vcpu(s);
4735 }
4736#endif
4737}
4738
4739#ifndef CONFIG_USER_ONLY
4740bool cpu_is_bsp(X86CPU *cpu)
4741{
4742 return cpu_get_apic_base(cpu->apic_state) & MSR_IA32_APICBASE_BSP;
4743}
4744
4745/* TODO: remove me, when reset over QOM tree is implemented */
4746static void x86_cpu_machine_reset_cb(void *opaque)
4747{
4748 X86CPU *cpu = opaque;
4749 cpu_reset(CPU(cpu));
4750}
4751#endif
4752
4753static void mce_init(X86CPU *cpu)
4754{
4755 CPUX86State *cenv = &cpu->env;
4756 unsigned int bank;
4757
4758 if (((cenv->cpuid_version >> 8) & 0xf) >= 6
4759 && (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
4760 (CPUID_MCE | CPUID_MCA)) {
4761 cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF |
4762 (cpu->enable_lmce ? MCG_LMCE_P : 0);
4763 cenv->mcg_ctl = ~(uint64_t)0;
4764 for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
4765 cenv->mce_banks[bank * 4] = ~(uint64_t)0;
4766 }
4767 }
4768}
4769
4770#ifndef CONFIG_USER_ONLY
4771APICCommonClass *apic_get_class(void)
4772{
4773 const char *apic_type = "apic";
4774
4775 /* TODO: in-kernel irqchip for hvf */
4776 if (kvm_apic_in_kernel()) {
4777 apic_type = "kvm-apic";
4778 } else if (xen_enabled()) {
4779 apic_type = "xen-apic";
4780 }
4781
4782 return APIC_COMMON_CLASS(object_class_by_name(apic_type));
4783}
4784
4785static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
4786{
4787 APICCommonState *apic;
4788 ObjectClass *apic_class = OBJECT_CLASS(apic_get_class());
4789
4790 cpu->apic_state = DEVICE(object_new(object_class_get_name(apic_class)));
4791
4792 object_property_add_child(OBJECT(cpu), "lapic",
4793 OBJECT(cpu->apic_state), &error_abort);
4794 object_unref(OBJECT(cpu->apic_state));
4795
4796 qdev_prop_set_uint32(cpu->apic_state, "id", cpu->apic_id);
4797 /* TODO: convert to link<> */
4798 apic = APIC_COMMON(cpu->apic_state);
4799 apic->cpu = cpu;
4800 apic->apicbase = APIC_DEFAULT_ADDRESS | MSR_IA32_APICBASE_ENABLE;
4801}
4802
4803static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
4804{
4805 APICCommonState *apic;
4806 static bool apic_mmio_map_once;
4807
4808 if (cpu->apic_state == NULL) {
4809 return;
4810 }
4811 object_property_set_bool(OBJECT(cpu->apic_state), true, "realized",
4812 errp);
4813
4814 /* Map APIC MMIO area */
4815 apic = APIC_COMMON(cpu->apic_state);
4816 if (!apic_mmio_map_once) {
4817 memory_region_add_subregion_overlap(get_system_memory(),
4818 apic->apicbase &
4819 MSR_IA32_APICBASE_BASE,
4820 &apic->io_memory,
4821 0x1000);
4822 apic_mmio_map_once = true;
4823 }
4824}
4825
4826static void x86_cpu_machine_done(Notifier *n, void *unused)
4827{
4828 X86CPU *cpu = container_of(n, X86CPU, machine_done);
4829 MemoryRegion *smram =
4830 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
4831
4832 if (smram) {
4833 cpu->smram = g_new(MemoryRegion, 1);
4834 memory_region_init_alias(cpu->smram, OBJECT(cpu), "smram",
4835 smram, 0, 1ull << 32);
4836 memory_region_set_enabled(cpu->smram, true);
4837 memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->smram, 1);
4838 }
4839}
4840#else
4841static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
4842{
4843}
4844#endif
4845
4846/* Note: Only safe for use on x86(-64) hosts */
4847static uint32_t x86_host_phys_bits(void)
4848{
4849 uint32_t eax;
4850 uint32_t host_phys_bits;
4851
4852 host_cpuid(0x80000000, 0, &eax, NULL, NULL, NULL);
4853 if (eax >= 0x80000008) {
4854 host_cpuid(0x80000008, 0, &eax, NULL, NULL, NULL);
4855 /* Note: According to AMD doc 25481 rev 2.34 they have a field
4856 * at 23:16 that can specify a maximum physical address bits for
4857 * the guest that can override this value; but I've not seen
4858 * anything with that set.
4859 */
4860 host_phys_bits = eax & 0xff;
4861 } else {
4862 /* It's an odd 64 bit machine that doesn't have the leaf for
4863 * physical address bits; fall back to 36 that's most older
4864 * Intel.
4865 */
4866 host_phys_bits = 36;
4867 }
4868
4869 return host_phys_bits;
4870}
4871
4872static void x86_cpu_adjust_level(X86CPU *cpu, uint32_t *min, uint32_t value)
4873{
4874 if (*min < value) {
4875 *min = value;
4876 }
4877}
4878
4879/* Increase cpuid_min_{level,xlevel,xlevel2} automatically, if appropriate */
4880static void x86_cpu_adjust_feat_level(X86CPU *cpu, FeatureWord w)
4881{
4882 CPUX86State *env = &cpu->env;
4883 FeatureWordInfo *fi = &feature_word_info[w];
4884 uint32_t eax = fi->cpuid.eax;
4885 uint32_t region = eax & 0xF0000000;
4886
4887 assert(feature_word_info[w].type == CPUID_FEATURE_WORD);
4888 if (!env->features[w]) {
4889 return;
4890 }
4891
4892 switch (region) {
4893 case 0x00000000:
4894 x86_cpu_adjust_level(cpu, &env->cpuid_min_level, eax);
4895 break;
4896 case 0x80000000:
4897 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, eax);
4898 break;
4899 case 0xC0000000:
4900 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel2, eax);
4901 break;
4902 }
4903}
4904
4905/* Calculate XSAVE components based on the configured CPU feature flags */
4906static void x86_cpu_enable_xsave_components(X86CPU *cpu)
4907{
4908 CPUX86State *env = &cpu->env;
4909 int i;
4910 uint64_t mask;
4911
4912 if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
4913 return;
4914 }
4915
4916 mask = 0;
4917 for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
4918 const ExtSaveArea *esa = &x86_ext_save_areas[i];
4919 if (env->features[esa->feature] & esa->bits) {
4920 mask |= (1ULL << i);
4921 }
4922 }
4923
4924 env->features[FEAT_XSAVE_COMP_LO] = mask;
4925 env->features[FEAT_XSAVE_COMP_HI] = mask >> 32;
4926}
4927
4928/***** Steps involved on loading and filtering CPUID data
4929 *
4930 * When initializing and realizing a CPU object, the steps
4931 * involved in setting up CPUID data are:
4932 *
4933 * 1) Loading CPU model definition (X86CPUDefinition). This is
4934 * implemented by x86_cpu_load_def() and should be completely
4935 * transparent, as it is done automatically by instance_init.
4936 * No code should need to look at X86CPUDefinition structs
4937 * outside instance_init.
4938 *
4939 * 2) CPU expansion. This is done by realize before CPUID
4940 * filtering, and will make sure host/accelerator data is
4941 * loaded for CPU models that depend on host capabilities
4942 * (e.g. "host"). Done by x86_cpu_expand_features().
4943 *
4944 * 3) CPUID filtering. This initializes extra data related to
4945 * CPUID, and checks if the host supports all capabilities
4946 * required by the CPU. Runnability of a CPU model is
4947 * determined at this step. Done by x86_cpu_filter_features().
4948 *
4949 * Some operations don't require all steps to be performed.
4950 * More precisely:
4951 *
4952 * - CPU instance creation (instance_init) will run only CPU
4953 * model loading. CPU expansion can't run at instance_init-time
4954 * because host/accelerator data may be not available yet.
4955 * - CPU realization will perform both CPU model expansion and CPUID
4956 * filtering, and return an error in case one of them fails.
4957 * - query-cpu-definitions needs to run all 3 steps. It needs
4958 * to run CPUID filtering, as the 'unavailable-features'
4959 * field is set based on the filtering results.
4960 * - The query-cpu-model-expansion QMP command only needs to run
4961 * CPU model loading and CPU expansion. It should not filter
4962 * any CPUID data based on host capabilities.
4963 */
4964
4965/* Expand CPU configuration data, based on configured features
4966 * and host/accelerator capabilities when appropriate.
4967 */
4968static void x86_cpu_expand_features(X86CPU *cpu, Error **errp)
4969{
4970 CPUX86State *env = &cpu->env;
4971 FeatureWord w;
4972 GList *l;
4973 Error *local_err = NULL;
4974
4975 /*TODO: Now cpu->max_features doesn't overwrite features
4976 * set using QOM properties, and we can convert
4977 * plus_features & minus_features to global properties
4978 * inside x86_cpu_parse_featurestr() too.
4979 */
4980 if (cpu->max_features) {
4981 for (w = 0; w < FEATURE_WORDS; w++) {
4982 /* Override only features that weren't set explicitly
4983 * by the user.
4984 */
4985 env->features[w] |=
4986 x86_cpu_get_supported_feature_word(w, cpu->migratable) &
4987 ~env->user_features[w] & \
4988 ~feature_word_info[w].no_autoenable_flags;
4989 }
4990 }
4991
4992 for (l = plus_features; l; l = l->next) {
4993 const char *prop = l->data;
4994 object_property_set_bool(OBJECT(cpu), true, prop, &local_err);
4995 if (local_err) {
4996 goto out;
4997 }
4998 }
4999
5000 for (l = minus_features; l; l = l->next) {
5001 const char *prop = l->data;
5002 object_property_set_bool(OBJECT(cpu), false, prop, &local_err);
5003 if (local_err) {
5004 goto out;
5005 }
5006 }
5007
5008 if (!kvm_enabled() || !cpu->expose_kvm) {
5009 env->features[FEAT_KVM] = 0;
5010 }
5011
5012 x86_cpu_enable_xsave_components(cpu);
5013
5014 /* CPUID[EAX=7,ECX=0].EBX always increased level automatically: */
5015 x86_cpu_adjust_feat_level(cpu, FEAT_7_0_EBX);
5016 if (cpu->full_cpuid_auto_level) {
5017 x86_cpu_adjust_feat_level(cpu, FEAT_1_EDX);
5018 x86_cpu_adjust_feat_level(cpu, FEAT_1_ECX);
5019 x86_cpu_adjust_feat_level(cpu, FEAT_6_EAX);
5020 x86_cpu_adjust_feat_level(cpu, FEAT_7_0_ECX);
5021 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_EDX);
5022 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_ECX);
5023 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0007_EDX);
5024 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0008_EBX);
5025 x86_cpu_adjust_feat_level(cpu, FEAT_C000_0001_EDX);
5026 x86_cpu_adjust_feat_level(cpu, FEAT_SVM);
5027 x86_cpu_adjust_feat_level(cpu, FEAT_XSAVE);
5028
5029 /* Intel Processor Trace requires CPUID[0x14] */
5030 if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) &&
5031 kvm_enabled() && cpu->intel_pt_auto_level) {
5032 x86_cpu_adjust_level(cpu, &cpu->env.cpuid_min_level, 0x14);
5033 }
5034
5035 /* SVM requires CPUID[0x8000000A] */
5036 if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
5037 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000000A);
5038 }
5039
5040 /* SEV requires CPUID[0x8000001F] */
5041 if (sev_enabled()) {
5042 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000001F);
5043 }
5044 }
5045
5046 /* Set cpuid_*level* based on cpuid_min_*level, if not explicitly set */
5047 if (env->cpuid_level == UINT32_MAX) {
5048 env->cpuid_level = env->cpuid_min_level;
5049 }
5050 if (env->cpuid_xlevel == UINT32_MAX) {
5051 env->cpuid_xlevel = env->cpuid_min_xlevel;
5052 }
5053 if (env->cpuid_xlevel2 == UINT32_MAX) {
5054 env->cpuid_xlevel2 = env->cpuid_min_xlevel2;
5055 }
5056
5057out:
5058 if (local_err != NULL) {
5059 error_propagate(errp, local_err);
5060 }
5061}
5062
5063/*
5064 * Finishes initialization of CPUID data, filters CPU feature
5065 * words based on host availability of each feature.
5066 *
5067 * Returns: 0 if all flags are supported by the host, non-zero otherwise.
5068 */
5069static int x86_cpu_filter_features(X86CPU *cpu)
5070{
5071 CPUX86State *env = &cpu->env;
5072 FeatureWord w;
5073 int rv = 0;
5074
5075 for (w = 0; w < FEATURE_WORDS; w++) {
5076 uint32_t host_feat =
5077 x86_cpu_get_supported_feature_word(w, false);
5078 uint32_t requested_features = env->features[w];
5079 env->features[w] &= host_feat;
5080 cpu->filtered_features[w] = requested_features & ~env->features[w];
5081 if (cpu->filtered_features[w]) {
5082 rv = 1;
5083 }
5084 }
5085
5086 if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) &&
5087 kvm_enabled()) {
5088 KVMState *s = CPU(cpu)->kvm_state;
5089 uint32_t eax_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EAX);
5090 uint32_t ebx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EBX);
5091 uint32_t ecx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_ECX);
5092 uint32_t eax_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EAX);
5093 uint32_t ebx_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EBX);
5094
5095 if (!eax_0 ||
5096 ((ebx_0 & INTEL_PT_MINIMAL_EBX) != INTEL_PT_MINIMAL_EBX) ||
5097 ((ecx_0 & INTEL_PT_MINIMAL_ECX) != INTEL_PT_MINIMAL_ECX) ||
5098 ((eax_1 & INTEL_PT_MTC_BITMAP) != INTEL_PT_MTC_BITMAP) ||
5099 ((eax_1 & INTEL_PT_ADDR_RANGES_NUM_MASK) <
5100 INTEL_PT_ADDR_RANGES_NUM) ||
5101 ((ebx_1 & (INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) !=
5102 (INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) ||
5103 (ecx_0 & INTEL_PT_IP_LIP)) {
5104 /*
5105 * Processor Trace capabilities aren't configurable, so if the
5106 * host can't emulate the capabilities we report on
5107 * cpu_x86_cpuid(), intel-pt can't be enabled on the current host.
5108 */
5109 env->features[FEAT_7_0_EBX] &= ~CPUID_7_0_EBX_INTEL_PT;
5110 cpu->filtered_features[FEAT_7_0_EBX] |= CPUID_7_0_EBX_INTEL_PT;
5111 rv = 1;
5112 }
5113 }
5114
5115 return rv;
5116}
5117
5118#define IS_INTEL_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_INTEL_1 && \
5119 (env)->cpuid_vendor2 == CPUID_VENDOR_INTEL_2 && \
5120 (env)->cpuid_vendor3 == CPUID_VENDOR_INTEL_3)
5121#define IS_AMD_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && \
5122 (env)->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && \
5123 (env)->cpuid_vendor3 == CPUID_VENDOR_AMD_3)
5124static void x86_cpu_realizefn(DeviceState *dev, Error **errp)
5125{
5126 CPUState *cs = CPU(dev);
5127 X86CPU *cpu = X86_CPU(dev);
5128 X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
5129 CPUX86State *env = &cpu->env;
5130 Error *local_err = NULL;
5131 static bool ht_warned;
5132
5133 if (xcc->host_cpuid_required) {
5134 if (!accel_uses_host_cpuid()) {
5135 char *name = x86_cpu_class_get_model_name(xcc);
5136 error_setg(&local_err, "CPU model '%s' requires KVM", name);
5137 g_free(name);
5138 goto out;
5139 }
5140
5141 if (enable_cpu_pm) {
5142 host_cpuid(5, 0, &cpu->mwait.eax, &cpu->mwait.ebx,
5143 &cpu->mwait.ecx, &cpu->mwait.edx);
5144 env->features[FEAT_1_ECX] |= CPUID_EXT_MONITOR;
5145 }
5146 }
5147
5148 /* mwait extended info: needed for Core compatibility */
5149 /* We always wake on interrupt even if host does not have the capability */
5150 cpu->mwait.ecx |= CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
5151
5152 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
5153 error_setg(errp, "apic-id property was not initialized properly");
5154 return;
5155 }
5156
5157 x86_cpu_expand_features(cpu, &local_err);
5158 if (local_err) {
5159 goto out;
5160 }
5161
5162 if (x86_cpu_filter_features(cpu) &&
5163 (cpu->check_cpuid || cpu->enforce_cpuid)) {
5164 x86_cpu_report_filtered_features(cpu);
5165 if (cpu->enforce_cpuid) {
5166 error_setg(&local_err,
5167 accel_uses_host_cpuid() ?
5168 "Host doesn't support requested features" :
5169 "TCG doesn't support requested features");
5170 goto out;
5171 }
5172 }
5173
5174 /* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
5175 * CPUID[1].EDX.
5176 */
5177 if (IS_AMD_CPU(env)) {
5178 env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
5179 env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
5180 & CPUID_EXT2_AMD_ALIASES);
5181 }
5182
5183 /* For 64bit systems think about the number of physical bits to present.
5184 * ideally this should be the same as the host; anything other than matching
5185 * the host can cause incorrect guest behaviour.
5186 * QEMU used to pick the magic value of 40 bits that corresponds to
5187 * consumer AMD devices but nothing else.
5188 */
5189 if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
5190 if (accel_uses_host_cpuid()) {
5191 uint32_t host_phys_bits = x86_host_phys_bits();
5192 static bool warned;
5193
5194 if (cpu->host_phys_bits) {
5195 /* The user asked for us to use the host physical bits */
5196 cpu->phys_bits = host_phys_bits;
5197 if (cpu->host_phys_bits_limit &&
5198 cpu->phys_bits > cpu->host_phys_bits_limit) {
5199 cpu->phys_bits = cpu->host_phys_bits_limit;
5200 }
5201 }
5202
5203 /* Print a warning if the user set it to a value that's not the
5204 * host value.
5205 */
5206 if (cpu->phys_bits != host_phys_bits && cpu->phys_bits != 0 &&
5207 !warned) {
5208 warn_report("Host physical bits (%u)"
5209 " does not match phys-bits property (%u)",
5210 host_phys_bits, cpu->phys_bits);
5211 warned = true;
5212 }
5213
5214 if (cpu->phys_bits &&
5215 (cpu->phys_bits > TARGET_PHYS_ADDR_SPACE_BITS ||
5216 cpu->phys_bits < 32)) {
5217 error_setg(errp, "phys-bits should be between 32 and %u "
5218 " (but is %u)",
5219 TARGET_PHYS_ADDR_SPACE_BITS, cpu->phys_bits);
5220 return;
5221 }
5222 } else {
5223 if (cpu->phys_bits && cpu->phys_bits != TCG_PHYS_ADDR_BITS) {
5224 error_setg(errp, "TCG only supports phys-bits=%u",
5225 TCG_PHYS_ADDR_BITS);
5226 return;
5227 }
5228 }
5229 /* 0 means it was not explicitly set by the user (or by machine
5230 * compat_props or by the host code above). In this case, the default
5231 * is the value used by TCG (40).
5232 */
5233 if (cpu->phys_bits == 0) {
5234 cpu->phys_bits = TCG_PHYS_ADDR_BITS;
5235 }
5236 } else {
5237 /* For 32 bit systems don't use the user set value, but keep
5238 * phys_bits consistent with what we tell the guest.
5239 */
5240 if (cpu->phys_bits != 0) {
5241 error_setg(errp, "phys-bits is not user-configurable in 32 bit");
5242 return;
5243 }
5244
5245 if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
5246 cpu->phys_bits = 36;
5247 } else {
5248 cpu->phys_bits = 32;
5249 }
5250 }
5251
5252 /* Cache information initialization */
5253 if (!cpu->legacy_cache) {
5254 if (!xcc->cpu_def || !xcc->cpu_def->cache_info) {
5255 char *name = x86_cpu_class_get_model_name(xcc);
5256 error_setg(errp,
5257 "CPU model '%s' doesn't support legacy-cache=off", name);
5258 g_free(name);
5259 return;
5260 }
5261 env->cache_info_cpuid2 = env->cache_info_cpuid4 = env->cache_info_amd =
5262 *xcc->cpu_def->cache_info;
5263 } else {
5264 /* Build legacy cache information */
5265 env->cache_info_cpuid2.l1d_cache = &legacy_l1d_cache;
5266 env->cache_info_cpuid2.l1i_cache = &legacy_l1i_cache;
5267 env->cache_info_cpuid2.l2_cache = &legacy_l2_cache_cpuid2;
5268 env->cache_info_cpuid2.l3_cache = &legacy_l3_cache;
5269
5270 env->cache_info_cpuid4.l1d_cache = &legacy_l1d_cache;
5271 env->cache_info_cpuid4.l1i_cache = &legacy_l1i_cache;
5272 env->cache_info_cpuid4.l2_cache = &legacy_l2_cache;
5273 env->cache_info_cpuid4.l3_cache = &legacy_l3_cache;
5274
5275 env->cache_info_amd.l1d_cache = &legacy_l1d_cache_amd;
5276 env->cache_info_amd.l1i_cache = &legacy_l1i_cache_amd;
5277 env->cache_info_amd.l2_cache = &legacy_l2_cache_amd;
5278 env->cache_info_amd.l3_cache = &legacy_l3_cache;
5279 }
5280
5281
5282 cpu_exec_realizefn(cs, &local_err);
5283 if (local_err != NULL) {
5284 error_propagate(errp, local_err);
5285 return;
5286 }
5287
5288#ifndef CONFIG_USER_ONLY
5289 qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
5290
5291 if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) {
5292 x86_cpu_apic_create(cpu, &local_err);
5293 if (local_err != NULL) {
5294 goto out;
5295 }
5296 }
5297#endif
5298
5299 mce_init(cpu);
5300
5301#ifndef CONFIG_USER_ONLY
5302 if (tcg_enabled()) {
5303 cpu->cpu_as_mem = g_new(MemoryRegion, 1);
5304 cpu->cpu_as_root = g_new(MemoryRegion, 1);
5305
5306 /* Outer container... */
5307 memory_region_init(cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull);
5308 memory_region_set_enabled(cpu->cpu_as_root, true);
5309
5310 /* ... with two regions inside: normal system memory with low
5311 * priority, and...
5312 */
5313 memory_region_init_alias(cpu->cpu_as_mem, OBJECT(cpu), "memory",
5314 get_system_memory(), 0, ~0ull);
5315 memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0);
5316 memory_region_set_enabled(cpu->cpu_as_mem, true);
5317
5318 cs->num_ases = 2;
5319 cpu_address_space_init(cs, 0, "cpu-memory", cs->memory);
5320 cpu_address_space_init(cs, 1, "cpu-smm", cpu->cpu_as_root);
5321
5322 /* ... SMRAM with higher priority, linked from /machine/smram. */
5323 cpu->machine_done.notify = x86_cpu_machine_done;
5324 qemu_add_machine_init_done_notifier(&cpu->machine_done);
5325 }
5326#endif
5327
5328 qemu_init_vcpu(cs);
5329
5330 /*
5331 * Most Intel and certain AMD CPUs support hyperthreading. Even though QEMU
5332 * fixes this issue by adjusting CPUID_0000_0001_EBX and CPUID_8000_0008_ECX
5333 * based on inputs (sockets,cores,threads), it is still better to give
5334 * users a warning.
5335 *
5336 * NOTE: the following code has to follow qemu_init_vcpu(). Otherwise
5337 * cs->nr_threads hasn't be populated yet and the checking is incorrect.
5338 */
5339 if (IS_AMD_CPU(env) &&
5340 !(env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_TOPOEXT) &&
5341 cs->nr_threads > 1 && !ht_warned) {
5342 warn_report("This family of AMD CPU doesn't support "
5343 "hyperthreading(%d)",
5344 cs->nr_threads);
5345 error_printf("Please configure -smp options properly"
5346 " or try enabling topoext feature.\n");
5347 ht_warned = true;
5348 }
5349
5350 x86_cpu_apic_realize(cpu, &local_err);
5351 if (local_err != NULL) {
5352 goto out;
5353 }
5354 cpu_reset(cs);
5355
5356 xcc->parent_realize(dev, &local_err);
5357
5358out:
5359 if (local_err != NULL) {
5360 error_propagate(errp, local_err);
5361 return;
5362 }
5363}
5364
5365static void x86_cpu_unrealizefn(DeviceState *dev, Error **errp)
5366{
5367 X86CPU *cpu = X86_CPU(dev);
5368 X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
5369 Error *local_err = NULL;
5370
5371#ifndef CONFIG_USER_ONLY
5372 cpu_remove_sync(CPU(dev));
5373 qemu_unregister_reset(x86_cpu_machine_reset_cb, dev);
5374#endif
5375
5376 if (cpu->apic_state) {
5377 object_unparent(OBJECT(cpu->apic_state));
5378 cpu->apic_state = NULL;
5379 }
5380
5381 xcc->parent_unrealize(dev, &local_err);
5382 if (local_err != NULL) {
5383 error_propagate(errp, local_err);
5384 return;
5385 }
5386}
5387
5388typedef struct BitProperty {
5389 FeatureWord w;
5390 uint32_t mask;
5391} BitProperty;
5392
5393static void x86_cpu_get_bit_prop(Object *obj, Visitor *v, const char *name,
5394 void *opaque, Error **errp)
5395{
5396 X86CPU *cpu = X86_CPU(obj);
5397 BitProperty *fp = opaque;
5398 uint32_t f = cpu->env.features[fp->w];
5399 bool value = (f & fp->mask) == fp->mask;
5400 visit_type_bool(v, name, &value, errp);
5401}
5402
5403static void x86_cpu_set_bit_prop(Object *obj, Visitor *v, const char *name,
5404 void *opaque, Error **errp)
5405{
5406 DeviceState *dev = DEVICE(obj);
5407 X86CPU *cpu = X86_CPU(obj);
5408 BitProperty *fp = opaque;
5409 Error *local_err = NULL;
5410 bool value;
5411
5412 if (dev->realized) {
5413 qdev_prop_set_after_realize(dev, name, errp);
5414 return;
5415 }
5416
5417 visit_type_bool(v, name, &value, &local_err);
5418 if (local_err) {
5419 error_propagate(errp, local_err);
5420 return;
5421 }
5422
5423 if (value) {
5424 cpu->env.features[fp->w] |= fp->mask;
5425 } else {
5426 cpu->env.features[fp->w] &= ~fp->mask;
5427 }
5428 cpu->env.user_features[fp->w] |= fp->mask;
5429}
5430
5431static void x86_cpu_release_bit_prop(Object *obj, const char *name,
5432 void *opaque)
5433{
5434 BitProperty *prop = opaque;
5435 g_free(prop);
5436}
5437
5438/* Register a boolean property to get/set a single bit in a uint32_t field.
5439 *
5440 * The same property name can be registered multiple times to make it affect
5441 * multiple bits in the same FeatureWord. In that case, the getter will return
5442 * true only if all bits are set.
5443 */
5444static void x86_cpu_register_bit_prop(X86CPU *cpu,
5445 const char *prop_name,
5446 FeatureWord w,
5447 int bitnr)
5448{
5449 BitProperty *fp;
5450 ObjectProperty *op;
5451 uint32_t mask = (1UL << bitnr);
5452
5453 op = object_property_find(OBJECT(cpu), prop_name, NULL);
5454 if (op) {
5455 fp = op->opaque;
5456 assert(fp->w == w);
5457 fp->mask |= mask;
5458 } else {
5459 fp = g_new0(BitProperty, 1);
5460 fp->w = w;
5461 fp->mask = mask;
5462 object_property_add(OBJECT(cpu), prop_name, "bool",
5463 x86_cpu_get_bit_prop,
5464 x86_cpu_set_bit_prop,
5465 x86_cpu_release_bit_prop, fp, &error_abort);
5466 }
5467}
5468
5469static void x86_cpu_register_feature_bit_props(X86CPU *cpu,
5470 FeatureWord w,
5471 int bitnr)
5472{
5473 FeatureWordInfo *fi = &feature_word_info[w];
5474 const char *name = fi->feat_names[bitnr];
5475
5476 if (!name) {
5477 return;
5478 }
5479
5480 /* Property names should use "-" instead of "_".
5481 * Old names containing underscores are registered as aliases
5482 * using object_property_add_alias()
5483 */
5484 assert(!strchr(name, '_'));
5485 /* aliases don't use "|" delimiters anymore, they are registered
5486 * manually using object_property_add_alias() */
5487 assert(!strchr(name, '|'));
5488 x86_cpu_register_bit_prop(cpu, name, w, bitnr);
5489}
5490
5491static GuestPanicInformation *x86_cpu_get_crash_info(CPUState *cs)
5492{
5493 X86CPU *cpu = X86_CPU(cs);
5494 CPUX86State *env = &cpu->env;
5495 GuestPanicInformation *panic_info = NULL;
5496
5497 if (env->features[FEAT_HYPERV_EDX] & HV_GUEST_CRASH_MSR_AVAILABLE) {
5498 panic_info = g_malloc0(sizeof(GuestPanicInformation));
5499
5500 panic_info->type = GUEST_PANIC_INFORMATION_TYPE_HYPER_V;
5501
5502 assert(HV_CRASH_PARAMS >= 5);
5503 panic_info->u.hyper_v.arg1 = env->msr_hv_crash_params[0];
5504 panic_info->u.hyper_v.arg2 = env->msr_hv_crash_params[1];
5505 panic_info->u.hyper_v.arg3 = env->msr_hv_crash_params[2];
5506 panic_info->u.hyper_v.arg4 = env->msr_hv_crash_params[3];
5507 panic_info->u.hyper_v.arg5 = env->msr_hv_crash_params[4];
5508 }
5509
5510 return panic_info;
5511}
5512static void x86_cpu_get_crash_info_qom(Object *obj, Visitor *v,
5513 const char *name, void *opaque,
5514 Error **errp)
5515{
5516 CPUState *cs = CPU(obj);
5517 GuestPanicInformation *panic_info;
5518
5519 if (!cs->crash_occurred) {
5520 error_setg(errp, "No crash occured");
5521 return;
5522 }
5523
5524 panic_info = x86_cpu_get_crash_info(cs);
5525 if (panic_info == NULL) {
5526 error_setg(errp, "No crash information");
5527 return;
5528 }
5529
5530 visit_type_GuestPanicInformation(v, "crash-information", &panic_info,
5531 errp);
5532 qapi_free_GuestPanicInformation(panic_info);
5533}
5534
5535static void x86_cpu_initfn(Object *obj)
5536{
5537 CPUState *cs = CPU(obj);
5538 X86CPU *cpu = X86_CPU(obj);
5539 X86CPUClass *xcc = X86_CPU_GET_CLASS(obj);
5540 CPUX86State *env = &cpu->env;
5541 FeatureWord w;
5542
5543 cs->env_ptr = env;
5544
5545 object_property_add(obj, "family", "int",
5546 x86_cpuid_version_get_family,
5547 x86_cpuid_version_set_family, NULL, NULL, NULL);
5548 object_property_add(obj, "model", "int",
5549 x86_cpuid_version_get_model,
5550 x86_cpuid_version_set_model, NULL, NULL, NULL);
5551 object_property_add(obj, "stepping", "int",
5552 x86_cpuid_version_get_stepping,
5553 x86_cpuid_version_set_stepping, NULL, NULL, NULL);
5554 object_property_add_str(obj, "vendor",
5555 x86_cpuid_get_vendor,
5556 x86_cpuid_set_vendor, NULL);
5557 object_property_add_str(obj, "model-id",
5558 x86_cpuid_get_model_id,
5559 x86_cpuid_set_model_id, NULL);
5560 object_property_add(obj, "tsc-frequency", "int",
5561 x86_cpuid_get_tsc_freq,
5562 x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
5563 object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo",
5564 x86_cpu_get_feature_words,
5565 NULL, NULL, (void *)env->features, NULL);
5566 object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo",
5567 x86_cpu_get_feature_words,
5568 NULL, NULL, (void *)cpu->filtered_features, NULL);
5569
5570 object_property_add(obj, "crash-information", "GuestPanicInformation",
5571 x86_cpu_get_crash_info_qom, NULL, NULL, NULL, NULL);
5572
5573 cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY;
5574
5575 for (w = 0; w < FEATURE_WORDS; w++) {
5576 int bitnr;
5577
5578 for (bitnr = 0; bitnr < 32; bitnr++) {
5579 x86_cpu_register_feature_bit_props(cpu, w, bitnr);
5580 }
5581 }
5582
5583 object_property_add_alias(obj, "sse3", obj, "pni", &error_abort);
5584 object_property_add_alias(obj, "pclmuldq", obj, "pclmulqdq", &error_abort);
5585 object_property_add_alias(obj, "sse4-1", obj, "sse4.1", &error_abort);
5586 object_property_add_alias(obj, "sse4-2", obj, "sse4.2", &error_abort);
5587 object_property_add_alias(obj, "xd", obj, "nx", &error_abort);
5588 object_property_add_alias(obj, "ffxsr", obj, "fxsr-opt", &error_abort);
5589 object_property_add_alias(obj, "i64", obj, "lm", &error_abort);
5590
5591 object_property_add_alias(obj, "ds_cpl", obj, "ds-cpl", &error_abort);
5592 object_property_add_alias(obj, "tsc_adjust", obj, "tsc-adjust", &error_abort);
5593 object_property_add_alias(obj, "fxsr_opt", obj, "fxsr-opt", &error_abort);
5594 object_property_add_alias(obj, "lahf_lm", obj, "lahf-lm", &error_abort);
5595 object_property_add_alias(obj, "cmp_legacy", obj, "cmp-legacy", &error_abort);
5596 object_property_add_alias(obj, "nodeid_msr", obj, "nodeid-msr", &error_abort);
5597 object_property_add_alias(obj, "perfctr_core", obj, "perfctr-core", &error_abort);
5598 object_property_add_alias(obj, "perfctr_nb", obj, "perfctr-nb", &error_abort);
5599 object_property_add_alias(obj, "kvm_nopiodelay", obj, "kvm-nopiodelay", &error_abort);
5600 object_property_add_alias(obj, "kvm_mmu", obj, "kvm-mmu", &error_abort);
5601 object_property_add_alias(obj, "kvm_asyncpf", obj, "kvm-asyncpf", &error_abort);
5602 object_property_add_alias(obj, "kvm_steal_time", obj, "kvm-steal-time", &error_abort);
5603 object_property_add_alias(obj, "kvm_pv_eoi", obj, "kvm-pv-eoi", &error_abort);
5604 object_property_add_alias(obj, "kvm_pv_unhalt", obj, "kvm-pv-unhalt", &error_abort);
5605 object_property_add_alias(obj, "svm_lock", obj, "svm-lock", &error_abort);
5606 object_property_add_alias(obj, "nrip_save", obj, "nrip-save", &error_abort);
5607 object_property_add_alias(obj, "tsc_scale", obj, "tsc-scale", &error_abort);
5608 object_property_add_alias(obj, "vmcb_clean", obj, "vmcb-clean", &error_abort);
5609 object_property_add_alias(obj, "pause_filter", obj, "pause-filter", &error_abort);
5610 object_property_add_alias(obj, "sse4_1", obj, "sse4.1", &error_abort);
5611 object_property_add_alias(obj, "sse4_2", obj, "sse4.2", &error_abort);
5612
5613 if (xcc->cpu_def) {
5614 x86_cpu_load_def(cpu, xcc->cpu_def, &error_abort);
5615 }
5616}
5617
5618static int64_t x86_cpu_get_arch_id(CPUState *cs)
5619{
5620 X86CPU *cpu = X86_CPU(cs);
5621
5622 return cpu->apic_id;
5623}
5624
5625static bool x86_cpu_get_paging_enabled(const CPUState *cs)
5626{
5627 X86CPU *cpu = X86_CPU(cs);
5628
5629 return cpu->env.cr[0] & CR0_PG_MASK;
5630}
5631
5632static void x86_cpu_set_pc(CPUState *cs, vaddr value)
5633{
5634 X86CPU *cpu = X86_CPU(cs);
5635
5636 cpu->env.eip = value;
5637}
5638
5639static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
5640{
5641 X86CPU *cpu = X86_CPU(cs);
5642
5643 cpu->env.eip = tb->pc - tb->cs_base;
5644}
5645
5646int x86_cpu_pending_interrupt(CPUState *cs, int interrupt_request)
5647{
5648 X86CPU *cpu = X86_CPU(cs);
5649 CPUX86State *env = &cpu->env;
5650
5651#if !defined(CONFIG_USER_ONLY)
5652 if (interrupt_request & CPU_INTERRUPT_POLL) {
5653 return CPU_INTERRUPT_POLL;
5654 }
5655#endif
5656 if (interrupt_request & CPU_INTERRUPT_SIPI) {
5657 return CPU_INTERRUPT_SIPI;
5658 }
5659
5660 if (env->hflags2 & HF2_GIF_MASK) {
5661 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
5662 !(env->hflags & HF_SMM_MASK)) {
5663 return CPU_INTERRUPT_SMI;
5664 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
5665 !(env->hflags2 & HF2_NMI_MASK)) {
5666 return CPU_INTERRUPT_NMI;
5667 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
5668 return CPU_INTERRUPT_MCE;
5669 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
5670 (((env->hflags2 & HF2_VINTR_MASK) &&
5671 (env->hflags2 & HF2_HIF_MASK)) ||
5672 (!(env->hflags2 & HF2_VINTR_MASK) &&
5673 (env->eflags & IF_MASK &&
5674 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
5675 return CPU_INTERRUPT_HARD;
5676#if !defined(CONFIG_USER_ONLY)
5677 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
5678 (env->eflags & IF_MASK) &&
5679 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
5680 return CPU_INTERRUPT_VIRQ;
5681#endif
5682 }
5683 }
5684
5685 return 0;
5686}
5687
5688static bool x86_cpu_has_work(CPUState *cs)
5689{
5690 return x86_cpu_pending_interrupt(cs, cs->interrupt_request) != 0;
5691}
5692
5693static void x86_disas_set_info(CPUState *cs, disassemble_info *info)
5694{
5695 X86CPU *cpu = X86_CPU(cs);
5696 CPUX86State *env = &cpu->env;
5697
5698 info->mach = (env->hflags & HF_CS64_MASK ? bfd_mach_x86_64
5699 : env->hflags & HF_CS32_MASK ? bfd_mach_i386_i386
5700 : bfd_mach_i386_i8086);
5701 info->print_insn = print_insn_i386;
5702
5703 info->cap_arch = CS_ARCH_X86;
5704 info->cap_mode = (env->hflags & HF_CS64_MASK ? CS_MODE_64
5705 : env->hflags & HF_CS32_MASK ? CS_MODE_32
5706 : CS_MODE_16);
5707 info->cap_insn_unit = 1;
5708 info->cap_insn_split = 8;
5709}
5710
5711void x86_update_hflags(CPUX86State *env)
5712{
5713 uint32_t hflags;
5714#define HFLAG_COPY_MASK \
5715 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
5716 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
5717 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
5718 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
5719
5720 hflags = env->hflags & HFLAG_COPY_MASK;
5721 hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
5722 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
5723 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
5724 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
5725 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
5726
5727 if (env->cr[4] & CR4_OSFXSR_MASK) {
5728 hflags |= HF_OSFXSR_MASK;
5729 }
5730
5731 if (env->efer & MSR_EFER_LMA) {
5732 hflags |= HF_LMA_MASK;
5733 }
5734
5735 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
5736 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
5737 } else {
5738 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
5739 (DESC_B_SHIFT - HF_CS32_SHIFT);
5740 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
5741 (DESC_B_SHIFT - HF_SS32_SHIFT);
5742 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
5743 !(hflags & HF_CS32_MASK)) {
5744 hflags |= HF_ADDSEG_MASK;
5745 } else {
5746 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
5747 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
5748 }
5749 }
5750 env->hflags = hflags;
5751}
5752
5753static Property x86_cpu_properties[] = {
5754#ifdef CONFIG_USER_ONLY
5755 /* apic_id = 0 by default for *-user, see commit 9886e834 */
5756 DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, 0),
5757 DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, 0),
5758 DEFINE_PROP_INT32("core-id", X86CPU, core_id, 0),
5759 DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, 0),
5760#else
5761 DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, UNASSIGNED_APIC_ID),
5762 DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, -1),
5763 DEFINE_PROP_INT32("core-id", X86CPU, core_id, -1),
5764 DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, -1),
5765#endif
5766 DEFINE_PROP_INT32("node-id", X86CPU, node_id, CPU_UNSET_NUMA_NODE_ID),
5767 DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false),
5768 { .name = "hv-spinlocks", .info = &qdev_prop_spinlocks },
5769 DEFINE_PROP_BOOL("hv-relaxed", X86CPU, hyperv_relaxed_timing, false),
5770 DEFINE_PROP_BOOL("hv-vapic", X86CPU, hyperv_vapic, false),
5771 DEFINE_PROP_BOOL("hv-time", X86CPU, hyperv_time, false),
5772 DEFINE_PROP_BOOL("hv-crash", X86CPU, hyperv_crash, false),
5773 DEFINE_PROP_BOOL("hv-reset", X86CPU, hyperv_reset, false),
5774 DEFINE_PROP_BOOL("hv-vpindex", X86CPU, hyperv_vpindex, false),
5775 DEFINE_PROP_BOOL("hv-runtime", X86CPU, hyperv_runtime, false),
5776 DEFINE_PROP_BOOL("hv-synic", X86CPU, hyperv_synic, false),
5777 DEFINE_PROP_BOOL("hv-stimer", X86CPU, hyperv_stimer, false),
5778 DEFINE_PROP_BOOL("hv-frequencies", X86CPU, hyperv_frequencies, false),
5779 DEFINE_PROP_BOOL("hv-reenlightenment", X86CPU, hyperv_reenlightenment, false),
5780 DEFINE_PROP_BOOL("hv-tlbflush", X86CPU, hyperv_tlbflush, false),
5781 DEFINE_PROP_BOOL("hv-evmcs", X86CPU, hyperv_evmcs, false),
5782 DEFINE_PROP_BOOL("hv-ipi", X86CPU, hyperv_ipi, false),
5783 DEFINE_PROP_BOOL("check", X86CPU, check_cpuid, true),
5784 DEFINE_PROP_BOOL("enforce", X86CPU, enforce_cpuid, false),
5785 DEFINE_PROP_BOOL("kvm", X86CPU, expose_kvm, true),
5786 DEFINE_PROP_UINT32("phys-bits", X86CPU, phys_bits, 0),
5787 DEFINE_PROP_BOOL("host-phys-bits", X86CPU, host_phys_bits, false),
5788 DEFINE_PROP_UINT8("host-phys-bits-limit", X86CPU, host_phys_bits_limit, 0),
5789 DEFINE_PROP_BOOL("fill-mtrr-mask", X86CPU, fill_mtrr_mask, true),
5790 DEFINE_PROP_UINT32("level", X86CPU, env.cpuid_level, UINT32_MAX),
5791 DEFINE_PROP_UINT32("xlevel", X86CPU, env.cpuid_xlevel, UINT32_MAX),
5792 DEFINE_PROP_UINT32("xlevel2", X86CPU, env.cpuid_xlevel2, UINT32_MAX),
5793 DEFINE_PROP_UINT32("min-level", X86CPU, env.cpuid_min_level, 0),
5794 DEFINE_PROP_UINT32("min-xlevel", X86CPU, env.cpuid_min_xlevel, 0),
5795 DEFINE_PROP_UINT32("min-xlevel2", X86CPU, env.cpuid_min_xlevel2, 0),
5796 DEFINE_PROP_BOOL("full-cpuid-auto-level", X86CPU, full_cpuid_auto_level, true),
5797 DEFINE_PROP_STRING("hv-vendor-id", X86CPU, hyperv_vendor_id),
5798 DEFINE_PROP_BOOL("cpuid-0xb", X86CPU, enable_cpuid_0xb, true),
5799 DEFINE_PROP_BOOL("lmce", X86CPU, enable_lmce, false),
5800 DEFINE_PROP_BOOL("l3-cache", X86CPU, enable_l3_cache, true),
5801 DEFINE_PROP_BOOL("kvm-no-smi-migration", X86CPU, kvm_no_smi_migration,
5802 false),
5803 DEFINE_PROP_BOOL("vmware-cpuid-freq", X86CPU, vmware_cpuid_freq, true),
5804 DEFINE_PROP_BOOL("tcg-cpuid", X86CPU, expose_tcg, true),
5805 DEFINE_PROP_BOOL("x-migrate-smi-count", X86CPU, migrate_smi_count,
5806 true),
5807 /*
5808 * lecacy_cache defaults to true unless the CPU model provides its
5809 * own cache information (see x86_cpu_load_def()).
5810 */
5811 DEFINE_PROP_BOOL("legacy-cache", X86CPU, legacy_cache, true),
5812
5813 /*
5814 * From "Requirements for Implementing the Microsoft
5815 * Hypervisor Interface":
5816 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
5817 *
5818 * "Starting with Windows Server 2012 and Windows 8, if
5819 * CPUID.40000005.EAX contains a value of -1, Windows assumes that
5820 * the hypervisor imposes no specific limit to the number of VPs.
5821 * In this case, Windows Server 2012 guest VMs may use more than
5822 * 64 VPs, up to the maximum supported number of processors applicable
5823 * to the specific Windows version being used."
5824 */
5825 DEFINE_PROP_INT32("x-hv-max-vps", X86CPU, hv_max_vps, -1),
5826 DEFINE_PROP_BOOL("x-hv-synic-kvm-only", X86CPU, hyperv_synic_kvm_only,
5827 false),
5828 DEFINE_PROP_BOOL("x-intel-pt-auto-level", X86CPU, intel_pt_auto_level,
5829 true),
5830 DEFINE_PROP_END_OF_LIST()
5831};
5832
5833static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
5834{
5835 X86CPUClass *xcc = X86_CPU_CLASS(oc);
5836 CPUClass *cc = CPU_CLASS(oc);
5837 DeviceClass *dc = DEVICE_CLASS(oc);
5838
5839 device_class_set_parent_realize(dc, x86_cpu_realizefn,
5840 &xcc->parent_realize);
5841 device_class_set_parent_unrealize(dc, x86_cpu_unrealizefn,
5842 &xcc->parent_unrealize);
5843 dc->props = x86_cpu_properties;
5844
5845 xcc->parent_reset = cc->reset;
5846 cc->reset = x86_cpu_reset;
5847 cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP;
5848
5849 cc->class_by_name = x86_cpu_class_by_name;
5850 cc->parse_features = x86_cpu_parse_featurestr;
5851 cc->has_work = x86_cpu_has_work;
5852#ifdef CONFIG_TCG
5853 cc->do_interrupt = x86_cpu_do_interrupt;
5854 cc->cpu_exec_interrupt = x86_cpu_exec_interrupt;
5855#endif
5856 cc->dump_state = x86_cpu_dump_state;
5857 cc->get_crash_info = x86_cpu_get_crash_info;
5858 cc->set_pc = x86_cpu_set_pc;
5859 cc->synchronize_from_tb = x86_cpu_synchronize_from_tb;
5860 cc->gdb_read_register = x86_cpu_gdb_read_register;
5861 cc->gdb_write_register = x86_cpu_gdb_write_register;
5862 cc->get_arch_id = x86_cpu_get_arch_id;
5863 cc->get_paging_enabled = x86_cpu_get_paging_enabled;
5864#ifdef CONFIG_USER_ONLY
5865 cc->handle_mmu_fault = x86_cpu_handle_mmu_fault;
5866#else
5867 cc->asidx_from_attrs = x86_asidx_from_attrs;
5868 cc->get_memory_mapping = x86_cpu_get_memory_mapping;
5869 cc->get_phys_page_debug = x86_cpu_get_phys_page_debug;
5870 cc->write_elf64_note = x86_cpu_write_elf64_note;
5871 cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote;
5872 cc->write_elf32_note = x86_cpu_write_elf32_note;
5873 cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote;
5874 cc->vmsd = &vmstate_x86_cpu;
5875#endif
5876 cc->gdb_arch_name = x86_gdb_arch_name;
5877#ifdef TARGET_X86_64
5878 cc->gdb_core_xml_file = "i386-64bit.xml";
5879 cc->gdb_num_core_regs = 66;
5880#else
5881 cc->gdb_core_xml_file = "i386-32bit.xml";
5882 cc->gdb_num_core_regs = 50;
5883#endif
5884#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
5885 cc->debug_excp_handler = breakpoint_handler;
5886#endif
5887 cc->cpu_exec_enter = x86_cpu_exec_enter;
5888 cc->cpu_exec_exit = x86_cpu_exec_exit;
5889#ifdef CONFIG_TCG
5890 cc->tcg_initialize = tcg_x86_init;
5891#endif
5892 cc->disas_set_info = x86_disas_set_info;
5893
5894 dc->user_creatable = true;
5895}
5896
5897static const TypeInfo x86_cpu_type_info = {
5898 .name = TYPE_X86_CPU,
5899 .parent = TYPE_CPU,
5900 .instance_size = sizeof(X86CPU),
5901 .instance_init = x86_cpu_initfn,
5902 .abstract = true,
5903 .class_size = sizeof(X86CPUClass),
5904 .class_init = x86_cpu_common_class_init,
5905};
5906
5907
5908/* "base" CPU model, used by query-cpu-model-expansion */
5909static void x86_cpu_base_class_init(ObjectClass *oc, void *data)
5910{
5911 X86CPUClass *xcc = X86_CPU_CLASS(oc);
5912
5913 xcc->static_model = true;
5914 xcc->migration_safe = true;
5915 xcc->model_description = "base CPU model type with no features enabled";
5916 xcc->ordering = 8;
5917}
5918
5919static const TypeInfo x86_base_cpu_type_info = {
5920 .name = X86_CPU_TYPE_NAME("base"),
5921 .parent = TYPE_X86_CPU,
5922 .class_init = x86_cpu_base_class_init,
5923};
5924
5925static void x86_cpu_register_types(void)
5926{
5927 int i;
5928
5929 type_register_static(&x86_cpu_type_info);
5930 for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
5931 x86_register_cpudef_type(&builtin_x86_defs[i]);
5932 }
5933 type_register_static(&max_x86_cpu_type_info);
5934 type_register_static(&x86_base_cpu_type_info);
5935#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
5936 type_register_static(&host_x86_cpu_type_info);
5937#endif
5938}
5939
5940type_init(x86_cpu_register_types)