]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - virt/kvm/kvm_main.c
KVM: Drop kvm->irq_lock lock from irq injection path
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / kvm_main.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18#include "iodev.h"
19
20#include <linux/kvm_host.h>
21#include <linux/kvm.h>
22#include <linux/module.h>
23#include <linux/errno.h>
24#include <linux/percpu.h>
25#include <linux/gfp.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/sysdev.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46
47#include <asm/processor.h>
48#include <asm/io.h>
49#include <asm/uaccess.h>
50#include <asm/pgtable.h>
51
52#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53#include "coalesced_mmio.h"
54#endif
55
56#ifdef KVM_CAP_DEVICE_ASSIGNMENT
57#include <linux/pci.h>
58#include <linux/interrupt.h>
59#include "irq.h"
60#endif
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/kvm.h>
64
65MODULE_AUTHOR("Qumranet");
66MODULE_LICENSE("GPL");
67
68/*
69 * Ordering of locks:
70 *
71 * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
72 */
73
74DEFINE_SPINLOCK(kvm_lock);
75LIST_HEAD(vm_list);
76
77static cpumask_var_t cpus_hardware_enabled;
78
79struct kmem_cache *kvm_vcpu_cache;
80EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84struct dentry *kvm_debugfs_dir;
85
86static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 unsigned long arg);
88
89static bool kvm_rebooting;
90
91static bool largepages_enabled = true;
92
93#ifdef KVM_CAP_DEVICE_ASSIGNMENT
94static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95 int assigned_dev_id)
96{
97 struct list_head *ptr;
98 struct kvm_assigned_dev_kernel *match;
99
100 list_for_each(ptr, head) {
101 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102 if (match->assigned_dev_id == assigned_dev_id)
103 return match;
104 }
105 return NULL;
106}
107
108static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109 *assigned_dev, int irq)
110{
111 int i, index;
112 struct msix_entry *host_msix_entries;
113
114 host_msix_entries = assigned_dev->host_msix_entries;
115
116 index = -1;
117 for (i = 0; i < assigned_dev->entries_nr; i++)
118 if (irq == host_msix_entries[i].vector) {
119 index = i;
120 break;
121 }
122 if (index < 0) {
123 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124 return 0;
125 }
126
127 return index;
128}
129
130static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131{
132 struct kvm_assigned_dev_kernel *assigned_dev;
133 struct kvm *kvm;
134 int i;
135
136 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137 interrupt_work);
138 kvm = assigned_dev->kvm;
139
140 spin_lock_irq(&assigned_dev->assigned_dev_lock);
141 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
142 struct kvm_guest_msix_entry *guest_entries =
143 assigned_dev->guest_msix_entries;
144 for (i = 0; i < assigned_dev->entries_nr; i++) {
145 if (!(guest_entries[i].flags &
146 KVM_ASSIGNED_MSIX_PENDING))
147 continue;
148 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
149 kvm_set_irq(assigned_dev->kvm,
150 assigned_dev->irq_source_id,
151 guest_entries[i].vector, 1);
152 }
153 } else
154 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
155 assigned_dev->guest_irq, 1);
156
157 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
158}
159
160static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
161{
162 unsigned long flags;
163 struct kvm_assigned_dev_kernel *assigned_dev =
164 (struct kvm_assigned_dev_kernel *) dev_id;
165
166 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
167 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
168 int index = find_index_from_host_irq(assigned_dev, irq);
169 if (index < 0)
170 goto out;
171 assigned_dev->guest_msix_entries[index].flags |=
172 KVM_ASSIGNED_MSIX_PENDING;
173 }
174
175 schedule_work(&assigned_dev->interrupt_work);
176
177 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
178 disable_irq_nosync(irq);
179 assigned_dev->host_irq_disabled = true;
180 }
181
182out:
183 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
184 return IRQ_HANDLED;
185}
186
187/* Ack the irq line for an assigned device */
188static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
189{
190 struct kvm_assigned_dev_kernel *dev;
191 unsigned long flags;
192
193 if (kian->gsi == -1)
194 return;
195
196 dev = container_of(kian, struct kvm_assigned_dev_kernel,
197 ack_notifier);
198
199 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
200
201 /* The guest irq may be shared so this ack may be
202 * from another device.
203 */
204 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
205 if (dev->host_irq_disabled) {
206 enable_irq(dev->host_irq);
207 dev->host_irq_disabled = false;
208 }
209 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
210}
211
212static void deassign_guest_irq(struct kvm *kvm,
213 struct kvm_assigned_dev_kernel *assigned_dev)
214{
215 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
216 assigned_dev->ack_notifier.gsi = -1;
217
218 if (assigned_dev->irq_source_id != -1)
219 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
220 assigned_dev->irq_source_id = -1;
221 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
222}
223
224/* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
225static void deassign_host_irq(struct kvm *kvm,
226 struct kvm_assigned_dev_kernel *assigned_dev)
227{
228 /*
229 * In kvm_free_device_irq, cancel_work_sync return true if:
230 * 1. work is scheduled, and then cancelled.
231 * 2. work callback is executed.
232 *
233 * The first one ensured that the irq is disabled and no more events
234 * would happen. But for the second one, the irq may be enabled (e.g.
235 * for MSI). So we disable irq here to prevent further events.
236 *
237 * Notice this maybe result in nested disable if the interrupt type is
238 * INTx, but it's OK for we are going to free it.
239 *
240 * If this function is a part of VM destroy, please ensure that till
241 * now, the kvm state is still legal for probably we also have to wait
242 * interrupt_work done.
243 */
244 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
245 int i;
246 for (i = 0; i < assigned_dev->entries_nr; i++)
247 disable_irq_nosync(assigned_dev->
248 host_msix_entries[i].vector);
249
250 cancel_work_sync(&assigned_dev->interrupt_work);
251
252 for (i = 0; i < assigned_dev->entries_nr; i++)
253 free_irq(assigned_dev->host_msix_entries[i].vector,
254 (void *)assigned_dev);
255
256 assigned_dev->entries_nr = 0;
257 kfree(assigned_dev->host_msix_entries);
258 kfree(assigned_dev->guest_msix_entries);
259 pci_disable_msix(assigned_dev->dev);
260 } else {
261 /* Deal with MSI and INTx */
262 disable_irq_nosync(assigned_dev->host_irq);
263 cancel_work_sync(&assigned_dev->interrupt_work);
264
265 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
266
267 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
268 pci_disable_msi(assigned_dev->dev);
269 }
270
271 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
272}
273
274static int kvm_deassign_irq(struct kvm *kvm,
275 struct kvm_assigned_dev_kernel *assigned_dev,
276 unsigned long irq_requested_type)
277{
278 unsigned long guest_irq_type, host_irq_type;
279
280 if (!irqchip_in_kernel(kvm))
281 return -EINVAL;
282 /* no irq assignment to deassign */
283 if (!assigned_dev->irq_requested_type)
284 return -ENXIO;
285
286 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
287 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
288
289 if (host_irq_type)
290 deassign_host_irq(kvm, assigned_dev);
291 if (guest_irq_type)
292 deassign_guest_irq(kvm, assigned_dev);
293
294 return 0;
295}
296
297static void kvm_free_assigned_irq(struct kvm *kvm,
298 struct kvm_assigned_dev_kernel *assigned_dev)
299{
300 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
301}
302
303static void kvm_free_assigned_device(struct kvm *kvm,
304 struct kvm_assigned_dev_kernel
305 *assigned_dev)
306{
307 kvm_free_assigned_irq(kvm, assigned_dev);
308
309 pci_reset_function(assigned_dev->dev);
310
311 pci_release_regions(assigned_dev->dev);
312 pci_disable_device(assigned_dev->dev);
313 pci_dev_put(assigned_dev->dev);
314
315 list_del(&assigned_dev->list);
316 kfree(assigned_dev);
317}
318
319void kvm_free_all_assigned_devices(struct kvm *kvm)
320{
321 struct list_head *ptr, *ptr2;
322 struct kvm_assigned_dev_kernel *assigned_dev;
323
324 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
325 assigned_dev = list_entry(ptr,
326 struct kvm_assigned_dev_kernel,
327 list);
328
329 kvm_free_assigned_device(kvm, assigned_dev);
330 }
331}
332
333static int assigned_device_enable_host_intx(struct kvm *kvm,
334 struct kvm_assigned_dev_kernel *dev)
335{
336 dev->host_irq = dev->dev->irq;
337 /* Even though this is PCI, we don't want to use shared
338 * interrupts. Sharing host devices with guest-assigned devices
339 * on the same interrupt line is not a happy situation: there
340 * are going to be long delays in accepting, acking, etc.
341 */
342 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
343 0, "kvm_assigned_intx_device", (void *)dev))
344 return -EIO;
345 return 0;
346}
347
348#ifdef __KVM_HAVE_MSI
349static int assigned_device_enable_host_msi(struct kvm *kvm,
350 struct kvm_assigned_dev_kernel *dev)
351{
352 int r;
353
354 if (!dev->dev->msi_enabled) {
355 r = pci_enable_msi(dev->dev);
356 if (r)
357 return r;
358 }
359
360 dev->host_irq = dev->dev->irq;
361 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
362 "kvm_assigned_msi_device", (void *)dev)) {
363 pci_disable_msi(dev->dev);
364 return -EIO;
365 }
366
367 return 0;
368}
369#endif
370
371#ifdef __KVM_HAVE_MSIX
372static int assigned_device_enable_host_msix(struct kvm *kvm,
373 struct kvm_assigned_dev_kernel *dev)
374{
375 int i, r = -EINVAL;
376
377 /* host_msix_entries and guest_msix_entries should have been
378 * initialized */
379 if (dev->entries_nr == 0)
380 return r;
381
382 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
383 if (r)
384 return r;
385
386 for (i = 0; i < dev->entries_nr; i++) {
387 r = request_irq(dev->host_msix_entries[i].vector,
388 kvm_assigned_dev_intr, 0,
389 "kvm_assigned_msix_device",
390 (void *)dev);
391 /* FIXME: free requested_irq's on failure */
392 if (r)
393 return r;
394 }
395
396 return 0;
397}
398
399#endif
400
401static int assigned_device_enable_guest_intx(struct kvm *kvm,
402 struct kvm_assigned_dev_kernel *dev,
403 struct kvm_assigned_irq *irq)
404{
405 dev->guest_irq = irq->guest_irq;
406 dev->ack_notifier.gsi = irq->guest_irq;
407 return 0;
408}
409
410#ifdef __KVM_HAVE_MSI
411static int assigned_device_enable_guest_msi(struct kvm *kvm,
412 struct kvm_assigned_dev_kernel *dev,
413 struct kvm_assigned_irq *irq)
414{
415 dev->guest_irq = irq->guest_irq;
416 dev->ack_notifier.gsi = -1;
417 dev->host_irq_disabled = false;
418 return 0;
419}
420#endif
421#ifdef __KVM_HAVE_MSIX
422static int assigned_device_enable_guest_msix(struct kvm *kvm,
423 struct kvm_assigned_dev_kernel *dev,
424 struct kvm_assigned_irq *irq)
425{
426 dev->guest_irq = irq->guest_irq;
427 dev->ack_notifier.gsi = -1;
428 dev->host_irq_disabled = false;
429 return 0;
430}
431#endif
432
433static int assign_host_irq(struct kvm *kvm,
434 struct kvm_assigned_dev_kernel *dev,
435 __u32 host_irq_type)
436{
437 int r = -EEXIST;
438
439 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
440 return r;
441
442 switch (host_irq_type) {
443 case KVM_DEV_IRQ_HOST_INTX:
444 r = assigned_device_enable_host_intx(kvm, dev);
445 break;
446#ifdef __KVM_HAVE_MSI
447 case KVM_DEV_IRQ_HOST_MSI:
448 r = assigned_device_enable_host_msi(kvm, dev);
449 break;
450#endif
451#ifdef __KVM_HAVE_MSIX
452 case KVM_DEV_IRQ_HOST_MSIX:
453 r = assigned_device_enable_host_msix(kvm, dev);
454 break;
455#endif
456 default:
457 r = -EINVAL;
458 }
459
460 if (!r)
461 dev->irq_requested_type |= host_irq_type;
462
463 return r;
464}
465
466static int assign_guest_irq(struct kvm *kvm,
467 struct kvm_assigned_dev_kernel *dev,
468 struct kvm_assigned_irq *irq,
469 unsigned long guest_irq_type)
470{
471 int id;
472 int r = -EEXIST;
473
474 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
475 return r;
476
477 id = kvm_request_irq_source_id(kvm);
478 if (id < 0)
479 return id;
480
481 dev->irq_source_id = id;
482
483 switch (guest_irq_type) {
484 case KVM_DEV_IRQ_GUEST_INTX:
485 r = assigned_device_enable_guest_intx(kvm, dev, irq);
486 break;
487#ifdef __KVM_HAVE_MSI
488 case KVM_DEV_IRQ_GUEST_MSI:
489 r = assigned_device_enable_guest_msi(kvm, dev, irq);
490 break;
491#endif
492#ifdef __KVM_HAVE_MSIX
493 case KVM_DEV_IRQ_GUEST_MSIX:
494 r = assigned_device_enable_guest_msix(kvm, dev, irq);
495 break;
496#endif
497 default:
498 r = -EINVAL;
499 }
500
501 if (!r) {
502 dev->irq_requested_type |= guest_irq_type;
503 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
504 } else
505 kvm_free_irq_source_id(kvm, dev->irq_source_id);
506
507 return r;
508}
509
510/* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
511static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
512 struct kvm_assigned_irq *assigned_irq)
513{
514 int r = -EINVAL;
515 struct kvm_assigned_dev_kernel *match;
516 unsigned long host_irq_type, guest_irq_type;
517
518 if (!capable(CAP_SYS_RAWIO))
519 return -EPERM;
520
521 if (!irqchip_in_kernel(kvm))
522 return r;
523
524 mutex_lock(&kvm->lock);
525 r = -ENODEV;
526 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
527 assigned_irq->assigned_dev_id);
528 if (!match)
529 goto out;
530
531 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
532 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
533
534 r = -EINVAL;
535 /* can only assign one type at a time */
536 if (hweight_long(host_irq_type) > 1)
537 goto out;
538 if (hweight_long(guest_irq_type) > 1)
539 goto out;
540 if (host_irq_type == 0 && guest_irq_type == 0)
541 goto out;
542
543 r = 0;
544 if (host_irq_type)
545 r = assign_host_irq(kvm, match, host_irq_type);
546 if (r)
547 goto out;
548
549 if (guest_irq_type)
550 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
551out:
552 mutex_unlock(&kvm->lock);
553 return r;
554}
555
556static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
557 struct kvm_assigned_irq
558 *assigned_irq)
559{
560 int r = -ENODEV;
561 struct kvm_assigned_dev_kernel *match;
562
563 mutex_lock(&kvm->lock);
564
565 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
566 assigned_irq->assigned_dev_id);
567 if (!match)
568 goto out;
569
570 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
571out:
572 mutex_unlock(&kvm->lock);
573 return r;
574}
575
576static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
577 struct kvm_assigned_pci_dev *assigned_dev)
578{
579 int r = 0;
580 struct kvm_assigned_dev_kernel *match;
581 struct pci_dev *dev;
582
583 down_read(&kvm->slots_lock);
584 mutex_lock(&kvm->lock);
585
586 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
587 assigned_dev->assigned_dev_id);
588 if (match) {
589 /* device already assigned */
590 r = -EEXIST;
591 goto out;
592 }
593
594 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
595 if (match == NULL) {
596 printk(KERN_INFO "%s: Couldn't allocate memory\n",
597 __func__);
598 r = -ENOMEM;
599 goto out;
600 }
601 dev = pci_get_bus_and_slot(assigned_dev->busnr,
602 assigned_dev->devfn);
603 if (!dev) {
604 printk(KERN_INFO "%s: host device not found\n", __func__);
605 r = -EINVAL;
606 goto out_free;
607 }
608 if (pci_enable_device(dev)) {
609 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
610 r = -EBUSY;
611 goto out_put;
612 }
613 r = pci_request_regions(dev, "kvm_assigned_device");
614 if (r) {
615 printk(KERN_INFO "%s: Could not get access to device regions\n",
616 __func__);
617 goto out_disable;
618 }
619
620 pci_reset_function(dev);
621
622 match->assigned_dev_id = assigned_dev->assigned_dev_id;
623 match->host_busnr = assigned_dev->busnr;
624 match->host_devfn = assigned_dev->devfn;
625 match->flags = assigned_dev->flags;
626 match->dev = dev;
627 spin_lock_init(&match->assigned_dev_lock);
628 match->irq_source_id = -1;
629 match->kvm = kvm;
630 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
631 INIT_WORK(&match->interrupt_work,
632 kvm_assigned_dev_interrupt_work_handler);
633
634 list_add(&match->list, &kvm->arch.assigned_dev_head);
635
636 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
637 if (!kvm->arch.iommu_domain) {
638 r = kvm_iommu_map_guest(kvm);
639 if (r)
640 goto out_list_del;
641 }
642 r = kvm_assign_device(kvm, match);
643 if (r)
644 goto out_list_del;
645 }
646
647out:
648 mutex_unlock(&kvm->lock);
649 up_read(&kvm->slots_lock);
650 return r;
651out_list_del:
652 list_del(&match->list);
653 pci_release_regions(dev);
654out_disable:
655 pci_disable_device(dev);
656out_put:
657 pci_dev_put(dev);
658out_free:
659 kfree(match);
660 mutex_unlock(&kvm->lock);
661 up_read(&kvm->slots_lock);
662 return r;
663}
664#endif
665
666#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
667static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
668 struct kvm_assigned_pci_dev *assigned_dev)
669{
670 int r = 0;
671 struct kvm_assigned_dev_kernel *match;
672
673 mutex_lock(&kvm->lock);
674
675 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
676 assigned_dev->assigned_dev_id);
677 if (!match) {
678 printk(KERN_INFO "%s: device hasn't been assigned before, "
679 "so cannot be deassigned\n", __func__);
680 r = -EINVAL;
681 goto out;
682 }
683
684 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
685 kvm_deassign_device(kvm, match);
686
687 kvm_free_assigned_device(kvm, match);
688
689out:
690 mutex_unlock(&kvm->lock);
691 return r;
692}
693#endif
694
695inline int kvm_is_mmio_pfn(pfn_t pfn)
696{
697 if (pfn_valid(pfn)) {
698 struct page *page = compound_head(pfn_to_page(pfn));
699 return PageReserved(page);
700 }
701
702 return true;
703}
704
705/*
706 * Switches to specified vcpu, until a matching vcpu_put()
707 */
708void vcpu_load(struct kvm_vcpu *vcpu)
709{
710 int cpu;
711
712 mutex_lock(&vcpu->mutex);
713 cpu = get_cpu();
714 preempt_notifier_register(&vcpu->preempt_notifier);
715 kvm_arch_vcpu_load(vcpu, cpu);
716 put_cpu();
717}
718
719void vcpu_put(struct kvm_vcpu *vcpu)
720{
721 preempt_disable();
722 kvm_arch_vcpu_put(vcpu);
723 preempt_notifier_unregister(&vcpu->preempt_notifier);
724 preempt_enable();
725 mutex_unlock(&vcpu->mutex);
726}
727
728static void ack_flush(void *_completed)
729{
730}
731
732static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
733{
734 int i, cpu, me;
735 cpumask_var_t cpus;
736 bool called = true;
737 struct kvm_vcpu *vcpu;
738
739 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
740
741 spin_lock(&kvm->requests_lock);
742 me = smp_processor_id();
743 kvm_for_each_vcpu(i, vcpu, kvm) {
744 if (test_and_set_bit(req, &vcpu->requests))
745 continue;
746 cpu = vcpu->cpu;
747 if (cpus != NULL && cpu != -1 && cpu != me)
748 cpumask_set_cpu(cpu, cpus);
749 }
750 if (unlikely(cpus == NULL))
751 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
752 else if (!cpumask_empty(cpus))
753 smp_call_function_many(cpus, ack_flush, NULL, 1);
754 else
755 called = false;
756 spin_unlock(&kvm->requests_lock);
757 free_cpumask_var(cpus);
758 return called;
759}
760
761void kvm_flush_remote_tlbs(struct kvm *kvm)
762{
763 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
764 ++kvm->stat.remote_tlb_flush;
765}
766
767void kvm_reload_remote_mmus(struct kvm *kvm)
768{
769 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
770}
771
772int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
773{
774 struct page *page;
775 int r;
776
777 mutex_init(&vcpu->mutex);
778 vcpu->cpu = -1;
779 vcpu->kvm = kvm;
780 vcpu->vcpu_id = id;
781 init_waitqueue_head(&vcpu->wq);
782
783 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
784 if (!page) {
785 r = -ENOMEM;
786 goto fail;
787 }
788 vcpu->run = page_address(page);
789
790 r = kvm_arch_vcpu_init(vcpu);
791 if (r < 0)
792 goto fail_free_run;
793 return 0;
794
795fail_free_run:
796 free_page((unsigned long)vcpu->run);
797fail:
798 return r;
799}
800EXPORT_SYMBOL_GPL(kvm_vcpu_init);
801
802void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
803{
804 kvm_arch_vcpu_uninit(vcpu);
805 free_page((unsigned long)vcpu->run);
806}
807EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
808
809#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
810static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
811{
812 return container_of(mn, struct kvm, mmu_notifier);
813}
814
815static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
816 struct mm_struct *mm,
817 unsigned long address)
818{
819 struct kvm *kvm = mmu_notifier_to_kvm(mn);
820 int need_tlb_flush;
821
822 /*
823 * When ->invalidate_page runs, the linux pte has been zapped
824 * already but the page is still allocated until
825 * ->invalidate_page returns. So if we increase the sequence
826 * here the kvm page fault will notice if the spte can't be
827 * established because the page is going to be freed. If
828 * instead the kvm page fault establishes the spte before
829 * ->invalidate_page runs, kvm_unmap_hva will release it
830 * before returning.
831 *
832 * The sequence increase only need to be seen at spin_unlock
833 * time, and not at spin_lock time.
834 *
835 * Increasing the sequence after the spin_unlock would be
836 * unsafe because the kvm page fault could then establish the
837 * pte after kvm_unmap_hva returned, without noticing the page
838 * is going to be freed.
839 */
840 spin_lock(&kvm->mmu_lock);
841 kvm->mmu_notifier_seq++;
842 need_tlb_flush = kvm_unmap_hva(kvm, address);
843 spin_unlock(&kvm->mmu_lock);
844
845 /* we've to flush the tlb before the pages can be freed */
846 if (need_tlb_flush)
847 kvm_flush_remote_tlbs(kvm);
848
849}
850
851static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
852 struct mm_struct *mm,
853 unsigned long address,
854 pte_t pte)
855{
856 struct kvm *kvm = mmu_notifier_to_kvm(mn);
857
858 spin_lock(&kvm->mmu_lock);
859 kvm->mmu_notifier_seq++;
860 kvm_set_spte_hva(kvm, address, pte);
861 spin_unlock(&kvm->mmu_lock);
862}
863
864static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
865 struct mm_struct *mm,
866 unsigned long start,
867 unsigned long end)
868{
869 struct kvm *kvm = mmu_notifier_to_kvm(mn);
870 int need_tlb_flush = 0;
871
872 spin_lock(&kvm->mmu_lock);
873 /*
874 * The count increase must become visible at unlock time as no
875 * spte can be established without taking the mmu_lock and
876 * count is also read inside the mmu_lock critical section.
877 */
878 kvm->mmu_notifier_count++;
879 for (; start < end; start += PAGE_SIZE)
880 need_tlb_flush |= kvm_unmap_hva(kvm, start);
881 spin_unlock(&kvm->mmu_lock);
882
883 /* we've to flush the tlb before the pages can be freed */
884 if (need_tlb_flush)
885 kvm_flush_remote_tlbs(kvm);
886}
887
888static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
889 struct mm_struct *mm,
890 unsigned long start,
891 unsigned long end)
892{
893 struct kvm *kvm = mmu_notifier_to_kvm(mn);
894
895 spin_lock(&kvm->mmu_lock);
896 /*
897 * This sequence increase will notify the kvm page fault that
898 * the page that is going to be mapped in the spte could have
899 * been freed.
900 */
901 kvm->mmu_notifier_seq++;
902 /*
903 * The above sequence increase must be visible before the
904 * below count decrease but both values are read by the kvm
905 * page fault under mmu_lock spinlock so we don't need to add
906 * a smb_wmb() here in between the two.
907 */
908 kvm->mmu_notifier_count--;
909 spin_unlock(&kvm->mmu_lock);
910
911 BUG_ON(kvm->mmu_notifier_count < 0);
912}
913
914static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
915 struct mm_struct *mm,
916 unsigned long address)
917{
918 struct kvm *kvm = mmu_notifier_to_kvm(mn);
919 int young;
920
921 spin_lock(&kvm->mmu_lock);
922 young = kvm_age_hva(kvm, address);
923 spin_unlock(&kvm->mmu_lock);
924
925 if (young)
926 kvm_flush_remote_tlbs(kvm);
927
928 return young;
929}
930
931static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
932 struct mm_struct *mm)
933{
934 struct kvm *kvm = mmu_notifier_to_kvm(mn);
935 kvm_arch_flush_shadow(kvm);
936}
937
938static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
939 .invalidate_page = kvm_mmu_notifier_invalidate_page,
940 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
941 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
942 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
943 .change_pte = kvm_mmu_notifier_change_pte,
944 .release = kvm_mmu_notifier_release,
945};
946#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
947
948static struct kvm *kvm_create_vm(void)
949{
950 struct kvm *kvm = kvm_arch_create_vm();
951#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
952 struct page *page;
953#endif
954
955 if (IS_ERR(kvm))
956 goto out;
957#ifdef CONFIG_HAVE_KVM_IRQCHIP
958 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
959 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
960#endif
961
962#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
963 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
964 if (!page) {
965 kfree(kvm);
966 return ERR_PTR(-ENOMEM);
967 }
968 kvm->coalesced_mmio_ring =
969 (struct kvm_coalesced_mmio_ring *)page_address(page);
970#endif
971
972#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
973 {
974 int err;
975 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
976 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
977 if (err) {
978#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
979 put_page(page);
980#endif
981 kfree(kvm);
982 return ERR_PTR(err);
983 }
984 }
985#endif
986
987 kvm->mm = current->mm;
988 atomic_inc(&kvm->mm->mm_count);
989 spin_lock_init(&kvm->mmu_lock);
990 spin_lock_init(&kvm->requests_lock);
991 kvm_io_bus_init(&kvm->pio_bus);
992 kvm_eventfd_init(kvm);
993 mutex_init(&kvm->lock);
994 mutex_init(&kvm->irq_lock);
995 kvm_io_bus_init(&kvm->mmio_bus);
996 init_rwsem(&kvm->slots_lock);
997 atomic_set(&kvm->users_count, 1);
998 spin_lock(&kvm_lock);
999 list_add(&kvm->vm_list, &vm_list);
1000 spin_unlock(&kvm_lock);
1001#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1002 kvm_coalesced_mmio_init(kvm);
1003#endif
1004out:
1005 return kvm;
1006}
1007
1008/*
1009 * Free any memory in @free but not in @dont.
1010 */
1011static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1012 struct kvm_memory_slot *dont)
1013{
1014 int i;
1015
1016 if (!dont || free->rmap != dont->rmap)
1017 vfree(free->rmap);
1018
1019 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1020 vfree(free->dirty_bitmap);
1021
1022
1023 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1024 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
1025 vfree(free->lpage_info[i]);
1026 free->lpage_info[i] = NULL;
1027 }
1028 }
1029
1030 free->npages = 0;
1031 free->dirty_bitmap = NULL;
1032 free->rmap = NULL;
1033}
1034
1035void kvm_free_physmem(struct kvm *kvm)
1036{
1037 int i;
1038
1039 for (i = 0; i < kvm->nmemslots; ++i)
1040 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1041}
1042
1043static void kvm_destroy_vm(struct kvm *kvm)
1044{
1045 struct mm_struct *mm = kvm->mm;
1046
1047 kvm_arch_sync_events(kvm);
1048 spin_lock(&kvm_lock);
1049 list_del(&kvm->vm_list);
1050 spin_unlock(&kvm_lock);
1051 kvm_free_irq_routing(kvm);
1052 kvm_io_bus_destroy(&kvm->pio_bus);
1053 kvm_io_bus_destroy(&kvm->mmio_bus);
1054#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1055 if (kvm->coalesced_mmio_ring != NULL)
1056 free_page((unsigned long)kvm->coalesced_mmio_ring);
1057#endif
1058#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1059 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1060#else
1061 kvm_arch_flush_shadow(kvm);
1062#endif
1063 kvm_arch_destroy_vm(kvm);
1064 mmdrop(mm);
1065}
1066
1067void kvm_get_kvm(struct kvm *kvm)
1068{
1069 atomic_inc(&kvm->users_count);
1070}
1071EXPORT_SYMBOL_GPL(kvm_get_kvm);
1072
1073void kvm_put_kvm(struct kvm *kvm)
1074{
1075 if (atomic_dec_and_test(&kvm->users_count))
1076 kvm_destroy_vm(kvm);
1077}
1078EXPORT_SYMBOL_GPL(kvm_put_kvm);
1079
1080
1081static int kvm_vm_release(struct inode *inode, struct file *filp)
1082{
1083 struct kvm *kvm = filp->private_data;
1084
1085 kvm_irqfd_release(kvm);
1086
1087 kvm_put_kvm(kvm);
1088 return 0;
1089}
1090
1091/*
1092 * Allocate some memory and give it an address in the guest physical address
1093 * space.
1094 *
1095 * Discontiguous memory is allowed, mostly for framebuffers.
1096 *
1097 * Must be called holding mmap_sem for write.
1098 */
1099int __kvm_set_memory_region(struct kvm *kvm,
1100 struct kvm_userspace_memory_region *mem,
1101 int user_alloc)
1102{
1103 int r;
1104 gfn_t base_gfn;
1105 unsigned long npages;
1106 unsigned long i;
1107 struct kvm_memory_slot *memslot;
1108 struct kvm_memory_slot old, new;
1109
1110 r = -EINVAL;
1111 /* General sanity checks */
1112 if (mem->memory_size & (PAGE_SIZE - 1))
1113 goto out;
1114 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1115 goto out;
1116 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1117 goto out;
1118 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1119 goto out;
1120 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1121 goto out;
1122
1123 memslot = &kvm->memslots[mem->slot];
1124 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1125 npages = mem->memory_size >> PAGE_SHIFT;
1126
1127 if (!npages)
1128 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1129
1130 new = old = *memslot;
1131
1132 new.base_gfn = base_gfn;
1133 new.npages = npages;
1134 new.flags = mem->flags;
1135
1136 /* Disallow changing a memory slot's size. */
1137 r = -EINVAL;
1138 if (npages && old.npages && npages != old.npages)
1139 goto out_free;
1140
1141 /* Check for overlaps */
1142 r = -EEXIST;
1143 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1144 struct kvm_memory_slot *s = &kvm->memslots[i];
1145
1146 if (s == memslot || !s->npages)
1147 continue;
1148 if (!((base_gfn + npages <= s->base_gfn) ||
1149 (base_gfn >= s->base_gfn + s->npages)))
1150 goto out_free;
1151 }
1152
1153 /* Free page dirty bitmap if unneeded */
1154 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1155 new.dirty_bitmap = NULL;
1156
1157 r = -ENOMEM;
1158
1159 /* Allocate if a slot is being created */
1160#ifndef CONFIG_S390
1161 if (npages && !new.rmap) {
1162 new.rmap = vmalloc(npages * sizeof(struct page *));
1163
1164 if (!new.rmap)
1165 goto out_free;
1166
1167 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1168
1169 new.user_alloc = user_alloc;
1170 /*
1171 * hva_to_rmmap() serialzies with the mmu_lock and to be
1172 * safe it has to ignore memslots with !user_alloc &&
1173 * !userspace_addr.
1174 */
1175 if (user_alloc)
1176 new.userspace_addr = mem->userspace_addr;
1177 else
1178 new.userspace_addr = 0;
1179 }
1180 if (!npages)
1181 goto skip_lpage;
1182
1183 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1184 unsigned long ugfn;
1185 unsigned long j;
1186 int lpages;
1187 int level = i + 2;
1188
1189 /* Avoid unused variable warning if no large pages */
1190 (void)level;
1191
1192 if (new.lpage_info[i])
1193 continue;
1194
1195 lpages = 1 + (base_gfn + npages - 1) /
1196 KVM_PAGES_PER_HPAGE(level);
1197 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
1198
1199 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
1200
1201 if (!new.lpage_info[i])
1202 goto out_free;
1203
1204 memset(new.lpage_info[i], 0,
1205 lpages * sizeof(*new.lpage_info[i]));
1206
1207 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
1208 new.lpage_info[i][0].write_count = 1;
1209 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
1210 new.lpage_info[i][lpages - 1].write_count = 1;
1211 ugfn = new.userspace_addr >> PAGE_SHIFT;
1212 /*
1213 * If the gfn and userspace address are not aligned wrt each
1214 * other, or if explicitly asked to, disable large page
1215 * support for this slot
1216 */
1217 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
1218 !largepages_enabled)
1219 for (j = 0; j < lpages; ++j)
1220 new.lpage_info[i][j].write_count = 1;
1221 }
1222
1223skip_lpage:
1224
1225 /* Allocate page dirty bitmap if needed */
1226 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1227 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1228
1229 new.dirty_bitmap = vmalloc(dirty_bytes);
1230 if (!new.dirty_bitmap)
1231 goto out_free;
1232 memset(new.dirty_bitmap, 0, dirty_bytes);
1233 if (old.npages)
1234 kvm_arch_flush_shadow(kvm);
1235 }
1236#else /* not defined CONFIG_S390 */
1237 new.user_alloc = user_alloc;
1238 if (user_alloc)
1239 new.userspace_addr = mem->userspace_addr;
1240#endif /* not defined CONFIG_S390 */
1241
1242 if (!npages)
1243 kvm_arch_flush_shadow(kvm);
1244
1245 spin_lock(&kvm->mmu_lock);
1246 if (mem->slot >= kvm->nmemslots)
1247 kvm->nmemslots = mem->slot + 1;
1248
1249 *memslot = new;
1250 spin_unlock(&kvm->mmu_lock);
1251
1252 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1253 if (r) {
1254 spin_lock(&kvm->mmu_lock);
1255 *memslot = old;
1256 spin_unlock(&kvm->mmu_lock);
1257 goto out_free;
1258 }
1259
1260 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1261 /* Slot deletion case: we have to update the current slot */
1262 spin_lock(&kvm->mmu_lock);
1263 if (!npages)
1264 *memslot = old;
1265 spin_unlock(&kvm->mmu_lock);
1266#ifdef CONFIG_DMAR
1267 /* map the pages in iommu page table */
1268 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1269 if (r)
1270 goto out;
1271#endif
1272 return 0;
1273
1274out_free:
1275 kvm_free_physmem_slot(&new, &old);
1276out:
1277 return r;
1278
1279}
1280EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1281
1282int kvm_set_memory_region(struct kvm *kvm,
1283 struct kvm_userspace_memory_region *mem,
1284 int user_alloc)
1285{
1286 int r;
1287
1288 down_write(&kvm->slots_lock);
1289 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1290 up_write(&kvm->slots_lock);
1291 return r;
1292}
1293EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1294
1295int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1296 struct
1297 kvm_userspace_memory_region *mem,
1298 int user_alloc)
1299{
1300 if (mem->slot >= KVM_MEMORY_SLOTS)
1301 return -EINVAL;
1302 return kvm_set_memory_region(kvm, mem, user_alloc);
1303}
1304
1305int kvm_get_dirty_log(struct kvm *kvm,
1306 struct kvm_dirty_log *log, int *is_dirty)
1307{
1308 struct kvm_memory_slot *memslot;
1309 int r, i;
1310 int n;
1311 unsigned long any = 0;
1312
1313 r = -EINVAL;
1314 if (log->slot >= KVM_MEMORY_SLOTS)
1315 goto out;
1316
1317 memslot = &kvm->memslots[log->slot];
1318 r = -ENOENT;
1319 if (!memslot->dirty_bitmap)
1320 goto out;
1321
1322 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1323
1324 for (i = 0; !any && i < n/sizeof(long); ++i)
1325 any = memslot->dirty_bitmap[i];
1326
1327 r = -EFAULT;
1328 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1329 goto out;
1330
1331 if (any)
1332 *is_dirty = 1;
1333
1334 r = 0;
1335out:
1336 return r;
1337}
1338
1339void kvm_disable_largepages(void)
1340{
1341 largepages_enabled = false;
1342}
1343EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1344
1345int is_error_page(struct page *page)
1346{
1347 return page == bad_page;
1348}
1349EXPORT_SYMBOL_GPL(is_error_page);
1350
1351int is_error_pfn(pfn_t pfn)
1352{
1353 return pfn == bad_pfn;
1354}
1355EXPORT_SYMBOL_GPL(is_error_pfn);
1356
1357static inline unsigned long bad_hva(void)
1358{
1359 return PAGE_OFFSET;
1360}
1361
1362int kvm_is_error_hva(unsigned long addr)
1363{
1364 return addr == bad_hva();
1365}
1366EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1367
1368struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1369{
1370 int i;
1371
1372 for (i = 0; i < kvm->nmemslots; ++i) {
1373 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1374
1375 if (gfn >= memslot->base_gfn
1376 && gfn < memslot->base_gfn + memslot->npages)
1377 return memslot;
1378 }
1379 return NULL;
1380}
1381EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1382
1383struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1384{
1385 gfn = unalias_gfn(kvm, gfn);
1386 return gfn_to_memslot_unaliased(kvm, gfn);
1387}
1388
1389int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1390{
1391 int i;
1392
1393 gfn = unalias_gfn(kvm, gfn);
1394 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1395 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1396
1397 if (gfn >= memslot->base_gfn
1398 && gfn < memslot->base_gfn + memslot->npages)
1399 return 1;
1400 }
1401 return 0;
1402}
1403EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1404
1405unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1406{
1407 struct kvm_memory_slot *slot;
1408
1409 gfn = unalias_gfn(kvm, gfn);
1410 slot = gfn_to_memslot_unaliased(kvm, gfn);
1411 if (!slot)
1412 return bad_hva();
1413 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1414}
1415EXPORT_SYMBOL_GPL(gfn_to_hva);
1416
1417pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1418{
1419 struct page *page[1];
1420 unsigned long addr;
1421 int npages;
1422 pfn_t pfn;
1423
1424 might_sleep();
1425
1426 addr = gfn_to_hva(kvm, gfn);
1427 if (kvm_is_error_hva(addr)) {
1428 get_page(bad_page);
1429 return page_to_pfn(bad_page);
1430 }
1431
1432 npages = get_user_pages_fast(addr, 1, 1, page);
1433
1434 if (unlikely(npages != 1)) {
1435 struct vm_area_struct *vma;
1436
1437 down_read(&current->mm->mmap_sem);
1438 vma = find_vma(current->mm, addr);
1439
1440 if (vma == NULL || addr < vma->vm_start ||
1441 !(vma->vm_flags & VM_PFNMAP)) {
1442 up_read(&current->mm->mmap_sem);
1443 get_page(bad_page);
1444 return page_to_pfn(bad_page);
1445 }
1446
1447 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1448 up_read(&current->mm->mmap_sem);
1449 BUG_ON(!kvm_is_mmio_pfn(pfn));
1450 } else
1451 pfn = page_to_pfn(page[0]);
1452
1453 return pfn;
1454}
1455
1456EXPORT_SYMBOL_GPL(gfn_to_pfn);
1457
1458struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1459{
1460 pfn_t pfn;
1461
1462 pfn = gfn_to_pfn(kvm, gfn);
1463 if (!kvm_is_mmio_pfn(pfn))
1464 return pfn_to_page(pfn);
1465
1466 WARN_ON(kvm_is_mmio_pfn(pfn));
1467
1468 get_page(bad_page);
1469 return bad_page;
1470}
1471
1472EXPORT_SYMBOL_GPL(gfn_to_page);
1473
1474void kvm_release_page_clean(struct page *page)
1475{
1476 kvm_release_pfn_clean(page_to_pfn(page));
1477}
1478EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1479
1480void kvm_release_pfn_clean(pfn_t pfn)
1481{
1482 if (!kvm_is_mmio_pfn(pfn))
1483 put_page(pfn_to_page(pfn));
1484}
1485EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1486
1487void kvm_release_page_dirty(struct page *page)
1488{
1489 kvm_release_pfn_dirty(page_to_pfn(page));
1490}
1491EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1492
1493void kvm_release_pfn_dirty(pfn_t pfn)
1494{
1495 kvm_set_pfn_dirty(pfn);
1496 kvm_release_pfn_clean(pfn);
1497}
1498EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1499
1500void kvm_set_page_dirty(struct page *page)
1501{
1502 kvm_set_pfn_dirty(page_to_pfn(page));
1503}
1504EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1505
1506void kvm_set_pfn_dirty(pfn_t pfn)
1507{
1508 if (!kvm_is_mmio_pfn(pfn)) {
1509 struct page *page = pfn_to_page(pfn);
1510 if (!PageReserved(page))
1511 SetPageDirty(page);
1512 }
1513}
1514EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1515
1516void kvm_set_pfn_accessed(pfn_t pfn)
1517{
1518 if (!kvm_is_mmio_pfn(pfn))
1519 mark_page_accessed(pfn_to_page(pfn));
1520}
1521EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1522
1523void kvm_get_pfn(pfn_t pfn)
1524{
1525 if (!kvm_is_mmio_pfn(pfn))
1526 get_page(pfn_to_page(pfn));
1527}
1528EXPORT_SYMBOL_GPL(kvm_get_pfn);
1529
1530static int next_segment(unsigned long len, int offset)
1531{
1532 if (len > PAGE_SIZE - offset)
1533 return PAGE_SIZE - offset;
1534 else
1535 return len;
1536}
1537
1538int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1539 int len)
1540{
1541 int r;
1542 unsigned long addr;
1543
1544 addr = gfn_to_hva(kvm, gfn);
1545 if (kvm_is_error_hva(addr))
1546 return -EFAULT;
1547 r = copy_from_user(data, (void __user *)addr + offset, len);
1548 if (r)
1549 return -EFAULT;
1550 return 0;
1551}
1552EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1553
1554int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1555{
1556 gfn_t gfn = gpa >> PAGE_SHIFT;
1557 int seg;
1558 int offset = offset_in_page(gpa);
1559 int ret;
1560
1561 while ((seg = next_segment(len, offset)) != 0) {
1562 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1563 if (ret < 0)
1564 return ret;
1565 offset = 0;
1566 len -= seg;
1567 data += seg;
1568 ++gfn;
1569 }
1570 return 0;
1571}
1572EXPORT_SYMBOL_GPL(kvm_read_guest);
1573
1574int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1575 unsigned long len)
1576{
1577 int r;
1578 unsigned long addr;
1579 gfn_t gfn = gpa >> PAGE_SHIFT;
1580 int offset = offset_in_page(gpa);
1581
1582 addr = gfn_to_hva(kvm, gfn);
1583 if (kvm_is_error_hva(addr))
1584 return -EFAULT;
1585 pagefault_disable();
1586 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1587 pagefault_enable();
1588 if (r)
1589 return -EFAULT;
1590 return 0;
1591}
1592EXPORT_SYMBOL(kvm_read_guest_atomic);
1593
1594int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1595 int offset, int len)
1596{
1597 int r;
1598 unsigned long addr;
1599
1600 addr = gfn_to_hva(kvm, gfn);
1601 if (kvm_is_error_hva(addr))
1602 return -EFAULT;
1603 r = copy_to_user((void __user *)addr + offset, data, len);
1604 if (r)
1605 return -EFAULT;
1606 mark_page_dirty(kvm, gfn);
1607 return 0;
1608}
1609EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1610
1611int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1612 unsigned long len)
1613{
1614 gfn_t gfn = gpa >> PAGE_SHIFT;
1615 int seg;
1616 int offset = offset_in_page(gpa);
1617 int ret;
1618
1619 while ((seg = next_segment(len, offset)) != 0) {
1620 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1621 if (ret < 0)
1622 return ret;
1623 offset = 0;
1624 len -= seg;
1625 data += seg;
1626 ++gfn;
1627 }
1628 return 0;
1629}
1630
1631int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1632{
1633 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1634}
1635EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1636
1637int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1638{
1639 gfn_t gfn = gpa >> PAGE_SHIFT;
1640 int seg;
1641 int offset = offset_in_page(gpa);
1642 int ret;
1643
1644 while ((seg = next_segment(len, offset)) != 0) {
1645 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1646 if (ret < 0)
1647 return ret;
1648 offset = 0;
1649 len -= seg;
1650 ++gfn;
1651 }
1652 return 0;
1653}
1654EXPORT_SYMBOL_GPL(kvm_clear_guest);
1655
1656void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1657{
1658 struct kvm_memory_slot *memslot;
1659
1660 gfn = unalias_gfn(kvm, gfn);
1661 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1662 if (memslot && memslot->dirty_bitmap) {
1663 unsigned long rel_gfn = gfn - memslot->base_gfn;
1664
1665 /* avoid RMW */
1666 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1667 set_bit(rel_gfn, memslot->dirty_bitmap);
1668 }
1669}
1670
1671/*
1672 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1673 */
1674void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1675{
1676 DEFINE_WAIT(wait);
1677
1678 for (;;) {
1679 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1680
1681 if (kvm_arch_vcpu_runnable(vcpu)) {
1682 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1683 break;
1684 }
1685 if (kvm_cpu_has_pending_timer(vcpu))
1686 break;
1687 if (signal_pending(current))
1688 break;
1689
1690 schedule();
1691 }
1692
1693 finish_wait(&vcpu->wq, &wait);
1694}
1695
1696void kvm_resched(struct kvm_vcpu *vcpu)
1697{
1698 if (!need_resched())
1699 return;
1700 cond_resched();
1701}
1702EXPORT_SYMBOL_GPL(kvm_resched);
1703
1704static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1705{
1706 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1707 struct page *page;
1708
1709 if (vmf->pgoff == 0)
1710 page = virt_to_page(vcpu->run);
1711#ifdef CONFIG_X86
1712 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1713 page = virt_to_page(vcpu->arch.pio_data);
1714#endif
1715#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1716 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1717 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1718#endif
1719 else
1720 return VM_FAULT_SIGBUS;
1721 get_page(page);
1722 vmf->page = page;
1723 return 0;
1724}
1725
1726static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1727 .fault = kvm_vcpu_fault,
1728};
1729
1730static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1731{
1732 vma->vm_ops = &kvm_vcpu_vm_ops;
1733 return 0;
1734}
1735
1736static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1737{
1738 struct kvm_vcpu *vcpu = filp->private_data;
1739
1740 kvm_put_kvm(vcpu->kvm);
1741 return 0;
1742}
1743
1744static struct file_operations kvm_vcpu_fops = {
1745 .release = kvm_vcpu_release,
1746 .unlocked_ioctl = kvm_vcpu_ioctl,
1747 .compat_ioctl = kvm_vcpu_ioctl,
1748 .mmap = kvm_vcpu_mmap,
1749};
1750
1751/*
1752 * Allocates an inode for the vcpu.
1753 */
1754static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1755{
1756 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1757}
1758
1759/*
1760 * Creates some virtual cpus. Good luck creating more than one.
1761 */
1762static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1763{
1764 int r;
1765 struct kvm_vcpu *vcpu, *v;
1766
1767 vcpu = kvm_arch_vcpu_create(kvm, id);
1768 if (IS_ERR(vcpu))
1769 return PTR_ERR(vcpu);
1770
1771 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1772
1773 r = kvm_arch_vcpu_setup(vcpu);
1774 if (r)
1775 return r;
1776
1777 mutex_lock(&kvm->lock);
1778 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1779 r = -EINVAL;
1780 goto vcpu_destroy;
1781 }
1782
1783 kvm_for_each_vcpu(r, v, kvm)
1784 if (v->vcpu_id == id) {
1785 r = -EEXIST;
1786 goto vcpu_destroy;
1787 }
1788
1789 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1790
1791 /* Now it's all set up, let userspace reach it */
1792 kvm_get_kvm(kvm);
1793 r = create_vcpu_fd(vcpu);
1794 if (r < 0) {
1795 kvm_put_kvm(kvm);
1796 goto vcpu_destroy;
1797 }
1798
1799 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1800 smp_wmb();
1801 atomic_inc(&kvm->online_vcpus);
1802
1803#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1804 if (kvm->bsp_vcpu_id == id)
1805 kvm->bsp_vcpu = vcpu;
1806#endif
1807 mutex_unlock(&kvm->lock);
1808 return r;
1809
1810vcpu_destroy:
1811 mutex_unlock(&kvm->lock);
1812 kvm_arch_vcpu_destroy(vcpu);
1813 return r;
1814}
1815
1816static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1817{
1818 if (sigset) {
1819 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1820 vcpu->sigset_active = 1;
1821 vcpu->sigset = *sigset;
1822 } else
1823 vcpu->sigset_active = 0;
1824 return 0;
1825}
1826
1827#ifdef __KVM_HAVE_MSIX
1828static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1829 struct kvm_assigned_msix_nr *entry_nr)
1830{
1831 int r = 0;
1832 struct kvm_assigned_dev_kernel *adev;
1833
1834 mutex_lock(&kvm->lock);
1835
1836 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1837 entry_nr->assigned_dev_id);
1838 if (!adev) {
1839 r = -EINVAL;
1840 goto msix_nr_out;
1841 }
1842
1843 if (adev->entries_nr == 0) {
1844 adev->entries_nr = entry_nr->entry_nr;
1845 if (adev->entries_nr == 0 ||
1846 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1847 r = -EINVAL;
1848 goto msix_nr_out;
1849 }
1850
1851 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1852 entry_nr->entry_nr,
1853 GFP_KERNEL);
1854 if (!adev->host_msix_entries) {
1855 r = -ENOMEM;
1856 goto msix_nr_out;
1857 }
1858 adev->guest_msix_entries = kzalloc(
1859 sizeof(struct kvm_guest_msix_entry) *
1860 entry_nr->entry_nr, GFP_KERNEL);
1861 if (!adev->guest_msix_entries) {
1862 kfree(adev->host_msix_entries);
1863 r = -ENOMEM;
1864 goto msix_nr_out;
1865 }
1866 } else /* Not allowed set MSI-X number twice */
1867 r = -EINVAL;
1868msix_nr_out:
1869 mutex_unlock(&kvm->lock);
1870 return r;
1871}
1872
1873static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1874 struct kvm_assigned_msix_entry *entry)
1875{
1876 int r = 0, i;
1877 struct kvm_assigned_dev_kernel *adev;
1878
1879 mutex_lock(&kvm->lock);
1880
1881 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1882 entry->assigned_dev_id);
1883
1884 if (!adev) {
1885 r = -EINVAL;
1886 goto msix_entry_out;
1887 }
1888
1889 for (i = 0; i < adev->entries_nr; i++)
1890 if (adev->guest_msix_entries[i].vector == 0 ||
1891 adev->guest_msix_entries[i].entry == entry->entry) {
1892 adev->guest_msix_entries[i].entry = entry->entry;
1893 adev->guest_msix_entries[i].vector = entry->gsi;
1894 adev->host_msix_entries[i].entry = entry->entry;
1895 break;
1896 }
1897 if (i == adev->entries_nr) {
1898 r = -ENOSPC;
1899 goto msix_entry_out;
1900 }
1901
1902msix_entry_out:
1903 mutex_unlock(&kvm->lock);
1904
1905 return r;
1906}
1907#endif
1908
1909static long kvm_vcpu_ioctl(struct file *filp,
1910 unsigned int ioctl, unsigned long arg)
1911{
1912 struct kvm_vcpu *vcpu = filp->private_data;
1913 void __user *argp = (void __user *)arg;
1914 int r;
1915 struct kvm_fpu *fpu = NULL;
1916 struct kvm_sregs *kvm_sregs = NULL;
1917
1918 if (vcpu->kvm->mm != current->mm)
1919 return -EIO;
1920 switch (ioctl) {
1921 case KVM_RUN:
1922 r = -EINVAL;
1923 if (arg)
1924 goto out;
1925 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1926 break;
1927 case KVM_GET_REGS: {
1928 struct kvm_regs *kvm_regs;
1929
1930 r = -ENOMEM;
1931 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1932 if (!kvm_regs)
1933 goto out;
1934 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1935 if (r)
1936 goto out_free1;
1937 r = -EFAULT;
1938 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1939 goto out_free1;
1940 r = 0;
1941out_free1:
1942 kfree(kvm_regs);
1943 break;
1944 }
1945 case KVM_SET_REGS: {
1946 struct kvm_regs *kvm_regs;
1947
1948 r = -ENOMEM;
1949 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1950 if (!kvm_regs)
1951 goto out;
1952 r = -EFAULT;
1953 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1954 goto out_free2;
1955 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1956 if (r)
1957 goto out_free2;
1958 r = 0;
1959out_free2:
1960 kfree(kvm_regs);
1961 break;
1962 }
1963 case KVM_GET_SREGS: {
1964 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1965 r = -ENOMEM;
1966 if (!kvm_sregs)
1967 goto out;
1968 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1969 if (r)
1970 goto out;
1971 r = -EFAULT;
1972 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1973 goto out;
1974 r = 0;
1975 break;
1976 }
1977 case KVM_SET_SREGS: {
1978 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1979 r = -ENOMEM;
1980 if (!kvm_sregs)
1981 goto out;
1982 r = -EFAULT;
1983 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1984 goto out;
1985 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1986 if (r)
1987 goto out;
1988 r = 0;
1989 break;
1990 }
1991 case KVM_GET_MP_STATE: {
1992 struct kvm_mp_state mp_state;
1993
1994 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1995 if (r)
1996 goto out;
1997 r = -EFAULT;
1998 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1999 goto out;
2000 r = 0;
2001 break;
2002 }
2003 case KVM_SET_MP_STATE: {
2004 struct kvm_mp_state mp_state;
2005
2006 r = -EFAULT;
2007 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2008 goto out;
2009 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2010 if (r)
2011 goto out;
2012 r = 0;
2013 break;
2014 }
2015 case KVM_TRANSLATE: {
2016 struct kvm_translation tr;
2017
2018 r = -EFAULT;
2019 if (copy_from_user(&tr, argp, sizeof tr))
2020 goto out;
2021 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2022 if (r)
2023 goto out;
2024 r = -EFAULT;
2025 if (copy_to_user(argp, &tr, sizeof tr))
2026 goto out;
2027 r = 0;
2028 break;
2029 }
2030 case KVM_SET_GUEST_DEBUG: {
2031 struct kvm_guest_debug dbg;
2032
2033 r = -EFAULT;
2034 if (copy_from_user(&dbg, argp, sizeof dbg))
2035 goto out;
2036 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2037 if (r)
2038 goto out;
2039 r = 0;
2040 break;
2041 }
2042 case KVM_SET_SIGNAL_MASK: {
2043 struct kvm_signal_mask __user *sigmask_arg = argp;
2044 struct kvm_signal_mask kvm_sigmask;
2045 sigset_t sigset, *p;
2046
2047 p = NULL;
2048 if (argp) {
2049 r = -EFAULT;
2050 if (copy_from_user(&kvm_sigmask, argp,
2051 sizeof kvm_sigmask))
2052 goto out;
2053 r = -EINVAL;
2054 if (kvm_sigmask.len != sizeof sigset)
2055 goto out;
2056 r = -EFAULT;
2057 if (copy_from_user(&sigset, sigmask_arg->sigset,
2058 sizeof sigset))
2059 goto out;
2060 p = &sigset;
2061 }
2062 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2063 break;
2064 }
2065 case KVM_GET_FPU: {
2066 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2067 r = -ENOMEM;
2068 if (!fpu)
2069 goto out;
2070 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2071 if (r)
2072 goto out;
2073 r = -EFAULT;
2074 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2075 goto out;
2076 r = 0;
2077 break;
2078 }
2079 case KVM_SET_FPU: {
2080 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2081 r = -ENOMEM;
2082 if (!fpu)
2083 goto out;
2084 r = -EFAULT;
2085 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2086 goto out;
2087 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2088 if (r)
2089 goto out;
2090 r = 0;
2091 break;
2092 }
2093 default:
2094 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2095 }
2096out:
2097 kfree(fpu);
2098 kfree(kvm_sregs);
2099 return r;
2100}
2101
2102static long kvm_vm_ioctl(struct file *filp,
2103 unsigned int ioctl, unsigned long arg)
2104{
2105 struct kvm *kvm = filp->private_data;
2106 void __user *argp = (void __user *)arg;
2107 int r;
2108
2109 if (kvm->mm != current->mm)
2110 return -EIO;
2111 switch (ioctl) {
2112 case KVM_CREATE_VCPU:
2113 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2114 if (r < 0)
2115 goto out;
2116 break;
2117 case KVM_SET_USER_MEMORY_REGION: {
2118 struct kvm_userspace_memory_region kvm_userspace_mem;
2119
2120 r = -EFAULT;
2121 if (copy_from_user(&kvm_userspace_mem, argp,
2122 sizeof kvm_userspace_mem))
2123 goto out;
2124
2125 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2126 if (r)
2127 goto out;
2128 break;
2129 }
2130 case KVM_GET_DIRTY_LOG: {
2131 struct kvm_dirty_log log;
2132
2133 r = -EFAULT;
2134 if (copy_from_user(&log, argp, sizeof log))
2135 goto out;
2136 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2137 if (r)
2138 goto out;
2139 break;
2140 }
2141#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2142 case KVM_REGISTER_COALESCED_MMIO: {
2143 struct kvm_coalesced_mmio_zone zone;
2144 r = -EFAULT;
2145 if (copy_from_user(&zone, argp, sizeof zone))
2146 goto out;
2147 r = -ENXIO;
2148 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2149 if (r)
2150 goto out;
2151 r = 0;
2152 break;
2153 }
2154 case KVM_UNREGISTER_COALESCED_MMIO: {
2155 struct kvm_coalesced_mmio_zone zone;
2156 r = -EFAULT;
2157 if (copy_from_user(&zone, argp, sizeof zone))
2158 goto out;
2159 r = -ENXIO;
2160 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2161 if (r)
2162 goto out;
2163 r = 0;
2164 break;
2165 }
2166#endif
2167#ifdef KVM_CAP_DEVICE_ASSIGNMENT
2168 case KVM_ASSIGN_PCI_DEVICE: {
2169 struct kvm_assigned_pci_dev assigned_dev;
2170
2171 r = -EFAULT;
2172 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2173 goto out;
2174 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2175 if (r)
2176 goto out;
2177 break;
2178 }
2179 case KVM_ASSIGN_IRQ: {
2180 r = -EOPNOTSUPP;
2181 break;
2182 }
2183#ifdef KVM_CAP_ASSIGN_DEV_IRQ
2184 case KVM_ASSIGN_DEV_IRQ: {
2185 struct kvm_assigned_irq assigned_irq;
2186
2187 r = -EFAULT;
2188 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2189 goto out;
2190 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2191 if (r)
2192 goto out;
2193 break;
2194 }
2195 case KVM_DEASSIGN_DEV_IRQ: {
2196 struct kvm_assigned_irq assigned_irq;
2197
2198 r = -EFAULT;
2199 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2200 goto out;
2201 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2202 if (r)
2203 goto out;
2204 break;
2205 }
2206#endif
2207#endif
2208#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2209 case KVM_DEASSIGN_PCI_DEVICE: {
2210 struct kvm_assigned_pci_dev assigned_dev;
2211
2212 r = -EFAULT;
2213 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2214 goto out;
2215 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2216 if (r)
2217 goto out;
2218 break;
2219 }
2220#endif
2221#ifdef KVM_CAP_IRQ_ROUTING
2222 case KVM_SET_GSI_ROUTING: {
2223 struct kvm_irq_routing routing;
2224 struct kvm_irq_routing __user *urouting;
2225 struct kvm_irq_routing_entry *entries;
2226
2227 r = -EFAULT;
2228 if (copy_from_user(&routing, argp, sizeof(routing)))
2229 goto out;
2230 r = -EINVAL;
2231 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2232 goto out;
2233 if (routing.flags)
2234 goto out;
2235 r = -ENOMEM;
2236 entries = vmalloc(routing.nr * sizeof(*entries));
2237 if (!entries)
2238 goto out;
2239 r = -EFAULT;
2240 urouting = argp;
2241 if (copy_from_user(entries, urouting->entries,
2242 routing.nr * sizeof(*entries)))
2243 goto out_free_irq_routing;
2244 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2245 routing.flags);
2246 out_free_irq_routing:
2247 vfree(entries);
2248 break;
2249 }
2250#endif /* KVM_CAP_IRQ_ROUTING */
2251#ifdef __KVM_HAVE_MSIX
2252 case KVM_ASSIGN_SET_MSIX_NR: {
2253 struct kvm_assigned_msix_nr entry_nr;
2254 r = -EFAULT;
2255 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2256 goto out;
2257 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2258 if (r)
2259 goto out;
2260 break;
2261 }
2262 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2263 struct kvm_assigned_msix_entry entry;
2264 r = -EFAULT;
2265 if (copy_from_user(&entry, argp, sizeof entry))
2266 goto out;
2267 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2268 if (r)
2269 goto out;
2270 break;
2271 }
2272#endif
2273 case KVM_IRQFD: {
2274 struct kvm_irqfd data;
2275
2276 r = -EFAULT;
2277 if (copy_from_user(&data, argp, sizeof data))
2278 goto out;
2279 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2280 break;
2281 }
2282 case KVM_IOEVENTFD: {
2283 struct kvm_ioeventfd data;
2284
2285 r = -EFAULT;
2286 if (copy_from_user(&data, argp, sizeof data))
2287 goto out;
2288 r = kvm_ioeventfd(kvm, &data);
2289 break;
2290 }
2291#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2292 case KVM_SET_BOOT_CPU_ID:
2293 r = 0;
2294 mutex_lock(&kvm->lock);
2295 if (atomic_read(&kvm->online_vcpus) != 0)
2296 r = -EBUSY;
2297 else
2298 kvm->bsp_vcpu_id = arg;
2299 mutex_unlock(&kvm->lock);
2300 break;
2301#endif
2302 default:
2303 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2304 }
2305out:
2306 return r;
2307}
2308
2309static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2310{
2311 struct page *page[1];
2312 unsigned long addr;
2313 int npages;
2314 gfn_t gfn = vmf->pgoff;
2315 struct kvm *kvm = vma->vm_file->private_data;
2316
2317 addr = gfn_to_hva(kvm, gfn);
2318 if (kvm_is_error_hva(addr))
2319 return VM_FAULT_SIGBUS;
2320
2321 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2322 NULL);
2323 if (unlikely(npages != 1))
2324 return VM_FAULT_SIGBUS;
2325
2326 vmf->page = page[0];
2327 return 0;
2328}
2329
2330static const struct vm_operations_struct kvm_vm_vm_ops = {
2331 .fault = kvm_vm_fault,
2332};
2333
2334static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2335{
2336 vma->vm_ops = &kvm_vm_vm_ops;
2337 return 0;
2338}
2339
2340static struct file_operations kvm_vm_fops = {
2341 .release = kvm_vm_release,
2342 .unlocked_ioctl = kvm_vm_ioctl,
2343 .compat_ioctl = kvm_vm_ioctl,
2344 .mmap = kvm_vm_mmap,
2345};
2346
2347static int kvm_dev_ioctl_create_vm(void)
2348{
2349 int fd;
2350 struct kvm *kvm;
2351
2352 kvm = kvm_create_vm();
2353 if (IS_ERR(kvm))
2354 return PTR_ERR(kvm);
2355 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2356 if (fd < 0)
2357 kvm_put_kvm(kvm);
2358
2359 return fd;
2360}
2361
2362static long kvm_dev_ioctl_check_extension_generic(long arg)
2363{
2364 switch (arg) {
2365 case KVM_CAP_USER_MEMORY:
2366 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2367 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2368#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2369 case KVM_CAP_SET_BOOT_CPU_ID:
2370#endif
2371 return 1;
2372#ifdef CONFIG_HAVE_KVM_IRQCHIP
2373 case KVM_CAP_IRQ_ROUTING:
2374 return KVM_MAX_IRQ_ROUTES;
2375#endif
2376 default:
2377 break;
2378 }
2379 return kvm_dev_ioctl_check_extension(arg);
2380}
2381
2382static long kvm_dev_ioctl(struct file *filp,
2383 unsigned int ioctl, unsigned long arg)
2384{
2385 long r = -EINVAL;
2386
2387 switch (ioctl) {
2388 case KVM_GET_API_VERSION:
2389 r = -EINVAL;
2390 if (arg)
2391 goto out;
2392 r = KVM_API_VERSION;
2393 break;
2394 case KVM_CREATE_VM:
2395 r = -EINVAL;
2396 if (arg)
2397 goto out;
2398 r = kvm_dev_ioctl_create_vm();
2399 break;
2400 case KVM_CHECK_EXTENSION:
2401 r = kvm_dev_ioctl_check_extension_generic(arg);
2402 break;
2403 case KVM_GET_VCPU_MMAP_SIZE:
2404 r = -EINVAL;
2405 if (arg)
2406 goto out;
2407 r = PAGE_SIZE; /* struct kvm_run */
2408#ifdef CONFIG_X86
2409 r += PAGE_SIZE; /* pio data page */
2410#endif
2411#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2412 r += PAGE_SIZE; /* coalesced mmio ring page */
2413#endif
2414 break;
2415 case KVM_TRACE_ENABLE:
2416 case KVM_TRACE_PAUSE:
2417 case KVM_TRACE_DISABLE:
2418 r = -EOPNOTSUPP;
2419 break;
2420 default:
2421 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2422 }
2423out:
2424 return r;
2425}
2426
2427static struct file_operations kvm_chardev_ops = {
2428 .unlocked_ioctl = kvm_dev_ioctl,
2429 .compat_ioctl = kvm_dev_ioctl,
2430};
2431
2432static struct miscdevice kvm_dev = {
2433 KVM_MINOR,
2434 "kvm",
2435 &kvm_chardev_ops,
2436};
2437
2438static void hardware_enable(void *junk)
2439{
2440 int cpu = raw_smp_processor_id();
2441
2442 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2443 return;
2444 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2445 kvm_arch_hardware_enable(NULL);
2446}
2447
2448static void hardware_disable(void *junk)
2449{
2450 int cpu = raw_smp_processor_id();
2451
2452 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2453 return;
2454 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2455 kvm_arch_hardware_disable(NULL);
2456}
2457
2458static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2459 void *v)
2460{
2461 int cpu = (long)v;
2462
2463 val &= ~CPU_TASKS_FROZEN;
2464 switch (val) {
2465 case CPU_DYING:
2466 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2467 cpu);
2468 hardware_disable(NULL);
2469 break;
2470 case CPU_UP_CANCELED:
2471 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2472 cpu);
2473 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2474 break;
2475 case CPU_ONLINE:
2476 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2477 cpu);
2478 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2479 break;
2480 }
2481 return NOTIFY_OK;
2482}
2483
2484
2485asmlinkage void kvm_handle_fault_on_reboot(void)
2486{
2487 if (kvm_rebooting)
2488 /* spin while reset goes on */
2489 while (true)
2490 ;
2491 /* Fault while not rebooting. We want the trace. */
2492 BUG();
2493}
2494EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2495
2496static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2497 void *v)
2498{
2499 /*
2500 * Some (well, at least mine) BIOSes hang on reboot if
2501 * in vmx root mode.
2502 *
2503 * And Intel TXT required VMX off for all cpu when system shutdown.
2504 */
2505 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2506 kvm_rebooting = true;
2507 on_each_cpu(hardware_disable, NULL, 1);
2508 return NOTIFY_OK;
2509}
2510
2511static struct notifier_block kvm_reboot_notifier = {
2512 .notifier_call = kvm_reboot,
2513 .priority = 0,
2514};
2515
2516void kvm_io_bus_init(struct kvm_io_bus *bus)
2517{
2518 memset(bus, 0, sizeof(*bus));
2519}
2520
2521void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2522{
2523 int i;
2524
2525 for (i = 0; i < bus->dev_count; i++) {
2526 struct kvm_io_device *pos = bus->devs[i];
2527
2528 kvm_iodevice_destructor(pos);
2529 }
2530}
2531
2532/* kvm_io_bus_write - called under kvm->slots_lock */
2533int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
2534 int len, const void *val)
2535{
2536 int i;
2537 for (i = 0; i < bus->dev_count; i++)
2538 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2539 return 0;
2540 return -EOPNOTSUPP;
2541}
2542
2543/* kvm_io_bus_read - called under kvm->slots_lock */
2544int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
2545{
2546 int i;
2547 for (i = 0; i < bus->dev_count; i++)
2548 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2549 return 0;
2550 return -EOPNOTSUPP;
2551}
2552
2553int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
2554 struct kvm_io_device *dev)
2555{
2556 int ret;
2557
2558 down_write(&kvm->slots_lock);
2559 ret = __kvm_io_bus_register_dev(bus, dev);
2560 up_write(&kvm->slots_lock);
2561
2562 return ret;
2563}
2564
2565/* An unlocked version. Caller must have write lock on slots_lock. */
2566int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
2567 struct kvm_io_device *dev)
2568{
2569 if (bus->dev_count > NR_IOBUS_DEVS-1)
2570 return -ENOSPC;
2571
2572 bus->devs[bus->dev_count++] = dev;
2573
2574 return 0;
2575}
2576
2577void kvm_io_bus_unregister_dev(struct kvm *kvm,
2578 struct kvm_io_bus *bus,
2579 struct kvm_io_device *dev)
2580{
2581 down_write(&kvm->slots_lock);
2582 __kvm_io_bus_unregister_dev(bus, dev);
2583 up_write(&kvm->slots_lock);
2584}
2585
2586/* An unlocked version. Caller must have write lock on slots_lock. */
2587void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
2588 struct kvm_io_device *dev)
2589{
2590 int i;
2591
2592 for (i = 0; i < bus->dev_count; i++)
2593 if (bus->devs[i] == dev) {
2594 bus->devs[i] = bus->devs[--bus->dev_count];
2595 break;
2596 }
2597}
2598
2599static struct notifier_block kvm_cpu_notifier = {
2600 .notifier_call = kvm_cpu_hotplug,
2601 .priority = 20, /* must be > scheduler priority */
2602};
2603
2604static int vm_stat_get(void *_offset, u64 *val)
2605{
2606 unsigned offset = (long)_offset;
2607 struct kvm *kvm;
2608
2609 *val = 0;
2610 spin_lock(&kvm_lock);
2611 list_for_each_entry(kvm, &vm_list, vm_list)
2612 *val += *(u32 *)((void *)kvm + offset);
2613 spin_unlock(&kvm_lock);
2614 return 0;
2615}
2616
2617DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2618
2619static int vcpu_stat_get(void *_offset, u64 *val)
2620{
2621 unsigned offset = (long)_offset;
2622 struct kvm *kvm;
2623 struct kvm_vcpu *vcpu;
2624 int i;
2625
2626 *val = 0;
2627 spin_lock(&kvm_lock);
2628 list_for_each_entry(kvm, &vm_list, vm_list)
2629 kvm_for_each_vcpu(i, vcpu, kvm)
2630 *val += *(u32 *)((void *)vcpu + offset);
2631
2632 spin_unlock(&kvm_lock);
2633 return 0;
2634}
2635
2636DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2637
2638static const struct file_operations *stat_fops[] = {
2639 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2640 [KVM_STAT_VM] = &vm_stat_fops,
2641};
2642
2643static void kvm_init_debug(void)
2644{
2645 struct kvm_stats_debugfs_item *p;
2646
2647 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2648 for (p = debugfs_entries; p->name; ++p)
2649 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2650 (void *)(long)p->offset,
2651 stat_fops[p->kind]);
2652}
2653
2654static void kvm_exit_debug(void)
2655{
2656 struct kvm_stats_debugfs_item *p;
2657
2658 for (p = debugfs_entries; p->name; ++p)
2659 debugfs_remove(p->dentry);
2660 debugfs_remove(kvm_debugfs_dir);
2661}
2662
2663static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2664{
2665 hardware_disable(NULL);
2666 return 0;
2667}
2668
2669static int kvm_resume(struct sys_device *dev)
2670{
2671 hardware_enable(NULL);
2672 return 0;
2673}
2674
2675static struct sysdev_class kvm_sysdev_class = {
2676 .name = "kvm",
2677 .suspend = kvm_suspend,
2678 .resume = kvm_resume,
2679};
2680
2681static struct sys_device kvm_sysdev = {
2682 .id = 0,
2683 .cls = &kvm_sysdev_class,
2684};
2685
2686struct page *bad_page;
2687pfn_t bad_pfn;
2688
2689static inline
2690struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2691{
2692 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2693}
2694
2695static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2696{
2697 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2698
2699 kvm_arch_vcpu_load(vcpu, cpu);
2700}
2701
2702static void kvm_sched_out(struct preempt_notifier *pn,
2703 struct task_struct *next)
2704{
2705 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2706
2707 kvm_arch_vcpu_put(vcpu);
2708}
2709
2710int kvm_init(void *opaque, unsigned int vcpu_size,
2711 struct module *module)
2712{
2713 int r;
2714 int cpu;
2715
2716 r = kvm_arch_init(opaque);
2717 if (r)
2718 goto out_fail;
2719
2720 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2721
2722 if (bad_page == NULL) {
2723 r = -ENOMEM;
2724 goto out;
2725 }
2726
2727 bad_pfn = page_to_pfn(bad_page);
2728
2729 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2730 r = -ENOMEM;
2731 goto out_free_0;
2732 }
2733
2734 r = kvm_arch_hardware_setup();
2735 if (r < 0)
2736 goto out_free_0a;
2737
2738 for_each_online_cpu(cpu) {
2739 smp_call_function_single(cpu,
2740 kvm_arch_check_processor_compat,
2741 &r, 1);
2742 if (r < 0)
2743 goto out_free_1;
2744 }
2745
2746 on_each_cpu(hardware_enable, NULL, 1);
2747 r = register_cpu_notifier(&kvm_cpu_notifier);
2748 if (r)
2749 goto out_free_2;
2750 register_reboot_notifier(&kvm_reboot_notifier);
2751
2752 r = sysdev_class_register(&kvm_sysdev_class);
2753 if (r)
2754 goto out_free_3;
2755
2756 r = sysdev_register(&kvm_sysdev);
2757 if (r)
2758 goto out_free_4;
2759
2760 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2761 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2762 __alignof__(struct kvm_vcpu),
2763 0, NULL);
2764 if (!kvm_vcpu_cache) {
2765 r = -ENOMEM;
2766 goto out_free_5;
2767 }
2768
2769 kvm_chardev_ops.owner = module;
2770 kvm_vm_fops.owner = module;
2771 kvm_vcpu_fops.owner = module;
2772
2773 r = misc_register(&kvm_dev);
2774 if (r) {
2775 printk(KERN_ERR "kvm: misc device register failed\n");
2776 goto out_free;
2777 }
2778
2779 kvm_preempt_ops.sched_in = kvm_sched_in;
2780 kvm_preempt_ops.sched_out = kvm_sched_out;
2781
2782 kvm_init_debug();
2783
2784 return 0;
2785
2786out_free:
2787 kmem_cache_destroy(kvm_vcpu_cache);
2788out_free_5:
2789 sysdev_unregister(&kvm_sysdev);
2790out_free_4:
2791 sysdev_class_unregister(&kvm_sysdev_class);
2792out_free_3:
2793 unregister_reboot_notifier(&kvm_reboot_notifier);
2794 unregister_cpu_notifier(&kvm_cpu_notifier);
2795out_free_2:
2796 on_each_cpu(hardware_disable, NULL, 1);
2797out_free_1:
2798 kvm_arch_hardware_unsetup();
2799out_free_0a:
2800 free_cpumask_var(cpus_hardware_enabled);
2801out_free_0:
2802 __free_page(bad_page);
2803out:
2804 kvm_arch_exit();
2805out_fail:
2806 return r;
2807}
2808EXPORT_SYMBOL_GPL(kvm_init);
2809
2810void kvm_exit(void)
2811{
2812 tracepoint_synchronize_unregister();
2813 kvm_exit_debug();
2814 misc_deregister(&kvm_dev);
2815 kmem_cache_destroy(kvm_vcpu_cache);
2816 sysdev_unregister(&kvm_sysdev);
2817 sysdev_class_unregister(&kvm_sysdev_class);
2818 unregister_reboot_notifier(&kvm_reboot_notifier);
2819 unregister_cpu_notifier(&kvm_cpu_notifier);
2820 on_each_cpu(hardware_disable, NULL, 1);
2821 kvm_arch_hardware_unsetup();
2822 kvm_arch_exit();
2823 free_cpumask_var(cpus_hardware_enabled);
2824 __free_page(bad_page);
2825}
2826EXPORT_SYMBOL_GPL(kvm_exit);