]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - target/i386/ops_sse.h
hw/xen: Add xen_gnttab device for grant table emulation
[mirror_qemu.git] / target / i386 / ops_sse.h
... / ...
CommitLineData
1/*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include "crypto/aes.h"
22
23#if SHIFT == 0
24#define Reg MMXReg
25#define XMM_ONLY(...)
26#define B(n) MMX_B(n)
27#define W(n) MMX_W(n)
28#define L(n) MMX_L(n)
29#define Q(n) MMX_Q(n)
30#define SUFFIX _mmx
31#else
32#define Reg ZMMReg
33#define XMM_ONLY(...) __VA_ARGS__
34#define B(n) ZMM_B(n)
35#define W(n) ZMM_W(n)
36#define L(n) ZMM_L(n)
37#define Q(n) ZMM_Q(n)
38#if SHIFT == 1
39#define SUFFIX _xmm
40#else
41#define SUFFIX _ymm
42#endif
43#endif
44
45#define LANE_WIDTH (SHIFT ? 16 : 8)
46#define PACK_WIDTH (LANE_WIDTH / 2)
47
48#if SHIFT == 0
49#define FPSRL(x, c) ((x) >> shift)
50#define FPSRAW(x, c) ((int16_t)(x) >> shift)
51#define FPSRAL(x, c) ((int32_t)(x) >> shift)
52#define FPSLL(x, c) ((x) << shift)
53#endif
54
55void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
56{
57 int shift;
58 if (c->Q(0) > 15) {
59 for (int i = 0; i < 1 << SHIFT; i++) {
60 d->Q(i) = 0;
61 }
62 } else {
63 shift = c->B(0);
64 for (int i = 0; i < 4 << SHIFT; i++) {
65 d->W(i) = FPSRL(s->W(i), shift);
66 }
67 }
68}
69
70void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
71{
72 int shift;
73 if (c->Q(0) > 15) {
74 for (int i = 0; i < 1 << SHIFT; i++) {
75 d->Q(i) = 0;
76 }
77 } else {
78 shift = c->B(0);
79 for (int i = 0; i < 4 << SHIFT; i++) {
80 d->W(i) = FPSLL(s->W(i), shift);
81 }
82 }
83}
84
85void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
86{
87 int shift;
88 if (c->Q(0) > 15) {
89 shift = 15;
90 } else {
91 shift = c->B(0);
92 }
93 for (int i = 0; i < 4 << SHIFT; i++) {
94 d->W(i) = FPSRAW(s->W(i), shift);
95 }
96}
97
98void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
99{
100 int shift;
101 if (c->Q(0) > 31) {
102 for (int i = 0; i < 1 << SHIFT; i++) {
103 d->Q(i) = 0;
104 }
105 } else {
106 shift = c->B(0);
107 for (int i = 0; i < 2 << SHIFT; i++) {
108 d->L(i) = FPSRL(s->L(i), shift);
109 }
110 }
111}
112
113void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
114{
115 int shift;
116 if (c->Q(0) > 31) {
117 for (int i = 0; i < 1 << SHIFT; i++) {
118 d->Q(i) = 0;
119 }
120 } else {
121 shift = c->B(0);
122 for (int i = 0; i < 2 << SHIFT; i++) {
123 d->L(i) = FPSLL(s->L(i), shift);
124 }
125 }
126}
127
128void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
129{
130 int shift;
131 if (c->Q(0) > 31) {
132 shift = 31;
133 } else {
134 shift = c->B(0);
135 }
136 for (int i = 0; i < 2 << SHIFT; i++) {
137 d->L(i) = FPSRAL(s->L(i), shift);
138 }
139}
140
141void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
142{
143 int shift;
144 if (c->Q(0) > 63) {
145 for (int i = 0; i < 1 << SHIFT; i++) {
146 d->Q(i) = 0;
147 }
148 } else {
149 shift = c->B(0);
150 for (int i = 0; i < 1 << SHIFT; i++) {
151 d->Q(i) = FPSRL(s->Q(i), shift);
152 }
153 }
154}
155
156void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
157{
158 int shift;
159 if (c->Q(0) > 63) {
160 for (int i = 0; i < 1 << SHIFT; i++) {
161 d->Q(i) = 0;
162 }
163 } else {
164 shift = c->B(0);
165 for (int i = 0; i < 1 << SHIFT; i++) {
166 d->Q(i) = FPSLL(s->Q(i), shift);
167 }
168 }
169}
170
171#if SHIFT >= 1
172void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
173{
174 int shift, i, j;
175
176 shift = c->L(0);
177 if (shift > 16) {
178 shift = 16;
179 }
180 for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) {
181 for (i = 0; i < 16 - shift; i++) {
182 d->B(j + i) = s->B(j + i + shift);
183 }
184 for (i = 16 - shift; i < 16; i++) {
185 d->B(j + i) = 0;
186 }
187 }
188}
189
190void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
191{
192 int shift, i, j;
193
194 shift = c->L(0);
195 if (shift > 16) {
196 shift = 16;
197 }
198 for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) {
199 for (i = 15; i >= shift; i--) {
200 d->B(j + i) = s->B(j + i - shift);
201 }
202 for (i = 0; i < shift; i++) {
203 d->B(j + i) = 0;
204 }
205 }
206}
207#endif
208
209#define SSE_HELPER_1(name, elem, num, F) \
210 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
211 { \
212 int n = num; \
213 for (int i = 0; i < n; i++) { \
214 d->elem(i) = F(s->elem(i)); \
215 } \
216 }
217
218#define SSE_HELPER_2(name, elem, num, F) \
219 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
220 { \
221 int n = num; \
222 for (int i = 0; i < n; i++) { \
223 d->elem(i) = F(v->elem(i), s->elem(i)); \
224 } \
225 }
226
227#define SSE_HELPER_B(name, F) \
228 SSE_HELPER_2(name, B, 8 << SHIFT, F)
229
230#define SSE_HELPER_W(name, F) \
231 SSE_HELPER_2(name, W, 4 << SHIFT, F)
232
233#define SSE_HELPER_L(name, F) \
234 SSE_HELPER_2(name, L, 2 << SHIFT, F)
235
236#define SSE_HELPER_Q(name, F) \
237 SSE_HELPER_2(name, Q, 1 << SHIFT, F)
238
239#if SHIFT == 0
240static inline int satub(int x)
241{
242 if (x < 0) {
243 return 0;
244 } else if (x > 255) {
245 return 255;
246 } else {
247 return x;
248 }
249}
250
251static inline int satuw(int x)
252{
253 if (x < 0) {
254 return 0;
255 } else if (x > 65535) {
256 return 65535;
257 } else {
258 return x;
259 }
260}
261
262static inline int satsb(int x)
263{
264 if (x < -128) {
265 return -128;
266 } else if (x > 127) {
267 return 127;
268 } else {
269 return x;
270 }
271}
272
273static inline int satsw(int x)
274{
275 if (x < -32768) {
276 return -32768;
277 } else if (x > 32767) {
278 return 32767;
279 } else {
280 return x;
281 }
282}
283
284#define FADD(a, b) ((a) + (b))
285#define FADDUB(a, b) satub((a) + (b))
286#define FADDUW(a, b) satuw((a) + (b))
287#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
288#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
289
290#define FSUB(a, b) ((a) - (b))
291#define FSUBUB(a, b) satub((a) - (b))
292#define FSUBUW(a, b) satuw((a) - (b))
293#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
294#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
295#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
296#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
297#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
298#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
299
300#define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16)
301#define FMULHUW(a, b) ((a) * (b) >> 16)
302#define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16)
303
304#define FAVG(a, b) (((a) + (b) + 1) >> 1)
305#endif
306
307SSE_HELPER_W(helper_pmulhuw, FMULHUW)
308SSE_HELPER_W(helper_pmulhw, FMULHW)
309
310#if SHIFT == 0
311void glue(helper_pmulhrw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
312{
313 d->W(0) = FMULHRW(d->W(0), s->W(0));
314 d->W(1) = FMULHRW(d->W(1), s->W(1));
315 d->W(2) = FMULHRW(d->W(2), s->W(2));
316 d->W(3) = FMULHRW(d->W(3), s->W(3));
317}
318#endif
319
320SSE_HELPER_B(helper_pavgb, FAVG)
321SSE_HELPER_W(helper_pavgw, FAVG)
322
323void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
324{
325 int i;
326
327 for (i = 0; i < (1 << SHIFT); i++) {
328 d->Q(i) = (uint64_t)s->L(i * 2) * (uint64_t)v->L(i * 2);
329 }
330}
331
332void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
333{
334 int i;
335
336 for (i = 0; i < (2 << SHIFT); i++) {
337 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)v->W(2 * i) +
338 (int16_t)s->W(2 * i + 1) * (int16_t)v->W(2 * i + 1);
339 }
340}
341
342#if SHIFT == 0
343static inline int abs1(int a)
344{
345 if (a < 0) {
346 return -a;
347 } else {
348 return a;
349 }
350}
351#endif
352void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
353{
354 int i;
355
356 for (i = 0; i < (1 << SHIFT); i++) {
357 unsigned int val = 0;
358 val += abs1(v->B(8 * i + 0) - s->B(8 * i + 0));
359 val += abs1(v->B(8 * i + 1) - s->B(8 * i + 1));
360 val += abs1(v->B(8 * i + 2) - s->B(8 * i + 2));
361 val += abs1(v->B(8 * i + 3) - s->B(8 * i + 3));
362 val += abs1(v->B(8 * i + 4) - s->B(8 * i + 4));
363 val += abs1(v->B(8 * i + 5) - s->B(8 * i + 5));
364 val += abs1(v->B(8 * i + 6) - s->B(8 * i + 6));
365 val += abs1(v->B(8 * i + 7) - s->B(8 * i + 7));
366 d->Q(i) = val;
367 }
368}
369
370#if SHIFT < 2
371void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
372 target_ulong a0)
373{
374 int i;
375
376 for (i = 0; i < (8 << SHIFT); i++) {
377 if (s->B(i) & 0x80) {
378 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC());
379 }
380 }
381}
382#endif
383
384#define SHUFFLE4(F, a, b, offset) do { \
385 r0 = a->F((order & 3) + offset); \
386 r1 = a->F(((order >> 2) & 3) + offset); \
387 r2 = b->F(((order >> 4) & 3) + offset); \
388 r3 = b->F(((order >> 6) & 3) + offset); \
389 d->F(offset) = r0; \
390 d->F(offset + 1) = r1; \
391 d->F(offset + 2) = r2; \
392 d->F(offset + 3) = r3; \
393 } while (0)
394
395#if SHIFT == 0
396void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order)
397{
398 uint16_t r0, r1, r2, r3;
399
400 SHUFFLE4(W, s, s, 0);
401}
402#else
403void glue(helper_shufps, SUFFIX)(Reg *d, Reg *v, Reg *s, int order)
404{
405 uint32_t r0, r1, r2, r3;
406 int i;
407
408 for (i = 0; i < 2 << SHIFT; i += 4) {
409 SHUFFLE4(L, v, s, i);
410 }
411}
412
413void glue(helper_shufpd, SUFFIX)(Reg *d, Reg *v, Reg *s, int order)
414{
415 uint64_t r0, r1;
416 int i;
417
418 for (i = 0; i < 1 << SHIFT; i += 2) {
419 r0 = v->Q(((order & 1) & 1) + i);
420 r1 = s->Q(((order >> 1) & 1) + i);
421 d->Q(i) = r0;
422 d->Q(i + 1) = r1;
423 order >>= 2;
424 }
425}
426
427void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order)
428{
429 uint32_t r0, r1, r2, r3;
430 int i;
431
432 for (i = 0; i < 2 << SHIFT; i += 4) {
433 SHUFFLE4(L, s, s, i);
434 }
435}
436
437void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order)
438{
439 uint16_t r0, r1, r2, r3;
440 int i, j;
441
442 for (i = 0, j = 1; j < 1 << SHIFT; i += 8, j += 2) {
443 SHUFFLE4(W, s, s, i);
444 d->Q(j) = s->Q(j);
445 }
446}
447
448void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order)
449{
450 uint16_t r0, r1, r2, r3;
451 int i, j;
452
453 for (i = 4, j = 0; j < 1 << SHIFT; i += 8, j += 2) {
454 d->Q(j) = s->Q(j);
455 SHUFFLE4(W, s, s, i);
456 }
457}
458#endif
459
460#if SHIFT >= 1
461/* FPU ops */
462/* XXX: not accurate */
463
464#define SSE_HELPER_P(name, F) \
465 void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \
466 Reg *d, Reg *v, Reg *s) \
467 { \
468 int i; \
469 for (i = 0; i < 2 << SHIFT; i++) { \
470 d->ZMM_S(i) = F(32, v->ZMM_S(i), s->ZMM_S(i)); \
471 } \
472 } \
473 \
474 void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \
475 Reg *d, Reg *v, Reg *s) \
476 { \
477 int i; \
478 for (i = 0; i < 1 << SHIFT; i++) { \
479 d->ZMM_D(i) = F(64, v->ZMM_D(i), s->ZMM_D(i)); \
480 } \
481 }
482
483#if SHIFT == 1
484
485#define SSE_HELPER_S(name, F) \
486 SSE_HELPER_P(name, F) \
487 \
488 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)\
489 { \
490 int i; \
491 d->ZMM_S(0) = F(32, v->ZMM_S(0), s->ZMM_S(0)); \
492 for (i = 1; i < 2 << SHIFT; i++) { \
493 d->ZMM_L(i) = v->ZMM_L(i); \
494 } \
495 } \
496 \
497 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)\
498 { \
499 int i; \
500 d->ZMM_D(0) = F(64, v->ZMM_D(0), s->ZMM_D(0)); \
501 for (i = 1; i < 1 << SHIFT; i++) { \
502 d->ZMM_Q(i) = v->ZMM_Q(i); \
503 } \
504 }
505
506#else
507
508#define SSE_HELPER_S(name, F) SSE_HELPER_P(name, F)
509
510#endif
511
512#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
513#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
514#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
515#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
516
517/* Note that the choice of comparison op here is important to get the
518 * special cases right: for min and max Intel specifies that (-0,0),
519 * (NaN, anything) and (anything, NaN) return the second argument.
520 */
521#define FPU_MIN(size, a, b) \
522 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b))
523#define FPU_MAX(size, a, b) \
524 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b))
525
526SSE_HELPER_S(add, FPU_ADD)
527SSE_HELPER_S(sub, FPU_SUB)
528SSE_HELPER_S(mul, FPU_MUL)
529SSE_HELPER_S(div, FPU_DIV)
530SSE_HELPER_S(min, FPU_MIN)
531SSE_HELPER_S(max, FPU_MAX)
532
533void glue(helper_sqrtps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
534{
535 int i;
536 for (i = 0; i < 2 << SHIFT; i++) {
537 d->ZMM_S(i) = float32_sqrt(s->ZMM_S(i), &env->sse_status);
538 }
539}
540
541void glue(helper_sqrtpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
542{
543 int i;
544 for (i = 0; i < 1 << SHIFT; i++) {
545 d->ZMM_D(i) = float64_sqrt(s->ZMM_D(i), &env->sse_status);
546 }
547}
548
549#if SHIFT == 1
550void helper_sqrtss(CPUX86State *env, Reg *d, Reg *v, Reg *s)
551{
552 int i;
553 d->ZMM_S(0) = float32_sqrt(s->ZMM_S(0), &env->sse_status);
554 for (i = 1; i < 2 << SHIFT; i++) {
555 d->ZMM_L(i) = v->ZMM_L(i);
556 }
557}
558
559void helper_sqrtsd(CPUX86State *env, Reg *d, Reg *v, Reg *s)
560{
561 int i;
562 d->ZMM_D(0) = float64_sqrt(s->ZMM_D(0), &env->sse_status);
563 for (i = 1; i < 1 << SHIFT; i++) {
564 d->ZMM_Q(i) = v->ZMM_Q(i);
565 }
566}
567#endif
568
569/* float to float conversions */
570void glue(helper_cvtps2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
571{
572 int i;
573 for (i = 1 << SHIFT; --i >= 0; ) {
574 d->ZMM_D(i) = float32_to_float64(s->ZMM_S(i), &env->sse_status);
575 }
576}
577
578void glue(helper_cvtpd2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
579{
580 int i;
581 for (i = 0; i < 1 << SHIFT; i++) {
582 d->ZMM_S(i) = float64_to_float32(s->ZMM_D(i), &env->sse_status);
583 }
584 for (i >>= 1; i < 1 << SHIFT; i++) {
585 d->Q(i) = 0;
586 }
587}
588
589#if SHIFT >= 1
590void glue(helper_cvtph2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
591{
592 int i;
593
594 for (i = 2 << SHIFT; --i >= 0; ) {
595 d->ZMM_S(i) = float16_to_float32(s->ZMM_H(i), true, &env->sse_status);
596 }
597}
598
599void glue(helper_cvtps2ph, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, int mode)
600{
601 int i;
602 FloatRoundMode prev_rounding_mode = env->sse_status.float_rounding_mode;
603 if (!(mode & (1 << 2))) {
604 set_x86_rounding_mode(mode & 3, &env->sse_status);
605 }
606
607 for (i = 0; i < 2 << SHIFT; i++) {
608 d->ZMM_H(i) = float32_to_float16(s->ZMM_S(i), true, &env->sse_status);
609 }
610 for (i >>= 2; i < 1 << SHIFT; i++) {
611 d->Q(i) = 0;
612 }
613
614 env->sse_status.float_rounding_mode = prev_rounding_mode;
615}
616#endif
617
618#if SHIFT == 1
619void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)
620{
621 int i;
622 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status);
623 for (i = 1; i < 1 << SHIFT; i++) {
624 d->ZMM_Q(i) = v->ZMM_Q(i);
625 }
626}
627
628void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)
629{
630 int i;
631 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
632 for (i = 1; i < 2 << SHIFT; i++) {
633 d->ZMM_L(i) = v->ZMM_L(i);
634 }
635}
636#endif
637
638/* integer to float */
639void glue(helper_cvtdq2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
640{
641 int i;
642 for (i = 0; i < 2 << SHIFT; i++) {
643 d->ZMM_S(i) = int32_to_float32(s->ZMM_L(i), &env->sse_status);
644 }
645}
646
647void glue(helper_cvtdq2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
648{
649 int i;
650 for (i = 1 << SHIFT; --i >= 0; ) {
651 int32_t l = s->ZMM_L(i);
652 d->ZMM_D(i) = int32_to_float64(l, &env->sse_status);
653 }
654}
655
656#if SHIFT == 1
657void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s)
658{
659 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
660 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
661}
662
663void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s)
664{
665 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
666 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
667}
668
669void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val)
670{
671 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status);
672}
673
674void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val)
675{
676 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status);
677}
678
679#ifdef TARGET_X86_64
680void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val)
681{
682 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status);
683}
684
685void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val)
686{
687 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status);
688}
689#endif
690
691#endif
692
693/* float to integer */
694
695#if SHIFT == 1
696/*
697 * x86 mandates that we return the indefinite integer value for the result
698 * of any float-to-integer conversion that raises the 'invalid' exception.
699 * Wrap the softfloat functions to get this behaviour.
700 */
701#define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \
702 static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \
703 { \
704 int oldflags, newflags; \
705 RETTYPE r; \
706 \
707 oldflags = get_float_exception_flags(s); \
708 set_float_exception_flags(0, s); \
709 r = FN(a, s); \
710 newflags = get_float_exception_flags(s); \
711 if (newflags & float_flag_invalid) { \
712 r = INDEFVALUE; \
713 } \
714 set_float_exception_flags(newflags | oldflags, s); \
715 return r; \
716 }
717
718WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN)
719WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN)
720WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN)
721WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN)
722WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN)
723WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN)
724WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN)
725WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN)
726#endif
727
728void glue(helper_cvtps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
729{
730 int i;
731 for (i = 0; i < 2 << SHIFT; i++) {
732 d->ZMM_L(i) = x86_float32_to_int32(s->ZMM_S(i), &env->sse_status);
733 }
734}
735
736void glue(helper_cvtpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
737{
738 int i;
739 for (i = 0; i < 1 << SHIFT; i++) {
740 d->ZMM_L(i) = x86_float64_to_int32(s->ZMM_D(i), &env->sse_status);
741 }
742 for (i >>= 1; i < 1 << SHIFT; i++) {
743 d->Q(i) = 0;
744 }
745}
746
747#if SHIFT == 1
748void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
749{
750 d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
751 d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status);
752}
753
754void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
755{
756 d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
757 d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status);
758}
759
760int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s)
761{
762 return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
763}
764
765int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s)
766{
767 return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
768}
769
770#ifdef TARGET_X86_64
771int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s)
772{
773 return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status);
774}
775
776int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s)
777{
778 return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status);
779}
780#endif
781#endif
782
783/* float to integer truncated */
784void glue(helper_cvttps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
785{
786 int i;
787 for (i = 0; i < 2 << SHIFT; i++) {
788 d->ZMM_L(i) = x86_float32_to_int32_round_to_zero(s->ZMM_S(i),
789 &env->sse_status);
790 }
791}
792
793void glue(helper_cvttpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
794{
795 int i;
796 for (i = 0; i < 1 << SHIFT; i++) {
797 d->ZMM_L(i) = x86_float64_to_int32_round_to_zero(s->ZMM_D(i),
798 &env->sse_status);
799 }
800 for (i >>= 1; i < 1 << SHIFT; i++) {
801 d->Q(i) = 0;
802 }
803}
804
805#if SHIFT == 1
806void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
807{
808 d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
809 d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
810}
811
812void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
813{
814 d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
815 d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
816}
817
818int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s)
819{
820 return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
821}
822
823int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s)
824{
825 return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
826}
827
828#ifdef TARGET_X86_64
829int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s)
830{
831 return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status);
832}
833
834int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s)
835{
836 return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status);
837}
838#endif
839#endif
840
841void glue(helper_rsqrtps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
842{
843 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
844 int i;
845 for (i = 0; i < 2 << SHIFT; i++) {
846 d->ZMM_S(i) = float32_div(float32_one,
847 float32_sqrt(s->ZMM_S(i), &env->sse_status),
848 &env->sse_status);
849 }
850 set_float_exception_flags(old_flags, &env->sse_status);
851}
852
853#if SHIFT == 1
854void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s)
855{
856 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
857 int i;
858 d->ZMM_S(0) = float32_div(float32_one,
859 float32_sqrt(s->ZMM_S(0), &env->sse_status),
860 &env->sse_status);
861 set_float_exception_flags(old_flags, &env->sse_status);
862 for (i = 1; i < 2 << SHIFT; i++) {
863 d->ZMM_L(i) = v->ZMM_L(i);
864 }
865}
866#endif
867
868void glue(helper_rcpps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
869{
870 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
871 int i;
872 for (i = 0; i < 2 << SHIFT; i++) {
873 d->ZMM_S(i) = float32_div(float32_one, s->ZMM_S(i), &env->sse_status);
874 }
875 set_float_exception_flags(old_flags, &env->sse_status);
876}
877
878#if SHIFT == 1
879void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s)
880{
881 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
882 int i;
883 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
884 for (i = 1; i < 2 << SHIFT; i++) {
885 d->ZMM_L(i) = v->ZMM_L(i);
886 }
887 set_float_exception_flags(old_flags, &env->sse_status);
888}
889#endif
890
891#if SHIFT == 1
892static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
893{
894 uint64_t mask;
895
896 if (len == 0) {
897 mask = ~0LL;
898 } else {
899 mask = (1ULL << len) - 1;
900 }
901 return (src >> shift) & mask;
902}
903
904void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
905{
906 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1) & 63, s->ZMM_B(0) & 63);
907}
908
909void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length)
910{
911 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length);
912}
913
914static inline uint64_t helper_insertq(uint64_t dest, uint64_t src, int shift, int len)
915{
916 uint64_t mask;
917
918 if (len == 0) {
919 mask = ~0ULL;
920 } else {
921 mask = (1ULL << len) - 1;
922 }
923 return (dest & ~(mask << shift)) | ((src & mask) << shift);
924}
925
926void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
927{
928 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), s->ZMM_B(9) & 63, s->ZMM_B(8) & 63);
929}
930
931void helper_insertq_i(CPUX86State *env, ZMMReg *d, ZMMReg *s, int index, int length)
932{
933 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), index, length);
934}
935#endif
936
937#define SSE_HELPER_HPS(name, F) \
938void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
939{ \
940 float32 r[2 << SHIFT]; \
941 int i, j, k; \
942 for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \
943 for (i = j = 0; j < 4; i++, j += 2) { \
944 r[i + k] = F(v->ZMM_S(j + k), v->ZMM_S(j + k + 1), &env->sse_status); \
945 } \
946 for (j = 0; j < 4; i++, j += 2) { \
947 r[i + k] = F(s->ZMM_S(j + k), s->ZMM_S(j + k + 1), &env->sse_status); \
948 } \
949 } \
950 for (i = 0; i < 2 << SHIFT; i++) { \
951 d->ZMM_S(i) = r[i]; \
952 } \
953}
954
955SSE_HELPER_HPS(haddps, float32_add)
956SSE_HELPER_HPS(hsubps, float32_sub)
957
958#define SSE_HELPER_HPD(name, F) \
959void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
960{ \
961 float64 r[1 << SHIFT]; \
962 int i, j, k; \
963 for (k = 0; k < 1 << SHIFT; k += LANE_WIDTH / 8) { \
964 for (i = j = 0; j < 2; i++, j += 2) { \
965 r[i + k] = F(v->ZMM_D(j + k), v->ZMM_D(j + k + 1), &env->sse_status); \
966 } \
967 for (j = 0; j < 2; i++, j += 2) { \
968 r[i + k] = F(s->ZMM_D(j + k), s->ZMM_D(j + k + 1), &env->sse_status); \
969 } \
970 } \
971 for (i = 0; i < 1 << SHIFT; i++) { \
972 d->ZMM_D(i) = r[i]; \
973 } \
974}
975
976SSE_HELPER_HPD(haddpd, float64_add)
977SSE_HELPER_HPD(hsubpd, float64_sub)
978
979void glue(helper_addsubps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
980{
981 int i;
982 for (i = 0; i < 2 << SHIFT; i += 2) {
983 d->ZMM_S(i) = float32_sub(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status);
984 d->ZMM_S(i+1) = float32_add(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status);
985 }
986}
987
988void glue(helper_addsubpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
989{
990 int i;
991 for (i = 0; i < 1 << SHIFT; i += 2) {
992 d->ZMM_D(i) = float64_sub(v->ZMM_D(i), s->ZMM_D(i), &env->sse_status);
993 d->ZMM_D(i+1) = float64_add(v->ZMM_D(i+1), s->ZMM_D(i+1), &env->sse_status);
994 }
995}
996
997#define SSE_HELPER_CMP_P(name, F, C) \
998 void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \
999 Reg *d, Reg *v, Reg *s) \
1000 { \
1001 int i; \
1002 for (i = 0; i < 2 << SHIFT; i++) { \
1003 d->ZMM_L(i) = C(F(32, v->ZMM_S(i), s->ZMM_S(i))) ? -1 : 0; \
1004 } \
1005 } \
1006 \
1007 void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \
1008 Reg *d, Reg *v, Reg *s) \
1009 { \
1010 int i; \
1011 for (i = 0; i < 1 << SHIFT; i++) { \
1012 d->ZMM_Q(i) = C(F(64, v->ZMM_D(i), s->ZMM_D(i))) ? -1 : 0; \
1013 } \
1014 }
1015
1016#if SHIFT == 1
1017#define SSE_HELPER_CMP(name, F, C) \
1018 SSE_HELPER_CMP_P(name, F, C) \
1019 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1020 { \
1021 int i; \
1022 d->ZMM_L(0) = C(F(32, v->ZMM_S(0), s->ZMM_S(0))) ? -1 : 0; \
1023 for (i = 1; i < 2 << SHIFT; i++) { \
1024 d->ZMM_L(i) = v->ZMM_L(i); \
1025 } \
1026 } \
1027 \
1028 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1029 { \
1030 int i; \
1031 d->ZMM_Q(0) = C(F(64, v->ZMM_D(0), s->ZMM_D(0))) ? -1 : 0; \
1032 for (i = 1; i < 1 << SHIFT; i++) { \
1033 d->ZMM_Q(i) = v->ZMM_Q(i); \
1034 } \
1035 }
1036
1037static inline bool FPU_EQU(FloatRelation x)
1038{
1039 return (x == float_relation_equal || x == float_relation_unordered);
1040}
1041static inline bool FPU_GE(FloatRelation x)
1042{
1043 return (x == float_relation_equal || x == float_relation_greater);
1044}
1045#define FPU_EQ(x) (x == float_relation_equal)
1046#define FPU_LT(x) (x == float_relation_less)
1047#define FPU_LE(x) (x <= float_relation_equal)
1048#define FPU_GT(x) (x == float_relation_greater)
1049#define FPU_UNORD(x) (x == float_relation_unordered)
1050/* We must make sure we evaluate the argument in case it is a signalling NAN */
1051#define FPU_FALSE(x) (x == float_relation_equal && 0)
1052
1053#define FPU_CMPQ(size, a, b) \
1054 float ## size ## _compare_quiet(a, b, &env->sse_status)
1055#define FPU_CMPS(size, a, b) \
1056 float ## size ## _compare(a, b, &env->sse_status)
1057
1058#else
1059#define SSE_HELPER_CMP(name, F, C) SSE_HELPER_CMP_P(name, F, C)
1060#endif
1061
1062SSE_HELPER_CMP(cmpeq, FPU_CMPQ, FPU_EQ)
1063SSE_HELPER_CMP(cmplt, FPU_CMPS, FPU_LT)
1064SSE_HELPER_CMP(cmple, FPU_CMPS, FPU_LE)
1065SSE_HELPER_CMP(cmpunord, FPU_CMPQ, FPU_UNORD)
1066SSE_HELPER_CMP(cmpneq, FPU_CMPQ, !FPU_EQ)
1067SSE_HELPER_CMP(cmpnlt, FPU_CMPS, !FPU_LT)
1068SSE_HELPER_CMP(cmpnle, FPU_CMPS, !FPU_LE)
1069SSE_HELPER_CMP(cmpord, FPU_CMPQ, !FPU_UNORD)
1070
1071SSE_HELPER_CMP(cmpequ, FPU_CMPQ, FPU_EQU)
1072SSE_HELPER_CMP(cmpnge, FPU_CMPS, !FPU_GE)
1073SSE_HELPER_CMP(cmpngt, FPU_CMPS, !FPU_GT)
1074SSE_HELPER_CMP(cmpfalse, FPU_CMPQ, FPU_FALSE)
1075SSE_HELPER_CMP(cmpnequ, FPU_CMPQ, !FPU_EQU)
1076SSE_HELPER_CMP(cmpge, FPU_CMPS, FPU_GE)
1077SSE_HELPER_CMP(cmpgt, FPU_CMPS, FPU_GT)
1078SSE_HELPER_CMP(cmptrue, FPU_CMPQ, !FPU_FALSE)
1079
1080SSE_HELPER_CMP(cmpeqs, FPU_CMPS, FPU_EQ)
1081SSE_HELPER_CMP(cmpltq, FPU_CMPQ, FPU_LT)
1082SSE_HELPER_CMP(cmpleq, FPU_CMPQ, FPU_LE)
1083SSE_HELPER_CMP(cmpunords, FPU_CMPS, FPU_UNORD)
1084SSE_HELPER_CMP(cmpneqq, FPU_CMPS, !FPU_EQ)
1085SSE_HELPER_CMP(cmpnltq, FPU_CMPQ, !FPU_LT)
1086SSE_HELPER_CMP(cmpnleq, FPU_CMPQ, !FPU_LE)
1087SSE_HELPER_CMP(cmpords, FPU_CMPS, !FPU_UNORD)
1088
1089SSE_HELPER_CMP(cmpequs, FPU_CMPS, FPU_EQU)
1090SSE_HELPER_CMP(cmpngeq, FPU_CMPQ, !FPU_GE)
1091SSE_HELPER_CMP(cmpngtq, FPU_CMPQ, !FPU_GT)
1092SSE_HELPER_CMP(cmpfalses, FPU_CMPS, FPU_FALSE)
1093SSE_HELPER_CMP(cmpnequs, FPU_CMPS, !FPU_EQU)
1094SSE_HELPER_CMP(cmpgeq, FPU_CMPQ, FPU_GE)
1095SSE_HELPER_CMP(cmpgtq, FPU_CMPQ, FPU_GT)
1096SSE_HELPER_CMP(cmptrues, FPU_CMPS, !FPU_FALSE)
1097
1098#undef SSE_HELPER_CMP
1099
1100#if SHIFT == 1
1101static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
1102
1103void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s)
1104{
1105 FloatRelation ret;
1106 float32 s0, s1;
1107
1108 s0 = d->ZMM_S(0);
1109 s1 = s->ZMM_S(0);
1110 ret = float32_compare_quiet(s0, s1, &env->sse_status);
1111 CC_SRC = comis_eflags[ret + 1];
1112}
1113
1114void helper_comiss(CPUX86State *env, Reg *d, Reg *s)
1115{
1116 FloatRelation ret;
1117 float32 s0, s1;
1118
1119 s0 = d->ZMM_S(0);
1120 s1 = s->ZMM_S(0);
1121 ret = float32_compare(s0, s1, &env->sse_status);
1122 CC_SRC = comis_eflags[ret + 1];
1123}
1124
1125void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s)
1126{
1127 FloatRelation ret;
1128 float64 d0, d1;
1129
1130 d0 = d->ZMM_D(0);
1131 d1 = s->ZMM_D(0);
1132 ret = float64_compare_quiet(d0, d1, &env->sse_status);
1133 CC_SRC = comis_eflags[ret + 1];
1134}
1135
1136void helper_comisd(CPUX86State *env, Reg *d, Reg *s)
1137{
1138 FloatRelation ret;
1139 float64 d0, d1;
1140
1141 d0 = d->ZMM_D(0);
1142 d1 = s->ZMM_D(0);
1143 ret = float64_compare(d0, d1, &env->sse_status);
1144 CC_SRC = comis_eflags[ret + 1];
1145}
1146#endif
1147
1148uint32_t glue(helper_movmskps, SUFFIX)(CPUX86State *env, Reg *s)
1149{
1150 uint32_t mask;
1151 int i;
1152
1153 mask = 0;
1154 for (i = 0; i < 2 << SHIFT; i++) {
1155 mask |= (s->ZMM_L(i) >> (31 - i)) & (1 << i);
1156 }
1157 return mask;
1158}
1159
1160uint32_t glue(helper_movmskpd, SUFFIX)(CPUX86State *env, Reg *s)
1161{
1162 uint32_t mask;
1163 int i;
1164
1165 mask = 0;
1166 for (i = 0; i < 1 << SHIFT; i++) {
1167 mask |= (s->ZMM_Q(i) >> (63 - i)) & (1 << i);
1168 }
1169 return mask;
1170}
1171
1172#endif
1173
1174#define PACK_HELPER_B(name, F) \
1175void glue(helper_pack ## name, SUFFIX)(CPUX86State *env, \
1176 Reg *d, Reg *v, Reg *s) \
1177{ \
1178 uint8_t r[PACK_WIDTH * 2]; \
1179 int j, k; \
1180 for (j = 0; j < 4 << SHIFT; j += PACK_WIDTH) { \
1181 for (k = 0; k < PACK_WIDTH; k++) { \
1182 r[k] = F((int16_t)v->W(j + k)); \
1183 } \
1184 for (k = 0; k < PACK_WIDTH; k++) { \
1185 r[PACK_WIDTH + k] = F((int16_t)s->W(j + k)); \
1186 } \
1187 for (k = 0; k < PACK_WIDTH * 2; k++) { \
1188 d->B(2 * j + k) = r[k]; \
1189 } \
1190 } \
1191}
1192
1193PACK_HELPER_B(sswb, satsb)
1194PACK_HELPER_B(uswb, satub)
1195
1196void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1197{
1198 uint16_t r[PACK_WIDTH];
1199 int j, k;
1200
1201 for (j = 0; j < 2 << SHIFT; j += PACK_WIDTH / 2) {
1202 for (k = 0; k < PACK_WIDTH / 2; k++) {
1203 r[k] = satsw(v->L(j + k));
1204 }
1205 for (k = 0; k < PACK_WIDTH / 2; k++) {
1206 r[PACK_WIDTH / 2 + k] = satsw(s->L(j + k));
1207 }
1208 for (k = 0; k < PACK_WIDTH; k++) {
1209 d->W(2 * j + k) = r[k];
1210 }
1211 }
1212}
1213
1214#define UNPCK_OP(base_name, base) \
1215 \
1216 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\
1217 Reg *d, Reg *v, Reg *s) \
1218 { \
1219 uint8_t r[PACK_WIDTH * 2]; \
1220 int j, i; \
1221 \
1222 for (j = 0; j < 8 << SHIFT; ) { \
1223 int k = j + base * PACK_WIDTH; \
1224 for (i = 0; i < PACK_WIDTH; i++) { \
1225 r[2 * i] = v->B(k + i); \
1226 r[2 * i + 1] = s->B(k + i); \
1227 } \
1228 for (i = 0; i < PACK_WIDTH * 2; i++, j++) { \
1229 d->B(j) = r[i]; \
1230 } \
1231 } \
1232 } \
1233 \
1234 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\
1235 Reg *d, Reg *v, Reg *s) \
1236 { \
1237 uint16_t r[PACK_WIDTH]; \
1238 int j, i; \
1239 \
1240 for (j = 0; j < 4 << SHIFT; ) { \
1241 int k = j + base * PACK_WIDTH / 2; \
1242 for (i = 0; i < PACK_WIDTH / 2; i++) { \
1243 r[2 * i] = v->W(k + i); \
1244 r[2 * i + 1] = s->W(k + i); \
1245 } \
1246 for (i = 0; i < PACK_WIDTH; i++, j++) { \
1247 d->W(j) = r[i]; \
1248 } \
1249 } \
1250 } \
1251 \
1252 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\
1253 Reg *d, Reg *v, Reg *s) \
1254 { \
1255 uint32_t r[PACK_WIDTH / 2]; \
1256 int j, i; \
1257 \
1258 for (j = 0; j < 2 << SHIFT; ) { \
1259 int k = j + base * PACK_WIDTH / 4; \
1260 for (i = 0; i < PACK_WIDTH / 4; i++) { \
1261 r[2 * i] = v->L(k + i); \
1262 r[2 * i + 1] = s->L(k + i); \
1263 } \
1264 for (i = 0; i < PACK_WIDTH / 2; i++, j++) { \
1265 d->L(j) = r[i]; \
1266 } \
1267 } \
1268 } \
1269 \
1270 XMM_ONLY( \
1271 void glue(helper_punpck ## base_name ## qdq, SUFFIX)( \
1272 CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1273 { \
1274 uint64_t r[2]; \
1275 int i; \
1276 \
1277 for (i = 0; i < 1 << SHIFT; i += 2) { \
1278 r[0] = v->Q(base + i); \
1279 r[1] = s->Q(base + i); \
1280 d->Q(i) = r[0]; \
1281 d->Q(i + 1) = r[1]; \
1282 } \
1283 } \
1284 )
1285
1286UNPCK_OP(l, 0)
1287UNPCK_OP(h, 1)
1288
1289#undef PACK_WIDTH
1290#undef PACK_HELPER_B
1291#undef UNPCK_OP
1292
1293
1294/* 3DNow! float ops */
1295#if SHIFT == 0
1296void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s)
1297{
1298 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1299 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1300}
1301
1302void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s)
1303{
1304 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1305 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1306}
1307
1308void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s)
1309{
1310 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1311 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1312}
1313
1314void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s)
1315{
1316 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0),
1317 &env->mmx_status));
1318 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1),
1319 &env->mmx_status));
1320}
1321
1322void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1323{
1324 float32 r;
1325
1326 r = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1327 d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1328 d->MMX_S(0) = r;
1329}
1330
1331void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s)
1332{
1333 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1334 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1335}
1336
1337void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s)
1338{
1339 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0),
1340 &env->mmx_status) ? -1 : 0;
1341 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1),
1342 &env->mmx_status) ? -1 : 0;
1343}
1344
1345void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s)
1346{
1347 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0),
1348 &env->mmx_status) ? -1 : 0;
1349 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1),
1350 &env->mmx_status) ? -1 : 0;
1351}
1352
1353void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s)
1354{
1355 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0),
1356 &env->mmx_status) ? -1 : 0;
1357 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1),
1358 &env->mmx_status) ? -1 : 0;
1359}
1360
1361void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s)
1362{
1363 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) {
1364 d->MMX_S(0) = s->MMX_S(0);
1365 }
1366 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) {
1367 d->MMX_S(1) = s->MMX_S(1);
1368 }
1369}
1370
1371void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s)
1372{
1373 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) {
1374 d->MMX_S(0) = s->MMX_S(0);
1375 }
1376 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) {
1377 d->MMX_S(1) = s->MMX_S(1);
1378 }
1379}
1380
1381void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s)
1382{
1383 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1384 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1385}
1386
1387void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1388{
1389 float32 r;
1390
1391 r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1392 d->MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1393 d->MMX_S(0) = r;
1394}
1395
1396void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1397{
1398 float32 r;
1399
1400 r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1401 d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1402 d->MMX_S(0) = r;
1403}
1404
1405void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s)
1406{
1407 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1408 d->MMX_S(1) = d->MMX_S(0);
1409}
1410
1411void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s)
1412{
1413 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1414 d->MMX_S(1) = float32_div(float32_one,
1415 float32_sqrt(d->MMX_S(1), &env->mmx_status),
1416 &env->mmx_status);
1417 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1418 d->MMX_L(0) = d->MMX_L(1);
1419}
1420
1421void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s)
1422{
1423 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1424 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1425}
1426
1427void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s)
1428{
1429 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1430 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1431}
1432
1433void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s)
1434{
1435 uint32_t r;
1436
1437 r = s->MMX_L(0);
1438 d->MMX_L(0) = s->MMX_L(1);
1439 d->MMX_L(1) = r;
1440}
1441#endif
1442
1443/* SSSE3 op helpers */
1444void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1445{
1446 int i;
1447#if SHIFT == 0
1448 uint8_t r[8];
1449
1450 for (i = 0; i < 8; i++) {
1451 r[i] = (s->B(i) & 0x80) ? 0 : (v->B(s->B(i) & 7));
1452 }
1453 for (i = 0; i < 8; i++) {
1454 d->B(i) = r[i];
1455 }
1456#else
1457 uint8_t r[8 << SHIFT];
1458
1459 for (i = 0; i < 8 << SHIFT; i++) {
1460 int j = i & ~0xf;
1461 r[i] = (s->B(i) & 0x80) ? 0 : v->B(j | (s->B(i) & 0xf));
1462 }
1463 for (i = 0; i < 8 << SHIFT; i++) {
1464 d->B(i) = r[i];
1465 }
1466#endif
1467}
1468
1469#define SSE_HELPER_HW(name, F) \
1470void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1471{ \
1472 uint16_t r[4 << SHIFT]; \
1473 int i, j, k; \
1474 for (k = 0; k < 4 << SHIFT; k += LANE_WIDTH / 2) { \
1475 for (i = j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \
1476 r[i + k] = F(v->W(j + k), v->W(j + k + 1)); \
1477 } \
1478 for (j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \
1479 r[i + k] = F(s->W(j + k), s->W(j + k + 1)); \
1480 } \
1481 } \
1482 for (i = 0; i < 4 << SHIFT; i++) { \
1483 d->W(i) = r[i]; \
1484 } \
1485}
1486
1487#define SSE_HELPER_HL(name, F) \
1488void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1489{ \
1490 uint32_t r[2 << SHIFT]; \
1491 int i, j, k; \
1492 for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \
1493 for (i = j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \
1494 r[i + k] = F(v->L(j + k), v->L(j + k + 1)); \
1495 } \
1496 for (j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \
1497 r[i + k] = F(s->L(j + k), s->L(j + k + 1)); \
1498 } \
1499 } \
1500 for (i = 0; i < 2 << SHIFT; i++) { \
1501 d->L(i) = r[i]; \
1502 } \
1503}
1504
1505SSE_HELPER_HW(phaddw, FADD)
1506SSE_HELPER_HW(phsubw, FSUB)
1507SSE_HELPER_HW(phaddsw, FADDSW)
1508SSE_HELPER_HW(phsubsw, FSUBSW)
1509SSE_HELPER_HL(phaddd, FADD)
1510SSE_HELPER_HL(phsubd, FSUB)
1511
1512#undef SSE_HELPER_HW
1513#undef SSE_HELPER_HL
1514
1515void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1516{
1517 int i;
1518 for (i = 0; i < 4 << SHIFT; i++) {
1519 d->W(i) = satsw((int8_t)s->B(i * 2) * (uint8_t)v->B(i * 2) +
1520 (int8_t)s->B(i * 2 + 1) * (uint8_t)v->B(i * 2 + 1));
1521 }
1522}
1523
1524#define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15)
1525SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1526
1527#define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d)
1528#define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d)
1529#define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d)
1530SSE_HELPER_B(helper_psignb, FSIGNB)
1531SSE_HELPER_W(helper_psignw, FSIGNW)
1532SSE_HELPER_L(helper_psignd, FSIGNL)
1533
1534void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1535 uint32_t imm)
1536{
1537 int i;
1538
1539 /* XXX could be checked during translation */
1540 if (imm >= (SHIFT ? 32 : 16)) {
1541 for (i = 0; i < (1 << SHIFT); i++) {
1542 d->Q(i) = 0;
1543 }
1544 } else {
1545 int shift = imm * 8;
1546#define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1547#if SHIFT == 0
1548 d->Q(0) = SHR(s->Q(0), shift - 0) |
1549 SHR(v->Q(0), shift - 64);
1550#else
1551 for (i = 0; i < (1 << SHIFT); i += 2) {
1552 uint64_t r0, r1;
1553
1554 r0 = SHR(s->Q(i), shift - 0) |
1555 SHR(s->Q(i + 1), shift - 64) |
1556 SHR(v->Q(i), shift - 128) |
1557 SHR(v->Q(i + 1), shift - 192);
1558 r1 = SHR(s->Q(i), shift + 64) |
1559 SHR(s->Q(i + 1), shift - 0) |
1560 SHR(v->Q(i), shift - 64) |
1561 SHR(v->Q(i + 1), shift - 128);
1562 d->Q(i) = r0;
1563 d->Q(i + 1) = r1;
1564 }
1565#endif
1566#undef SHR
1567 }
1568}
1569
1570#if SHIFT >= 1
1571
1572#define SSE_HELPER_V(name, elem, num, F) \
1573 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, \
1574 Reg *m) \
1575 { \
1576 int i; \
1577 for (i = 0; i < num; i++) { \
1578 d->elem(i) = F(v->elem(i), s->elem(i), m->elem(i)); \
1579 } \
1580 }
1581
1582#define SSE_HELPER_I(name, elem, num, F) \
1583 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, \
1584 uint32_t imm) \
1585 { \
1586 int i; \
1587 for (i = 0; i < num; i++) { \
1588 int j = i & 7; \
1589 d->elem(i) = F(v->elem(i), s->elem(i), (imm >> j) & 1); \
1590 } \
1591 }
1592
1593/* SSE4.1 op helpers */
1594#define FBLENDVB(v, s, m) ((m & 0x80) ? s : v)
1595#define FBLENDVPS(v, s, m) ((m & 0x80000000) ? s : v)
1596#define FBLENDVPD(v, s, m) ((m & 0x8000000000000000LL) ? s : v)
1597SSE_HELPER_V(helper_pblendvb, B, 8 << SHIFT, FBLENDVB)
1598SSE_HELPER_V(helper_blendvps, L, 2 << SHIFT, FBLENDVPS)
1599SSE_HELPER_V(helper_blendvpd, Q, 1 << SHIFT, FBLENDVPD)
1600
1601void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1602{
1603 uint64_t zf = 0, cf = 0;
1604 int i;
1605
1606 for (i = 0; i < 1 << SHIFT; i++) {
1607 zf |= (s->Q(i) & d->Q(i));
1608 cf |= (s->Q(i) & ~d->Q(i));
1609 }
1610 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1611}
1612
1613#define FMOVSLDUP(i) s->L((i) & ~1)
1614#define FMOVSHDUP(i) s->L((i) | 1)
1615#define FMOVDLDUP(i) s->Q((i) & ~1)
1616
1617#define SSE_HELPER_F(name, elem, num, F) \
1618 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1619 { \
1620 int n = num; \
1621 for (int i = n; --i >= 0; ) { \
1622 d->elem(i) = F(i); \
1623 } \
1624 }
1625
1626#if SHIFT > 0
1627SSE_HELPER_F(helper_pmovsxbw, W, 4 << SHIFT, (int8_t) s->B)
1628SSE_HELPER_F(helper_pmovsxbd, L, 2 << SHIFT, (int8_t) s->B)
1629SSE_HELPER_F(helper_pmovsxbq, Q, 1 << SHIFT, (int8_t) s->B)
1630SSE_HELPER_F(helper_pmovsxwd, L, 2 << SHIFT, (int16_t) s->W)
1631SSE_HELPER_F(helper_pmovsxwq, Q, 1 << SHIFT, (int16_t) s->W)
1632SSE_HELPER_F(helper_pmovsxdq, Q, 1 << SHIFT, (int32_t) s->L)
1633SSE_HELPER_F(helper_pmovzxbw, W, 4 << SHIFT, s->B)
1634SSE_HELPER_F(helper_pmovzxbd, L, 2 << SHIFT, s->B)
1635SSE_HELPER_F(helper_pmovzxbq, Q, 1 << SHIFT, s->B)
1636SSE_HELPER_F(helper_pmovzxwd, L, 2 << SHIFT, s->W)
1637SSE_HELPER_F(helper_pmovzxwq, Q, 1 << SHIFT, s->W)
1638SSE_HELPER_F(helper_pmovzxdq, Q, 1 << SHIFT, s->L)
1639SSE_HELPER_F(helper_pmovsldup, L, 2 << SHIFT, FMOVSLDUP)
1640SSE_HELPER_F(helper_pmovshdup, L, 2 << SHIFT, FMOVSHDUP)
1641SSE_HELPER_F(helper_pmovdldup, Q, 1 << SHIFT, FMOVDLDUP)
1642#endif
1643
1644void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1645{
1646 int i;
1647
1648 for (i = 0; i < 1 << SHIFT; i++) {
1649 d->Q(i) = (int64_t)(int32_t) v->L(2 * i) * (int32_t) s->L(2 * i);
1650 }
1651}
1652
1653void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1654{
1655 uint16_t r[8];
1656 int i, j, k;
1657
1658 for (i = 0, j = 0; i <= 2 << SHIFT; i += 8, j += 4) {
1659 r[0] = satuw(v->L(j));
1660 r[1] = satuw(v->L(j + 1));
1661 r[2] = satuw(v->L(j + 2));
1662 r[3] = satuw(v->L(j + 3));
1663 r[4] = satuw(s->L(j));
1664 r[5] = satuw(s->L(j + 1));
1665 r[6] = satuw(s->L(j + 2));
1666 r[7] = satuw(s->L(j + 3));
1667 for (k = 0; k < 8; k++) {
1668 d->W(i + k) = r[k];
1669 }
1670 }
1671}
1672
1673#if SHIFT == 1
1674void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1675{
1676 int idx = 0;
1677
1678 if (s->W(1) < s->W(idx)) {
1679 idx = 1;
1680 }
1681 if (s->W(2) < s->W(idx)) {
1682 idx = 2;
1683 }
1684 if (s->W(3) < s->W(idx)) {
1685 idx = 3;
1686 }
1687 if (s->W(4) < s->W(idx)) {
1688 idx = 4;
1689 }
1690 if (s->W(5) < s->W(idx)) {
1691 idx = 5;
1692 }
1693 if (s->W(6) < s->W(idx)) {
1694 idx = 6;
1695 }
1696 if (s->W(7) < s->W(idx)) {
1697 idx = 7;
1698 }
1699
1700 d->W(0) = s->W(idx);
1701 d->W(1) = idx;
1702 d->L(1) = 0;
1703 d->Q(1) = 0;
1704}
1705#endif
1706
1707void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1708 uint32_t mode)
1709{
1710 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1711 signed char prev_rounding_mode;
1712 int i;
1713
1714 prev_rounding_mode = env->sse_status.float_rounding_mode;
1715 if (!(mode & (1 << 2))) {
1716 set_x86_rounding_mode(mode & 3, &env->sse_status);
1717 }
1718
1719 for (i = 0; i < 2 << SHIFT; i++) {
1720 d->ZMM_S(i) = float32_round_to_int(s->ZMM_S(i), &env->sse_status);
1721 }
1722
1723 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1724 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1725 ~float_flag_inexact,
1726 &env->sse_status);
1727 }
1728 env->sse_status.float_rounding_mode = prev_rounding_mode;
1729}
1730
1731void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1732 uint32_t mode)
1733{
1734 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1735 signed char prev_rounding_mode;
1736 int i;
1737
1738 prev_rounding_mode = env->sse_status.float_rounding_mode;
1739 if (!(mode & (1 << 2))) {
1740 set_x86_rounding_mode(mode & 3, &env->sse_status);
1741 }
1742
1743 for (i = 0; i < 1 << SHIFT; i++) {
1744 d->ZMM_D(i) = float64_round_to_int(s->ZMM_D(i), &env->sse_status);
1745 }
1746
1747 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1748 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1749 ~float_flag_inexact,
1750 &env->sse_status);
1751 }
1752 env->sse_status.float_rounding_mode = prev_rounding_mode;
1753}
1754
1755#if SHIFT == 1
1756void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1757 uint32_t mode)
1758{
1759 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1760 signed char prev_rounding_mode;
1761 int i;
1762
1763 prev_rounding_mode = env->sse_status.float_rounding_mode;
1764 if (!(mode & (1 << 2))) {
1765 set_x86_rounding_mode(mode & 3, &env->sse_status);
1766 }
1767
1768 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1769 for (i = 1; i < 2 << SHIFT; i++) {
1770 d->ZMM_L(i) = v->ZMM_L(i);
1771 }
1772
1773 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1774 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1775 ~float_flag_inexact,
1776 &env->sse_status);
1777 }
1778 env->sse_status.float_rounding_mode = prev_rounding_mode;
1779}
1780
1781void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1782 uint32_t mode)
1783{
1784 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1785 signed char prev_rounding_mode;
1786 int i;
1787
1788 prev_rounding_mode = env->sse_status.float_rounding_mode;
1789 if (!(mode & (1 << 2))) {
1790 set_x86_rounding_mode(mode & 3, &env->sse_status);
1791 }
1792
1793 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1794 for (i = 1; i < 1 << SHIFT; i++) {
1795 d->ZMM_Q(i) = v->ZMM_Q(i);
1796 }
1797
1798 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1799 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1800 ~float_flag_inexact,
1801 &env->sse_status);
1802 }
1803 env->sse_status.float_rounding_mode = prev_rounding_mode;
1804}
1805#endif
1806
1807#define FBLENDP(v, s, m) (m ? s : v)
1808SSE_HELPER_I(helper_blendps, L, 2 << SHIFT, FBLENDP)
1809SSE_HELPER_I(helper_blendpd, Q, 1 << SHIFT, FBLENDP)
1810SSE_HELPER_I(helper_pblendw, W, 4 << SHIFT, FBLENDP)
1811
1812void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1813 uint32_t mask)
1814{
1815 float32 prod1, prod2, temp2, temp3, temp4;
1816 int i;
1817
1818 for (i = 0; i < 2 << SHIFT; i += 4) {
1819 /*
1820 * We must evaluate (A+B)+(C+D), not ((A+B)+C)+D
1821 * to correctly round the intermediate results
1822 */
1823 if (mask & (1 << 4)) {
1824 prod1 = float32_mul(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status);
1825 } else {
1826 prod1 = float32_zero;
1827 }
1828 if (mask & (1 << 5)) {
1829 prod2 = float32_mul(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status);
1830 } else {
1831 prod2 = float32_zero;
1832 }
1833 temp2 = float32_add(prod1, prod2, &env->sse_status);
1834 if (mask & (1 << 6)) {
1835 prod1 = float32_mul(v->ZMM_S(i+2), s->ZMM_S(i+2), &env->sse_status);
1836 } else {
1837 prod1 = float32_zero;
1838 }
1839 if (mask & (1 << 7)) {
1840 prod2 = float32_mul(v->ZMM_S(i+3), s->ZMM_S(i+3), &env->sse_status);
1841 } else {
1842 prod2 = float32_zero;
1843 }
1844 temp3 = float32_add(prod1, prod2, &env->sse_status);
1845 temp4 = float32_add(temp2, temp3, &env->sse_status);
1846
1847 d->ZMM_S(i) = (mask & (1 << 0)) ? temp4 : float32_zero;
1848 d->ZMM_S(i+1) = (mask & (1 << 1)) ? temp4 : float32_zero;
1849 d->ZMM_S(i+2) = (mask & (1 << 2)) ? temp4 : float32_zero;
1850 d->ZMM_S(i+3) = (mask & (1 << 3)) ? temp4 : float32_zero;
1851 }
1852}
1853
1854#if SHIFT == 1
1855/* Oddly, there is no ymm version of dppd */
1856void glue(helper_dppd, SUFFIX)(CPUX86State *env,
1857 Reg *d, Reg *v, Reg *s, uint32_t mask)
1858{
1859 float64 prod1, prod2, temp2;
1860
1861 if (mask & (1 << 4)) {
1862 prod1 = float64_mul(v->ZMM_D(0), s->ZMM_D(0), &env->sse_status);
1863 } else {
1864 prod1 = float64_zero;
1865 }
1866 if (mask & (1 << 5)) {
1867 prod2 = float64_mul(v->ZMM_D(1), s->ZMM_D(1), &env->sse_status);
1868 } else {
1869 prod2 = float64_zero;
1870 }
1871 temp2 = float64_add(prod1, prod2, &env->sse_status);
1872 d->ZMM_D(0) = (mask & (1 << 0)) ? temp2 : float64_zero;
1873 d->ZMM_D(1) = (mask & (1 << 1)) ? temp2 : float64_zero;
1874}
1875#endif
1876
1877void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1878 uint32_t offset)
1879{
1880 int i, j;
1881 uint16_t r[8];
1882
1883 for (j = 0; j < 4 << SHIFT; ) {
1884 int s0 = (j * 2) + ((offset & 3) << 2);
1885 int d0 = (j * 2) + ((offset & 4) << 0);
1886 for (i = 0; i < LANE_WIDTH / 2; i++, d0++) {
1887 r[i] = 0;
1888 r[i] += abs1(v->B(d0 + 0) - s->B(s0 + 0));
1889 r[i] += abs1(v->B(d0 + 1) - s->B(s0 + 1));
1890 r[i] += abs1(v->B(d0 + 2) - s->B(s0 + 2));
1891 r[i] += abs1(v->B(d0 + 3) - s->B(s0 + 3));
1892 }
1893 for (i = 0; i < LANE_WIDTH / 2; i++, j++) {
1894 d->W(j) = r[i];
1895 }
1896 offset >>= 3;
1897 }
1898}
1899
1900/* SSE4.2 op helpers */
1901#if SHIFT == 1
1902static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl)
1903{
1904 target_long val, limit;
1905
1906 /* Presence of REX.W is indicated by a bit higher than 7 set */
1907 if (ctrl >> 8) {
1908 val = (target_long)env->regs[reg];
1909 } else {
1910 val = (int32_t)env->regs[reg];
1911 }
1912 if (ctrl & 1) {
1913 limit = 8;
1914 } else {
1915 limit = 16;
1916 }
1917 if ((val > limit) || (val < -limit)) {
1918 return limit;
1919 }
1920 return abs1(val);
1921}
1922
1923static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1924{
1925 int val = 0;
1926
1927 if (ctrl & 1) {
1928 while (val < 8 && r->W(val)) {
1929 val++;
1930 }
1931 } else {
1932 while (val < 16 && r->B(val)) {
1933 val++;
1934 }
1935 }
1936
1937 return val;
1938}
1939
1940static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1941{
1942 switch ((ctrl >> 0) & 3) {
1943 case 0:
1944 return r->B(i);
1945 case 1:
1946 return r->W(i);
1947 case 2:
1948 return (int8_t)r->B(i);
1949 case 3:
1950 default:
1951 return (int16_t)r->W(i);
1952 }
1953}
1954
1955static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s,
1956 uint8_t ctrl, int valids, int validd)
1957{
1958 unsigned int res = 0;
1959 int v;
1960 int j, i;
1961 int upper = (ctrl & 1) ? 7 : 15;
1962
1963 valids--;
1964 validd--;
1965
1966 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1967
1968 switch ((ctrl >> 2) & 3) {
1969 case 0:
1970 for (j = valids; j >= 0; j--) {
1971 res <<= 1;
1972 v = pcmp_val(s, ctrl, j);
1973 for (i = validd; i >= 0; i--) {
1974 res |= (v == pcmp_val(d, ctrl, i));
1975 }
1976 }
1977 break;
1978 case 1:
1979 for (j = valids; j >= 0; j--) {
1980 res <<= 1;
1981 v = pcmp_val(s, ctrl, j);
1982 for (i = ((validd - 1) | 1); i >= 0; i -= 2) {
1983 res |= (pcmp_val(d, ctrl, i - 0) >= v &&
1984 pcmp_val(d, ctrl, i - 1) <= v);
1985 }
1986 }
1987 break;
1988 case 2:
1989 res = (1 << (upper - MAX(valids, validd))) - 1;
1990 res <<= MAX(valids, validd) - MIN(valids, validd);
1991 for (i = MIN(valids, validd); i >= 0; i--) {
1992 res <<= 1;
1993 v = pcmp_val(s, ctrl, i);
1994 res |= (v == pcmp_val(d, ctrl, i));
1995 }
1996 break;
1997 case 3:
1998 if (validd == -1) {
1999 res = (2 << upper) - 1;
2000 break;
2001 }
2002 for (j = valids == upper ? valids : valids - validd; j >= 0; j--) {
2003 res <<= 1;
2004 v = 1;
2005 for (i = MIN(valids - j, validd); i >= 0; i--) {
2006 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
2007 }
2008 res |= v;
2009 }
2010 break;
2011 }
2012
2013 switch ((ctrl >> 4) & 3) {
2014 case 1:
2015 res ^= (2 << upper) - 1;
2016 break;
2017 case 3:
2018 res ^= (1 << (valids + 1)) - 1;
2019 break;
2020 }
2021
2022 if (res) {
2023 CC_SRC |= CC_C;
2024 }
2025 if (res & 1) {
2026 CC_SRC |= CC_O;
2027 }
2028
2029 return res;
2030}
2031
2032void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2033 uint32_t ctrl)
2034{
2035 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2036 pcmp_elen(env, R_EDX, ctrl),
2037 pcmp_elen(env, R_EAX, ctrl));
2038
2039 if (res) {
2040 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2041 } else {
2042 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2043 }
2044}
2045
2046void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2047 uint32_t ctrl)
2048{
2049 int i;
2050 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2051 pcmp_elen(env, R_EDX, ctrl),
2052 pcmp_elen(env, R_EAX, ctrl));
2053
2054 if ((ctrl >> 6) & 1) {
2055 if (ctrl & 1) {
2056 for (i = 0; i < 8; i++, res >>= 1) {
2057 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2058 }
2059 } else {
2060 for (i = 0; i < 16; i++, res >>= 1) {
2061 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2062 }
2063 }
2064 } else {
2065 env->xmm_regs[0].Q(1) = 0;
2066 env->xmm_regs[0].Q(0) = res;
2067 }
2068}
2069
2070void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2071 uint32_t ctrl)
2072{
2073 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2074 pcmp_ilen(s, ctrl),
2075 pcmp_ilen(d, ctrl));
2076
2077 if (res) {
2078 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2079 } else {
2080 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2081 }
2082}
2083
2084void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2085 uint32_t ctrl)
2086{
2087 int i;
2088 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2089 pcmp_ilen(s, ctrl),
2090 pcmp_ilen(d, ctrl));
2091
2092 if ((ctrl >> 6) & 1) {
2093 if (ctrl & 1) {
2094 for (i = 0; i < 8; i++, res >>= 1) {
2095 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2096 }
2097 } else {
2098 for (i = 0; i < 16; i++, res >>= 1) {
2099 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2100 }
2101 }
2102 } else {
2103 env->xmm_regs[0].Q(1) = 0;
2104 env->xmm_regs[0].Q(0) = res;
2105 }
2106}
2107
2108#define CRCPOLY 0x1edc6f41
2109#define CRCPOLY_BITREV 0x82f63b78
2110target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2111{
2112 target_ulong crc = (msg & ((target_ulong) -1 >>
2113 (TARGET_LONG_BITS - len))) ^ crc1;
2114
2115 while (len--) {
2116 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2117 }
2118
2119 return crc;
2120}
2121
2122#endif
2123
2124#if SHIFT == 1
2125static void clmulq(uint64_t *dest_l, uint64_t *dest_h,
2126 uint64_t a, uint64_t b)
2127{
2128 uint64_t al, ah, resh, resl;
2129
2130 ah = 0;
2131 al = a;
2132 resh = resl = 0;
2133
2134 while (b) {
2135 if (b & 1) {
2136 resl ^= al;
2137 resh ^= ah;
2138 }
2139 ah = (ah << 1) | (al >> 63);
2140 al <<= 1;
2141 b >>= 1;
2142 }
2143
2144 *dest_l = resl;
2145 *dest_h = resh;
2146}
2147#endif
2148
2149void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
2150 uint32_t ctrl)
2151{
2152 uint64_t a, b;
2153 int i;
2154
2155 for (i = 0; i < 1 << SHIFT; i += 2) {
2156 a = v->Q(((ctrl & 1) != 0) + i);
2157 b = s->Q(((ctrl & 16) != 0) + i);
2158 clmulq(&d->Q(i), &d->Q(i + 1), a, b);
2159 }
2160}
2161
2162void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2163{
2164 int i;
2165 Reg st = *v;
2166 Reg rk = *s;
2167
2168 for (i = 0 ; i < 2 << SHIFT ; i++) {
2169 int j = i & 3;
2170 d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4 * j + 0])] ^
2171 AES_Td1[st.B(AES_ishifts[4 * j + 1])] ^
2172 AES_Td2[st.B(AES_ishifts[4 * j + 2])] ^
2173 AES_Td3[st.B(AES_ishifts[4 * j + 3])]);
2174 }
2175}
2176
2177void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2178{
2179 int i;
2180 Reg st = *v;
2181 Reg rk = *s;
2182
2183 for (i = 0; i < 8 << SHIFT; i++) {
2184 d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i & 15] + (i & ~15))]);
2185 }
2186}
2187
2188void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2189{
2190 int i;
2191 Reg st = *v;
2192 Reg rk = *s;
2193
2194 for (i = 0 ; i < 2 << SHIFT ; i++) {
2195 int j = i & 3;
2196 d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4 * j + 0])] ^
2197 AES_Te1[st.B(AES_shifts[4 * j + 1])] ^
2198 AES_Te2[st.B(AES_shifts[4 * j + 2])] ^
2199 AES_Te3[st.B(AES_shifts[4 * j + 3])]);
2200 }
2201}
2202
2203void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2204{
2205 int i;
2206 Reg st = *v;
2207 Reg rk = *s;
2208
2209 for (i = 0; i < 8 << SHIFT; i++) {
2210 d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i & 15] + (i & ~15))]);
2211 }
2212}
2213
2214#if SHIFT == 1
2215void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2216{
2217 int i;
2218 Reg tmp = *s;
2219
2220 for (i = 0 ; i < 4 ; i++) {
2221 d->L(i) = bswap32(AES_imc[tmp.B(4 * i + 0)][0] ^
2222 AES_imc[tmp.B(4 * i + 1)][1] ^
2223 AES_imc[tmp.B(4 * i + 2)][2] ^
2224 AES_imc[tmp.B(4 * i + 3)][3]);
2225 }
2226}
2227
2228void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2229 uint32_t ctrl)
2230{
2231 int i;
2232 Reg tmp = *s;
2233
2234 for (i = 0 ; i < 4 ; i++) {
2235 d->B(i) = AES_sbox[tmp.B(i + 4)];
2236 d->B(i + 8) = AES_sbox[tmp.B(i + 12)];
2237 }
2238 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl;
2239 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl;
2240}
2241#endif
2242#endif
2243
2244#if SHIFT >= 1
2245void glue(helper_vpermilpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2246{
2247 uint64_t r0, r1;
2248 int i;
2249
2250 for (i = 0; i < 1 << SHIFT; i += 2) {
2251 r0 = v->Q(i + ((s->Q(i) >> 1) & 1));
2252 r1 = v->Q(i + ((s->Q(i+1) >> 1) & 1));
2253 d->Q(i) = r0;
2254 d->Q(i+1) = r1;
2255 }
2256}
2257
2258void glue(helper_vpermilps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2259{
2260 uint32_t r0, r1, r2, r3;
2261 int i;
2262
2263 for (i = 0; i < 2 << SHIFT; i += 4) {
2264 r0 = v->L(i + (s->L(i) & 3));
2265 r1 = v->L(i + (s->L(i+1) & 3));
2266 r2 = v->L(i + (s->L(i+2) & 3));
2267 r3 = v->L(i + (s->L(i+3) & 3));
2268 d->L(i) = r0;
2269 d->L(i+1) = r1;
2270 d->L(i+2) = r2;
2271 d->L(i+3) = r3;
2272 }
2273}
2274
2275void glue(helper_vpermilpd_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order)
2276{
2277 uint64_t r0, r1;
2278 int i;
2279
2280 for (i = 0; i < 1 << SHIFT; i += 2) {
2281 r0 = s->Q(i + ((order >> 0) & 1));
2282 r1 = s->Q(i + ((order >> 1) & 1));
2283 d->Q(i) = r0;
2284 d->Q(i+1) = r1;
2285
2286 order >>= 2;
2287 }
2288}
2289
2290void glue(helper_vpermilps_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order)
2291{
2292 uint32_t r0, r1, r2, r3;
2293 int i;
2294
2295 for (i = 0; i < 2 << SHIFT; i += 4) {
2296 r0 = s->L(i + ((order >> 0) & 3));
2297 r1 = s->L(i + ((order >> 2) & 3));
2298 r2 = s->L(i + ((order >> 4) & 3));
2299 r3 = s->L(i + ((order >> 6) & 3));
2300 d->L(i) = r0;
2301 d->L(i+1) = r1;
2302 d->L(i+2) = r2;
2303 d->L(i+3) = r3;
2304 }
2305}
2306
2307#if SHIFT == 1
2308#define FPSRLVD(x, c) (c < 32 ? ((x) >> c) : 0)
2309#define FPSRLVQ(x, c) (c < 64 ? ((x) >> c) : 0)
2310#define FPSRAVD(x, c) ((int32_t)(x) >> (c < 32 ? c : 31))
2311#define FPSRAVQ(x, c) ((int64_t)(x) >> (c < 64 ? c : 63))
2312#define FPSLLVD(x, c) (c < 32 ? ((x) << c) : 0)
2313#define FPSLLVQ(x, c) (c < 64 ? ((x) << c) : 0)
2314#endif
2315
2316SSE_HELPER_L(helper_vpsrlvd, FPSRLVD)
2317SSE_HELPER_L(helper_vpsravd, FPSRAVD)
2318SSE_HELPER_L(helper_vpsllvd, FPSLLVD)
2319
2320SSE_HELPER_Q(helper_vpsrlvq, FPSRLVQ)
2321SSE_HELPER_Q(helper_vpsravq, FPSRAVQ)
2322SSE_HELPER_Q(helper_vpsllvq, FPSLLVQ)
2323
2324void glue(helper_vtestps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2325{
2326 uint32_t zf = 0, cf = 0;
2327 int i;
2328
2329 for (i = 0; i < 2 << SHIFT; i++) {
2330 zf |= (s->L(i) & d->L(i));
2331 cf |= (s->L(i) & ~d->L(i));
2332 }
2333 CC_SRC = ((zf >> 31) ? 0 : CC_Z) | ((cf >> 31) ? 0 : CC_C);
2334}
2335
2336void glue(helper_vtestpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2337{
2338 uint64_t zf = 0, cf = 0;
2339 int i;
2340
2341 for (i = 0; i < 1 << SHIFT; i++) {
2342 zf |= (s->Q(i) & d->Q(i));
2343 cf |= (s->Q(i) & ~d->Q(i));
2344 }
2345 CC_SRC = ((zf >> 63) ? 0 : CC_Z) | ((cf >> 63) ? 0 : CC_C);
2346}
2347
2348void glue(helper_vpmaskmovd_st, SUFFIX)(CPUX86State *env,
2349 Reg *v, Reg *s, target_ulong a0)
2350{
2351 int i;
2352
2353 for (i = 0; i < (2 << SHIFT); i++) {
2354 if (v->L(i) >> 31) {
2355 cpu_stl_data_ra(env, a0 + i * 4, s->L(i), GETPC());
2356 }
2357 }
2358}
2359
2360void glue(helper_vpmaskmovq_st, SUFFIX)(CPUX86State *env,
2361 Reg *v, Reg *s, target_ulong a0)
2362{
2363 int i;
2364
2365 for (i = 0; i < (1 << SHIFT); i++) {
2366 if (v->Q(i) >> 63) {
2367 cpu_stq_data_ra(env, a0 + i * 8, s->Q(i), GETPC());
2368 }
2369 }
2370}
2371
2372void glue(helper_vpmaskmovd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2373{
2374 int i;
2375
2376 for (i = 0; i < (2 << SHIFT); i++) {
2377 d->L(i) = (v->L(i) >> 31) ? s->L(i) : 0;
2378 }
2379}
2380
2381void glue(helper_vpmaskmovq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2382{
2383 int i;
2384
2385 for (i = 0; i < (1 << SHIFT); i++) {
2386 d->Q(i) = (v->Q(i) >> 63) ? s->Q(i) : 0;
2387 }
2388}
2389
2390void glue(helper_vpgatherdd, SUFFIX)(CPUX86State *env,
2391 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2392{
2393 int i;
2394 for (i = 0; i < (2 << SHIFT); i++) {
2395 if (v->L(i) >> 31) {
2396 target_ulong addr = a0
2397 + ((target_ulong)(int32_t)s->L(i) << scale);
2398 d->L(i) = cpu_ldl_data_ra(env, addr, GETPC());
2399 }
2400 v->L(i) = 0;
2401 }
2402}
2403
2404void glue(helper_vpgatherdq, SUFFIX)(CPUX86State *env,
2405 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2406{
2407 int i;
2408 for (i = 0; i < (1 << SHIFT); i++) {
2409 if (v->Q(i) >> 63) {
2410 target_ulong addr = a0
2411 + ((target_ulong)(int32_t)s->L(i) << scale);
2412 d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC());
2413 }
2414 v->Q(i) = 0;
2415 }
2416}
2417
2418void glue(helper_vpgatherqd, SUFFIX)(CPUX86State *env,
2419 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2420{
2421 int i;
2422 for (i = 0; i < (1 << SHIFT); i++) {
2423 if (v->L(i) >> 31) {
2424 target_ulong addr = a0
2425 + ((target_ulong)(int64_t)s->Q(i) << scale);
2426 d->L(i) = cpu_ldl_data_ra(env, addr, GETPC());
2427 }
2428 v->L(i) = 0;
2429 }
2430 for (i /= 2; i < 1 << SHIFT; i++) {
2431 d->Q(i) = 0;
2432 v->Q(i) = 0;
2433 }
2434}
2435
2436void glue(helper_vpgatherqq, SUFFIX)(CPUX86State *env,
2437 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2438{
2439 int i;
2440 for (i = 0; i < (1 << SHIFT); i++) {
2441 if (v->Q(i) >> 63) {
2442 target_ulong addr = a0
2443 + ((target_ulong)(int64_t)s->Q(i) << scale);
2444 d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC());
2445 }
2446 v->Q(i) = 0;
2447 }
2448}
2449#endif
2450
2451#if SHIFT >= 2
2452void helper_vpermdq_ymm(Reg *d, Reg *v, Reg *s, uint32_t order)
2453{
2454 uint64_t r0, r1, r2, r3;
2455
2456 switch (order & 3) {
2457 case 0:
2458 r0 = v->Q(0);
2459 r1 = v->Q(1);
2460 break;
2461 case 1:
2462 r0 = v->Q(2);
2463 r1 = v->Q(3);
2464 break;
2465 case 2:
2466 r0 = s->Q(0);
2467 r1 = s->Q(1);
2468 break;
2469 case 3:
2470 r0 = s->Q(2);
2471 r1 = s->Q(3);
2472 break;
2473 default: /* default case added to help the compiler to avoid warnings */
2474 g_assert_not_reached();
2475 }
2476 switch ((order >> 4) & 3) {
2477 case 0:
2478 r2 = v->Q(0);
2479 r3 = v->Q(1);
2480 break;
2481 case 1:
2482 r2 = v->Q(2);
2483 r3 = v->Q(3);
2484 break;
2485 case 2:
2486 r2 = s->Q(0);
2487 r3 = s->Q(1);
2488 break;
2489 case 3:
2490 r2 = s->Q(2);
2491 r3 = s->Q(3);
2492 break;
2493 default: /* default case added to help the compiler to avoid warnings */
2494 g_assert_not_reached();
2495 }
2496 d->Q(0) = r0;
2497 d->Q(1) = r1;
2498 d->Q(2) = r2;
2499 d->Q(3) = r3;
2500}
2501
2502void helper_vpermq_ymm(Reg *d, Reg *s, uint32_t order)
2503{
2504 uint64_t r0, r1, r2, r3;
2505 r0 = s->Q(order & 3);
2506 r1 = s->Q((order >> 2) & 3);
2507 r2 = s->Q((order >> 4) & 3);
2508 r3 = s->Q((order >> 6) & 3);
2509 d->Q(0) = r0;
2510 d->Q(1) = r1;
2511 d->Q(2) = r2;
2512 d->Q(3) = r3;
2513}
2514
2515void helper_vpermd_ymm(Reg *d, Reg *v, Reg *s)
2516{
2517 uint32_t r[8];
2518 int i;
2519
2520 for (i = 0; i < 8; i++) {
2521 r[i] = s->L(v->L(i) & 7);
2522 }
2523 for (i = 0; i < 8; i++) {
2524 d->L(i) = r[i];
2525 }
2526}
2527#endif
2528
2529/* FMA3 op helpers */
2530#if SHIFT == 1
2531#define SSE_HELPER_FMAS(name, elem, F) \
2532 void name(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c, int flags) \
2533 { \
2534 d->elem(0) = F(a->elem(0), b->elem(0), c->elem(0), flags, &env->sse_status); \
2535 }
2536#define SSE_HELPER_FMAP(name, elem, num, F) \
2537 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c, \
2538 int flags, int flip) \
2539 { \
2540 int i; \
2541 for (i = 0; i < num; i++) { \
2542 d->elem(i) = F(a->elem(i), b->elem(i), c->elem(i), flags, &env->sse_status); \
2543 flags ^= flip; \
2544 } \
2545 }
2546
2547SSE_HELPER_FMAS(helper_fma4ss, ZMM_S, float32_muladd)
2548SSE_HELPER_FMAS(helper_fma4sd, ZMM_D, float64_muladd)
2549#endif
2550
2551#if SHIFT >= 1
2552SSE_HELPER_FMAP(helper_fma4ps, ZMM_S, 2 << SHIFT, float32_muladd)
2553SSE_HELPER_FMAP(helper_fma4pd, ZMM_D, 1 << SHIFT, float64_muladd)
2554#endif
2555
2556#undef SSE_HELPER_S
2557
2558#undef LANE_WIDTH
2559#undef SHIFT
2560#undef XMM_ONLY
2561#undef Reg
2562#undef B
2563#undef W
2564#undef L
2565#undef Q
2566#undef SUFFIX