]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - virt/kvm/kvm_main.c
KVM: x86: fix possible infinite loop caused by reexecute_instruction
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / kvm_main.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "iodev.h"
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/syscore_ops.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50#include <linux/sort.h>
51#include <linux/bsearch.h>
52
53#include <asm/processor.h>
54#include <asm/io.h>
55#include <asm/uaccess.h>
56#include <asm/pgtable.h>
57
58#include "coalesced_mmio.h"
59#include "async_pf.h"
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/kvm.h>
63
64MODULE_AUTHOR("Qumranet");
65MODULE_LICENSE("GPL");
66
67/*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73DEFINE_RAW_SPINLOCK(kvm_lock);
74LIST_HEAD(vm_list);
75
76static cpumask_var_t cpus_hardware_enabled;
77static int kvm_usage_count = 0;
78static atomic_t hardware_enable_failed;
79
80struct kmem_cache *kvm_vcpu_cache;
81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85struct dentry *kvm_debugfs_dir;
86
87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89#ifdef CONFIG_COMPAT
90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92#endif
93static int hardware_enable_all(void);
94static void hardware_disable_all(void);
95
96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98bool kvm_rebooting;
99EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101static bool largepages_enabled = true;
102
103bool kvm_is_mmio_pfn(pfn_t pfn)
104{
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129}
130
131/*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134void vcpu_load(struct kvm_vcpu *vcpu)
135{
136 int cpu;
137
138 mutex_lock(&vcpu->mutex);
139 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
140 /* The thread running this VCPU changed. */
141 struct pid *oldpid = vcpu->pid;
142 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
143 rcu_assign_pointer(vcpu->pid, newpid);
144 synchronize_rcu();
145 put_pid(oldpid);
146 }
147 cpu = get_cpu();
148 preempt_notifier_register(&vcpu->preempt_notifier);
149 kvm_arch_vcpu_load(vcpu, cpu);
150 put_cpu();
151}
152
153void vcpu_put(struct kvm_vcpu *vcpu)
154{
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160}
161
162static void ack_flush(void *_completed)
163{
164}
165
166static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
167{
168 int i, cpu, me;
169 cpumask_var_t cpus;
170 bool called = true;
171 struct kvm_vcpu *vcpu;
172
173 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
174
175 me = get_cpu();
176 kvm_for_each_vcpu(i, vcpu, kvm) {
177 kvm_make_request(req, vcpu);
178 cpu = vcpu->cpu;
179
180 /* Set ->requests bit before we read ->mode */
181 smp_mb();
182
183 if (cpus != NULL && cpu != -1 && cpu != me &&
184 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
185 cpumask_set_cpu(cpu, cpus);
186 }
187 if (unlikely(cpus == NULL))
188 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
189 else if (!cpumask_empty(cpus))
190 smp_call_function_many(cpus, ack_flush, NULL, 1);
191 else
192 called = false;
193 put_cpu();
194 free_cpumask_var(cpus);
195 return called;
196}
197
198void kvm_flush_remote_tlbs(struct kvm *kvm)
199{
200 long dirty_count = kvm->tlbs_dirty;
201
202 smp_mb();
203 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
204 ++kvm->stat.remote_tlb_flush;
205 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
206}
207
208void kvm_reload_remote_mmus(struct kvm *kvm)
209{
210 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
211}
212
213int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214{
215 struct page *page;
216 int r;
217
218 mutex_init(&vcpu->mutex);
219 vcpu->cpu = -1;
220 vcpu->kvm = kvm;
221 vcpu->vcpu_id = id;
222 vcpu->pid = NULL;
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
225
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
230 }
231 vcpu->run = page_address(page);
232
233 kvm_vcpu_set_in_spin_loop(vcpu, false);
234 kvm_vcpu_set_dy_eligible(vcpu, false);
235
236 r = kvm_arch_vcpu_init(vcpu);
237 if (r < 0)
238 goto fail_free_run;
239 return 0;
240
241fail_free_run:
242 free_page((unsigned long)vcpu->run);
243fail:
244 return r;
245}
246EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249{
250 put_pid(vcpu->pid);
251 kvm_arch_vcpu_uninit(vcpu);
252 free_page((unsigned long)vcpu->run);
253}
254EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258{
259 return container_of(mn, struct kvm, mmu_notifier);
260}
261
262static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long address)
265{
266 struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 int need_tlb_flush, idx;
268
269 /*
270 * When ->invalidate_page runs, the linux pte has been zapped
271 * already but the page is still allocated until
272 * ->invalidate_page returns. So if we increase the sequence
273 * here the kvm page fault will notice if the spte can't be
274 * established because the page is going to be freed. If
275 * instead the kvm page fault establishes the spte before
276 * ->invalidate_page runs, kvm_unmap_hva will release it
277 * before returning.
278 *
279 * The sequence increase only need to be seen at spin_unlock
280 * time, and not at spin_lock time.
281 *
282 * Increasing the sequence after the spin_unlock would be
283 * unsafe because the kvm page fault could then establish the
284 * pte after kvm_unmap_hva returned, without noticing the page
285 * is going to be freed.
286 */
287 idx = srcu_read_lock(&kvm->srcu);
288 spin_lock(&kvm->mmu_lock);
289
290 kvm->mmu_notifier_seq++;
291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 /* we've to flush the tlb before the pages can be freed */
293 if (need_tlb_flush)
294 kvm_flush_remote_tlbs(kvm);
295
296 spin_unlock(&kvm->mmu_lock);
297 srcu_read_unlock(&kvm->srcu, idx);
298}
299
300static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
301 struct mm_struct *mm,
302 unsigned long address,
303 pte_t pte)
304{
305 struct kvm *kvm = mmu_notifier_to_kvm(mn);
306 int idx;
307
308 idx = srcu_read_lock(&kvm->srcu);
309 spin_lock(&kvm->mmu_lock);
310 kvm->mmu_notifier_seq++;
311 kvm_set_spte_hva(kvm, address, pte);
312 spin_unlock(&kvm->mmu_lock);
313 srcu_read_unlock(&kvm->srcu, idx);
314}
315
316static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
317 struct mm_struct *mm,
318 unsigned long start,
319 unsigned long end)
320{
321 struct kvm *kvm = mmu_notifier_to_kvm(mn);
322 int need_tlb_flush = 0, idx;
323
324 idx = srcu_read_lock(&kvm->srcu);
325 spin_lock(&kvm->mmu_lock);
326 /*
327 * The count increase must become visible at unlock time as no
328 * spte can be established without taking the mmu_lock and
329 * count is also read inside the mmu_lock critical section.
330 */
331 kvm->mmu_notifier_count++;
332 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
333 need_tlb_flush |= kvm->tlbs_dirty;
334 /* we've to flush the tlb before the pages can be freed */
335 if (need_tlb_flush)
336 kvm_flush_remote_tlbs(kvm);
337
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340}
341
342static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
343 struct mm_struct *mm,
344 unsigned long start,
345 unsigned long end)
346{
347 struct kvm *kvm = mmu_notifier_to_kvm(mn);
348
349 spin_lock(&kvm->mmu_lock);
350 /*
351 * This sequence increase will notify the kvm page fault that
352 * the page that is going to be mapped in the spte could have
353 * been freed.
354 */
355 kvm->mmu_notifier_seq++;
356 smp_wmb();
357 /*
358 * The above sequence increase must be visible before the
359 * below count decrease, which is ensured by the smp_wmb above
360 * in conjunction with the smp_rmb in mmu_notifier_retry().
361 */
362 kvm->mmu_notifier_count--;
363 spin_unlock(&kvm->mmu_lock);
364
365 BUG_ON(kvm->mmu_notifier_count < 0);
366}
367
368static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
369 struct mm_struct *mm,
370 unsigned long address)
371{
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 int young, idx;
374
375 idx = srcu_read_lock(&kvm->srcu);
376 spin_lock(&kvm->mmu_lock);
377
378 young = kvm_age_hva(kvm, address);
379 if (young)
380 kvm_flush_remote_tlbs(kvm);
381
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384
385 return young;
386}
387
388static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
389 struct mm_struct *mm,
390 unsigned long address)
391{
392 struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 int young, idx;
394
395 idx = srcu_read_lock(&kvm->srcu);
396 spin_lock(&kvm->mmu_lock);
397 young = kvm_test_age_hva(kvm, address);
398 spin_unlock(&kvm->mmu_lock);
399 srcu_read_unlock(&kvm->srcu, idx);
400
401 return young;
402}
403
404static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
405 struct mm_struct *mm)
406{
407 struct kvm *kvm = mmu_notifier_to_kvm(mn);
408 int idx;
409
410 idx = srcu_read_lock(&kvm->srcu);
411 kvm_arch_flush_shadow(kvm);
412 srcu_read_unlock(&kvm->srcu, idx);
413}
414
415static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
416 .invalidate_page = kvm_mmu_notifier_invalidate_page,
417 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
418 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
419 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
420 .test_young = kvm_mmu_notifier_test_young,
421 .change_pte = kvm_mmu_notifier_change_pte,
422 .release = kvm_mmu_notifier_release,
423};
424
425static int kvm_init_mmu_notifier(struct kvm *kvm)
426{
427 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
428 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
429}
430
431#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
432
433static int kvm_init_mmu_notifier(struct kvm *kvm)
434{
435 return 0;
436}
437
438#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
439
440static void kvm_init_memslots_id(struct kvm *kvm)
441{
442 int i;
443 struct kvm_memslots *slots = kvm->memslots;
444
445 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
446 slots->id_to_index[i] = slots->memslots[i].id = i;
447}
448
449static struct kvm *kvm_create_vm(unsigned long type)
450{
451 int r, i;
452 struct kvm *kvm = kvm_arch_alloc_vm();
453
454 if (!kvm)
455 return ERR_PTR(-ENOMEM);
456
457 r = kvm_arch_init_vm(kvm, type);
458 if (r)
459 goto out_err_nodisable;
460
461 r = hardware_enable_all();
462 if (r)
463 goto out_err_nodisable;
464
465#ifdef CONFIG_HAVE_KVM_IRQCHIP
466 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
467 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
468#endif
469
470 r = -ENOMEM;
471 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
472 if (!kvm->memslots)
473 goto out_err_nosrcu;
474 kvm_init_memslots_id(kvm);
475 if (init_srcu_struct(&kvm->srcu))
476 goto out_err_nosrcu;
477 for (i = 0; i < KVM_NR_BUSES; i++) {
478 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
479 GFP_KERNEL);
480 if (!kvm->buses[i])
481 goto out_err;
482 }
483
484 spin_lock_init(&kvm->mmu_lock);
485 kvm->mm = current->mm;
486 atomic_inc(&kvm->mm->mm_count);
487 kvm_eventfd_init(kvm);
488 mutex_init(&kvm->lock);
489 mutex_init(&kvm->irq_lock);
490 mutex_init(&kvm->slots_lock);
491 atomic_set(&kvm->users_count, 1);
492
493 r = kvm_init_mmu_notifier(kvm);
494 if (r)
495 goto out_err;
496
497 raw_spin_lock(&kvm_lock);
498 list_add(&kvm->vm_list, &vm_list);
499 raw_spin_unlock(&kvm_lock);
500
501 return kvm;
502
503out_err:
504 cleanup_srcu_struct(&kvm->srcu);
505out_err_nosrcu:
506 hardware_disable_all();
507out_err_nodisable:
508 for (i = 0; i < KVM_NR_BUSES; i++)
509 kfree(kvm->buses[i]);
510 kfree(kvm->memslots);
511 kvm_arch_free_vm(kvm);
512 return ERR_PTR(r);
513}
514
515/*
516 * Avoid using vmalloc for a small buffer.
517 * Should not be used when the size is statically known.
518 */
519void *kvm_kvzalloc(unsigned long size)
520{
521 if (size > PAGE_SIZE)
522 return vzalloc(size);
523 else
524 return kzalloc(size, GFP_KERNEL);
525}
526
527void kvm_kvfree(const void *addr)
528{
529 if (is_vmalloc_addr(addr))
530 vfree(addr);
531 else
532 kfree(addr);
533}
534
535static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
536{
537 if (!memslot->dirty_bitmap)
538 return;
539
540 kvm_kvfree(memslot->dirty_bitmap);
541 memslot->dirty_bitmap = NULL;
542}
543
544/*
545 * Free any memory in @free but not in @dont.
546 */
547static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
548 struct kvm_memory_slot *dont)
549{
550 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
551 kvm_destroy_dirty_bitmap(free);
552
553 kvm_arch_free_memslot(free, dont);
554
555 free->npages = 0;
556}
557
558void kvm_free_physmem(struct kvm *kvm)
559{
560 struct kvm_memslots *slots = kvm->memslots;
561 struct kvm_memory_slot *memslot;
562
563 kvm_for_each_memslot(memslot, slots)
564 kvm_free_physmem_slot(memslot, NULL);
565
566 kfree(kvm->memslots);
567}
568
569static void kvm_destroy_vm(struct kvm *kvm)
570{
571 int i;
572 struct mm_struct *mm = kvm->mm;
573
574 kvm_arch_sync_events(kvm);
575 raw_spin_lock(&kvm_lock);
576 list_del(&kvm->vm_list);
577 raw_spin_unlock(&kvm_lock);
578 kvm_free_irq_routing(kvm);
579 for (i = 0; i < KVM_NR_BUSES; i++)
580 kvm_io_bus_destroy(kvm->buses[i]);
581 kvm_coalesced_mmio_free(kvm);
582#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
583 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
584#else
585 kvm_arch_flush_shadow(kvm);
586#endif
587 kvm_arch_destroy_vm(kvm);
588 kvm_free_physmem(kvm);
589 cleanup_srcu_struct(&kvm->srcu);
590 kvm_arch_free_vm(kvm);
591 hardware_disable_all();
592 mmdrop(mm);
593}
594
595void kvm_get_kvm(struct kvm *kvm)
596{
597 atomic_inc(&kvm->users_count);
598}
599EXPORT_SYMBOL_GPL(kvm_get_kvm);
600
601void kvm_put_kvm(struct kvm *kvm)
602{
603 if (atomic_dec_and_test(&kvm->users_count))
604 kvm_destroy_vm(kvm);
605}
606EXPORT_SYMBOL_GPL(kvm_put_kvm);
607
608
609static int kvm_vm_release(struct inode *inode, struct file *filp)
610{
611 struct kvm *kvm = filp->private_data;
612
613 kvm_irqfd_release(kvm);
614
615 kvm_put_kvm(kvm);
616 return 0;
617}
618
619/*
620 * Allocation size is twice as large as the actual dirty bitmap size.
621 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
622 */
623static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
624{
625#ifndef CONFIG_S390
626 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
627
628 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
629 if (!memslot->dirty_bitmap)
630 return -ENOMEM;
631
632#endif /* !CONFIG_S390 */
633 return 0;
634}
635
636static int cmp_memslot(const void *slot1, const void *slot2)
637{
638 struct kvm_memory_slot *s1, *s2;
639
640 s1 = (struct kvm_memory_slot *)slot1;
641 s2 = (struct kvm_memory_slot *)slot2;
642
643 if (s1->npages < s2->npages)
644 return 1;
645 if (s1->npages > s2->npages)
646 return -1;
647
648 return 0;
649}
650
651/*
652 * Sort the memslots base on its size, so the larger slots
653 * will get better fit.
654 */
655static void sort_memslots(struct kvm_memslots *slots)
656{
657 int i;
658
659 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
660 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
661
662 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
663 slots->id_to_index[slots->memslots[i].id] = i;
664}
665
666void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
667{
668 if (new) {
669 int id = new->id;
670 struct kvm_memory_slot *old = id_to_memslot(slots, id);
671 unsigned long npages = old->npages;
672
673 *old = *new;
674 if (new->npages != npages)
675 sort_memslots(slots);
676 }
677
678 slots->generation++;
679}
680
681/*
682 * Allocate some memory and give it an address in the guest physical address
683 * space.
684 *
685 * Discontiguous memory is allowed, mostly for framebuffers.
686 *
687 * Must be called holding mmap_sem for write.
688 */
689int __kvm_set_memory_region(struct kvm *kvm,
690 struct kvm_userspace_memory_region *mem,
691 int user_alloc)
692{
693 int r;
694 gfn_t base_gfn;
695 unsigned long npages;
696 unsigned long i;
697 struct kvm_memory_slot *memslot;
698 struct kvm_memory_slot old, new;
699 struct kvm_memslots *slots, *old_memslots;
700
701 r = -EINVAL;
702 /* General sanity checks */
703 if (mem->memory_size & (PAGE_SIZE - 1))
704 goto out;
705 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
706 goto out;
707 /* We can read the guest memory with __xxx_user() later on. */
708 if (user_alloc &&
709 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
710 !access_ok(VERIFY_WRITE,
711 (void __user *)(unsigned long)mem->userspace_addr,
712 mem->memory_size)))
713 goto out;
714 if (mem->slot >= KVM_MEM_SLOTS_NUM)
715 goto out;
716 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
717 goto out;
718
719 memslot = id_to_memslot(kvm->memslots, mem->slot);
720 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
721 npages = mem->memory_size >> PAGE_SHIFT;
722
723 r = -EINVAL;
724 if (npages > KVM_MEM_MAX_NR_PAGES)
725 goto out;
726
727 if (!npages)
728 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
729
730 new = old = *memslot;
731
732 new.id = mem->slot;
733 new.base_gfn = base_gfn;
734 new.npages = npages;
735 new.flags = mem->flags;
736
737 /* Disallow changing a memory slot's size. */
738 r = -EINVAL;
739 if (npages && old.npages && npages != old.npages)
740 goto out_free;
741
742 /* Check for overlaps */
743 r = -EEXIST;
744 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
745 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
746
747 if (s == memslot || !s->npages)
748 continue;
749 if (!((base_gfn + npages <= s->base_gfn) ||
750 (base_gfn >= s->base_gfn + s->npages)))
751 goto out_free;
752 }
753
754 /* Free page dirty bitmap if unneeded */
755 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
756 new.dirty_bitmap = NULL;
757
758 r = -ENOMEM;
759
760 /* Allocate if a slot is being created */
761 if (npages && !old.npages) {
762 new.user_alloc = user_alloc;
763 new.userspace_addr = mem->userspace_addr;
764
765 if (kvm_arch_create_memslot(&new, npages))
766 goto out_free;
767 }
768
769 /* Allocate page dirty bitmap if needed */
770 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
771 if (kvm_create_dirty_bitmap(&new) < 0)
772 goto out_free;
773 /* destroy any largepage mappings for dirty tracking */
774 }
775
776 if (!npages) {
777 struct kvm_memory_slot *slot;
778
779 r = -ENOMEM;
780 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
781 GFP_KERNEL);
782 if (!slots)
783 goto out_free;
784 slot = id_to_memslot(slots, mem->slot);
785 slot->flags |= KVM_MEMSLOT_INVALID;
786
787 update_memslots(slots, NULL);
788
789 old_memslots = kvm->memslots;
790 rcu_assign_pointer(kvm->memslots, slots);
791 synchronize_srcu_expedited(&kvm->srcu);
792 /* From this point no new shadow pages pointing to a deleted
793 * memslot will be created.
794 *
795 * validation of sp->gfn happens in:
796 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
797 * - kvm_is_visible_gfn (mmu_check_roots)
798 */
799 kvm_arch_flush_shadow(kvm);
800 kfree(old_memslots);
801 }
802
803 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
804 if (r)
805 goto out_free;
806
807 /* map/unmap the pages in iommu page table */
808 if (npages) {
809 r = kvm_iommu_map_pages(kvm, &new);
810 if (r)
811 goto out_free;
812 } else
813 kvm_iommu_unmap_pages(kvm, &old);
814
815 r = -ENOMEM;
816 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
817 GFP_KERNEL);
818 if (!slots)
819 goto out_free;
820
821 /* actual memory is freed via old in kvm_free_physmem_slot below */
822 if (!npages) {
823 new.dirty_bitmap = NULL;
824 memset(&new.arch, 0, sizeof(new.arch));
825 }
826
827 update_memslots(slots, &new);
828 old_memslots = kvm->memslots;
829 rcu_assign_pointer(kvm->memslots, slots);
830 synchronize_srcu_expedited(&kvm->srcu);
831
832 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
833
834 /*
835 * If the new memory slot is created, we need to clear all
836 * mmio sptes.
837 */
838 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
839 kvm_arch_flush_shadow(kvm);
840
841 kvm_free_physmem_slot(&old, &new);
842 kfree(old_memslots);
843
844 return 0;
845
846out_free:
847 kvm_free_physmem_slot(&new, &old);
848out:
849 return r;
850
851}
852EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
853
854int kvm_set_memory_region(struct kvm *kvm,
855 struct kvm_userspace_memory_region *mem,
856 int user_alloc)
857{
858 int r;
859
860 mutex_lock(&kvm->slots_lock);
861 r = __kvm_set_memory_region(kvm, mem, user_alloc);
862 mutex_unlock(&kvm->slots_lock);
863 return r;
864}
865EXPORT_SYMBOL_GPL(kvm_set_memory_region);
866
867int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
868 struct
869 kvm_userspace_memory_region *mem,
870 int user_alloc)
871{
872 if (mem->slot >= KVM_MEMORY_SLOTS)
873 return -EINVAL;
874 return kvm_set_memory_region(kvm, mem, user_alloc);
875}
876
877int kvm_get_dirty_log(struct kvm *kvm,
878 struct kvm_dirty_log *log, int *is_dirty)
879{
880 struct kvm_memory_slot *memslot;
881 int r, i;
882 unsigned long n;
883 unsigned long any = 0;
884
885 r = -EINVAL;
886 if (log->slot >= KVM_MEMORY_SLOTS)
887 goto out;
888
889 memslot = id_to_memslot(kvm->memslots, log->slot);
890 r = -ENOENT;
891 if (!memslot->dirty_bitmap)
892 goto out;
893
894 n = kvm_dirty_bitmap_bytes(memslot);
895
896 for (i = 0; !any && i < n/sizeof(long); ++i)
897 any = memslot->dirty_bitmap[i];
898
899 r = -EFAULT;
900 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
901 goto out;
902
903 if (any)
904 *is_dirty = 1;
905
906 r = 0;
907out:
908 return r;
909}
910
911bool kvm_largepages_enabled(void)
912{
913 return largepages_enabled;
914}
915
916void kvm_disable_largepages(void)
917{
918 largepages_enabled = false;
919}
920EXPORT_SYMBOL_GPL(kvm_disable_largepages);
921
922static inline unsigned long bad_hva(void)
923{
924 return PAGE_OFFSET;
925}
926
927int kvm_is_error_hva(unsigned long addr)
928{
929 return addr == bad_hva();
930}
931EXPORT_SYMBOL_GPL(kvm_is_error_hva);
932
933struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
934{
935 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
936}
937EXPORT_SYMBOL_GPL(gfn_to_memslot);
938
939int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
940{
941 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
942
943 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
944 memslot->flags & KVM_MEMSLOT_INVALID)
945 return 0;
946
947 return 1;
948}
949EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
950
951unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
952{
953 struct vm_area_struct *vma;
954 unsigned long addr, size;
955
956 size = PAGE_SIZE;
957
958 addr = gfn_to_hva(kvm, gfn);
959 if (kvm_is_error_hva(addr))
960 return PAGE_SIZE;
961
962 down_read(&current->mm->mmap_sem);
963 vma = find_vma(current->mm, addr);
964 if (!vma)
965 goto out;
966
967 size = vma_kernel_pagesize(vma);
968
969out:
970 up_read(&current->mm->mmap_sem);
971
972 return size;
973}
974
975static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
976 gfn_t *nr_pages)
977{
978 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
979 return bad_hva();
980
981 if (nr_pages)
982 *nr_pages = slot->npages - (gfn - slot->base_gfn);
983
984 return gfn_to_hva_memslot(slot, gfn);
985}
986
987unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
988{
989 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
990}
991EXPORT_SYMBOL_GPL(gfn_to_hva);
992
993int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
994 unsigned long start, int write, struct page **page)
995{
996 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
997
998 if (write)
999 flags |= FOLL_WRITE;
1000
1001 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1002}
1003
1004static inline int check_user_page_hwpoison(unsigned long addr)
1005{
1006 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1007
1008 rc = __get_user_pages(current, current->mm, addr, 1,
1009 flags, NULL, NULL, NULL);
1010 return rc == -EHWPOISON;
1011}
1012
1013static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1014 bool write_fault, bool *writable)
1015{
1016 struct page *page[1];
1017 int npages = 0;
1018 pfn_t pfn;
1019
1020 /* we can do it either atomically or asynchronously, not both */
1021 BUG_ON(atomic && async);
1022
1023 BUG_ON(!write_fault && !writable);
1024
1025 if (writable)
1026 *writable = true;
1027
1028 if (atomic || async)
1029 npages = __get_user_pages_fast(addr, 1, 1, page);
1030
1031 if (unlikely(npages != 1) && !atomic) {
1032 might_sleep();
1033
1034 if (writable)
1035 *writable = write_fault;
1036
1037 if (async) {
1038 down_read(&current->mm->mmap_sem);
1039 npages = get_user_page_nowait(current, current->mm,
1040 addr, write_fault, page);
1041 up_read(&current->mm->mmap_sem);
1042 } else
1043 npages = get_user_pages_fast(addr, 1, write_fault,
1044 page);
1045
1046 /* map read fault as writable if possible */
1047 if (unlikely(!write_fault) && npages == 1) {
1048 struct page *wpage[1];
1049
1050 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1051 if (npages == 1) {
1052 *writable = true;
1053 put_page(page[0]);
1054 page[0] = wpage[0];
1055 }
1056 npages = 1;
1057 }
1058 }
1059
1060 if (unlikely(npages != 1)) {
1061 struct vm_area_struct *vma;
1062
1063 if (atomic)
1064 return KVM_PFN_ERR_FAULT;
1065
1066 down_read(&current->mm->mmap_sem);
1067 if (npages == -EHWPOISON ||
1068 (!async && check_user_page_hwpoison(addr))) {
1069 up_read(&current->mm->mmap_sem);
1070 return KVM_PFN_ERR_HWPOISON;
1071 }
1072
1073 vma = find_vma_intersection(current->mm, addr, addr+1);
1074
1075 if (vma == NULL)
1076 pfn = KVM_PFN_ERR_FAULT;
1077 else if ((vma->vm_flags & VM_PFNMAP)) {
1078 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1079 vma->vm_pgoff;
1080 BUG_ON(!kvm_is_mmio_pfn(pfn));
1081 } else {
1082 if (async && (vma->vm_flags & VM_WRITE))
1083 *async = true;
1084 pfn = KVM_PFN_ERR_FAULT;
1085 }
1086 up_read(&current->mm->mmap_sem);
1087 } else
1088 pfn = page_to_pfn(page[0]);
1089
1090 return pfn;
1091}
1092
1093pfn_t hva_to_pfn_atomic(unsigned long addr)
1094{
1095 return hva_to_pfn(addr, true, NULL, true, NULL);
1096}
1097EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1098
1099static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1100 bool write_fault, bool *writable)
1101{
1102 unsigned long addr;
1103
1104 if (async)
1105 *async = false;
1106
1107 addr = gfn_to_hva(kvm, gfn);
1108 if (kvm_is_error_hva(addr))
1109 return KVM_PFN_ERR_BAD;
1110
1111 return hva_to_pfn(addr, atomic, async, write_fault, writable);
1112}
1113
1114pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1115{
1116 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1117}
1118EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1119
1120pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1121 bool write_fault, bool *writable)
1122{
1123 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1124}
1125EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1126
1127pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1128{
1129 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1130}
1131EXPORT_SYMBOL_GPL(gfn_to_pfn);
1132
1133pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1134 bool *writable)
1135{
1136 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1137}
1138EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1139
1140pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1141{
1142 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1143 return hva_to_pfn(addr, false, NULL, true, NULL);
1144}
1145
1146int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1147 int nr_pages)
1148{
1149 unsigned long addr;
1150 gfn_t entry;
1151
1152 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1153 if (kvm_is_error_hva(addr))
1154 return -1;
1155
1156 if (entry < nr_pages)
1157 return 0;
1158
1159 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1160}
1161EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1162
1163static struct page *kvm_pfn_to_page(pfn_t pfn)
1164{
1165 if (is_error_pfn(pfn))
1166 return KVM_ERR_PTR_BAD_PAGE;
1167
1168 if (kvm_is_mmio_pfn(pfn)) {
1169 WARN_ON(1);
1170 return KVM_ERR_PTR_BAD_PAGE;
1171 }
1172
1173 return pfn_to_page(pfn);
1174}
1175
1176struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1177{
1178 pfn_t pfn;
1179
1180 pfn = gfn_to_pfn(kvm, gfn);
1181
1182 return kvm_pfn_to_page(pfn);
1183}
1184
1185EXPORT_SYMBOL_GPL(gfn_to_page);
1186
1187void kvm_release_page_clean(struct page *page)
1188{
1189 WARN_ON(is_error_page(page));
1190
1191 kvm_release_pfn_clean(page_to_pfn(page));
1192}
1193EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1194
1195void kvm_release_pfn_clean(pfn_t pfn)
1196{
1197 WARN_ON(is_error_pfn(pfn));
1198
1199 if (!kvm_is_mmio_pfn(pfn))
1200 put_page(pfn_to_page(pfn));
1201}
1202EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1203
1204void kvm_release_page_dirty(struct page *page)
1205{
1206 WARN_ON(is_error_page(page));
1207
1208 kvm_release_pfn_dirty(page_to_pfn(page));
1209}
1210EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1211
1212void kvm_release_pfn_dirty(pfn_t pfn)
1213{
1214 kvm_set_pfn_dirty(pfn);
1215 kvm_release_pfn_clean(pfn);
1216}
1217EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1218
1219void kvm_set_page_dirty(struct page *page)
1220{
1221 kvm_set_pfn_dirty(page_to_pfn(page));
1222}
1223EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1224
1225void kvm_set_pfn_dirty(pfn_t pfn)
1226{
1227 if (!kvm_is_mmio_pfn(pfn)) {
1228 struct page *page = pfn_to_page(pfn);
1229 if (!PageReserved(page))
1230 SetPageDirty(page);
1231 }
1232}
1233EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1234
1235void kvm_set_pfn_accessed(pfn_t pfn)
1236{
1237 if (!kvm_is_mmio_pfn(pfn))
1238 mark_page_accessed(pfn_to_page(pfn));
1239}
1240EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1241
1242void kvm_get_pfn(pfn_t pfn)
1243{
1244 if (!kvm_is_mmio_pfn(pfn))
1245 get_page(pfn_to_page(pfn));
1246}
1247EXPORT_SYMBOL_GPL(kvm_get_pfn);
1248
1249static int next_segment(unsigned long len, int offset)
1250{
1251 if (len > PAGE_SIZE - offset)
1252 return PAGE_SIZE - offset;
1253 else
1254 return len;
1255}
1256
1257int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1258 int len)
1259{
1260 int r;
1261 unsigned long addr;
1262
1263 addr = gfn_to_hva(kvm, gfn);
1264 if (kvm_is_error_hva(addr))
1265 return -EFAULT;
1266 r = __copy_from_user(data, (void __user *)addr + offset, len);
1267 if (r)
1268 return -EFAULT;
1269 return 0;
1270}
1271EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1272
1273int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1274{
1275 gfn_t gfn = gpa >> PAGE_SHIFT;
1276 int seg;
1277 int offset = offset_in_page(gpa);
1278 int ret;
1279
1280 while ((seg = next_segment(len, offset)) != 0) {
1281 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1282 if (ret < 0)
1283 return ret;
1284 offset = 0;
1285 len -= seg;
1286 data += seg;
1287 ++gfn;
1288 }
1289 return 0;
1290}
1291EXPORT_SYMBOL_GPL(kvm_read_guest);
1292
1293int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1294 unsigned long len)
1295{
1296 int r;
1297 unsigned long addr;
1298 gfn_t gfn = gpa >> PAGE_SHIFT;
1299 int offset = offset_in_page(gpa);
1300
1301 addr = gfn_to_hva(kvm, gfn);
1302 if (kvm_is_error_hva(addr))
1303 return -EFAULT;
1304 pagefault_disable();
1305 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1306 pagefault_enable();
1307 if (r)
1308 return -EFAULT;
1309 return 0;
1310}
1311EXPORT_SYMBOL(kvm_read_guest_atomic);
1312
1313int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1314 int offset, int len)
1315{
1316 int r;
1317 unsigned long addr;
1318
1319 addr = gfn_to_hva(kvm, gfn);
1320 if (kvm_is_error_hva(addr))
1321 return -EFAULT;
1322 r = __copy_to_user((void __user *)addr + offset, data, len);
1323 if (r)
1324 return -EFAULT;
1325 mark_page_dirty(kvm, gfn);
1326 return 0;
1327}
1328EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1329
1330int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1331 unsigned long len)
1332{
1333 gfn_t gfn = gpa >> PAGE_SHIFT;
1334 int seg;
1335 int offset = offset_in_page(gpa);
1336 int ret;
1337
1338 while ((seg = next_segment(len, offset)) != 0) {
1339 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1340 if (ret < 0)
1341 return ret;
1342 offset = 0;
1343 len -= seg;
1344 data += seg;
1345 ++gfn;
1346 }
1347 return 0;
1348}
1349
1350int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1351 gpa_t gpa)
1352{
1353 struct kvm_memslots *slots = kvm_memslots(kvm);
1354 int offset = offset_in_page(gpa);
1355 gfn_t gfn = gpa >> PAGE_SHIFT;
1356
1357 ghc->gpa = gpa;
1358 ghc->generation = slots->generation;
1359 ghc->memslot = gfn_to_memslot(kvm, gfn);
1360 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1361 if (!kvm_is_error_hva(ghc->hva))
1362 ghc->hva += offset;
1363 else
1364 return -EFAULT;
1365
1366 return 0;
1367}
1368EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1369
1370int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1371 void *data, unsigned long len)
1372{
1373 struct kvm_memslots *slots = kvm_memslots(kvm);
1374 int r;
1375
1376 if (slots->generation != ghc->generation)
1377 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1378
1379 if (kvm_is_error_hva(ghc->hva))
1380 return -EFAULT;
1381
1382 r = __copy_to_user((void __user *)ghc->hva, data, len);
1383 if (r)
1384 return -EFAULT;
1385 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1386
1387 return 0;
1388}
1389EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1390
1391int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1392 void *data, unsigned long len)
1393{
1394 struct kvm_memslots *slots = kvm_memslots(kvm);
1395 int r;
1396
1397 if (slots->generation != ghc->generation)
1398 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1399
1400 if (kvm_is_error_hva(ghc->hva))
1401 return -EFAULT;
1402
1403 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1404 if (r)
1405 return -EFAULT;
1406
1407 return 0;
1408}
1409EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1410
1411int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1412{
1413 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1414 offset, len);
1415}
1416EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1417
1418int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1419{
1420 gfn_t gfn = gpa >> PAGE_SHIFT;
1421 int seg;
1422 int offset = offset_in_page(gpa);
1423 int ret;
1424
1425 while ((seg = next_segment(len, offset)) != 0) {
1426 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1427 if (ret < 0)
1428 return ret;
1429 offset = 0;
1430 len -= seg;
1431 ++gfn;
1432 }
1433 return 0;
1434}
1435EXPORT_SYMBOL_GPL(kvm_clear_guest);
1436
1437void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1438 gfn_t gfn)
1439{
1440 if (memslot && memslot->dirty_bitmap) {
1441 unsigned long rel_gfn = gfn - memslot->base_gfn;
1442
1443 /* TODO: introduce set_bit_le() and use it */
1444 test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1445 }
1446}
1447
1448void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1449{
1450 struct kvm_memory_slot *memslot;
1451
1452 memslot = gfn_to_memslot(kvm, gfn);
1453 mark_page_dirty_in_slot(kvm, memslot, gfn);
1454}
1455
1456/*
1457 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1458 */
1459void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1460{
1461 DEFINE_WAIT(wait);
1462
1463 for (;;) {
1464 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1465
1466 if (kvm_arch_vcpu_runnable(vcpu)) {
1467 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1468 break;
1469 }
1470 if (kvm_cpu_has_pending_timer(vcpu))
1471 break;
1472 if (signal_pending(current))
1473 break;
1474
1475 schedule();
1476 }
1477
1478 finish_wait(&vcpu->wq, &wait);
1479}
1480
1481#ifndef CONFIG_S390
1482/*
1483 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1484 */
1485void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1486{
1487 int me;
1488 int cpu = vcpu->cpu;
1489 wait_queue_head_t *wqp;
1490
1491 wqp = kvm_arch_vcpu_wq(vcpu);
1492 if (waitqueue_active(wqp)) {
1493 wake_up_interruptible(wqp);
1494 ++vcpu->stat.halt_wakeup;
1495 }
1496
1497 me = get_cpu();
1498 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1499 if (kvm_arch_vcpu_should_kick(vcpu))
1500 smp_send_reschedule(cpu);
1501 put_cpu();
1502}
1503#endif /* !CONFIG_S390 */
1504
1505void kvm_resched(struct kvm_vcpu *vcpu)
1506{
1507 if (!need_resched())
1508 return;
1509 cond_resched();
1510}
1511EXPORT_SYMBOL_GPL(kvm_resched);
1512
1513bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1514{
1515 struct pid *pid;
1516 struct task_struct *task = NULL;
1517
1518 rcu_read_lock();
1519 pid = rcu_dereference(target->pid);
1520 if (pid)
1521 task = get_pid_task(target->pid, PIDTYPE_PID);
1522 rcu_read_unlock();
1523 if (!task)
1524 return false;
1525 if (task->flags & PF_VCPU) {
1526 put_task_struct(task);
1527 return false;
1528 }
1529 if (yield_to(task, 1)) {
1530 put_task_struct(task);
1531 return true;
1532 }
1533 put_task_struct(task);
1534 return false;
1535}
1536EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1537
1538#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1539/*
1540 * Helper that checks whether a VCPU is eligible for directed yield.
1541 * Most eligible candidate to yield is decided by following heuristics:
1542 *
1543 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1544 * (preempted lock holder), indicated by @in_spin_loop.
1545 * Set at the beiginning and cleared at the end of interception/PLE handler.
1546 *
1547 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1548 * chance last time (mostly it has become eligible now since we have probably
1549 * yielded to lockholder in last iteration. This is done by toggling
1550 * @dy_eligible each time a VCPU checked for eligibility.)
1551 *
1552 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1553 * to preempted lock-holder could result in wrong VCPU selection and CPU
1554 * burning. Giving priority for a potential lock-holder increases lock
1555 * progress.
1556 *
1557 * Since algorithm is based on heuristics, accessing another VCPU data without
1558 * locking does not harm. It may result in trying to yield to same VCPU, fail
1559 * and continue with next VCPU and so on.
1560 */
1561bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1562{
1563 bool eligible;
1564
1565 eligible = !vcpu->spin_loop.in_spin_loop ||
1566 (vcpu->spin_loop.in_spin_loop &&
1567 vcpu->spin_loop.dy_eligible);
1568
1569 if (vcpu->spin_loop.in_spin_loop)
1570 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1571
1572 return eligible;
1573}
1574#endif
1575void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1576{
1577 struct kvm *kvm = me->kvm;
1578 struct kvm_vcpu *vcpu;
1579 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1580 int yielded = 0;
1581 int pass;
1582 int i;
1583
1584 kvm_vcpu_set_in_spin_loop(me, true);
1585 /*
1586 * We boost the priority of a VCPU that is runnable but not
1587 * currently running, because it got preempted by something
1588 * else and called schedule in __vcpu_run. Hopefully that
1589 * VCPU is holding the lock that we need and will release it.
1590 * We approximate round-robin by starting at the last boosted VCPU.
1591 */
1592 for (pass = 0; pass < 2 && !yielded; pass++) {
1593 kvm_for_each_vcpu(i, vcpu, kvm) {
1594 if (!pass && i <= last_boosted_vcpu) {
1595 i = last_boosted_vcpu;
1596 continue;
1597 } else if (pass && i > last_boosted_vcpu)
1598 break;
1599 if (vcpu == me)
1600 continue;
1601 if (waitqueue_active(&vcpu->wq))
1602 continue;
1603 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1604 continue;
1605 if (kvm_vcpu_yield_to(vcpu)) {
1606 kvm->last_boosted_vcpu = i;
1607 yielded = 1;
1608 break;
1609 }
1610 }
1611 }
1612 kvm_vcpu_set_in_spin_loop(me, false);
1613
1614 /* Ensure vcpu is not eligible during next spinloop */
1615 kvm_vcpu_set_dy_eligible(me, false);
1616}
1617EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1618
1619static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1620{
1621 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1622 struct page *page;
1623
1624 if (vmf->pgoff == 0)
1625 page = virt_to_page(vcpu->run);
1626#ifdef CONFIG_X86
1627 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1628 page = virt_to_page(vcpu->arch.pio_data);
1629#endif
1630#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1631 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1632 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1633#endif
1634 else
1635 return kvm_arch_vcpu_fault(vcpu, vmf);
1636 get_page(page);
1637 vmf->page = page;
1638 return 0;
1639}
1640
1641static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1642 .fault = kvm_vcpu_fault,
1643};
1644
1645static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1646{
1647 vma->vm_ops = &kvm_vcpu_vm_ops;
1648 return 0;
1649}
1650
1651static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1652{
1653 struct kvm_vcpu *vcpu = filp->private_data;
1654
1655 kvm_put_kvm(vcpu->kvm);
1656 return 0;
1657}
1658
1659static struct file_operations kvm_vcpu_fops = {
1660 .release = kvm_vcpu_release,
1661 .unlocked_ioctl = kvm_vcpu_ioctl,
1662#ifdef CONFIG_COMPAT
1663 .compat_ioctl = kvm_vcpu_compat_ioctl,
1664#endif
1665 .mmap = kvm_vcpu_mmap,
1666 .llseek = noop_llseek,
1667};
1668
1669/*
1670 * Allocates an inode for the vcpu.
1671 */
1672static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1673{
1674 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1675}
1676
1677/*
1678 * Creates some virtual cpus. Good luck creating more than one.
1679 */
1680static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1681{
1682 int r;
1683 struct kvm_vcpu *vcpu, *v;
1684
1685 vcpu = kvm_arch_vcpu_create(kvm, id);
1686 if (IS_ERR(vcpu))
1687 return PTR_ERR(vcpu);
1688
1689 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1690
1691 r = kvm_arch_vcpu_setup(vcpu);
1692 if (r)
1693 goto vcpu_destroy;
1694
1695 mutex_lock(&kvm->lock);
1696 if (!kvm_vcpu_compatible(vcpu)) {
1697 r = -EINVAL;
1698 goto unlock_vcpu_destroy;
1699 }
1700 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1701 r = -EINVAL;
1702 goto unlock_vcpu_destroy;
1703 }
1704
1705 kvm_for_each_vcpu(r, v, kvm)
1706 if (v->vcpu_id == id) {
1707 r = -EEXIST;
1708 goto unlock_vcpu_destroy;
1709 }
1710
1711 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1712
1713 /* Now it's all set up, let userspace reach it */
1714 kvm_get_kvm(kvm);
1715 r = create_vcpu_fd(vcpu);
1716 if (r < 0) {
1717 kvm_put_kvm(kvm);
1718 goto unlock_vcpu_destroy;
1719 }
1720
1721 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1722 smp_wmb();
1723 atomic_inc(&kvm->online_vcpus);
1724
1725 mutex_unlock(&kvm->lock);
1726 return r;
1727
1728unlock_vcpu_destroy:
1729 mutex_unlock(&kvm->lock);
1730vcpu_destroy:
1731 kvm_arch_vcpu_destroy(vcpu);
1732 return r;
1733}
1734
1735static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1736{
1737 if (sigset) {
1738 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1739 vcpu->sigset_active = 1;
1740 vcpu->sigset = *sigset;
1741 } else
1742 vcpu->sigset_active = 0;
1743 return 0;
1744}
1745
1746static long kvm_vcpu_ioctl(struct file *filp,
1747 unsigned int ioctl, unsigned long arg)
1748{
1749 struct kvm_vcpu *vcpu = filp->private_data;
1750 void __user *argp = (void __user *)arg;
1751 int r;
1752 struct kvm_fpu *fpu = NULL;
1753 struct kvm_sregs *kvm_sregs = NULL;
1754
1755 if (vcpu->kvm->mm != current->mm)
1756 return -EIO;
1757
1758#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1759 /*
1760 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1761 * so vcpu_load() would break it.
1762 */
1763 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1764 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1765#endif
1766
1767
1768 vcpu_load(vcpu);
1769 switch (ioctl) {
1770 case KVM_RUN:
1771 r = -EINVAL;
1772 if (arg)
1773 goto out;
1774 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1775 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1776 break;
1777 case KVM_GET_REGS: {
1778 struct kvm_regs *kvm_regs;
1779
1780 r = -ENOMEM;
1781 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1782 if (!kvm_regs)
1783 goto out;
1784 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1785 if (r)
1786 goto out_free1;
1787 r = -EFAULT;
1788 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1789 goto out_free1;
1790 r = 0;
1791out_free1:
1792 kfree(kvm_regs);
1793 break;
1794 }
1795 case KVM_SET_REGS: {
1796 struct kvm_regs *kvm_regs;
1797
1798 r = -ENOMEM;
1799 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1800 if (IS_ERR(kvm_regs)) {
1801 r = PTR_ERR(kvm_regs);
1802 goto out;
1803 }
1804 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1805 if (r)
1806 goto out_free2;
1807 r = 0;
1808out_free2:
1809 kfree(kvm_regs);
1810 break;
1811 }
1812 case KVM_GET_SREGS: {
1813 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1814 r = -ENOMEM;
1815 if (!kvm_sregs)
1816 goto out;
1817 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1818 if (r)
1819 goto out;
1820 r = -EFAULT;
1821 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1822 goto out;
1823 r = 0;
1824 break;
1825 }
1826 case KVM_SET_SREGS: {
1827 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1828 if (IS_ERR(kvm_sregs)) {
1829 r = PTR_ERR(kvm_sregs);
1830 goto out;
1831 }
1832 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1833 if (r)
1834 goto out;
1835 r = 0;
1836 break;
1837 }
1838 case KVM_GET_MP_STATE: {
1839 struct kvm_mp_state mp_state;
1840
1841 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1842 if (r)
1843 goto out;
1844 r = -EFAULT;
1845 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1846 goto out;
1847 r = 0;
1848 break;
1849 }
1850 case KVM_SET_MP_STATE: {
1851 struct kvm_mp_state mp_state;
1852
1853 r = -EFAULT;
1854 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1855 goto out;
1856 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1857 if (r)
1858 goto out;
1859 r = 0;
1860 break;
1861 }
1862 case KVM_TRANSLATE: {
1863 struct kvm_translation tr;
1864
1865 r = -EFAULT;
1866 if (copy_from_user(&tr, argp, sizeof tr))
1867 goto out;
1868 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1869 if (r)
1870 goto out;
1871 r = -EFAULT;
1872 if (copy_to_user(argp, &tr, sizeof tr))
1873 goto out;
1874 r = 0;
1875 break;
1876 }
1877 case KVM_SET_GUEST_DEBUG: {
1878 struct kvm_guest_debug dbg;
1879
1880 r = -EFAULT;
1881 if (copy_from_user(&dbg, argp, sizeof dbg))
1882 goto out;
1883 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1884 if (r)
1885 goto out;
1886 r = 0;
1887 break;
1888 }
1889 case KVM_SET_SIGNAL_MASK: {
1890 struct kvm_signal_mask __user *sigmask_arg = argp;
1891 struct kvm_signal_mask kvm_sigmask;
1892 sigset_t sigset, *p;
1893
1894 p = NULL;
1895 if (argp) {
1896 r = -EFAULT;
1897 if (copy_from_user(&kvm_sigmask, argp,
1898 sizeof kvm_sigmask))
1899 goto out;
1900 r = -EINVAL;
1901 if (kvm_sigmask.len != sizeof sigset)
1902 goto out;
1903 r = -EFAULT;
1904 if (copy_from_user(&sigset, sigmask_arg->sigset,
1905 sizeof sigset))
1906 goto out;
1907 p = &sigset;
1908 }
1909 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1910 break;
1911 }
1912 case KVM_GET_FPU: {
1913 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1914 r = -ENOMEM;
1915 if (!fpu)
1916 goto out;
1917 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1918 if (r)
1919 goto out;
1920 r = -EFAULT;
1921 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1922 goto out;
1923 r = 0;
1924 break;
1925 }
1926 case KVM_SET_FPU: {
1927 fpu = memdup_user(argp, sizeof(*fpu));
1928 if (IS_ERR(fpu)) {
1929 r = PTR_ERR(fpu);
1930 goto out;
1931 }
1932 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1933 if (r)
1934 goto out;
1935 r = 0;
1936 break;
1937 }
1938 default:
1939 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1940 }
1941out:
1942 vcpu_put(vcpu);
1943 kfree(fpu);
1944 kfree(kvm_sregs);
1945 return r;
1946}
1947
1948#ifdef CONFIG_COMPAT
1949static long kvm_vcpu_compat_ioctl(struct file *filp,
1950 unsigned int ioctl, unsigned long arg)
1951{
1952 struct kvm_vcpu *vcpu = filp->private_data;
1953 void __user *argp = compat_ptr(arg);
1954 int r;
1955
1956 if (vcpu->kvm->mm != current->mm)
1957 return -EIO;
1958
1959 switch (ioctl) {
1960 case KVM_SET_SIGNAL_MASK: {
1961 struct kvm_signal_mask __user *sigmask_arg = argp;
1962 struct kvm_signal_mask kvm_sigmask;
1963 compat_sigset_t csigset;
1964 sigset_t sigset;
1965
1966 if (argp) {
1967 r = -EFAULT;
1968 if (copy_from_user(&kvm_sigmask, argp,
1969 sizeof kvm_sigmask))
1970 goto out;
1971 r = -EINVAL;
1972 if (kvm_sigmask.len != sizeof csigset)
1973 goto out;
1974 r = -EFAULT;
1975 if (copy_from_user(&csigset, sigmask_arg->sigset,
1976 sizeof csigset))
1977 goto out;
1978 }
1979 sigset_from_compat(&sigset, &csigset);
1980 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1981 break;
1982 }
1983 default:
1984 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1985 }
1986
1987out:
1988 return r;
1989}
1990#endif
1991
1992static long kvm_vm_ioctl(struct file *filp,
1993 unsigned int ioctl, unsigned long arg)
1994{
1995 struct kvm *kvm = filp->private_data;
1996 void __user *argp = (void __user *)arg;
1997 int r;
1998
1999 if (kvm->mm != current->mm)
2000 return -EIO;
2001 switch (ioctl) {
2002 case KVM_CREATE_VCPU:
2003 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2004 if (r < 0)
2005 goto out;
2006 break;
2007 case KVM_SET_USER_MEMORY_REGION: {
2008 struct kvm_userspace_memory_region kvm_userspace_mem;
2009
2010 r = -EFAULT;
2011 if (copy_from_user(&kvm_userspace_mem, argp,
2012 sizeof kvm_userspace_mem))
2013 goto out;
2014
2015 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2016 if (r)
2017 goto out;
2018 break;
2019 }
2020 case KVM_GET_DIRTY_LOG: {
2021 struct kvm_dirty_log log;
2022
2023 r = -EFAULT;
2024 if (copy_from_user(&log, argp, sizeof log))
2025 goto out;
2026 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2027 if (r)
2028 goto out;
2029 break;
2030 }
2031#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2032 case KVM_REGISTER_COALESCED_MMIO: {
2033 struct kvm_coalesced_mmio_zone zone;
2034 r = -EFAULT;
2035 if (copy_from_user(&zone, argp, sizeof zone))
2036 goto out;
2037 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2038 if (r)
2039 goto out;
2040 r = 0;
2041 break;
2042 }
2043 case KVM_UNREGISTER_COALESCED_MMIO: {
2044 struct kvm_coalesced_mmio_zone zone;
2045 r = -EFAULT;
2046 if (copy_from_user(&zone, argp, sizeof zone))
2047 goto out;
2048 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2049 if (r)
2050 goto out;
2051 r = 0;
2052 break;
2053 }
2054#endif
2055 case KVM_IRQFD: {
2056 struct kvm_irqfd data;
2057
2058 r = -EFAULT;
2059 if (copy_from_user(&data, argp, sizeof data))
2060 goto out;
2061 r = kvm_irqfd(kvm, &data);
2062 break;
2063 }
2064 case KVM_IOEVENTFD: {
2065 struct kvm_ioeventfd data;
2066
2067 r = -EFAULT;
2068 if (copy_from_user(&data, argp, sizeof data))
2069 goto out;
2070 r = kvm_ioeventfd(kvm, &data);
2071 break;
2072 }
2073#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2074 case KVM_SET_BOOT_CPU_ID:
2075 r = 0;
2076 mutex_lock(&kvm->lock);
2077 if (atomic_read(&kvm->online_vcpus) != 0)
2078 r = -EBUSY;
2079 else
2080 kvm->bsp_vcpu_id = arg;
2081 mutex_unlock(&kvm->lock);
2082 break;
2083#endif
2084#ifdef CONFIG_HAVE_KVM_MSI
2085 case KVM_SIGNAL_MSI: {
2086 struct kvm_msi msi;
2087
2088 r = -EFAULT;
2089 if (copy_from_user(&msi, argp, sizeof msi))
2090 goto out;
2091 r = kvm_send_userspace_msi(kvm, &msi);
2092 break;
2093 }
2094#endif
2095#ifdef __KVM_HAVE_IRQ_LINE
2096 case KVM_IRQ_LINE_STATUS:
2097 case KVM_IRQ_LINE: {
2098 struct kvm_irq_level irq_event;
2099
2100 r = -EFAULT;
2101 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2102 goto out;
2103
2104 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2105 if (r)
2106 goto out;
2107
2108 r = -EFAULT;
2109 if (ioctl == KVM_IRQ_LINE_STATUS) {
2110 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2111 goto out;
2112 }
2113
2114 r = 0;
2115 break;
2116 }
2117#endif
2118 default:
2119 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2120 if (r == -ENOTTY)
2121 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2122 }
2123out:
2124 return r;
2125}
2126
2127#ifdef CONFIG_COMPAT
2128struct compat_kvm_dirty_log {
2129 __u32 slot;
2130 __u32 padding1;
2131 union {
2132 compat_uptr_t dirty_bitmap; /* one bit per page */
2133 __u64 padding2;
2134 };
2135};
2136
2137static long kvm_vm_compat_ioctl(struct file *filp,
2138 unsigned int ioctl, unsigned long arg)
2139{
2140 struct kvm *kvm = filp->private_data;
2141 int r;
2142
2143 if (kvm->mm != current->mm)
2144 return -EIO;
2145 switch (ioctl) {
2146 case KVM_GET_DIRTY_LOG: {
2147 struct compat_kvm_dirty_log compat_log;
2148 struct kvm_dirty_log log;
2149
2150 r = -EFAULT;
2151 if (copy_from_user(&compat_log, (void __user *)arg,
2152 sizeof(compat_log)))
2153 goto out;
2154 log.slot = compat_log.slot;
2155 log.padding1 = compat_log.padding1;
2156 log.padding2 = compat_log.padding2;
2157 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2158
2159 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2160 if (r)
2161 goto out;
2162 break;
2163 }
2164 default:
2165 r = kvm_vm_ioctl(filp, ioctl, arg);
2166 }
2167
2168out:
2169 return r;
2170}
2171#endif
2172
2173static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2174{
2175 struct page *page[1];
2176 unsigned long addr;
2177 int npages;
2178 gfn_t gfn = vmf->pgoff;
2179 struct kvm *kvm = vma->vm_file->private_data;
2180
2181 addr = gfn_to_hva(kvm, gfn);
2182 if (kvm_is_error_hva(addr))
2183 return VM_FAULT_SIGBUS;
2184
2185 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2186 NULL);
2187 if (unlikely(npages != 1))
2188 return VM_FAULT_SIGBUS;
2189
2190 vmf->page = page[0];
2191 return 0;
2192}
2193
2194static const struct vm_operations_struct kvm_vm_vm_ops = {
2195 .fault = kvm_vm_fault,
2196};
2197
2198static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2199{
2200 vma->vm_ops = &kvm_vm_vm_ops;
2201 return 0;
2202}
2203
2204static struct file_operations kvm_vm_fops = {
2205 .release = kvm_vm_release,
2206 .unlocked_ioctl = kvm_vm_ioctl,
2207#ifdef CONFIG_COMPAT
2208 .compat_ioctl = kvm_vm_compat_ioctl,
2209#endif
2210 .mmap = kvm_vm_mmap,
2211 .llseek = noop_llseek,
2212};
2213
2214static int kvm_dev_ioctl_create_vm(unsigned long type)
2215{
2216 int r;
2217 struct kvm *kvm;
2218
2219 kvm = kvm_create_vm(type);
2220 if (IS_ERR(kvm))
2221 return PTR_ERR(kvm);
2222#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2223 r = kvm_coalesced_mmio_init(kvm);
2224 if (r < 0) {
2225 kvm_put_kvm(kvm);
2226 return r;
2227 }
2228#endif
2229 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2230 if (r < 0)
2231 kvm_put_kvm(kvm);
2232
2233 return r;
2234}
2235
2236static long kvm_dev_ioctl_check_extension_generic(long arg)
2237{
2238 switch (arg) {
2239 case KVM_CAP_USER_MEMORY:
2240 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2241 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2242#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2243 case KVM_CAP_SET_BOOT_CPU_ID:
2244#endif
2245 case KVM_CAP_INTERNAL_ERROR_DATA:
2246#ifdef CONFIG_HAVE_KVM_MSI
2247 case KVM_CAP_SIGNAL_MSI:
2248#endif
2249 return 1;
2250#ifdef KVM_CAP_IRQ_ROUTING
2251 case KVM_CAP_IRQ_ROUTING:
2252 return KVM_MAX_IRQ_ROUTES;
2253#endif
2254 default:
2255 break;
2256 }
2257 return kvm_dev_ioctl_check_extension(arg);
2258}
2259
2260static long kvm_dev_ioctl(struct file *filp,
2261 unsigned int ioctl, unsigned long arg)
2262{
2263 long r = -EINVAL;
2264
2265 switch (ioctl) {
2266 case KVM_GET_API_VERSION:
2267 r = -EINVAL;
2268 if (arg)
2269 goto out;
2270 r = KVM_API_VERSION;
2271 break;
2272 case KVM_CREATE_VM:
2273 r = kvm_dev_ioctl_create_vm(arg);
2274 break;
2275 case KVM_CHECK_EXTENSION:
2276 r = kvm_dev_ioctl_check_extension_generic(arg);
2277 break;
2278 case KVM_GET_VCPU_MMAP_SIZE:
2279 r = -EINVAL;
2280 if (arg)
2281 goto out;
2282 r = PAGE_SIZE; /* struct kvm_run */
2283#ifdef CONFIG_X86
2284 r += PAGE_SIZE; /* pio data page */
2285#endif
2286#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2287 r += PAGE_SIZE; /* coalesced mmio ring page */
2288#endif
2289 break;
2290 case KVM_TRACE_ENABLE:
2291 case KVM_TRACE_PAUSE:
2292 case KVM_TRACE_DISABLE:
2293 r = -EOPNOTSUPP;
2294 break;
2295 default:
2296 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2297 }
2298out:
2299 return r;
2300}
2301
2302static struct file_operations kvm_chardev_ops = {
2303 .unlocked_ioctl = kvm_dev_ioctl,
2304 .compat_ioctl = kvm_dev_ioctl,
2305 .llseek = noop_llseek,
2306};
2307
2308static struct miscdevice kvm_dev = {
2309 KVM_MINOR,
2310 "kvm",
2311 &kvm_chardev_ops,
2312};
2313
2314static void hardware_enable_nolock(void *junk)
2315{
2316 int cpu = raw_smp_processor_id();
2317 int r;
2318
2319 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2320 return;
2321
2322 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2323
2324 r = kvm_arch_hardware_enable(NULL);
2325
2326 if (r) {
2327 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2328 atomic_inc(&hardware_enable_failed);
2329 printk(KERN_INFO "kvm: enabling virtualization on "
2330 "CPU%d failed\n", cpu);
2331 }
2332}
2333
2334static void hardware_enable(void *junk)
2335{
2336 raw_spin_lock(&kvm_lock);
2337 hardware_enable_nolock(junk);
2338 raw_spin_unlock(&kvm_lock);
2339}
2340
2341static void hardware_disable_nolock(void *junk)
2342{
2343 int cpu = raw_smp_processor_id();
2344
2345 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2346 return;
2347 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2348 kvm_arch_hardware_disable(NULL);
2349}
2350
2351static void hardware_disable(void *junk)
2352{
2353 raw_spin_lock(&kvm_lock);
2354 hardware_disable_nolock(junk);
2355 raw_spin_unlock(&kvm_lock);
2356}
2357
2358static void hardware_disable_all_nolock(void)
2359{
2360 BUG_ON(!kvm_usage_count);
2361
2362 kvm_usage_count--;
2363 if (!kvm_usage_count)
2364 on_each_cpu(hardware_disable_nolock, NULL, 1);
2365}
2366
2367static void hardware_disable_all(void)
2368{
2369 raw_spin_lock(&kvm_lock);
2370 hardware_disable_all_nolock();
2371 raw_spin_unlock(&kvm_lock);
2372}
2373
2374static int hardware_enable_all(void)
2375{
2376 int r = 0;
2377
2378 raw_spin_lock(&kvm_lock);
2379
2380 kvm_usage_count++;
2381 if (kvm_usage_count == 1) {
2382 atomic_set(&hardware_enable_failed, 0);
2383 on_each_cpu(hardware_enable_nolock, NULL, 1);
2384
2385 if (atomic_read(&hardware_enable_failed)) {
2386 hardware_disable_all_nolock();
2387 r = -EBUSY;
2388 }
2389 }
2390
2391 raw_spin_unlock(&kvm_lock);
2392
2393 return r;
2394}
2395
2396static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2397 void *v)
2398{
2399 int cpu = (long)v;
2400
2401 if (!kvm_usage_count)
2402 return NOTIFY_OK;
2403
2404 val &= ~CPU_TASKS_FROZEN;
2405 switch (val) {
2406 case CPU_DYING:
2407 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2408 cpu);
2409 hardware_disable(NULL);
2410 break;
2411 case CPU_STARTING:
2412 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2413 cpu);
2414 hardware_enable(NULL);
2415 break;
2416 }
2417 return NOTIFY_OK;
2418}
2419
2420
2421asmlinkage void kvm_spurious_fault(void)
2422{
2423 /* Fault while not rebooting. We want the trace. */
2424 BUG();
2425}
2426EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2427
2428static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2429 void *v)
2430{
2431 /*
2432 * Some (well, at least mine) BIOSes hang on reboot if
2433 * in vmx root mode.
2434 *
2435 * And Intel TXT required VMX off for all cpu when system shutdown.
2436 */
2437 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2438 kvm_rebooting = true;
2439 on_each_cpu(hardware_disable_nolock, NULL, 1);
2440 return NOTIFY_OK;
2441}
2442
2443static struct notifier_block kvm_reboot_notifier = {
2444 .notifier_call = kvm_reboot,
2445 .priority = 0,
2446};
2447
2448static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2449{
2450 int i;
2451
2452 for (i = 0; i < bus->dev_count; i++) {
2453 struct kvm_io_device *pos = bus->range[i].dev;
2454
2455 kvm_iodevice_destructor(pos);
2456 }
2457 kfree(bus);
2458}
2459
2460int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2461{
2462 const struct kvm_io_range *r1 = p1;
2463 const struct kvm_io_range *r2 = p2;
2464
2465 if (r1->addr < r2->addr)
2466 return -1;
2467 if (r1->addr + r1->len > r2->addr + r2->len)
2468 return 1;
2469 return 0;
2470}
2471
2472int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2473 gpa_t addr, int len)
2474{
2475 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2476 .addr = addr,
2477 .len = len,
2478 .dev = dev,
2479 };
2480
2481 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2482 kvm_io_bus_sort_cmp, NULL);
2483
2484 return 0;
2485}
2486
2487int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2488 gpa_t addr, int len)
2489{
2490 struct kvm_io_range *range, key;
2491 int off;
2492
2493 key = (struct kvm_io_range) {
2494 .addr = addr,
2495 .len = len,
2496 };
2497
2498 range = bsearch(&key, bus->range, bus->dev_count,
2499 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2500 if (range == NULL)
2501 return -ENOENT;
2502
2503 off = range - bus->range;
2504
2505 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2506 off--;
2507
2508 return off;
2509}
2510
2511/* kvm_io_bus_write - called under kvm->slots_lock */
2512int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2513 int len, const void *val)
2514{
2515 int idx;
2516 struct kvm_io_bus *bus;
2517 struct kvm_io_range range;
2518
2519 range = (struct kvm_io_range) {
2520 .addr = addr,
2521 .len = len,
2522 };
2523
2524 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2525 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2526 if (idx < 0)
2527 return -EOPNOTSUPP;
2528
2529 while (idx < bus->dev_count &&
2530 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2531 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2532 return 0;
2533 idx++;
2534 }
2535
2536 return -EOPNOTSUPP;
2537}
2538
2539/* kvm_io_bus_read - called under kvm->slots_lock */
2540int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2541 int len, void *val)
2542{
2543 int idx;
2544 struct kvm_io_bus *bus;
2545 struct kvm_io_range range;
2546
2547 range = (struct kvm_io_range) {
2548 .addr = addr,
2549 .len = len,
2550 };
2551
2552 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2553 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2554 if (idx < 0)
2555 return -EOPNOTSUPP;
2556
2557 while (idx < bus->dev_count &&
2558 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2559 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2560 return 0;
2561 idx++;
2562 }
2563
2564 return -EOPNOTSUPP;
2565}
2566
2567/* Caller must hold slots_lock. */
2568int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2569 int len, struct kvm_io_device *dev)
2570{
2571 struct kvm_io_bus *new_bus, *bus;
2572
2573 bus = kvm->buses[bus_idx];
2574 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2575 return -ENOSPC;
2576
2577 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2578 sizeof(struct kvm_io_range)), GFP_KERNEL);
2579 if (!new_bus)
2580 return -ENOMEM;
2581 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2582 sizeof(struct kvm_io_range)));
2583 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2584 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2585 synchronize_srcu_expedited(&kvm->srcu);
2586 kfree(bus);
2587
2588 return 0;
2589}
2590
2591/* Caller must hold slots_lock. */
2592int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2593 struct kvm_io_device *dev)
2594{
2595 int i, r;
2596 struct kvm_io_bus *new_bus, *bus;
2597
2598 bus = kvm->buses[bus_idx];
2599 r = -ENOENT;
2600 for (i = 0; i < bus->dev_count; i++)
2601 if (bus->range[i].dev == dev) {
2602 r = 0;
2603 break;
2604 }
2605
2606 if (r)
2607 return r;
2608
2609 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2610 sizeof(struct kvm_io_range)), GFP_KERNEL);
2611 if (!new_bus)
2612 return -ENOMEM;
2613
2614 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2615 new_bus->dev_count--;
2616 memcpy(new_bus->range + i, bus->range + i + 1,
2617 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2618
2619 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2620 synchronize_srcu_expedited(&kvm->srcu);
2621 kfree(bus);
2622 return r;
2623}
2624
2625static struct notifier_block kvm_cpu_notifier = {
2626 .notifier_call = kvm_cpu_hotplug,
2627};
2628
2629static int vm_stat_get(void *_offset, u64 *val)
2630{
2631 unsigned offset = (long)_offset;
2632 struct kvm *kvm;
2633
2634 *val = 0;
2635 raw_spin_lock(&kvm_lock);
2636 list_for_each_entry(kvm, &vm_list, vm_list)
2637 *val += *(u32 *)((void *)kvm + offset);
2638 raw_spin_unlock(&kvm_lock);
2639 return 0;
2640}
2641
2642DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2643
2644static int vcpu_stat_get(void *_offset, u64 *val)
2645{
2646 unsigned offset = (long)_offset;
2647 struct kvm *kvm;
2648 struct kvm_vcpu *vcpu;
2649 int i;
2650
2651 *val = 0;
2652 raw_spin_lock(&kvm_lock);
2653 list_for_each_entry(kvm, &vm_list, vm_list)
2654 kvm_for_each_vcpu(i, vcpu, kvm)
2655 *val += *(u32 *)((void *)vcpu + offset);
2656
2657 raw_spin_unlock(&kvm_lock);
2658 return 0;
2659}
2660
2661DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2662
2663static const struct file_operations *stat_fops[] = {
2664 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2665 [KVM_STAT_VM] = &vm_stat_fops,
2666};
2667
2668static int kvm_init_debug(void)
2669{
2670 int r = -EFAULT;
2671 struct kvm_stats_debugfs_item *p;
2672
2673 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2674 if (kvm_debugfs_dir == NULL)
2675 goto out;
2676
2677 for (p = debugfs_entries; p->name; ++p) {
2678 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2679 (void *)(long)p->offset,
2680 stat_fops[p->kind]);
2681 if (p->dentry == NULL)
2682 goto out_dir;
2683 }
2684
2685 return 0;
2686
2687out_dir:
2688 debugfs_remove_recursive(kvm_debugfs_dir);
2689out:
2690 return r;
2691}
2692
2693static void kvm_exit_debug(void)
2694{
2695 struct kvm_stats_debugfs_item *p;
2696
2697 for (p = debugfs_entries; p->name; ++p)
2698 debugfs_remove(p->dentry);
2699 debugfs_remove(kvm_debugfs_dir);
2700}
2701
2702static int kvm_suspend(void)
2703{
2704 if (kvm_usage_count)
2705 hardware_disable_nolock(NULL);
2706 return 0;
2707}
2708
2709static void kvm_resume(void)
2710{
2711 if (kvm_usage_count) {
2712 WARN_ON(raw_spin_is_locked(&kvm_lock));
2713 hardware_enable_nolock(NULL);
2714 }
2715}
2716
2717static struct syscore_ops kvm_syscore_ops = {
2718 .suspend = kvm_suspend,
2719 .resume = kvm_resume,
2720};
2721
2722static inline
2723struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2724{
2725 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2726}
2727
2728static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2729{
2730 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2731
2732 kvm_arch_vcpu_load(vcpu, cpu);
2733}
2734
2735static void kvm_sched_out(struct preempt_notifier *pn,
2736 struct task_struct *next)
2737{
2738 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2739
2740 kvm_arch_vcpu_put(vcpu);
2741}
2742
2743int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2744 struct module *module)
2745{
2746 int r;
2747 int cpu;
2748
2749 r = kvm_arch_init(opaque);
2750 if (r)
2751 goto out_fail;
2752
2753 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2754 r = -ENOMEM;
2755 goto out_free_0;
2756 }
2757
2758 r = kvm_arch_hardware_setup();
2759 if (r < 0)
2760 goto out_free_0a;
2761
2762 for_each_online_cpu(cpu) {
2763 smp_call_function_single(cpu,
2764 kvm_arch_check_processor_compat,
2765 &r, 1);
2766 if (r < 0)
2767 goto out_free_1;
2768 }
2769
2770 r = register_cpu_notifier(&kvm_cpu_notifier);
2771 if (r)
2772 goto out_free_2;
2773 register_reboot_notifier(&kvm_reboot_notifier);
2774
2775 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2776 if (!vcpu_align)
2777 vcpu_align = __alignof__(struct kvm_vcpu);
2778 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2779 0, NULL);
2780 if (!kvm_vcpu_cache) {
2781 r = -ENOMEM;
2782 goto out_free_3;
2783 }
2784
2785 r = kvm_async_pf_init();
2786 if (r)
2787 goto out_free;
2788
2789 kvm_chardev_ops.owner = module;
2790 kvm_vm_fops.owner = module;
2791 kvm_vcpu_fops.owner = module;
2792
2793 r = misc_register(&kvm_dev);
2794 if (r) {
2795 printk(KERN_ERR "kvm: misc device register failed\n");
2796 goto out_unreg;
2797 }
2798
2799 register_syscore_ops(&kvm_syscore_ops);
2800
2801 kvm_preempt_ops.sched_in = kvm_sched_in;
2802 kvm_preempt_ops.sched_out = kvm_sched_out;
2803
2804 r = kvm_init_debug();
2805 if (r) {
2806 printk(KERN_ERR "kvm: create debugfs files failed\n");
2807 goto out_undebugfs;
2808 }
2809
2810 return 0;
2811
2812out_undebugfs:
2813 unregister_syscore_ops(&kvm_syscore_ops);
2814out_unreg:
2815 kvm_async_pf_deinit();
2816out_free:
2817 kmem_cache_destroy(kvm_vcpu_cache);
2818out_free_3:
2819 unregister_reboot_notifier(&kvm_reboot_notifier);
2820 unregister_cpu_notifier(&kvm_cpu_notifier);
2821out_free_2:
2822out_free_1:
2823 kvm_arch_hardware_unsetup();
2824out_free_0a:
2825 free_cpumask_var(cpus_hardware_enabled);
2826out_free_0:
2827 kvm_arch_exit();
2828out_fail:
2829 return r;
2830}
2831EXPORT_SYMBOL_GPL(kvm_init);
2832
2833void kvm_exit(void)
2834{
2835 kvm_exit_debug();
2836 misc_deregister(&kvm_dev);
2837 kmem_cache_destroy(kvm_vcpu_cache);
2838 kvm_async_pf_deinit();
2839 unregister_syscore_ops(&kvm_syscore_ops);
2840 unregister_reboot_notifier(&kvm_reboot_notifier);
2841 unregister_cpu_notifier(&kvm_cpu_notifier);
2842 on_each_cpu(hardware_disable_nolock, NULL, 1);
2843 kvm_arch_hardware_unsetup();
2844 kvm_arch_exit();
2845 free_cpumask_var(cpus_hardware_enabled);
2846}
2847EXPORT_SYMBOL_GPL(kvm_exit);