]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - Documentation/DocBook/gpu.tmpl
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / Documentation / DocBook / gpu.tmpl
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5 <book id="gpuDevelopersGuide">
6 <bookinfo>
7 <title>Linux GPU Driver Developer's Guide</title>
8
9 <authorgroup>
10 <author>
11 <firstname>Jesse</firstname>
12 <surname>Barnes</surname>
13 <contrib>Initial version</contrib>
14 <affiliation>
15 <orgname>Intel Corporation</orgname>
16 <address>
17 <email>jesse.barnes@intel.com</email>
18 </address>
19 </affiliation>
20 </author>
21 <author>
22 <firstname>Laurent</firstname>
23 <surname>Pinchart</surname>
24 <contrib>Driver internals</contrib>
25 <affiliation>
26 <orgname>Ideas on board SPRL</orgname>
27 <address>
28 <email>laurent.pinchart@ideasonboard.com</email>
29 </address>
30 </affiliation>
31 </author>
32 <author>
33 <firstname>Daniel</firstname>
34 <surname>Vetter</surname>
35 <contrib>Contributions all over the place</contrib>
36 <affiliation>
37 <orgname>Intel Corporation</orgname>
38 <address>
39 <email>daniel.vetter@ffwll.ch</email>
40 </address>
41 </affiliation>
42 </author>
43 <author>
44 <firstname>Lukas</firstname>
45 <surname>Wunner</surname>
46 <contrib>vga_switcheroo documentation</contrib>
47 <affiliation>
48 <address>
49 <email>lukas@wunner.de</email>
50 </address>
51 </affiliation>
52 </author>
53 </authorgroup>
54
55 <copyright>
56 <year>2008-2009</year>
57 <year>2013-2014</year>
58 <holder>Intel Corporation</holder>
59 </copyright>
60 <copyright>
61 <year>2012</year>
62 <holder>Laurent Pinchart</holder>
63 </copyright>
64 <copyright>
65 <year>2015</year>
66 <holder>Lukas Wunner</holder>
67 </copyright>
68
69 <legalnotice>
70 <para>
71 The contents of this file may be used under the terms of the GNU
72 General Public License version 2 (the "GPL") as distributed in
73 the kernel source COPYING file.
74 </para>
75 </legalnotice>
76
77 <revhistory>
78 <!-- Put document revisions here, newest first. -->
79 <revision>
80 <revnumber>1.0</revnumber>
81 <date>2012-07-13</date>
82 <authorinitials>LP</authorinitials>
83 <revremark>Added extensive documentation about driver internals.
84 </revremark>
85 </revision>
86 <revision>
87 <revnumber>1.1</revnumber>
88 <date>2015-10-11</date>
89 <authorinitials>LW</authorinitials>
90 <revremark>Added vga_switcheroo documentation.
91 </revremark>
92 </revision>
93 </revhistory>
94 </bookinfo>
95
96 <toc></toc>
97
98 <part id="drmCore">
99 <title>DRM Core</title>
100 <partintro>
101 <para>
102 This first part of the GPU Driver Developer's Guide documents core DRM
103 code, helper libraries for writing drivers and generic userspace
104 interfaces exposed by DRM drivers.
105 </para>
106 </partintro>
107
108 <chapter id="drmIntroduction">
109 <title>Introduction</title>
110 <para>
111 The Linux DRM layer contains code intended to support the needs
112 of complex graphics devices, usually containing programmable
113 pipelines well suited to 3D graphics acceleration. Graphics
114 drivers in the kernel may make use of DRM functions to make
115 tasks like memory management, interrupt handling and DMA easier,
116 and provide a uniform interface to applications.
117 </para>
118 <para>
119 A note on versions: this guide covers features found in the DRM
120 tree, including the TTM memory manager, output configuration and
121 mode setting, and the new vblank internals, in addition to all
122 the regular features found in current kernels.
123 </para>
124 <para>
125 [Insert diagram of typical DRM stack here]
126 </para>
127 <sect1>
128 <title>Style Guidelines</title>
129 <para>
130 For consistency this documentation uses American English. Abbreviations
131 are written as all-uppercase, for example: DRM, KMS, IOCTL, CRTC, and so
132 on. To aid in reading, documentations make full use of the markup
133 characters kerneldoc provides: @parameter for function parameters, @member
134 for structure members, &amp;structure to reference structures and
135 function() for functions. These all get automatically hyperlinked if
136 kerneldoc for the referenced objects exists. When referencing entries in
137 function vtables please use -&gt;vfunc(). Note that kerneldoc does
138 not support referencing struct members directly, so please add a reference
139 to the vtable struct somewhere in the same paragraph or at least section.
140 </para>
141 <para>
142 Except in special situations (to separate locked from unlocked variants)
143 locking requirements for functions aren't documented in the kerneldoc.
144 Instead locking should be check at runtime using e.g.
145 <code>WARN_ON(!mutex_is_locked(...));</code>. Since it's much easier to
146 ignore documentation than runtime noise this provides more value. And on
147 top of that runtime checks do need to be updated when the locking rules
148 change, increasing the chances that they're correct. Within the
149 documentation the locking rules should be explained in the relevant
150 structures: Either in the comment for the lock explaining what it
151 protects, or data fields need a note about which lock protects them, or
152 both.
153 </para>
154 <para>
155 Functions which have a non-<code>void</code> return value should have a
156 section called "Returns" explaining the expected return values in
157 different cases and their meanings. Currently there's no consensus whether
158 that section name should be all upper-case or not, and whether it should
159 end in a colon or not. Go with the file-local style. Other common section
160 names are "Notes" with information for dangerous or tricky corner cases,
161 and "FIXME" where the interface could be cleaned up.
162 </para>
163 </sect1>
164 </chapter>
165
166 <!-- Internals -->
167
168 <chapter id="drmInternals">
169 <title>DRM Internals</title>
170 <para>
171 This chapter documents DRM internals relevant to driver authors
172 and developers working to add support for the latest features to
173 existing drivers.
174 </para>
175 <para>
176 First, we go over some typical driver initialization
177 requirements, like setting up command buffers, creating an
178 initial output configuration, and initializing core services.
179 Subsequent sections cover core internals in more detail,
180 providing implementation notes and examples.
181 </para>
182 <para>
183 The DRM layer provides several services to graphics drivers,
184 many of them driven by the application interfaces it provides
185 through libdrm, the library that wraps most of the DRM ioctls.
186 These include vblank event handling, memory
187 management, output management, framebuffer management, command
188 submission &amp; fencing, suspend/resume support, and DMA
189 services.
190 </para>
191
192 <!-- Internals: driver init -->
193
194 <sect1>
195 <title>Driver Initialization</title>
196 <para>
197 At the core of every DRM driver is a <structname>drm_driver</structname>
198 structure. Drivers typically statically initialize a drm_driver structure,
199 and then pass it to <function>drm_dev_alloc()</function> to allocate a
200 device instance. After the device instance is fully initialized it can be
201 registered (which makes it accessible from userspace) using
202 <function>drm_dev_register()</function>.
203 </para>
204 <para>
205 The <structname>drm_driver</structname> structure contains static
206 information that describes the driver and features it supports, and
207 pointers to methods that the DRM core will call to implement the DRM API.
208 We will first go through the <structname>drm_driver</structname> static
209 information fields, and will then describe individual operations in
210 details as they get used in later sections.
211 </para>
212 <sect2>
213 <title>Driver Information</title>
214 <sect3>
215 <title>Driver Features</title>
216 <para>
217 Drivers inform the DRM core about their requirements and supported
218 features by setting appropriate flags in the
219 <structfield>driver_features</structfield> field. Since those flags
220 influence the DRM core behaviour since registration time, most of them
221 must be set to registering the <structname>drm_driver</structname>
222 instance.
223 </para>
224 <synopsis>u32 driver_features;</synopsis>
225 <variablelist>
226 <title>Driver Feature Flags</title>
227 <varlistentry>
228 <term>DRIVER_USE_AGP</term>
229 <listitem><para>
230 Driver uses AGP interface, the DRM core will manage AGP resources.
231 </para></listitem>
232 </varlistentry>
233 <varlistentry>
234 <term>DRIVER_REQUIRE_AGP</term>
235 <listitem><para>
236 Driver needs AGP interface to function. AGP initialization failure
237 will become a fatal error.
238 </para></listitem>
239 </varlistentry>
240 <varlistentry>
241 <term>DRIVER_PCI_DMA</term>
242 <listitem><para>
243 Driver is capable of PCI DMA, mapping of PCI DMA buffers to
244 userspace will be enabled. Deprecated.
245 </para></listitem>
246 </varlistentry>
247 <varlistentry>
248 <term>DRIVER_SG</term>
249 <listitem><para>
250 Driver can perform scatter/gather DMA, allocation and mapping of
251 scatter/gather buffers will be enabled. Deprecated.
252 </para></listitem>
253 </varlistentry>
254 <varlistentry>
255 <term>DRIVER_HAVE_DMA</term>
256 <listitem><para>
257 Driver supports DMA, the userspace DMA API will be supported.
258 Deprecated.
259 </para></listitem>
260 </varlistentry>
261 <varlistentry>
262 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
263 <listitem><para>
264 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
265 managed by the DRM Core. The core will support simple IRQ handler
266 installation when the flag is set. The installation process is
267 described in <xref linkend="drm-irq-registration"/>.</para>
268 <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
269 support shared IRQs (note that this is required of PCI drivers).
270 </para></listitem>
271 </varlistentry>
272 <varlistentry>
273 <term>DRIVER_GEM</term>
274 <listitem><para>
275 Driver use the GEM memory manager.
276 </para></listitem>
277 </varlistentry>
278 <varlistentry>
279 <term>DRIVER_MODESET</term>
280 <listitem><para>
281 Driver supports mode setting interfaces (KMS).
282 </para></listitem>
283 </varlistentry>
284 <varlistentry>
285 <term>DRIVER_PRIME</term>
286 <listitem><para>
287 Driver implements DRM PRIME buffer sharing.
288 </para></listitem>
289 </varlistentry>
290 <varlistentry>
291 <term>DRIVER_RENDER</term>
292 <listitem><para>
293 Driver supports dedicated render nodes.
294 </para></listitem>
295 </varlistentry>
296 <varlistentry>
297 <term>DRIVER_ATOMIC</term>
298 <listitem><para>
299 Driver supports atomic properties. In this case the driver
300 must implement appropriate obj->atomic_get_property() vfuncs
301 for any modeset objects with driver specific properties.
302 </para></listitem>
303 </varlistentry>
304 </variablelist>
305 </sect3>
306 <sect3>
307 <title>Major, Minor and Patchlevel</title>
308 <synopsis>int major;
309 int minor;
310 int patchlevel;</synopsis>
311 <para>
312 The DRM core identifies driver versions by a major, minor and patch
313 level triplet. The information is printed to the kernel log at
314 initialization time and passed to userspace through the
315 DRM_IOCTL_VERSION ioctl.
316 </para>
317 <para>
318 The major and minor numbers are also used to verify the requested driver
319 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
320 between minor versions, applications can call DRM_IOCTL_SET_VERSION to
321 select a specific version of the API. If the requested major isn't equal
322 to the driver major, or the requested minor is larger than the driver
323 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
324 the driver's set_version() method will be called with the requested
325 version.
326 </para>
327 </sect3>
328 <sect3>
329 <title>Name, Description and Date</title>
330 <synopsis>char *name;
331 char *desc;
332 char *date;</synopsis>
333 <para>
334 The driver name is printed to the kernel log at initialization time,
335 used for IRQ registration and passed to userspace through
336 DRM_IOCTL_VERSION.
337 </para>
338 <para>
339 The driver description is a purely informative string passed to
340 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
341 the kernel.
342 </para>
343 <para>
344 The driver date, formatted as YYYYMMDD, is meant to identify the date of
345 the latest modification to the driver. However, as most drivers fail to
346 update it, its value is mostly useless. The DRM core prints it to the
347 kernel log at initialization time and passes it to userspace through the
348 DRM_IOCTL_VERSION ioctl.
349 </para>
350 </sect3>
351 </sect2>
352 <sect2>
353 <title>Device Instance and Driver Handling</title>
354 !Pdrivers/gpu/drm/drm_drv.c driver instance overview
355 !Edrivers/gpu/drm/drm_drv.c
356 </sect2>
357 <sect2>
358 <title>Driver Load</title>
359 <sect3 id="drm-irq-registration">
360 <title>IRQ Registration</title>
361 <para>
362 The DRM core tries to facilitate IRQ handler registration and
363 unregistration by providing <function>drm_irq_install</function> and
364 <function>drm_irq_uninstall</function> functions. Those functions only
365 support a single interrupt per device, devices that use more than one
366 IRQs need to be handled manually.
367 </para>
368 <sect4>
369 <title>Managed IRQ Registration</title>
370 <para>
371 <function>drm_irq_install</function> starts by calling the
372 <methodname>irq_preinstall</methodname> driver operation. The operation
373 is optional and must make sure that the interrupt will not get fired by
374 clearing all pending interrupt flags or disabling the interrupt.
375 </para>
376 <para>
377 The passed-in IRQ will then be requested by a call to
378 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
379 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
380 requested.
381 </para>
382 <para>
383 The IRQ handler function must be provided as the mandatory irq_handler
384 driver operation. It will get passed directly to
385 <function>request_irq</function> and thus has the same prototype as all
386 IRQ handlers. It will get called with a pointer to the DRM device as the
387 second argument.
388 </para>
389 <para>
390 Finally the function calls the optional
391 <methodname>irq_postinstall</methodname> driver operation. The operation
392 usually enables interrupts (excluding the vblank interrupt, which is
393 enabled separately), but drivers may choose to enable/disable interrupts
394 at a different time.
395 </para>
396 <para>
397 <function>drm_irq_uninstall</function> is similarly used to uninstall an
398 IRQ handler. It starts by waking up all processes waiting on a vblank
399 interrupt to make sure they don't hang, and then calls the optional
400 <methodname>irq_uninstall</methodname> driver operation. The operation
401 must disable all hardware interrupts. Finally the function frees the IRQ
402 by calling <function>free_irq</function>.
403 </para>
404 </sect4>
405 <sect4>
406 <title>Manual IRQ Registration</title>
407 <para>
408 Drivers that require multiple interrupt handlers can't use the managed
409 IRQ registration functions. In that case IRQs must be registered and
410 unregistered manually (usually with the <function>request_irq</function>
411 and <function>free_irq</function> functions, or their devm_* equivalent).
412 </para>
413 <para>
414 When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
415 driver feature flag, and must not provide the
416 <methodname>irq_handler</methodname> driver operation. They must set the
417 <structname>drm_device</structname> <structfield>irq_enabled</structfield>
418 field to 1 upon registration of the IRQs, and clear it to 0 after
419 unregistering the IRQs.
420 </para>
421 </sect4>
422 </sect3>
423 <sect3>
424 <title>Memory Manager Initialization</title>
425 <para>
426 Every DRM driver requires a memory manager which must be initialized at
427 load time. DRM currently contains two memory managers, the Translation
428 Table Manager (TTM) and the Graphics Execution Manager (GEM).
429 This document describes the use of the GEM memory manager only. See
430 <xref linkend="drm-memory-management"/> for details.
431 </para>
432 </sect3>
433 <sect3>
434 <title>Miscellaneous Device Configuration</title>
435 <para>
436 Another task that may be necessary for PCI devices during configuration
437 is mapping the video BIOS. On many devices, the VBIOS describes device
438 configuration, LCD panel timings (if any), and contains flags indicating
439 device state. Mapping the BIOS can be done using the pci_map_rom() call,
440 a convenience function that takes care of mapping the actual ROM,
441 whether it has been shadowed into memory (typically at address 0xc0000)
442 or exists on the PCI device in the ROM BAR. Note that after the ROM has
443 been mapped and any necessary information has been extracted, it should
444 be unmapped; on many devices, the ROM address decoder is shared with
445 other BARs, so leaving it mapped could cause undesired behaviour like
446 hangs or memory corruption.
447 <!--!Fdrivers/pci/rom.c pci_map_rom-->
448 </para>
449 </sect3>
450 </sect2>
451 <sect2>
452 <title>Bus-specific Device Registration and PCI Support</title>
453 <para>
454 A number of functions are provided to help with device registration.
455 The functions deal with PCI and platform devices respectively and are
456 only provided for historical reasons. These are all deprecated and
457 shouldn't be used in new drivers. Besides that there's a few
458 helpers for pci drivers.
459 </para>
460 !Edrivers/gpu/drm/drm_pci.c
461 !Edrivers/gpu/drm/drm_platform.c
462 </sect2>
463 </sect1>
464
465 <!-- Internals: memory management -->
466
467 <sect1 id="drm-memory-management">
468 <title>Memory management</title>
469 <para>
470 Modern Linux systems require large amount of graphics memory to store
471 frame buffers, textures, vertices and other graphics-related data. Given
472 the very dynamic nature of many of that data, managing graphics memory
473 efficiently is thus crucial for the graphics stack and plays a central
474 role in the DRM infrastructure.
475 </para>
476 <para>
477 The DRM core includes two memory managers, namely Translation Table Maps
478 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
479 manager to be developed and tried to be a one-size-fits-them all
480 solution. It provides a single userspace API to accommodate the need of
481 all hardware, supporting both Unified Memory Architecture (UMA) devices
482 and devices with dedicated video RAM (i.e. most discrete video cards).
483 This resulted in a large, complex piece of code that turned out to be
484 hard to use for driver development.
485 </para>
486 <para>
487 GEM started as an Intel-sponsored project in reaction to TTM's
488 complexity. Its design philosophy is completely different: instead of
489 providing a solution to every graphics memory-related problems, GEM
490 identified common code between drivers and created a support library to
491 share it. GEM has simpler initialization and execution requirements than
492 TTM, but has no video RAM management capabilities and is thus limited to
493 UMA devices.
494 </para>
495 <sect2>
496 <title>The Translation Table Manager (TTM)</title>
497 <para>
498 TTM design background and information belongs here.
499 </para>
500 <sect3>
501 <title>TTM initialization</title>
502 <warning><para>This section is outdated.</para></warning>
503 <para>
504 Drivers wishing to support TTM must fill out a drm_bo_driver
505 structure. The structure contains several fields with function
506 pointers for initializing the TTM, allocating and freeing memory,
507 waiting for command completion and fence synchronization, and memory
508 migration. See the radeon_ttm.c file for an example of usage.
509 </para>
510 <para>
511 The ttm_global_reference structure is made up of several fields:
512 </para>
513 <programlisting>
514 struct ttm_global_reference {
515 enum ttm_global_types global_type;
516 size_t size;
517 void *object;
518 int (*init) (struct ttm_global_reference *);
519 void (*release) (struct ttm_global_reference *);
520 };
521 </programlisting>
522 <para>
523 There should be one global reference structure for your memory
524 manager as a whole, and there will be others for each object
525 created by the memory manager at runtime. Your global TTM should
526 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
527 object should be sizeof(struct ttm_mem_global), and the init and
528 release hooks should point at your driver-specific init and
529 release routines, which probably eventually call
530 ttm_mem_global_init and ttm_mem_global_release, respectively.
531 </para>
532 <para>
533 Once your global TTM accounting structure is set up and initialized
534 by calling ttm_global_item_ref() on it,
535 you need to create a buffer object TTM to
536 provide a pool for buffer object allocation by clients and the
537 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
538 and its size should be sizeof(struct ttm_bo_global). Again,
539 driver-specific init and release functions may be provided,
540 likely eventually calling ttm_bo_global_init() and
541 ttm_bo_global_release(), respectively. Also, like the previous
542 object, ttm_global_item_ref() is used to create an initial reference
543 count for the TTM, which will call your initialization function.
544 </para>
545 </sect3>
546 </sect2>
547 <sect2 id="drm-gem">
548 <title>The Graphics Execution Manager (GEM)</title>
549 <para>
550 The GEM design approach has resulted in a memory manager that doesn't
551 provide full coverage of all (or even all common) use cases in its
552 userspace or kernel API. GEM exposes a set of standard memory-related
553 operations to userspace and a set of helper functions to drivers, and let
554 drivers implement hardware-specific operations with their own private API.
555 </para>
556 <para>
557 The GEM userspace API is described in the
558 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
559 Execution Manager</citetitle></ulink> article on LWN. While slightly
560 outdated, the document provides a good overview of the GEM API principles.
561 Buffer allocation and read and write operations, described as part of the
562 common GEM API, are currently implemented using driver-specific ioctls.
563 </para>
564 <para>
565 GEM is data-agnostic. It manages abstract buffer objects without knowing
566 what individual buffers contain. APIs that require knowledge of buffer
567 contents or purpose, such as buffer allocation or synchronization
568 primitives, are thus outside of the scope of GEM and must be implemented
569 using driver-specific ioctls.
570 </para>
571 <para>
572 On a fundamental level, GEM involves several operations:
573 <itemizedlist>
574 <listitem>Memory allocation and freeing</listitem>
575 <listitem>Command execution</listitem>
576 <listitem>Aperture management at command execution time</listitem>
577 </itemizedlist>
578 Buffer object allocation is relatively straightforward and largely
579 provided by Linux's shmem layer, which provides memory to back each
580 object.
581 </para>
582 <para>
583 Device-specific operations, such as command execution, pinning, buffer
584 read &amp; write, mapping, and domain ownership transfers are left to
585 driver-specific ioctls.
586 </para>
587 <sect3>
588 <title>GEM Initialization</title>
589 <para>
590 Drivers that use GEM must set the DRIVER_GEM bit in the struct
591 <structname>drm_driver</structname>
592 <structfield>driver_features</structfield> field. The DRM core will
593 then automatically initialize the GEM core before calling the
594 <methodname>load</methodname> operation. Behind the scene, this will
595 create a DRM Memory Manager object which provides an address space
596 pool for object allocation.
597 </para>
598 <para>
599 In a KMS configuration, drivers need to allocate and initialize a
600 command ring buffer following core GEM initialization if required by
601 the hardware. UMA devices usually have what is called a "stolen"
602 memory region, which provides space for the initial framebuffer and
603 large, contiguous memory regions required by the device. This space is
604 typically not managed by GEM, and must be initialized separately into
605 its own DRM MM object.
606 </para>
607 </sect3>
608 <sect3>
609 <title>GEM Objects Creation</title>
610 <para>
611 GEM splits creation of GEM objects and allocation of the memory that
612 backs them in two distinct operations.
613 </para>
614 <para>
615 GEM objects are represented by an instance of struct
616 <structname>drm_gem_object</structname>. Drivers usually need to extend
617 GEM objects with private information and thus create a driver-specific
618 GEM object structure type that embeds an instance of struct
619 <structname>drm_gem_object</structname>.
620 </para>
621 <para>
622 To create a GEM object, a driver allocates memory for an instance of its
623 specific GEM object type and initializes the embedded struct
624 <structname>drm_gem_object</structname> with a call to
625 <function>drm_gem_object_init</function>. The function takes a pointer to
626 the DRM device, a pointer to the GEM object and the buffer object size
627 in bytes.
628 </para>
629 <para>
630 GEM uses shmem to allocate anonymous pageable memory.
631 <function>drm_gem_object_init</function> will create an shmfs file of
632 the requested size and store it into the struct
633 <structname>drm_gem_object</structname> <structfield>filp</structfield>
634 field. The memory is used as either main storage for the object when the
635 graphics hardware uses system memory directly or as a backing store
636 otherwise.
637 </para>
638 <para>
639 Drivers are responsible for the actual physical pages allocation by
640 calling <function>shmem_read_mapping_page_gfp</function> for each page.
641 Note that they can decide to allocate pages when initializing the GEM
642 object, or to delay allocation until the memory is needed (for instance
643 when a page fault occurs as a result of a userspace memory access or
644 when the driver needs to start a DMA transfer involving the memory).
645 </para>
646 <para>
647 Anonymous pageable memory allocation is not always desired, for instance
648 when the hardware requires physically contiguous system memory as is
649 often the case in embedded devices. Drivers can create GEM objects with
650 no shmfs backing (called private GEM objects) by initializing them with
651 a call to <function>drm_gem_private_object_init</function> instead of
652 <function>drm_gem_object_init</function>. Storage for private GEM
653 objects must be managed by drivers.
654 </para>
655 </sect3>
656 <sect3>
657 <title>GEM Objects Lifetime</title>
658 <para>
659 All GEM objects are reference-counted by the GEM core. References can be
660 acquired and release by <function>calling drm_gem_object_reference</function>
661 and <function>drm_gem_object_unreference</function> respectively. The
662 caller must hold the <structname>drm_device</structname>
663 <structfield>struct_mutex</structfield> lock when calling
664 <function>drm_gem_object_reference</function>. As a convenience, GEM
665 provides <function>drm_gem_object_unreference_unlocked</function>
666 functions that can be called without holding the lock.
667 </para>
668 <para>
669 When the last reference to a GEM object is released the GEM core calls
670 the <structname>drm_driver</structname>
671 <methodname>gem_free_object</methodname> operation. That operation is
672 mandatory for GEM-enabled drivers and must free the GEM object and all
673 associated resources.
674 </para>
675 <para>
676 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
677 Drivers are responsible for freeing all GEM object resources. This includes
678 the resources created by the GEM core, which need to be released with
679 <function>drm_gem_object_release</function>.
680 </para>
681 </sect3>
682 <sect3>
683 <title>GEM Objects Naming</title>
684 <para>
685 Communication between userspace and the kernel refers to GEM objects
686 using local handles, global names or, more recently, file descriptors.
687 All of those are 32-bit integer values; the usual Linux kernel limits
688 apply to the file descriptors.
689 </para>
690 <para>
691 GEM handles are local to a DRM file. Applications get a handle to a GEM
692 object through a driver-specific ioctl, and can use that handle to refer
693 to the GEM object in other standard or driver-specific ioctls. Closing a
694 DRM file handle frees all its GEM handles and dereferences the
695 associated GEM objects.
696 </para>
697 <para>
698 To create a handle for a GEM object drivers call
699 <function>drm_gem_handle_create</function>. The function takes a pointer
700 to the DRM file and the GEM object and returns a locally unique handle.
701 When the handle is no longer needed drivers delete it with a call to
702 <function>drm_gem_handle_delete</function>. Finally the GEM object
703 associated with a handle can be retrieved by a call to
704 <function>drm_gem_object_lookup</function>.
705 </para>
706 <para>
707 Handles don't take ownership of GEM objects, they only take a reference
708 to the object that will be dropped when the handle is destroyed. To
709 avoid leaking GEM objects, drivers must make sure they drop the
710 reference(s) they own (such as the initial reference taken at object
711 creation time) as appropriate, without any special consideration for the
712 handle. For example, in the particular case of combined GEM object and
713 handle creation in the implementation of the
714 <methodname>dumb_create</methodname> operation, drivers must drop the
715 initial reference to the GEM object before returning the handle.
716 </para>
717 <para>
718 GEM names are similar in purpose to handles but are not local to DRM
719 files. They can be passed between processes to reference a GEM object
720 globally. Names can't be used directly to refer to objects in the DRM
721 API, applications must convert handles to names and names to handles
722 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
723 respectively. The conversion is handled by the DRM core without any
724 driver-specific support.
725 </para>
726 <para>
727 GEM also supports buffer sharing with dma-buf file descriptors through
728 PRIME. GEM-based drivers must use the provided helpers functions to
729 implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
730 Since sharing file descriptors is inherently more secure than the
731 easily guessable and global GEM names it is the preferred buffer
732 sharing mechanism. Sharing buffers through GEM names is only supported
733 for legacy userspace. Furthermore PRIME also allows cross-device
734 buffer sharing since it is based on dma-bufs.
735 </para>
736 </sect3>
737 <sect3 id="drm-gem-objects-mapping">
738 <title>GEM Objects Mapping</title>
739 <para>
740 Because mapping operations are fairly heavyweight GEM favours
741 read/write-like access to buffers, implemented through driver-specific
742 ioctls, over mapping buffers to userspace. However, when random access
743 to the buffer is needed (to perform software rendering for instance),
744 direct access to the object can be more efficient.
745 </para>
746 <para>
747 The mmap system call can't be used directly to map GEM objects, as they
748 don't have their own file handle. Two alternative methods currently
749 co-exist to map GEM objects to userspace. The first method uses a
750 driver-specific ioctl to perform the mapping operation, calling
751 <function>do_mmap</function> under the hood. This is often considered
752 dubious, seems to be discouraged for new GEM-enabled drivers, and will
753 thus not be described here.
754 </para>
755 <para>
756 The second method uses the mmap system call on the DRM file handle.
757 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
758 off_t offset);</synopsis>
759 DRM identifies the GEM object to be mapped by a fake offset passed
760 through the mmap offset argument. Prior to being mapped, a GEM object
761 must thus be associated with a fake offset. To do so, drivers must call
762 <function>drm_gem_create_mmap_offset</function> on the object.
763 </para>
764 <para>
765 Once allocated, the fake offset value
766 must be passed to the application in a driver-specific way and can then
767 be used as the mmap offset argument.
768 </para>
769 <para>
770 The GEM core provides a helper method <function>drm_gem_mmap</function>
771 to handle object mapping. The method can be set directly as the mmap
772 file operation handler. It will look up the GEM object based on the
773 offset value and set the VMA operations to the
774 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
775 field. Note that <function>drm_gem_mmap</function> doesn't map memory to
776 userspace, but relies on the driver-provided fault handler to map pages
777 individually.
778 </para>
779 <para>
780 To use <function>drm_gem_mmap</function>, drivers must fill the struct
781 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
782 field with a pointer to VM operations.
783 </para>
784 <para>
785 <synopsis>struct vm_operations_struct *gem_vm_ops
786
787 struct vm_operations_struct {
788 void (*open)(struct vm_area_struct * area);
789 void (*close)(struct vm_area_struct * area);
790 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
791 };</synopsis>
792 </para>
793 <para>
794 The <methodname>open</methodname> and <methodname>close</methodname>
795 operations must update the GEM object reference count. Drivers can use
796 the <function>drm_gem_vm_open</function> and
797 <function>drm_gem_vm_close</function> helper functions directly as open
798 and close handlers.
799 </para>
800 <para>
801 The fault operation handler is responsible for mapping individual pages
802 to userspace when a page fault occurs. Depending on the memory
803 allocation scheme, drivers can allocate pages at fault time, or can
804 decide to allocate memory for the GEM object at the time the object is
805 created.
806 </para>
807 <para>
808 Drivers that want to map the GEM object upfront instead of handling page
809 faults can implement their own mmap file operation handler.
810 </para>
811 </sect3>
812 <sect3>
813 <title>Memory Coherency</title>
814 <para>
815 When mapped to the device or used in a command buffer, backing pages
816 for an object are flushed to memory and marked write combined so as to
817 be coherent with the GPU. Likewise, if the CPU accesses an object
818 after the GPU has finished rendering to the object, then the object
819 must be made coherent with the CPU's view of memory, usually involving
820 GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
821 coherency management is provided by a device-specific ioctl, which
822 evaluates an object's current domain and performs any necessary
823 flushing or synchronization to put the object into the desired
824 coherency domain (note that the object may be busy, i.e. an active
825 render target; in that case, setting the domain blocks the client and
826 waits for rendering to complete before performing any necessary
827 flushing operations).
828 </para>
829 </sect3>
830 <sect3>
831 <title>Command Execution</title>
832 <para>
833 Perhaps the most important GEM function for GPU devices is providing a
834 command execution interface to clients. Client programs construct
835 command buffers containing references to previously allocated memory
836 objects, and then submit them to GEM. At that point, GEM takes care to
837 bind all the objects into the GTT, execute the buffer, and provide
838 necessary synchronization between clients accessing the same buffers.
839 This often involves evicting some objects from the GTT and re-binding
840 others (a fairly expensive operation), and providing relocation
841 support which hides fixed GTT offsets from clients. Clients must take
842 care not to submit command buffers that reference more objects than
843 can fit in the GTT; otherwise, GEM will reject them and no rendering
844 will occur. Similarly, if several objects in the buffer require fence
845 registers to be allocated for correct rendering (e.g. 2D blits on
846 pre-965 chips), care must be taken not to require more fence registers
847 than are available to the client. Such resource management should be
848 abstracted from the client in libdrm.
849 </para>
850 </sect3>
851 </sect2>
852 <sect2>
853 <title>GEM Function Reference</title>
854 !Edrivers/gpu/drm/drm_gem.c
855 !Iinclude/drm/drm_gem.h
856 </sect2>
857 <sect2>
858 <title>VMA Offset Manager</title>
859 !Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
860 !Edrivers/gpu/drm/drm_vma_manager.c
861 !Iinclude/drm/drm_vma_manager.h
862 </sect2>
863 <sect2 id="drm-prime-support">
864 <title>PRIME Buffer Sharing</title>
865 <para>
866 PRIME is the cross device buffer sharing framework in drm, originally
867 created for the OPTIMUS range of multi-gpu platforms. To userspace
868 PRIME buffers are dma-buf based file descriptors.
869 </para>
870 <sect3>
871 <title>Overview and Driver Interface</title>
872 <para>
873 Similar to GEM global names, PRIME file descriptors are
874 also used to share buffer objects across processes. They offer
875 additional security: as file descriptors must be explicitly sent over
876 UNIX domain sockets to be shared between applications, they can't be
877 guessed like the globally unique GEM names.
878 </para>
879 <para>
880 Drivers that support the PRIME
881 API must set the DRIVER_PRIME bit in the struct
882 <structname>drm_driver</structname>
883 <structfield>driver_features</structfield> field, and implement the
884 <methodname>prime_handle_to_fd</methodname> and
885 <methodname>prime_fd_to_handle</methodname> operations.
886 </para>
887 <para>
888 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
889 struct drm_file *file_priv, uint32_t handle,
890 uint32_t flags, int *prime_fd);
891 int (*prime_fd_to_handle)(struct drm_device *dev,
892 struct drm_file *file_priv, int prime_fd,
893 uint32_t *handle);</synopsis>
894 Those two operations convert a handle to a PRIME file descriptor and
895 vice versa. Drivers must use the kernel dma-buf buffer sharing framework
896 to manage the PRIME file descriptors. Similar to the mode setting
897 API PRIME is agnostic to the underlying buffer object manager, as
898 long as handles are 32bit unsigned integers.
899 </para>
900 <para>
901 While non-GEM drivers must implement the operations themselves, GEM
902 drivers must use the <function>drm_gem_prime_handle_to_fd</function>
903 and <function>drm_gem_prime_fd_to_handle</function> helper functions.
904 Those helpers rely on the driver
905 <methodname>gem_prime_export</methodname> and
906 <methodname>gem_prime_import</methodname> operations to create a dma-buf
907 instance from a GEM object (dma-buf exporter role) and to create a GEM
908 object from a dma-buf instance (dma-buf importer role).
909 </para>
910 <para>
911 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
912 struct drm_gem_object *obj,
913 int flags);
914 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
915 struct dma_buf *dma_buf);</synopsis>
916 These two operations are mandatory for GEM drivers that support
917 PRIME.
918 </para>
919 </sect3>
920 <sect3>
921 <title>PRIME Helper Functions</title>
922 !Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
923 </sect3>
924 </sect2>
925 <sect2>
926 <title>PRIME Function References</title>
927 !Edrivers/gpu/drm/drm_prime.c
928 </sect2>
929 <sect2>
930 <title>DRM MM Range Allocator</title>
931 <sect3>
932 <title>Overview</title>
933 !Pdrivers/gpu/drm/drm_mm.c Overview
934 </sect3>
935 <sect3>
936 <title>LRU Scan/Eviction Support</title>
937 !Pdrivers/gpu/drm/drm_mm.c lru scan roaster
938 </sect3>
939 </sect2>
940 <sect2>
941 <title>DRM MM Range Allocator Function References</title>
942 !Edrivers/gpu/drm/drm_mm.c
943 !Iinclude/drm/drm_mm.h
944 </sect2>
945 <sect2>
946 <title>CMA Helper Functions Reference</title>
947 !Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers
948 !Edrivers/gpu/drm/drm_gem_cma_helper.c
949 !Iinclude/drm/drm_gem_cma_helper.h
950 </sect2>
951 </sect1>
952
953 <!-- Internals: mode setting -->
954
955 <sect1 id="drm-mode-setting">
956 <title>Mode Setting</title>
957 <para>
958 Drivers must initialize the mode setting core by calling
959 <function>drm_mode_config_init</function> on the DRM device. The function
960 initializes the <structname>drm_device</structname>
961 <structfield>mode_config</structfield> field and never fails. Once done,
962 mode configuration must be setup by initializing the following fields.
963 </para>
964 <itemizedlist>
965 <listitem>
966 <synopsis>int min_width, min_height;
967 int max_width, max_height;</synopsis>
968 <para>
969 Minimum and maximum width and height of the frame buffers in pixel
970 units.
971 </para>
972 </listitem>
973 <listitem>
974 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
975 <para>Mode setting functions.</para>
976 </listitem>
977 </itemizedlist>
978 <sect2>
979 <title>Display Modes Function Reference</title>
980 !Iinclude/drm/drm_modes.h
981 !Edrivers/gpu/drm/drm_modes.c
982 </sect2>
983 <sect2>
984 <title>Atomic Mode Setting Function Reference</title>
985 !Edrivers/gpu/drm/drm_atomic.c
986 !Idrivers/gpu/drm/drm_atomic.c
987 </sect2>
988 <sect2>
989 <title>Frame Buffer Abstraction</title>
990 <para>
991 Frame buffers are abstract memory objects that provide a source of
992 pixels to scanout to a CRTC. Applications explicitly request the
993 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
994 receive an opaque handle that can be passed to the KMS CRTC control,
995 plane configuration and page flip functions.
996 </para>
997 <para>
998 Frame buffers rely on the underneath memory manager for low-level memory
999 operations. When creating a frame buffer applications pass a memory
1000 handle (or a list of memory handles for multi-planar formats) through
1001 the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
1002 GEM as their userspace buffer management interface this would be a GEM
1003 handle. Drivers are however free to use their own backing storage object
1004 handles, e.g. vmwgfx directly exposes special TTM handles to userspace
1005 and so expects TTM handles in the create ioctl and not GEM handles.
1006 </para>
1007 <para>
1008 The lifetime of a drm framebuffer is controlled with a reference count,
1009 drivers can grab additional references with
1010 <function>drm_framebuffer_reference</function>and drop them
1011 again with <function>drm_framebuffer_unreference</function>. For
1012 driver-private framebuffers for which the last reference is never
1013 dropped (e.g. for the fbdev framebuffer when the struct
1014 <structname>drm_framebuffer</structname> is embedded into the fbdev
1015 helper struct) drivers can manually clean up a framebuffer at module
1016 unload time with
1017 <function>drm_framebuffer_unregister_private</function>.
1018 </para>
1019 </sect2>
1020 <sect2>
1021 <title>Dumb Buffer Objects</title>
1022 <para>
1023 The KMS API doesn't standardize backing storage object creation and
1024 leaves it to driver-specific ioctls. Furthermore actually creating a
1025 buffer object even for GEM-based drivers is done through a
1026 driver-specific ioctl - GEM only has a common userspace interface for
1027 sharing and destroying objects. While not an issue for full-fledged
1028 graphics stacks that include device-specific userspace components (in
1029 libdrm for instance), this limit makes DRM-based early boot graphics
1030 unnecessarily complex.
1031 </para>
1032 <para>
1033 Dumb objects partly alleviate the problem by providing a standard
1034 API to create dumb buffers suitable for scanout, which can then be used
1035 to create KMS frame buffers.
1036 </para>
1037 <para>
1038 To support dumb objects drivers must implement the
1039 <methodname>dumb_create</methodname>,
1040 <methodname>dumb_destroy</methodname> and
1041 <methodname>dumb_map_offset</methodname> operations.
1042 </para>
1043 <itemizedlist>
1044 <listitem>
1045 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
1046 struct drm_mode_create_dumb *args);</synopsis>
1047 <para>
1048 The <methodname>dumb_create</methodname> operation creates a driver
1049 object (GEM or TTM handle) suitable for scanout based on the
1050 width, height and depth from the struct
1051 <structname>drm_mode_create_dumb</structname> argument. It fills the
1052 argument's <structfield>handle</structfield>,
1053 <structfield>pitch</structfield> and <structfield>size</structfield>
1054 fields with a handle for the newly created object and its line
1055 pitch and size in bytes.
1056 </para>
1057 </listitem>
1058 <listitem>
1059 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
1060 uint32_t handle);</synopsis>
1061 <para>
1062 The <methodname>dumb_destroy</methodname> operation destroys a dumb
1063 object created by <methodname>dumb_create</methodname>.
1064 </para>
1065 </listitem>
1066 <listitem>
1067 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
1068 uint32_t handle, uint64_t *offset);</synopsis>
1069 <para>
1070 The <methodname>dumb_map_offset</methodname> operation associates an
1071 mmap fake offset with the object given by the handle and returns
1072 it. Drivers must use the
1073 <function>drm_gem_create_mmap_offset</function> function to
1074 associate the fake offset as described in
1075 <xref linkend="drm-gem-objects-mapping"/>.
1076 </para>
1077 </listitem>
1078 </itemizedlist>
1079 <para>
1080 Note that dumb objects may not be used for gpu acceleration, as has been
1081 attempted on some ARM embedded platforms. Such drivers really must have
1082 a hardware-specific ioctl to allocate suitable buffer objects.
1083 </para>
1084 </sect2>
1085 <sect2>
1086 <title>Output Polling</title>
1087 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
1088 <para>
1089 This operation notifies the driver that the status of one or more
1090 connectors has changed. Drivers that use the fb helper can just call the
1091 <function>drm_fb_helper_hotplug_event</function> function to handle this
1092 operation.
1093 </para>
1094 </sect2>
1095 <sect2>
1096 <title>Locking</title>
1097 <para>
1098 Beside some lookup structures with their own locking (which is hidden
1099 behind the interface functions) most of the modeset state is protected
1100 by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
1101 per-crtc locks to allow cursor updates, pageflips and similar operations
1102 to occur concurrently with background tasks like output detection.
1103 Operations which cross domains like a full modeset always grab all
1104 locks. Drivers there need to protect resources shared between crtcs with
1105 additional locking. They also need to be careful to always grab the
1106 relevant crtc locks if a modset functions touches crtc state, e.g. for
1107 load detection (which does only grab the <code>mode_config.lock</code>
1108 to allow concurrent screen updates on live crtcs).
1109 </para>
1110 </sect2>
1111 </sect1>
1112
1113 <!-- Internals: kms initialization and cleanup -->
1114
1115 <sect1 id="drm-kms-init">
1116 <title>KMS Initialization and Cleanup</title>
1117 <para>
1118 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
1119 and connectors. KMS drivers must thus create and initialize all those
1120 objects at load time after initializing mode setting.
1121 </para>
1122 <sect2>
1123 <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
1124 <para>
1125 A CRTC is an abstraction representing a part of the chip that contains a
1126 pointer to a scanout buffer. Therefore, the number of CRTCs available
1127 determines how many independent scanout buffers can be active at any
1128 given time. The CRTC structure contains several fields to support this:
1129 a pointer to some video memory (abstracted as a frame buffer object), a
1130 display mode, and an (x, y) offset into the video memory to support
1131 panning or configurations where one piece of video memory spans multiple
1132 CRTCs.
1133 </para>
1134 <sect3>
1135 <title>CRTC Initialization</title>
1136 <para>
1137 A KMS device must create and register at least one struct
1138 <structname>drm_crtc</structname> instance. The instance is allocated
1139 and zeroed by the driver, possibly as part of a larger structure, and
1140 registered with a call to <function>drm_crtc_init</function> with a
1141 pointer to CRTC functions.
1142 </para>
1143 </sect3>
1144 </sect2>
1145 <sect2>
1146 <title>Planes (struct <structname>drm_plane</structname>)</title>
1147 <para>
1148 A plane represents an image source that can be blended with or overlayed
1149 on top of a CRTC during the scanout process. Planes are associated with
1150 a frame buffer to crop a portion of the image memory (source) and
1151 optionally scale it to a destination size. The result is then blended
1152 with or overlayed on top of a CRTC.
1153 </para>
1154 <para>
1155 The DRM core recognizes three types of planes:
1156 <itemizedlist>
1157 <listitem>
1158 DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
1159 planes are the planes operated upon by CRTC modesetting and flipping
1160 operations described in the page_flip hook in <structname>drm_crtc_funcs</structname>.
1161 </listitem>
1162 <listitem>
1163 DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor
1164 planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
1165 DRM_IOCTL_MODE_CURSOR2 ioctls.
1166 </listitem>
1167 <listitem>
1168 DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
1169 Some drivers refer to these types of planes as "sprites" internally.
1170 </listitem>
1171 </itemizedlist>
1172 For compatibility with legacy userspace, only overlay planes are made
1173 available to userspace by default. Userspace clients may set the
1174 DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
1175 they wish to receive a universal plane list containing all plane types.
1176 </para>
1177 <sect3>
1178 <title>Plane Initialization</title>
1179 <para>
1180 To create a plane, a KMS drivers allocates and
1181 zeroes an instances of struct <structname>drm_plane</structname>
1182 (possibly as part of a larger structure) and registers it with a call
1183 to <function>drm_universal_plane_init</function>. The function takes a bitmask
1184 of the CRTCs that can be associated with the plane, a pointer to the
1185 plane functions, a list of format supported formats, and the type of
1186 plane (primary, cursor, or overlay) being initialized.
1187 </para>
1188 <para>
1189 Cursor and overlay planes are optional. All drivers should provide
1190 one primary plane per CRTC (although this requirement may change in
1191 the future); drivers that do not wish to provide special handling for
1192 primary planes may make use of the helper functions described in
1193 <xref linkend="drm-kms-planehelpers"/> to create and register a
1194 primary plane with standard capabilities.
1195 </para>
1196 </sect3>
1197 </sect2>
1198 <sect2>
1199 <title>Encoders (struct <structname>drm_encoder</structname>)</title>
1200 <para>
1201 An encoder takes pixel data from a CRTC and converts it to a format
1202 suitable for any attached connectors. On some devices, it may be
1203 possible to have a CRTC send data to more than one encoder. In that
1204 case, both encoders would receive data from the same scanout buffer,
1205 resulting in a "cloned" display configuration across the connectors
1206 attached to each encoder.
1207 </para>
1208 <sect3>
1209 <title>Encoder Initialization</title>
1210 <para>
1211 As for CRTCs, a KMS driver must create, initialize and register at
1212 least one struct <structname>drm_encoder</structname> instance. The
1213 instance is allocated and zeroed by the driver, possibly as part of a
1214 larger structure.
1215 </para>
1216 <para>
1217 Drivers must initialize the struct <structname>drm_encoder</structname>
1218 <structfield>possible_crtcs</structfield> and
1219 <structfield>possible_clones</structfield> fields before registering the
1220 encoder. Both fields are bitmasks of respectively the CRTCs that the
1221 encoder can be connected to, and sibling encoders candidate for cloning.
1222 </para>
1223 <para>
1224 After being initialized, the encoder must be registered with a call to
1225 <function>drm_encoder_init</function>. The function takes a pointer to
1226 the encoder functions and an encoder type. Supported types are
1227 <itemizedlist>
1228 <listitem>
1229 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
1230 </listitem>
1231 <listitem>
1232 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
1233 </listitem>
1234 <listitem>
1235 DRM_MODE_ENCODER_LVDS for display panels
1236 </listitem>
1237 <listitem>
1238 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
1239 SCART)
1240 </listitem>
1241 <listitem>
1242 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
1243 </listitem>
1244 </itemizedlist>
1245 </para>
1246 <para>
1247 Encoders must be attached to a CRTC to be used. DRM drivers leave
1248 encoders unattached at initialization time. Applications (or the fbdev
1249 compatibility layer when implemented) are responsible for attaching the
1250 encoders they want to use to a CRTC.
1251 </para>
1252 </sect3>
1253 </sect2>
1254 <sect2>
1255 <title>Connectors (struct <structname>drm_connector</structname>)</title>
1256 <para>
1257 A connector is the final destination for pixel data on a device, and
1258 usually connects directly to an external display device like a monitor
1259 or laptop panel. A connector can only be attached to one encoder at a
1260 time. The connector is also the structure where information about the
1261 attached display is kept, so it contains fields for display data, EDID
1262 data, DPMS &amp; connection status, and information about modes
1263 supported on the attached displays.
1264 </para>
1265 <sect3>
1266 <title>Connector Initialization</title>
1267 <para>
1268 Finally a KMS driver must create, initialize, register and attach at
1269 least one struct <structname>drm_connector</structname> instance. The
1270 instance is created as other KMS objects and initialized by setting the
1271 following fields.
1272 </para>
1273 <variablelist>
1274 <varlistentry>
1275 <term><structfield>interlace_allowed</structfield></term>
1276 <listitem><para>
1277 Whether the connector can handle interlaced modes.
1278 </para></listitem>
1279 </varlistentry>
1280 <varlistentry>
1281 <term><structfield>doublescan_allowed</structfield></term>
1282 <listitem><para>
1283 Whether the connector can handle doublescan.
1284 </para></listitem>
1285 </varlistentry>
1286 <varlistentry>
1287 <term><structfield>display_info
1288 </structfield></term>
1289 <listitem><para>
1290 Display information is filled from EDID information when a display
1291 is detected. For non hot-pluggable displays such as flat panels in
1292 embedded systems, the driver should initialize the
1293 <structfield>display_info</structfield>.<structfield>width_mm</structfield>
1294 and
1295 <structfield>display_info</structfield>.<structfield>height_mm</structfield>
1296 fields with the physical size of the display.
1297 </para></listitem>
1298 </varlistentry>
1299 <varlistentry>
1300 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
1301 <listitem><para>
1302 Connector polling mode, a combination of
1303 <variablelist>
1304 <varlistentry>
1305 <term>DRM_CONNECTOR_POLL_HPD</term>
1306 <listitem><para>
1307 The connector generates hotplug events and doesn't need to be
1308 periodically polled. The CONNECT and DISCONNECT flags must not
1309 be set together with the HPD flag.
1310 </para></listitem>
1311 </varlistentry>
1312 <varlistentry>
1313 <term>DRM_CONNECTOR_POLL_CONNECT</term>
1314 <listitem><para>
1315 Periodically poll the connector for connection.
1316 </para></listitem>
1317 </varlistentry>
1318 <varlistentry>
1319 <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
1320 <listitem><para>
1321 Periodically poll the connector for disconnection.
1322 </para></listitem>
1323 </varlistentry>
1324 </variablelist>
1325 Set to 0 for connectors that don't support connection status
1326 discovery.
1327 </para></listitem>
1328 </varlistentry>
1329 </variablelist>
1330 <para>
1331 The connector is then registered with a call to
1332 <function>drm_connector_init</function> with a pointer to the connector
1333 functions and a connector type, and exposed through sysfs with a call to
1334 <function>drm_connector_register</function>.
1335 </para>
1336 <para>
1337 Supported connector types are
1338 <itemizedlist>
1339 <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
1340 <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
1341 <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
1342 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
1343 <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
1344 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
1345 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
1346 <listitem>DRM_MODE_CONNECTOR_Component</listitem>
1347 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
1348 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
1349 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
1350 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
1351 <listitem>DRM_MODE_CONNECTOR_TV</listitem>
1352 <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
1353 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
1354 </itemizedlist>
1355 </para>
1356 <para>
1357 Connectors must be attached to an encoder to be used. For devices that
1358 map connectors to encoders 1:1, the connector should be attached at
1359 initialization time with a call to
1360 <function>drm_mode_connector_attach_encoder</function>. The driver must
1361 also set the <structname>drm_connector</structname>
1362 <structfield>encoder</structfield> field to point to the attached
1363 encoder.
1364 </para>
1365 <para>
1366 Finally, drivers must initialize the connectors state change detection
1367 with a call to <function>drm_kms_helper_poll_init</function>. If at
1368 least one connector is pollable but can't generate hotplug interrupts
1369 (indicated by the DRM_CONNECTOR_POLL_CONNECT and
1370 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
1371 automatically be queued to periodically poll for changes. Connectors
1372 that can generate hotplug interrupts must be marked with the
1373 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
1374 call <function>drm_helper_hpd_irq_event</function>. The function will
1375 queue a delayed work to check the state of all connectors, but no
1376 periodic polling will be done.
1377 </para>
1378 </sect3>
1379 <sect3>
1380 <title>Connector Operations</title>
1381 <note><para>
1382 Unless otherwise state, all operations are mandatory.
1383 </para></note>
1384 <sect4>
1385 <title>DPMS</title>
1386 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
1387 <para>
1388 The DPMS operation sets the power state of a connector. The mode
1389 argument is one of
1390 <itemizedlist>
1391 <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
1392 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
1393 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
1394 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
1395 </itemizedlist>
1396 </para>
1397 <para>
1398 In all but DPMS_ON mode the encoder to which the connector is attached
1399 should put the display in low-power mode by driving its signals
1400 appropriately. If more than one connector is attached to the encoder
1401 care should be taken not to change the power state of other displays as
1402 a side effect. Low-power mode should be propagated to the encoders and
1403 CRTCs when all related connectors are put in low-power mode.
1404 </para>
1405 </sect4>
1406 <sect4>
1407 <title>Modes</title>
1408 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
1409 uint32_t max_height);</synopsis>
1410 <para>
1411 Fill the mode list with all supported modes for the connector. If the
1412 <parameter>max_width</parameter> and <parameter>max_height</parameter>
1413 arguments are non-zero, the implementation must ignore all modes wider
1414 than <parameter>max_width</parameter> or higher than
1415 <parameter>max_height</parameter>.
1416 </para>
1417 <para>
1418 The connector must also fill in this operation its
1419 <structfield>display_info</structfield>
1420 <structfield>width_mm</structfield> and
1421 <structfield>height_mm</structfield> fields with the connected display
1422 physical size in millimeters. The fields should be set to 0 if the value
1423 isn't known or is not applicable (for instance for projector devices).
1424 </para>
1425 </sect4>
1426 <sect4>
1427 <title>Connection Status</title>
1428 <para>
1429 The connection status is updated through polling or hotplug events when
1430 supported (see <xref linkend="drm-kms-connector-polled"/>). The status
1431 value is reported to userspace through ioctls and must not be used
1432 inside the driver, as it only gets initialized by a call to
1433 <function>drm_mode_getconnector</function> from userspace.
1434 </para>
1435 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
1436 bool force);</synopsis>
1437 <para>
1438 Check to see if anything is attached to the connector. The
1439 <parameter>force</parameter> parameter is set to false whilst polling or
1440 to true when checking the connector due to user request.
1441 <parameter>force</parameter> can be used by the driver to avoid
1442 expensive, destructive operations during automated probing.
1443 </para>
1444 <para>
1445 Return connector_status_connected if something is connected to the
1446 connector, connector_status_disconnected if nothing is connected and
1447 connector_status_unknown if the connection state isn't known.
1448 </para>
1449 <para>
1450 Drivers should only return connector_status_connected if the connection
1451 status has really been probed as connected. Connectors that can't detect
1452 the connection status, or failed connection status probes, should return
1453 connector_status_unknown.
1454 </para>
1455 </sect4>
1456 </sect3>
1457 </sect2>
1458 <sect2>
1459 <title>Cleanup</title>
1460 <para>
1461 The DRM core manages its objects' lifetime. When an object is not needed
1462 anymore the core calls its destroy function, which must clean up and
1463 free every resource allocated for the object. Every
1464 <function>drm_*_init</function> call must be matched with a
1465 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
1466 (<function>drm_crtc_cleanup</function>), planes
1467 (<function>drm_plane_cleanup</function>), encoders
1468 (<function>drm_encoder_cleanup</function>) and connectors
1469 (<function>drm_connector_cleanup</function>). Furthermore, connectors
1470 that have been added to sysfs must be removed by a call to
1471 <function>drm_connector_unregister</function> before calling
1472 <function>drm_connector_cleanup</function>.
1473 </para>
1474 <para>
1475 Connectors state change detection must be cleanup up with a call to
1476 <function>drm_kms_helper_poll_fini</function>.
1477 </para>
1478 </sect2>
1479 <sect2>
1480 <title>Output discovery and initialization example</title>
1481 <programlisting><![CDATA[
1482 void intel_crt_init(struct drm_device *dev)
1483 {
1484 struct drm_connector *connector;
1485 struct intel_output *intel_output;
1486
1487 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
1488 if (!intel_output)
1489 return;
1490
1491 connector = &intel_output->base;
1492 drm_connector_init(dev, &intel_output->base,
1493 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1494
1495 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
1496 DRM_MODE_ENCODER_DAC);
1497
1498 drm_mode_connector_attach_encoder(&intel_output->base,
1499 &intel_output->enc);
1500
1501 /* Set up the DDC bus. */
1502 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
1503 if (!intel_output->ddc_bus) {
1504 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
1505 "failed.\n");
1506 return;
1507 }
1508
1509 intel_output->type = INTEL_OUTPUT_ANALOG;
1510 connector->interlace_allowed = 0;
1511 connector->doublescan_allowed = 0;
1512
1513 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
1514 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
1515
1516 drm_connector_register(connector);
1517 }]]></programlisting>
1518 <para>
1519 In the example above (taken from the i915 driver), a CRTC, connector and
1520 encoder combination is created. A device-specific i2c bus is also
1521 created for fetching EDID data and performing monitor detection. Once
1522 the process is complete, the new connector is registered with sysfs to
1523 make its properties available to applications.
1524 </para>
1525 </sect2>
1526 <sect2>
1527 <title>KMS API Functions</title>
1528 !Edrivers/gpu/drm/drm_crtc.c
1529 </sect2>
1530 <sect2>
1531 <title>KMS Data Structures</title>
1532 !Iinclude/drm/drm_crtc.h
1533 </sect2>
1534 <sect2>
1535 <title>KMS Locking</title>
1536 !Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
1537 !Iinclude/drm/drm_modeset_lock.h
1538 !Edrivers/gpu/drm/drm_modeset_lock.c
1539 </sect2>
1540 </sect1>
1541
1542 <!-- Internals: kms helper functions -->
1543
1544 <sect1>
1545 <title>Mode Setting Helper Functions</title>
1546 <para>
1547 The plane, CRTC, encoder and connector functions provided by the drivers
1548 implement the DRM API. They're called by the DRM core and ioctl handlers
1549 to handle device state changes and configuration request. As implementing
1550 those functions often requires logic not specific to drivers, mid-layer
1551 helper functions are available to avoid duplicating boilerplate code.
1552 </para>
1553 <para>
1554 The DRM core contains one mid-layer implementation. The mid-layer provides
1555 implementations of several plane, CRTC, encoder and connector functions
1556 (called from the top of the mid-layer) that pre-process requests and call
1557 lower-level functions provided by the driver (at the bottom of the
1558 mid-layer). For instance, the
1559 <function>drm_crtc_helper_set_config</function> function can be used to
1560 fill the struct <structname>drm_crtc_funcs</structname>
1561 <structfield>set_config</structfield> field. When called, it will split
1562 the <methodname>set_config</methodname> operation in smaller, simpler
1563 operations and call the driver to handle them.
1564 </para>
1565 <para>
1566 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
1567 <function>drm_encoder_helper_add</function> and
1568 <function>drm_connector_helper_add</function> functions to install their
1569 mid-layer bottom operations handlers, and fill the
1570 <structname>drm_crtc_funcs</structname>,
1571 <structname>drm_encoder_funcs</structname> and
1572 <structname>drm_connector_funcs</structname> structures with pointers to
1573 the mid-layer top API functions. Installing the mid-layer bottom operation
1574 handlers is best done right after registering the corresponding KMS object.
1575 </para>
1576 <para>
1577 The mid-layer is not split between CRTC, encoder and connector operations.
1578 To use it, a driver must provide bottom functions for all of the three KMS
1579 entities.
1580 </para>
1581 <sect2>
1582 <title>Atomic Modeset Helper Functions Reference</title>
1583 <sect3>
1584 <title>Overview</title>
1585 !Pdrivers/gpu/drm/drm_atomic_helper.c overview
1586 </sect3>
1587 <sect3>
1588 <title>Implementing Asynchronous Atomic Commit</title>
1589 !Pdrivers/gpu/drm/drm_atomic_helper.c implementing async commit
1590 </sect3>
1591 <sect3>
1592 <title>Atomic State Reset and Initialization</title>
1593 !Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization
1594 </sect3>
1595 !Iinclude/drm/drm_atomic_helper.h
1596 !Edrivers/gpu/drm/drm_atomic_helper.c
1597 </sect2>
1598 <sect2>
1599 <title>Modeset Helper Reference for Common Vtables</title>
1600 !Iinclude/drm/drm_modeset_helper_vtables.h
1601 !Pinclude/drm/drm_modeset_helper_vtables.h overview
1602 </sect2>
1603 <sect2>
1604 <title>Legacy CRTC/Modeset Helper Functions Reference</title>
1605 !Edrivers/gpu/drm/drm_crtc_helper.c
1606 !Pdrivers/gpu/drm/drm_crtc_helper.c overview
1607 </sect2>
1608 <sect2>
1609 <title>Output Probing Helper Functions Reference</title>
1610 !Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
1611 !Edrivers/gpu/drm/drm_probe_helper.c
1612 </sect2>
1613 <sect2>
1614 <title>fbdev Helper Functions Reference</title>
1615 !Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
1616 !Edrivers/gpu/drm/drm_fb_helper.c
1617 !Iinclude/drm/drm_fb_helper.h
1618 </sect2>
1619 <sect2>
1620 <title>Display Port Helper Functions Reference</title>
1621 !Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
1622 !Iinclude/drm/drm_dp_helper.h
1623 !Edrivers/gpu/drm/drm_dp_helper.c
1624 </sect2>
1625 <sect2>
1626 <title>Display Port MST Helper Functions Reference</title>
1627 !Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper
1628 !Iinclude/drm/drm_dp_mst_helper.h
1629 !Edrivers/gpu/drm/drm_dp_mst_topology.c
1630 </sect2>
1631 <sect2>
1632 <title>MIPI DSI Helper Functions Reference</title>
1633 !Pdrivers/gpu/drm/drm_mipi_dsi.c dsi helpers
1634 !Iinclude/drm/drm_mipi_dsi.h
1635 !Edrivers/gpu/drm/drm_mipi_dsi.c
1636 </sect2>
1637 <sect2>
1638 <title>EDID Helper Functions Reference</title>
1639 !Edrivers/gpu/drm/drm_edid.c
1640 </sect2>
1641 <sect2>
1642 <title>Rectangle Utilities Reference</title>
1643 !Pinclude/drm/drm_rect.h rect utils
1644 !Iinclude/drm/drm_rect.h
1645 !Edrivers/gpu/drm/drm_rect.c
1646 </sect2>
1647 <sect2>
1648 <title>Flip-work Helper Reference</title>
1649 !Pinclude/drm/drm_flip_work.h flip utils
1650 !Iinclude/drm/drm_flip_work.h
1651 !Edrivers/gpu/drm/drm_flip_work.c
1652 </sect2>
1653 <sect2>
1654 <title>HDMI Infoframes Helper Reference</title>
1655 <para>
1656 Strictly speaking this is not a DRM helper library but generally useable
1657 by any driver interfacing with HDMI outputs like v4l or alsa drivers.
1658 But it nicely fits into the overall topic of mode setting helper
1659 libraries and hence is also included here.
1660 </para>
1661 !Iinclude/linux/hdmi.h
1662 !Edrivers/video/hdmi.c
1663 </sect2>
1664 <sect2>
1665 <title id="drm-kms-planehelpers">Plane Helper Reference</title>
1666 !Edrivers/gpu/drm/drm_plane_helper.c
1667 !Pdrivers/gpu/drm/drm_plane_helper.c overview
1668 </sect2>
1669 <sect2>
1670 <title>Tile group</title>
1671 !Pdrivers/gpu/drm/drm_crtc.c Tile group
1672 </sect2>
1673 <sect2>
1674 <title>Bridges</title>
1675 <sect3>
1676 <title>Overview</title>
1677 !Pdrivers/gpu/drm/drm_bridge.c overview
1678 </sect3>
1679 <sect3>
1680 <title>Default bridge callback sequence</title>
1681 !Pdrivers/gpu/drm/drm_bridge.c bridge callbacks
1682 </sect3>
1683 !Edrivers/gpu/drm/drm_bridge.c
1684 </sect2>
1685 </sect1>
1686
1687 <!-- Internals: kms properties -->
1688
1689 <sect1 id="drm-kms-properties">
1690 <title>KMS Properties</title>
1691 <para>
1692 Drivers may need to expose additional parameters to applications than
1693 those described in the previous sections. KMS supports attaching
1694 properties to CRTCs, connectors and planes and offers a userspace API to
1695 list, get and set the property values.
1696 </para>
1697 <para>
1698 Properties are identified by a name that uniquely defines the property
1699 purpose, and store an associated value. For all property types except blob
1700 properties the value is a 64-bit unsigned integer.
1701 </para>
1702 <para>
1703 KMS differentiates between properties and property instances. Drivers
1704 first create properties and then create and associate individual instances
1705 of those properties to objects. A property can be instantiated multiple
1706 times and associated with different objects. Values are stored in property
1707 instances, and all other property information are stored in the property
1708 and shared between all instances of the property.
1709 </para>
1710 <para>
1711 Every property is created with a type that influences how the KMS core
1712 handles the property. Supported property types are
1713 <variablelist>
1714 <varlistentry>
1715 <term>DRM_MODE_PROP_RANGE</term>
1716 <listitem><para>Range properties report their minimum and maximum
1717 admissible values. The KMS core verifies that values set by
1718 application fit in that range.</para></listitem>
1719 </varlistentry>
1720 <varlistentry>
1721 <term>DRM_MODE_PROP_ENUM</term>
1722 <listitem><para>Enumerated properties take a numerical value that
1723 ranges from 0 to the number of enumerated values defined by the
1724 property minus one, and associate a free-formed string name to each
1725 value. Applications can retrieve the list of defined value-name pairs
1726 and use the numerical value to get and set property instance values.
1727 </para></listitem>
1728 </varlistentry>
1729 <varlistentry>
1730 <term>DRM_MODE_PROP_BITMASK</term>
1731 <listitem><para>Bitmask properties are enumeration properties that
1732 additionally restrict all enumerated values to the 0..63 range.
1733 Bitmask property instance values combine one or more of the
1734 enumerated bits defined by the property.</para></listitem>
1735 </varlistentry>
1736 <varlistentry>
1737 <term>DRM_MODE_PROP_BLOB</term>
1738 <listitem><para>Blob properties store a binary blob without any format
1739 restriction. The binary blobs are created as KMS standalone objects,
1740 and blob property instance values store the ID of their associated
1741 blob object.</para>
1742 <para>Blob properties are only used for the connector EDID property
1743 and cannot be created by drivers.</para></listitem>
1744 </varlistentry>
1745 </variablelist>
1746 </para>
1747 <para>
1748 To create a property drivers call one of the following functions depending
1749 on the property type. All property creation functions take property flags
1750 and name, as well as type-specific arguments.
1751 <itemizedlist>
1752 <listitem>
1753 <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
1754 const char *name,
1755 uint64_t min, uint64_t max);</synopsis>
1756 <para>Create a range property with the given minimum and maximum
1757 values.</para>
1758 </listitem>
1759 <listitem>
1760 <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
1761 const char *name,
1762 const struct drm_prop_enum_list *props,
1763 int num_values);</synopsis>
1764 <para>Create an enumerated property. The <parameter>props</parameter>
1765 argument points to an array of <parameter>num_values</parameter>
1766 value-name pairs.</para>
1767 </listitem>
1768 <listitem>
1769 <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
1770 int flags, const char *name,
1771 const struct drm_prop_enum_list *props,
1772 int num_values);</synopsis>
1773 <para>Create a bitmask property. The <parameter>props</parameter>
1774 argument points to an array of <parameter>num_values</parameter>
1775 value-name pairs.</para>
1776 </listitem>
1777 </itemizedlist>
1778 </para>
1779 <para>
1780 Properties can additionally be created as immutable, in which case they
1781 will be read-only for applications but can be modified by the driver. To
1782 create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
1783 flag at property creation time.
1784 </para>
1785 <para>
1786 When no array of value-name pairs is readily available at property
1787 creation time for enumerated or range properties, drivers can create
1788 the property using the <function>drm_property_create</function> function
1789 and manually add enumeration value-name pairs by calling the
1790 <function>drm_property_add_enum</function> function. Care must be taken to
1791 properly specify the property type through the <parameter>flags</parameter>
1792 argument.
1793 </para>
1794 <para>
1795 After creating properties drivers can attach property instances to CRTC,
1796 connector and plane objects by calling the
1797 <function>drm_object_attach_property</function>. The function takes a
1798 pointer to the target object, a pointer to the previously created property
1799 and an initial instance value.
1800 </para>
1801 <sect2>
1802 <title>Existing KMS Properties</title>
1803 <para>
1804 The following table gives description of drm properties exposed by various
1805 modules/drivers.
1806 </para>
1807 <table border="1" cellpadding="0" cellspacing="0">
1808 <tbody>
1809 <tr style="font-weight: bold;">
1810 <td valign="top" >Owner Module/Drivers</td>
1811 <td valign="top" >Group</td>
1812 <td valign="top" >Property Name</td>
1813 <td valign="top" >Type</td>
1814 <td valign="top" >Property Values</td>
1815 <td valign="top" >Object attached</td>
1816 <td valign="top" >Description/Restrictions</td>
1817 </tr>
1818 <tr>
1819 <td rowspan="42" valign="top" >DRM</td>
1820 <td valign="top" >Generic</td>
1821 <td valign="top" >“rotation”</td>
1822 <td valign="top" >BITMASK</td>
1823 <td valign="top" >{ 0, "rotate-0" },
1824 { 1, "rotate-90" },
1825 { 2, "rotate-180" },
1826 { 3, "rotate-270" },
1827 { 4, "reflect-x" },
1828 { 5, "reflect-y" }</td>
1829 <td valign="top" >CRTC, Plane</td>
1830 <td valign="top" >rotate-(degrees) rotates the image by the specified amount in degrees
1831 in counter clockwise direction. reflect-x and reflect-y reflects the
1832 image along the specified axis prior to rotation</td>
1833 </tr>
1834 <tr>
1835 <td rowspan="5" valign="top" >Connector</td>
1836 <td valign="top" >“EDID”</td>
1837 <td valign="top" >BLOB | IMMUTABLE</td>
1838 <td valign="top" >0</td>
1839 <td valign="top" >Connector</td>
1840 <td valign="top" >Contains id of edid blob ptr object.</td>
1841 </tr>
1842 <tr>
1843 <td valign="top" >“DPMS”</td>
1844 <td valign="top" >ENUM</td>
1845 <td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
1846 <td valign="top" >Connector</td>
1847 <td valign="top" >Contains DPMS operation mode value.</td>
1848 </tr>
1849 <tr>
1850 <td valign="top" >“PATH”</td>
1851 <td valign="top" >BLOB | IMMUTABLE</td>
1852 <td valign="top" >0</td>
1853 <td valign="top" >Connector</td>
1854 <td valign="top" >Contains topology path to a connector.</td>
1855 </tr>
1856 <tr>
1857 <td valign="top" >“TILE”</td>
1858 <td valign="top" >BLOB | IMMUTABLE</td>
1859 <td valign="top" >0</td>
1860 <td valign="top" >Connector</td>
1861 <td valign="top" >Contains tiling information for a connector.</td>
1862 </tr>
1863 <tr>
1864 <td valign="top" >“CRTC_ID”</td>
1865 <td valign="top" >OBJECT</td>
1866 <td valign="top" >DRM_MODE_OBJECT_CRTC</td>
1867 <td valign="top" >Connector</td>
1868 <td valign="top" >CRTC that connector is attached to (atomic)</td>
1869 </tr>
1870 <tr>
1871 <td rowspan="11" valign="top" >Plane</td>
1872 <td valign="top" >“type”</td>
1873 <td valign="top" >ENUM | IMMUTABLE</td>
1874 <td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
1875 <td valign="top" >Plane</td>
1876 <td valign="top" >Plane type</td>
1877 </tr>
1878 <tr>
1879 <td valign="top" >“SRC_X”</td>
1880 <td valign="top" >RANGE</td>
1881 <td valign="top" >Min=0, Max=UINT_MAX</td>
1882 <td valign="top" >Plane</td>
1883 <td valign="top" >Scanout source x coordinate in 16.16 fixed point (atomic)</td>
1884 </tr>
1885 <tr>
1886 <td valign="top" >“SRC_Y”</td>
1887 <td valign="top" >RANGE</td>
1888 <td valign="top" >Min=0, Max=UINT_MAX</td>
1889 <td valign="top" >Plane</td>
1890 <td valign="top" >Scanout source y coordinate in 16.16 fixed point (atomic)</td>
1891 </tr>
1892 <tr>
1893 <td valign="top" >“SRC_W”</td>
1894 <td valign="top" >RANGE</td>
1895 <td valign="top" >Min=0, Max=UINT_MAX</td>
1896 <td valign="top" >Plane</td>
1897 <td valign="top" >Scanout source width in 16.16 fixed point (atomic)</td>
1898 </tr>
1899 <tr>
1900 <td valign="top" >“SRC_H”</td>
1901 <td valign="top" >RANGE</td>
1902 <td valign="top" >Min=0, Max=UINT_MAX</td>
1903 <td valign="top" >Plane</td>
1904 <td valign="top" >Scanout source height in 16.16 fixed point (atomic)</td>
1905 </tr>
1906 <tr>
1907 <td valign="top" >“CRTC_X”</td>
1908 <td valign="top" >SIGNED_RANGE</td>
1909 <td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
1910 <td valign="top" >Plane</td>
1911 <td valign="top" >Scanout CRTC (destination) x coordinate (atomic)</td>
1912 </tr>
1913 <tr>
1914 <td valign="top" >“CRTC_Y”</td>
1915 <td valign="top" >SIGNED_RANGE</td>
1916 <td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
1917 <td valign="top" >Plane</td>
1918 <td valign="top" >Scanout CRTC (destination) y coordinate (atomic)</td>
1919 </tr>
1920 <tr>
1921 <td valign="top" >“CRTC_W”</td>
1922 <td valign="top" >RANGE</td>
1923 <td valign="top" >Min=0, Max=UINT_MAX</td>
1924 <td valign="top" >Plane</td>
1925 <td valign="top" >Scanout CRTC (destination) width (atomic)</td>
1926 </tr>
1927 <tr>
1928 <td valign="top" >“CRTC_H”</td>
1929 <td valign="top" >RANGE</td>
1930 <td valign="top" >Min=0, Max=UINT_MAX</td>
1931 <td valign="top" >Plane</td>
1932 <td valign="top" >Scanout CRTC (destination) height (atomic)</td>
1933 </tr>
1934 <tr>
1935 <td valign="top" >“FB_ID”</td>
1936 <td valign="top" >OBJECT</td>
1937 <td valign="top" >DRM_MODE_OBJECT_FB</td>
1938 <td valign="top" >Plane</td>
1939 <td valign="top" >Scanout framebuffer (atomic)</td>
1940 </tr>
1941 <tr>
1942 <td valign="top" >“CRTC_ID”</td>
1943 <td valign="top" >OBJECT</td>
1944 <td valign="top" >DRM_MODE_OBJECT_CRTC</td>
1945 <td valign="top" >Plane</td>
1946 <td valign="top" >CRTC that plane is attached to (atomic)</td>
1947 </tr>
1948 <tr>
1949 <td rowspan="2" valign="top" >DVI-I</td>
1950 <td valign="top" >“subconnector”</td>
1951 <td valign="top" >ENUM</td>
1952 <td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
1953 <td valign="top" >Connector</td>
1954 <td valign="top" >TBD</td>
1955 </tr>
1956 <tr>
1957 <td valign="top" >“select subconnector”</td>
1958 <td valign="top" >ENUM</td>
1959 <td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
1960 <td valign="top" >Connector</td>
1961 <td valign="top" >TBD</td>
1962 </tr>
1963 <tr>
1964 <td rowspan="13" valign="top" >TV</td>
1965 <td valign="top" >“subconnector”</td>
1966 <td valign="top" >ENUM</td>
1967 <td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
1968 <td valign="top" >Connector</td>
1969 <td valign="top" >TBD</td>
1970 </tr>
1971 <tr>
1972 <td valign="top" >“select subconnector”</td>
1973 <td valign="top" >ENUM</td>
1974 <td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
1975 <td valign="top" >Connector</td>
1976 <td valign="top" >TBD</td>
1977 </tr>
1978 <tr>
1979 <td valign="top" >“mode”</td>
1980 <td valign="top" >ENUM</td>
1981 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
1982 <td valign="top" >Connector</td>
1983 <td valign="top" >TBD</td>
1984 </tr>
1985 <tr>
1986 <td valign="top" >“left margin”</td>
1987 <td valign="top" >RANGE</td>
1988 <td valign="top" >Min=0, Max=100</td>
1989 <td valign="top" >Connector</td>
1990 <td valign="top" >TBD</td>
1991 </tr>
1992 <tr>
1993 <td valign="top" >“right margin”</td>
1994 <td valign="top" >RANGE</td>
1995 <td valign="top" >Min=0, Max=100</td>
1996 <td valign="top" >Connector</td>
1997 <td valign="top" >TBD</td>
1998 </tr>
1999 <tr>
2000 <td valign="top" >“top margin”</td>
2001 <td valign="top" >RANGE</td>
2002 <td valign="top" >Min=0, Max=100</td>
2003 <td valign="top" >Connector</td>
2004 <td valign="top" >TBD</td>
2005 </tr>
2006 <tr>
2007 <td valign="top" >“bottom margin”</td>
2008 <td valign="top" >RANGE</td>
2009 <td valign="top" >Min=0, Max=100</td>
2010 <td valign="top" >Connector</td>
2011 <td valign="top" >TBD</td>
2012 </tr>
2013 <tr>
2014 <td valign="top" >“brightness”</td>
2015 <td valign="top" >RANGE</td>
2016 <td valign="top" >Min=0, Max=100</td>
2017 <td valign="top" >Connector</td>
2018 <td valign="top" >TBD</td>
2019 </tr>
2020 <tr>
2021 <td valign="top" >“contrast”</td>
2022 <td valign="top" >RANGE</td>
2023 <td valign="top" >Min=0, Max=100</td>
2024 <td valign="top" >Connector</td>
2025 <td valign="top" >TBD</td>
2026 </tr>
2027 <tr>
2028 <td valign="top" >“flicker reduction”</td>
2029 <td valign="top" >RANGE</td>
2030 <td valign="top" >Min=0, Max=100</td>
2031 <td valign="top" >Connector</td>
2032 <td valign="top" >TBD</td>
2033 </tr>
2034 <tr>
2035 <td valign="top" >“overscan”</td>
2036 <td valign="top" >RANGE</td>
2037 <td valign="top" >Min=0, Max=100</td>
2038 <td valign="top" >Connector</td>
2039 <td valign="top" >TBD</td>
2040 </tr>
2041 <tr>
2042 <td valign="top" >“saturation”</td>
2043 <td valign="top" >RANGE</td>
2044 <td valign="top" >Min=0, Max=100</td>
2045 <td valign="top" >Connector</td>
2046 <td valign="top" >TBD</td>
2047 </tr>
2048 <tr>
2049 <td valign="top" >“hue”</td>
2050 <td valign="top" >RANGE</td>
2051 <td valign="top" >Min=0, Max=100</td>
2052 <td valign="top" >Connector</td>
2053 <td valign="top" >TBD</td>
2054 </tr>
2055 <tr>
2056 <td rowspan="2" valign="top" >Virtual GPU</td>
2057 <td valign="top" >“suggested X”</td>
2058 <td valign="top" >RANGE</td>
2059 <td valign="top" >Min=0, Max=0xffffffff</td>
2060 <td valign="top" >Connector</td>
2061 <td valign="top" >property to suggest an X offset for a connector</td>
2062 </tr>
2063 <tr>
2064 <td valign="top" >“suggested Y”</td>
2065 <td valign="top" >RANGE</td>
2066 <td valign="top" >Min=0, Max=0xffffffff</td>
2067 <td valign="top" >Connector</td>
2068 <td valign="top" >property to suggest an Y offset for a connector</td>
2069 </tr>
2070 <tr>
2071 <td rowspan="8" valign="top" >Optional</td>
2072 <td valign="top" >“scaling mode”</td>
2073 <td valign="top" >ENUM</td>
2074 <td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
2075 <td valign="top" >Connector</td>
2076 <td valign="top" >TBD</td>
2077 </tr>
2078 <tr>
2079 <td valign="top" >"aspect ratio"</td>
2080 <td valign="top" >ENUM</td>
2081 <td valign="top" >{ "None", "4:3", "16:9" }</td>
2082 <td valign="top" >Connector</td>
2083 <td valign="top" >DRM property to set aspect ratio from user space app.
2084 This enum is made generic to allow addition of custom aspect
2085 ratios.</td>
2086 </tr>
2087 <tr>
2088 <td valign="top" >“dirty”</td>
2089 <td valign="top" >ENUM | IMMUTABLE</td>
2090 <td valign="top" >{ "Off", "On", "Annotate" }</td>
2091 <td valign="top" >Connector</td>
2092 <td valign="top" >TBD</td>
2093 </tr>
2094 <tr>
2095 <td valign="top" >“DEGAMMA_LUT”</td>
2096 <td valign="top" >BLOB</td>
2097 <td valign="top" >0</td>
2098 <td valign="top" >CRTC</td>
2099 <td valign="top" >DRM property to set the degamma lookup table
2100 (LUT) mapping pixel data from the framebuffer before it is
2101 given to the transformation matrix. The data is an interpreted
2102 as an array of struct drm_color_lut elements. Hardware might
2103 choose not to use the full precision of the LUT elements nor
2104 use all the elements of the LUT (for example the hardware
2105 might choose to interpolate between LUT[0] and LUT[4]). </td>
2106 </tr>
2107 <tr>
2108 <td valign="top" >“DEGAMMA_LUT_SIZE”</td>
2109 <td valign="top" >RANGE | IMMUTABLE</td>
2110 <td valign="top" >Min=0, Max=UINT_MAX</td>
2111 <td valign="top" >CRTC</td>
2112 <td valign="top" >DRM property to gives the size of the lookup
2113 table to be set on the DEGAMMA_LUT property (the size depends
2114 on the underlying hardware).</td>
2115 </tr>
2116 <tr>
2117 <td valign="top" >“CTM”</td>
2118 <td valign="top" >BLOB</td>
2119 <td valign="top" >0</td>
2120 <td valign="top" >CRTC</td>
2121 <td valign="top" >DRM property to set the current
2122 transformation matrix (CTM) apply to pixel data after the
2123 lookup through the degamma LUT and before the lookup through
2124 the gamma LUT. The data is an interpreted as a struct
2125 drm_color_ctm.</td>
2126 </tr>
2127 <tr>
2128 <td valign="top" >“GAMMA_LUT”</td>
2129 <td valign="top" >BLOB</td>
2130 <td valign="top" >0</td>
2131 <td valign="top" >CRTC</td>
2132 <td valign="top" >DRM property to set the gamma lookup table
2133 (LUT) mapping pixel data after to the transformation matrix to
2134 data sent to the connector. The data is an interpreted as an
2135 array of struct drm_color_lut elements. Hardware might choose
2136 not to use the full precision of the LUT elements nor use all
2137 the elements of the LUT (for example the hardware might choose
2138 to interpolate between LUT[0] and LUT[4]).</td>
2139 </tr>
2140 <tr>
2141 <td valign="top" >“GAMMA_LUT_SIZE”</td>
2142 <td valign="top" >RANGE | IMMUTABLE</td>
2143 <td valign="top" >Min=0, Max=UINT_MAX</td>
2144 <td valign="top" >CRTC</td>
2145 <td valign="top" >DRM property to gives the size of the lookup
2146 table to be set on the GAMMA_LUT property (the size depends on
2147 the underlying hardware).</td>
2148 </tr>
2149 <tr>
2150 <td rowspan="20" valign="top" >i915</td>
2151 <td rowspan="2" valign="top" >Generic</td>
2152 <td valign="top" >"Broadcast RGB"</td>
2153 <td valign="top" >ENUM</td>
2154 <td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
2155 <td valign="top" >Connector</td>
2156 <td valign="top" >TBD</td>
2157 </tr>
2158 <tr>
2159 <td valign="top" >“audio”</td>
2160 <td valign="top" >ENUM</td>
2161 <td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
2162 <td valign="top" >Connector</td>
2163 <td valign="top" >TBD</td>
2164 </tr>
2165 <tr>
2166 <td rowspan="17" valign="top" >SDVO-TV</td>
2167 <td valign="top" >“mode”</td>
2168 <td valign="top" >ENUM</td>
2169 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2170 <td valign="top" >Connector</td>
2171 <td valign="top" >TBD</td>
2172 </tr>
2173 <tr>
2174 <td valign="top" >"left_margin"</td>
2175 <td valign="top" >RANGE</td>
2176 <td valign="top" >Min=0, Max= SDVO dependent</td>
2177 <td valign="top" >Connector</td>
2178 <td valign="top" >TBD</td>
2179 </tr>
2180 <tr>
2181 <td valign="top" >"right_margin"</td>
2182 <td valign="top" >RANGE</td>
2183 <td valign="top" >Min=0, Max= SDVO dependent</td>
2184 <td valign="top" >Connector</td>
2185 <td valign="top" >TBD</td>
2186 </tr>
2187 <tr>
2188 <td valign="top" >"top_margin"</td>
2189 <td valign="top" >RANGE</td>
2190 <td valign="top" >Min=0, Max= SDVO dependent</td>
2191 <td valign="top" >Connector</td>
2192 <td valign="top" >TBD</td>
2193 </tr>
2194 <tr>
2195 <td valign="top" >"bottom_margin"</td>
2196 <td valign="top" >RANGE</td>
2197 <td valign="top" >Min=0, Max= SDVO dependent</td>
2198 <td valign="top" >Connector</td>
2199 <td valign="top" >TBD</td>
2200 </tr>
2201 <tr>
2202 <td valign="top" >“hpos”</td>
2203 <td valign="top" >RANGE</td>
2204 <td valign="top" >Min=0, Max= SDVO dependent</td>
2205 <td valign="top" >Connector</td>
2206 <td valign="top" >TBD</td>
2207 </tr>
2208 <tr>
2209 <td valign="top" >“vpos”</td>
2210 <td valign="top" >RANGE</td>
2211 <td valign="top" >Min=0, Max= SDVO dependent</td>
2212 <td valign="top" >Connector</td>
2213 <td valign="top" >TBD</td>
2214 </tr>
2215 <tr>
2216 <td valign="top" >“contrast”</td>
2217 <td valign="top" >RANGE</td>
2218 <td valign="top" >Min=0, Max= SDVO dependent</td>
2219 <td valign="top" >Connector</td>
2220 <td valign="top" >TBD</td>
2221 </tr>
2222 <tr>
2223 <td valign="top" >“saturation”</td>
2224 <td valign="top" >RANGE</td>
2225 <td valign="top" >Min=0, Max= SDVO dependent</td>
2226 <td valign="top" >Connector</td>
2227 <td valign="top" >TBD</td>
2228 </tr>
2229 <tr>
2230 <td valign="top" >“hue”</td>
2231 <td valign="top" >RANGE</td>
2232 <td valign="top" >Min=0, Max= SDVO dependent</td>
2233 <td valign="top" >Connector</td>
2234 <td valign="top" >TBD</td>
2235 </tr>
2236 <tr>
2237 <td valign="top" >“sharpness”</td>
2238 <td valign="top" >RANGE</td>
2239 <td valign="top" >Min=0, Max= SDVO dependent</td>
2240 <td valign="top" >Connector</td>
2241 <td valign="top" >TBD</td>
2242 </tr>
2243 <tr>
2244 <td valign="top" >“flicker_filter”</td>
2245 <td valign="top" >RANGE</td>
2246 <td valign="top" >Min=0, Max= SDVO dependent</td>
2247 <td valign="top" >Connector</td>
2248 <td valign="top" >TBD</td>
2249 </tr>
2250 <tr>
2251 <td valign="top" >“flicker_filter_adaptive”</td>
2252 <td valign="top" >RANGE</td>
2253 <td valign="top" >Min=0, Max= SDVO dependent</td>
2254 <td valign="top" >Connector</td>
2255 <td valign="top" >TBD</td>
2256 </tr>
2257 <tr>
2258 <td valign="top" >“flicker_filter_2d”</td>
2259 <td valign="top" >RANGE</td>
2260 <td valign="top" >Min=0, Max= SDVO dependent</td>
2261 <td valign="top" >Connector</td>
2262 <td valign="top" >TBD</td>
2263 </tr>
2264 <tr>
2265 <td valign="top" >“tv_chroma_filter”</td>
2266 <td valign="top" >RANGE</td>
2267 <td valign="top" >Min=0, Max= SDVO dependent</td>
2268 <td valign="top" >Connector</td>
2269 <td valign="top" >TBD</td>
2270 </tr>
2271 <tr>
2272 <td valign="top" >“tv_luma_filter”</td>
2273 <td valign="top" >RANGE</td>
2274 <td valign="top" >Min=0, Max= SDVO dependent</td>
2275 <td valign="top" >Connector</td>
2276 <td valign="top" >TBD</td>
2277 </tr>
2278 <tr>
2279 <td valign="top" >“dot_crawl”</td>
2280 <td valign="top" >RANGE</td>
2281 <td valign="top" >Min=0, Max=1</td>
2282 <td valign="top" >Connector</td>
2283 <td valign="top" >TBD</td>
2284 </tr>
2285 <tr>
2286 <td valign="top" >SDVO-TV/LVDS</td>
2287 <td valign="top" >“brightness”</td>
2288 <td valign="top" >RANGE</td>
2289 <td valign="top" >Min=0, Max= SDVO dependent</td>
2290 <td valign="top" >Connector</td>
2291 <td valign="top" >TBD</td>
2292 </tr>
2293 <tr>
2294 <td rowspan="2" valign="top" >CDV gma-500</td>
2295 <td rowspan="2" valign="top" >Generic</td>
2296 <td valign="top" >"Broadcast RGB"</td>
2297 <td valign="top" >ENUM</td>
2298 <td valign="top" >{ “Full”, “Limited 16:235” }</td>
2299 <td valign="top" >Connector</td>
2300 <td valign="top" >TBD</td>
2301 </tr>
2302 <tr>
2303 <td valign="top" >"Broadcast RGB"</td>
2304 <td valign="top" >ENUM</td>
2305 <td valign="top" >{ “off”, “auto”, “on” }</td>
2306 <td valign="top" >Connector</td>
2307 <td valign="top" >TBD</td>
2308 </tr>
2309 <tr>
2310 <td rowspan="19" valign="top" >Poulsbo</td>
2311 <td rowspan="1" valign="top" >Generic</td>
2312 <td valign="top" >“backlight”</td>
2313 <td valign="top" >RANGE</td>
2314 <td valign="top" >Min=0, Max=100</td>
2315 <td valign="top" >Connector</td>
2316 <td valign="top" >TBD</td>
2317 </tr>
2318 <tr>
2319 <td rowspan="17" valign="top" >SDVO-TV</td>
2320 <td valign="top" >“mode”</td>
2321 <td valign="top" >ENUM</td>
2322 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2323 <td valign="top" >Connector</td>
2324 <td valign="top" >TBD</td>
2325 </tr>
2326 <tr>
2327 <td valign="top" >"left_margin"</td>
2328 <td valign="top" >RANGE</td>
2329 <td valign="top" >Min=0, Max= SDVO dependent</td>
2330 <td valign="top" >Connector</td>
2331 <td valign="top" >TBD</td>
2332 </tr>
2333 <tr>
2334 <td valign="top" >"right_margin"</td>
2335 <td valign="top" >RANGE</td>
2336 <td valign="top" >Min=0, Max= SDVO dependent</td>
2337 <td valign="top" >Connector</td>
2338 <td valign="top" >TBD</td>
2339 </tr>
2340 <tr>
2341 <td valign="top" >"top_margin"</td>
2342 <td valign="top" >RANGE</td>
2343 <td valign="top" >Min=0, Max= SDVO dependent</td>
2344 <td valign="top" >Connector</td>
2345 <td valign="top" >TBD</td>
2346 </tr>
2347 <tr>
2348 <td valign="top" >"bottom_margin"</td>
2349 <td valign="top" >RANGE</td>
2350 <td valign="top" >Min=0, Max= SDVO dependent</td>
2351 <td valign="top" >Connector</td>
2352 <td valign="top" >TBD</td>
2353 </tr>
2354 <tr>
2355 <td valign="top" >“hpos”</td>
2356 <td valign="top" >RANGE</td>
2357 <td valign="top" >Min=0, Max= SDVO dependent</td>
2358 <td valign="top" >Connector</td>
2359 <td valign="top" >TBD</td>
2360 </tr>
2361 <tr>
2362 <td valign="top" >“vpos”</td>
2363 <td valign="top" >RANGE</td>
2364 <td valign="top" >Min=0, Max= SDVO dependent</td>
2365 <td valign="top" >Connector</td>
2366 <td valign="top" >TBD</td>
2367 </tr>
2368 <tr>
2369 <td valign="top" >“contrast”</td>
2370 <td valign="top" >RANGE</td>
2371 <td valign="top" >Min=0, Max= SDVO dependent</td>
2372 <td valign="top" >Connector</td>
2373 <td valign="top" >TBD</td>
2374 </tr>
2375 <tr>
2376 <td valign="top" >“saturation”</td>
2377 <td valign="top" >RANGE</td>
2378 <td valign="top" >Min=0, Max= SDVO dependent</td>
2379 <td valign="top" >Connector</td>
2380 <td valign="top" >TBD</td>
2381 </tr>
2382 <tr>
2383 <td valign="top" >“hue”</td>
2384 <td valign="top" >RANGE</td>
2385 <td valign="top" >Min=0, Max= SDVO dependent</td>
2386 <td valign="top" >Connector</td>
2387 <td valign="top" >TBD</td>
2388 </tr>
2389 <tr>
2390 <td valign="top" >“sharpness”</td>
2391 <td valign="top" >RANGE</td>
2392 <td valign="top" >Min=0, Max= SDVO dependent</td>
2393 <td valign="top" >Connector</td>
2394 <td valign="top" >TBD</td>
2395 </tr>
2396 <tr>
2397 <td valign="top" >“flicker_filter”</td>
2398 <td valign="top" >RANGE</td>
2399 <td valign="top" >Min=0, Max= SDVO dependent</td>
2400 <td valign="top" >Connector</td>
2401 <td valign="top" >TBD</td>
2402 </tr>
2403 <tr>
2404 <td valign="top" >“flicker_filter_adaptive”</td>
2405 <td valign="top" >RANGE</td>
2406 <td valign="top" >Min=0, Max= SDVO dependent</td>
2407 <td valign="top" >Connector</td>
2408 <td valign="top" >TBD</td>
2409 </tr>
2410 <tr>
2411 <td valign="top" >“flicker_filter_2d”</td>
2412 <td valign="top" >RANGE</td>
2413 <td valign="top" >Min=0, Max= SDVO dependent</td>
2414 <td valign="top" >Connector</td>
2415 <td valign="top" >TBD</td>
2416 </tr>
2417 <tr>
2418 <td valign="top" >“tv_chroma_filter”</td>
2419 <td valign="top" >RANGE</td>
2420 <td valign="top" >Min=0, Max= SDVO dependent</td>
2421 <td valign="top" >Connector</td>
2422 <td valign="top" >TBD</td>
2423 </tr>
2424 <tr>
2425 <td valign="top" >“tv_luma_filter”</td>
2426 <td valign="top" >RANGE</td>
2427 <td valign="top" >Min=0, Max= SDVO dependent</td>
2428 <td valign="top" >Connector</td>
2429 <td valign="top" >TBD</td>
2430 </tr>
2431 <tr>
2432 <td valign="top" >“dot_crawl”</td>
2433 <td valign="top" >RANGE</td>
2434 <td valign="top" >Min=0, Max=1</td>
2435 <td valign="top" >Connector</td>
2436 <td valign="top" >TBD</td>
2437 </tr>
2438 <tr>
2439 <td valign="top" >SDVO-TV/LVDS</td>
2440 <td valign="top" >“brightness”</td>
2441 <td valign="top" >RANGE</td>
2442 <td valign="top" >Min=0, Max= SDVO dependent</td>
2443 <td valign="top" >Connector</td>
2444 <td valign="top" >TBD</td>
2445 </tr>
2446 <tr>
2447 <td rowspan="11" valign="top" >armada</td>
2448 <td rowspan="2" valign="top" >CRTC</td>
2449 <td valign="top" >"CSC_YUV"</td>
2450 <td valign="top" >ENUM</td>
2451 <td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
2452 <td valign="top" >CRTC</td>
2453 <td valign="top" >TBD</td>
2454 </tr>
2455 <tr>
2456 <td valign="top" >"CSC_RGB"</td>
2457 <td valign="top" >ENUM</td>
2458 <td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
2459 <td valign="top" >CRTC</td>
2460 <td valign="top" >TBD</td>
2461 </tr>
2462 <tr>
2463 <td rowspan="9" valign="top" >Overlay</td>
2464 <td valign="top" >"colorkey"</td>
2465 <td valign="top" >RANGE</td>
2466 <td valign="top" >Min=0, Max=0xffffff</td>
2467 <td valign="top" >Plane</td>
2468 <td valign="top" >TBD</td>
2469 </tr>
2470 <tr>
2471 <td valign="top" >"colorkey_min"</td>
2472 <td valign="top" >RANGE</td>
2473 <td valign="top" >Min=0, Max=0xffffff</td>
2474 <td valign="top" >Plane</td>
2475 <td valign="top" >TBD</td>
2476 </tr>
2477 <tr>
2478 <td valign="top" >"colorkey_max"</td>
2479 <td valign="top" >RANGE</td>
2480 <td valign="top" >Min=0, Max=0xffffff</td>
2481 <td valign="top" >Plane</td>
2482 <td valign="top" >TBD</td>
2483 </tr>
2484 <tr>
2485 <td valign="top" >"colorkey_val"</td>
2486 <td valign="top" >RANGE</td>
2487 <td valign="top" >Min=0, Max=0xffffff</td>
2488 <td valign="top" >Plane</td>
2489 <td valign="top" >TBD</td>
2490 </tr>
2491 <tr>
2492 <td valign="top" >"colorkey_alpha"</td>
2493 <td valign="top" >RANGE</td>
2494 <td valign="top" >Min=0, Max=0xffffff</td>
2495 <td valign="top" >Plane</td>
2496 <td valign="top" >TBD</td>
2497 </tr>
2498 <tr>
2499 <td valign="top" >"colorkey_mode"</td>
2500 <td valign="top" >ENUM</td>
2501 <td valign="top" >{ "disabled", "Y component", "U component"
2502 , "V component", "RGB", “R component", "G component", "B component" }</td>
2503 <td valign="top" >Plane</td>
2504 <td valign="top" >TBD</td>
2505 </tr>
2506 <tr>
2507 <td valign="top" >"brightness"</td>
2508 <td valign="top" >RANGE</td>
2509 <td valign="top" >Min=0, Max=256 + 255</td>
2510 <td valign="top" >Plane</td>
2511 <td valign="top" >TBD</td>
2512 </tr>
2513 <tr>
2514 <td valign="top" >"contrast"</td>
2515 <td valign="top" >RANGE</td>
2516 <td valign="top" >Min=0, Max=0x7fff</td>
2517 <td valign="top" >Plane</td>
2518 <td valign="top" >TBD</td>
2519 </tr>
2520 <tr>
2521 <td valign="top" >"saturation"</td>
2522 <td valign="top" >RANGE</td>
2523 <td valign="top" >Min=0, Max=0x7fff</td>
2524 <td valign="top" >Plane</td>
2525 <td valign="top" >TBD</td>
2526 </tr>
2527 <tr>
2528 <td rowspan="2" valign="top" >exynos</td>
2529 <td valign="top" >CRTC</td>
2530 <td valign="top" >“mode”</td>
2531 <td valign="top" >ENUM</td>
2532 <td valign="top" >{ "normal", "blank" }</td>
2533 <td valign="top" >CRTC</td>
2534 <td valign="top" >TBD</td>
2535 </tr>
2536 <tr>
2537 <td valign="top" >Overlay</td>
2538 <td valign="top" >“zpos”</td>
2539 <td valign="top" >RANGE</td>
2540 <td valign="top" >Min=0, Max=MAX_PLANE-1</td>
2541 <td valign="top" >Plane</td>
2542 <td valign="top" >TBD</td>
2543 </tr>
2544 <tr>
2545 <td rowspan="2" valign="top" >i2c/ch7006_drv</td>
2546 <td valign="top" >Generic</td>
2547 <td valign="top" >“scale”</td>
2548 <td valign="top" >RANGE</td>
2549 <td valign="top" >Min=0, Max=2</td>
2550 <td valign="top" >Connector</td>
2551 <td valign="top" >TBD</td>
2552 </tr>
2553 <tr>
2554 <td rowspan="1" valign="top" >TV</td>
2555 <td valign="top" >“mode”</td>
2556 <td valign="top" >ENUM</td>
2557 <td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
2558 , "PAL-60", "NTSC-M", "NTSC-J" }</td>
2559 <td valign="top" >Connector</td>
2560 <td valign="top" >TBD</td>
2561 </tr>
2562 <tr>
2563 <td rowspan="15" valign="top" >nouveau</td>
2564 <td rowspan="6" valign="top" >NV10 Overlay</td>
2565 <td valign="top" >"colorkey"</td>
2566 <td valign="top" >RANGE</td>
2567 <td valign="top" >Min=0, Max=0x01ffffff</td>
2568 <td valign="top" >Plane</td>
2569 <td valign="top" >TBD</td>
2570 </tr>
2571 <tr>
2572 <td valign="top" >“contrast”</td>
2573 <td valign="top" >RANGE</td>
2574 <td valign="top" >Min=0, Max=8192-1</td>
2575 <td valign="top" >Plane</td>
2576 <td valign="top" >TBD</td>
2577 </tr>
2578 <tr>
2579 <td valign="top" >“brightness”</td>
2580 <td valign="top" >RANGE</td>
2581 <td valign="top" >Min=0, Max=1024</td>
2582 <td valign="top" >Plane</td>
2583 <td valign="top" >TBD</td>
2584 </tr>
2585 <tr>
2586 <td valign="top" >“hue”</td>
2587 <td valign="top" >RANGE</td>
2588 <td valign="top" >Min=0, Max=359</td>
2589 <td valign="top" >Plane</td>
2590 <td valign="top" >TBD</td>
2591 </tr>
2592 <tr>
2593 <td valign="top" >“saturation”</td>
2594 <td valign="top" >RANGE</td>
2595 <td valign="top" >Min=0, Max=8192-1</td>
2596 <td valign="top" >Plane</td>
2597 <td valign="top" >TBD</td>
2598 </tr>
2599 <tr>
2600 <td valign="top" >“iturbt_709”</td>
2601 <td valign="top" >RANGE</td>
2602 <td valign="top" >Min=0, Max=1</td>
2603 <td valign="top" >Plane</td>
2604 <td valign="top" >TBD</td>
2605 </tr>
2606 <tr>
2607 <td rowspan="2" valign="top" >Nv04 Overlay</td>
2608 <td valign="top" >“colorkey”</td>
2609 <td valign="top" >RANGE</td>
2610 <td valign="top" >Min=0, Max=0x01ffffff</td>
2611 <td valign="top" >Plane</td>
2612 <td valign="top" >TBD</td>
2613 </tr>
2614 <tr>
2615 <td valign="top" >“brightness”</td>
2616 <td valign="top" >RANGE</td>
2617 <td valign="top" >Min=0, Max=1024</td>
2618 <td valign="top" >Plane</td>
2619 <td valign="top" >TBD</td>
2620 </tr>
2621 <tr>
2622 <td rowspan="7" valign="top" >Display</td>
2623 <td valign="top" >“dithering mode”</td>
2624 <td valign="top" >ENUM</td>
2625 <td valign="top" >{ "auto", "off", "on" }</td>
2626 <td valign="top" >Connector</td>
2627 <td valign="top" >TBD</td>
2628 </tr>
2629 <tr>
2630 <td valign="top" >“dithering depth”</td>
2631 <td valign="top" >ENUM</td>
2632 <td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
2633 <td valign="top" >Connector</td>
2634 <td valign="top" >TBD</td>
2635 </tr>
2636 <tr>
2637 <td valign="top" >“underscan”</td>
2638 <td valign="top" >ENUM</td>
2639 <td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
2640 <td valign="top" >Connector</td>
2641 <td valign="top" >TBD</td>
2642 </tr>
2643 <tr>
2644 <td valign="top" >“underscan hborder”</td>
2645 <td valign="top" >RANGE</td>
2646 <td valign="top" >Min=0, Max=128</td>
2647 <td valign="top" >Connector</td>
2648 <td valign="top" >TBD</td>
2649 </tr>
2650 <tr>
2651 <td valign="top" >“underscan vborder”</td>
2652 <td valign="top" >RANGE</td>
2653 <td valign="top" >Min=0, Max=128</td>
2654 <td valign="top" >Connector</td>
2655 <td valign="top" >TBD</td>
2656 </tr>
2657 <tr>
2658 <td valign="top" >“vibrant hue”</td>
2659 <td valign="top" >RANGE</td>
2660 <td valign="top" >Min=0, Max=180</td>
2661 <td valign="top" >Connector</td>
2662 <td valign="top" >TBD</td>
2663 </tr>
2664 <tr>
2665 <td valign="top" >“color vibrance”</td>
2666 <td valign="top" >RANGE</td>
2667 <td valign="top" >Min=0, Max=200</td>
2668 <td valign="top" >Connector</td>
2669 <td valign="top" >TBD</td>
2670 </tr>
2671 <tr>
2672 <td valign="top" >omap</td>
2673 <td valign="top" >Generic</td>
2674 <td valign="top" >“zorder”</td>
2675 <td valign="top" >RANGE</td>
2676 <td valign="top" >Min=0, Max=3</td>
2677 <td valign="top" >CRTC, Plane</td>
2678 <td valign="top" >TBD</td>
2679 </tr>
2680 <tr>
2681 <td valign="top" >qxl</td>
2682 <td valign="top" >Generic</td>
2683 <td valign="top" >“hotplug_mode_update"</td>
2684 <td valign="top" >RANGE</td>
2685 <td valign="top" >Min=0, Max=1</td>
2686 <td valign="top" >Connector</td>
2687 <td valign="top" >TBD</td>
2688 </tr>
2689 <tr>
2690 <td rowspan="9" valign="top" >radeon</td>
2691 <td valign="top" >DVI-I</td>
2692 <td valign="top" >“coherent”</td>
2693 <td valign="top" >RANGE</td>
2694 <td valign="top" >Min=0, Max=1</td>
2695 <td valign="top" >Connector</td>
2696 <td valign="top" >TBD</td>
2697 </tr>
2698 <tr>
2699 <td valign="top" >DAC enable load detect</td>
2700 <td valign="top" >“load detection”</td>
2701 <td valign="top" >RANGE</td>
2702 <td valign="top" >Min=0, Max=1</td>
2703 <td valign="top" >Connector</td>
2704 <td valign="top" >TBD</td>
2705 </tr>
2706 <tr>
2707 <td valign="top" >TV Standard</td>
2708 <td valign="top" >"tv standard"</td>
2709 <td valign="top" >ENUM</td>
2710 <td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
2711 , "scart-pal", "pal-cn", "secam" }</td>
2712 <td valign="top" >Connector</td>
2713 <td valign="top" >TBD</td>
2714 </tr>
2715 <tr>
2716 <td valign="top" >legacy TMDS PLL detect</td>
2717 <td valign="top" >"tmds_pll"</td>
2718 <td valign="top" >ENUM</td>
2719 <td valign="top" >{ "driver", "bios" }</td>
2720 <td valign="top" >-</td>
2721 <td valign="top" >TBD</td>
2722 </tr>
2723 <tr>
2724 <td rowspan="3" valign="top" >Underscan</td>
2725 <td valign="top" >"underscan"</td>
2726 <td valign="top" >ENUM</td>
2727 <td valign="top" >{ "off", "on", "auto" }</td>
2728 <td valign="top" >Connector</td>
2729 <td valign="top" >TBD</td>
2730 </tr>
2731 <tr>
2732 <td valign="top" >"underscan hborder"</td>
2733 <td valign="top" >RANGE</td>
2734 <td valign="top" >Min=0, Max=128</td>
2735 <td valign="top" >Connector</td>
2736 <td valign="top" >TBD</td>
2737 </tr>
2738 <tr>
2739 <td valign="top" >"underscan vborder"</td>
2740 <td valign="top" >RANGE</td>
2741 <td valign="top" >Min=0, Max=128</td>
2742 <td valign="top" >Connector</td>
2743 <td valign="top" >TBD</td>
2744 </tr>
2745 <tr>
2746 <td valign="top" >Audio</td>
2747 <td valign="top" >“audio”</td>
2748 <td valign="top" >ENUM</td>
2749 <td valign="top" >{ "off", "on", "auto" }</td>
2750 <td valign="top" >Connector</td>
2751 <td valign="top" >TBD</td>
2752 </tr>
2753 <tr>
2754 <td valign="top" >FMT Dithering</td>
2755 <td valign="top" >“dither”</td>
2756 <td valign="top" >ENUM</td>
2757 <td valign="top" >{ "off", "on" }</td>
2758 <td valign="top" >Connector</td>
2759 <td valign="top" >TBD</td>
2760 </tr>
2761 <tr>
2762 <td rowspan="3" valign="top" >rcar-du</td>
2763 <td rowspan="3" valign="top" >Generic</td>
2764 <td valign="top" >"alpha"</td>
2765 <td valign="top" >RANGE</td>
2766 <td valign="top" >Min=0, Max=255</td>
2767 <td valign="top" >Plane</td>
2768 <td valign="top" >TBD</td>
2769 </tr>
2770 <tr>
2771 <td valign="top" >"colorkey"</td>
2772 <td valign="top" >RANGE</td>
2773 <td valign="top" >Min=0, Max=0x01ffffff</td>
2774 <td valign="top" >Plane</td>
2775 <td valign="top" >TBD</td>
2776 </tr>
2777 <tr>
2778 <td valign="top" >"zpos"</td>
2779 <td valign="top" >RANGE</td>
2780 <td valign="top" >Min=1, Max=7</td>
2781 <td valign="top" >Plane</td>
2782 <td valign="top" >TBD</td>
2783 </tr>
2784 </tbody>
2785 </table>
2786 </sect2>
2787 </sect1>
2788
2789 <!-- Internals: vertical blanking -->
2790
2791 <sect1 id="drm-vertical-blank">
2792 <title>Vertical Blanking</title>
2793 <para>
2794 Vertical blanking plays a major role in graphics rendering. To achieve
2795 tear-free display, users must synchronize page flips and/or rendering to
2796 vertical blanking. The DRM API offers ioctls to perform page flips
2797 synchronized to vertical blanking and wait for vertical blanking.
2798 </para>
2799 <para>
2800 The DRM core handles most of the vertical blanking management logic, which
2801 involves filtering out spurious interrupts, keeping race-free blanking
2802 counters, coping with counter wrap-around and resets and keeping use
2803 counts. It relies on the driver to generate vertical blanking interrupts
2804 and optionally provide a hardware vertical blanking counter. Drivers must
2805 implement the following operations.
2806 </para>
2807 <itemizedlist>
2808 <listitem>
2809 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
2810 void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
2811 <para>
2812 Enable or disable vertical blanking interrupts for the given CRTC.
2813 </para>
2814 </listitem>
2815 <listitem>
2816 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
2817 <para>
2818 Retrieve the value of the vertical blanking counter for the given
2819 CRTC. If the hardware maintains a vertical blanking counter its value
2820 should be returned. Otherwise drivers can use the
2821 <function>drm_vblank_count</function> helper function to handle this
2822 operation.
2823 </para>
2824 </listitem>
2825 </itemizedlist>
2826 <para>
2827 Drivers must initialize the vertical blanking handling core with a call to
2828 <function>drm_vblank_init</function> in their
2829 <methodname>load</methodname> operation. The function will set the struct
2830 <structname>drm_device</structname>
2831 <structfield>vblank_disable_allowed</structfield> field to 0. This will
2832 keep vertical blanking interrupts enabled permanently until the first mode
2833 set operation, where <structfield>vblank_disable_allowed</structfield> is
2834 set to 1. The reason behind this is not clear. Drivers can set the field
2835 to 1 after <function>calling drm_vblank_init</function> to make vertical
2836 blanking interrupts dynamically managed from the beginning.
2837 </para>
2838 <para>
2839 Vertical blanking interrupts can be enabled by the DRM core or by drivers
2840 themselves (for instance to handle page flipping operations). The DRM core
2841 maintains a vertical blanking use count to ensure that the interrupts are
2842 not disabled while a user still needs them. To increment the use count,
2843 drivers call <function>drm_vblank_get</function>. Upon return vertical
2844 blanking interrupts are guaranteed to be enabled.
2845 </para>
2846 <para>
2847 To decrement the use count drivers call
2848 <function>drm_vblank_put</function>. Only when the use count drops to zero
2849 will the DRM core disable the vertical blanking interrupts after a delay
2850 by scheduling a timer. The delay is accessible through the vblankoffdelay
2851 module parameter or the <varname>drm_vblank_offdelay</varname> global
2852 variable and expressed in milliseconds. Its default value is 5000 ms.
2853 Zero means never disable, and a negative value means disable immediately.
2854 Drivers may override the behaviour by setting the
2855 <structname>drm_device</structname>
2856 <structfield>vblank_disable_immediate</structfield> flag, which when set
2857 causes vblank interrupts to be disabled immediately regardless of the
2858 drm_vblank_offdelay value. The flag should only be set if there's a
2859 properly working hardware vblank counter present.
2860 </para>
2861 <para>
2862 When a vertical blanking interrupt occurs drivers only need to call the
2863 <function>drm_handle_vblank</function> function to account for the
2864 interrupt.
2865 </para>
2866 <para>
2867 Resources allocated by <function>drm_vblank_init</function> must be freed
2868 with a call to <function>drm_vblank_cleanup</function> in the driver
2869 <methodname>unload</methodname> operation handler.
2870 </para>
2871 <sect2>
2872 <title>Vertical Blanking and Interrupt Handling Functions Reference</title>
2873 !Edrivers/gpu/drm/drm_irq.c
2874 !Finclude/drm/drmP.h drm_crtc_vblank_waitqueue
2875 </sect2>
2876 </sect1>
2877
2878 <!-- Internals: open/close, file operations and ioctls -->
2879
2880 <sect1>
2881 <title>Open/Close, File Operations and IOCTLs</title>
2882 <sect2>
2883 <title>Open and Close</title>
2884 <synopsis>int (*firstopen) (struct drm_device *);
2885 void (*lastclose) (struct drm_device *);
2886 int (*open) (struct drm_device *, struct drm_file *);
2887 void (*preclose) (struct drm_device *, struct drm_file *);
2888 void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
2889 <abstract>Open and close handlers. None of those methods are mandatory.
2890 </abstract>
2891 <para>
2892 The <methodname>firstopen</methodname> method is called by the DRM core
2893 for legacy UMS (User Mode Setting) drivers only when an application
2894 opens a device that has no other opened file handle. UMS drivers can
2895 implement it to acquire device resources. KMS drivers can't use the
2896 method and must acquire resources in the <methodname>load</methodname>
2897 method instead.
2898 </para>
2899 <para>
2900 Similarly the <methodname>lastclose</methodname> method is called when
2901 the last application holding a file handle opened on the device closes
2902 it, for both UMS and KMS drivers. Additionally, the method is also
2903 called at module unload time or, for hot-pluggable devices, when the
2904 device is unplugged. The <methodname>firstopen</methodname> and
2905 <methodname>lastclose</methodname> calls can thus be unbalanced.
2906 </para>
2907 <para>
2908 The <methodname>open</methodname> method is called every time the device
2909 is opened by an application. Drivers can allocate per-file private data
2910 in this method and store them in the struct
2911 <structname>drm_file</structname> <structfield>driver_priv</structfield>
2912 field. Note that the <methodname>open</methodname> method is called
2913 before <methodname>firstopen</methodname>.
2914 </para>
2915 <para>
2916 The close operation is split into <methodname>preclose</methodname> and
2917 <methodname>postclose</methodname> methods. Drivers must stop and
2918 cleanup all per-file operations in the <methodname>preclose</methodname>
2919 method. For instance pending vertical blanking and page flip events must
2920 be cancelled. No per-file operation is allowed on the file handle after
2921 returning from the <methodname>preclose</methodname> method.
2922 </para>
2923 <para>
2924 Finally the <methodname>postclose</methodname> method is called as the
2925 last step of the close operation, right before calling the
2926 <methodname>lastclose</methodname> method if no other open file handle
2927 exists for the device. Drivers that have allocated per-file private data
2928 in the <methodname>open</methodname> method should free it here.
2929 </para>
2930 <para>
2931 The <methodname>lastclose</methodname> method should restore CRTC and
2932 plane properties to default value, so that a subsequent open of the
2933 device will not inherit state from the previous user. It can also be
2934 used to execute delayed power switching state changes, e.g. in
2935 conjunction with the vga_switcheroo infrastructure (see
2936 <xref linkend="vga_switcheroo"/>). Beyond that KMS drivers should not
2937 do any further cleanup. Only legacy UMS drivers might need to clean up
2938 device state so that the vga console or an independent fbdev driver
2939 could take over.
2940 </para>
2941 </sect2>
2942 <sect2>
2943 <title>File Operations</title>
2944 !Pdrivers/gpu/drm/drm_fops.c file operations
2945 !Edrivers/gpu/drm/drm_fops.c
2946 </sect2>
2947 <sect2>
2948 <title>IOCTLs</title>
2949 <synopsis>struct drm_ioctl_desc *ioctls;
2950 int num_ioctls;</synopsis>
2951 <abstract>Driver-specific ioctls descriptors table.</abstract>
2952 <para>
2953 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
2954 descriptors table is indexed by the ioctl number offset from the base
2955 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
2956 table entries.
2957 </para>
2958 <para>
2959 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
2960 <para>
2961 <parameter>ioctl</parameter> is the ioctl name. Drivers must define
2962 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
2963 offset from DRM_COMMAND_BASE and the ioctl number respectively. The
2964 first macro is private to the device while the second must be exposed
2965 to userspace in a public header.
2966 </para>
2967 <para>
2968 <parameter>func</parameter> is a pointer to the ioctl handler function
2969 compatible with the <type>drm_ioctl_t</type> type.
2970 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
2971 struct drm_file *file_priv);</programlisting>
2972 </para>
2973 <para>
2974 <parameter>flags</parameter> is a bitmask combination of the following
2975 values. It restricts how the ioctl is allowed to be called.
2976 <itemizedlist>
2977 <listitem><para>
2978 DRM_AUTH - Only authenticated callers allowed
2979 </para></listitem>
2980 <listitem><para>
2981 DRM_MASTER - The ioctl can only be called on the master file
2982 handle
2983 </para></listitem>
2984 <listitem><para>
2985 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
2986 </para></listitem>
2987 <listitem><para>
2988 DRM_CONTROL_ALLOW - The ioctl can only be called on a control
2989 device
2990 </para></listitem>
2991 <listitem><para>
2992 DRM_UNLOCKED - The ioctl handler will be called without locking
2993 the DRM global mutex. This is the enforced default for kms drivers
2994 (i.e. using the DRIVER_MODESET flag) and hence shouldn't be used
2995 any more for new drivers.
2996 </para></listitem>
2997 </itemizedlist>
2998 </para>
2999 </para>
3000 !Edrivers/gpu/drm/drm_ioctl.c
3001 </sect2>
3002 </sect1>
3003 <sect1>
3004 <title>Legacy Support Code</title>
3005 <para>
3006 The section very briefly covers some of the old legacy support code which
3007 is only used by old DRM drivers which have done a so-called shadow-attach
3008 to the underlying device instead of registering as a real driver. This
3009 also includes some of the old generic buffer management and command
3010 submission code. Do not use any of this in new and modern drivers.
3011 </para>
3012
3013 <sect2>
3014 <title>Legacy Suspend/Resume</title>
3015 <para>
3016 The DRM core provides some suspend/resume code, but drivers wanting full
3017 suspend/resume support should provide save() and restore() functions.
3018 These are called at suspend, hibernate, or resume time, and should perform
3019 any state save or restore required by your device across suspend or
3020 hibernate states.
3021 </para>
3022 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
3023 int (*resume) (struct drm_device *);</synopsis>
3024 <para>
3025 Those are legacy suspend and resume methods which
3026 <emphasis>only</emphasis> work with the legacy shadow-attach driver
3027 registration functions. New driver should use the power management
3028 interface provided by their bus type (usually through
3029 the struct <structname>device_driver</structname> dev_pm_ops) and set
3030 these methods to NULL.
3031 </para>
3032 </sect2>
3033
3034 <sect2>
3035 <title>Legacy DMA Services</title>
3036 <para>
3037 This should cover how DMA mapping etc. is supported by the core.
3038 These functions are deprecated and should not be used.
3039 </para>
3040 </sect2>
3041 </sect1>
3042 </chapter>
3043
3044 <!-- TODO
3045
3046 - Add a glossary
3047 - Document the struct_mutex catch-all lock
3048 - Document connector properties
3049
3050 - Why is the load method optional?
3051 - What are drivers supposed to set the initial display state to, and how?
3052 Connector's DPMS states are not initialized and are thus equal to
3053 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
3054 drm_helper_disable_unused_functions(), which disables unused encoders and
3055 CRTCs, but doesn't touch the connectors' DPMS state, and
3056 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
3057 that don't implement (or just don't use) fbcon compatibility need to call
3058 those functions themselves?
3059 - KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
3060 around mode setting. Should this be done in the DRM core?
3061 - vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
3062 call and never set back to 0. It seems to be safe to permanently set it to 1
3063 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
3064 well. This should be investigated.
3065 - crtc and connector .save and .restore operations are only used internally in
3066 drivers, should they be removed from the core?
3067 - encoder mid-layer .save and .restore operations are only used internally in
3068 drivers, should they be removed from the core?
3069 - encoder mid-layer .detect operation is only used internally in drivers,
3070 should it be removed from the core?
3071 -->
3072
3073 <!-- External interfaces -->
3074
3075 <chapter id="drmExternals">
3076 <title>Userland interfaces</title>
3077 <para>
3078 The DRM core exports several interfaces to applications,
3079 generally intended to be used through corresponding libdrm
3080 wrapper functions. In addition, drivers export device-specific
3081 interfaces for use by userspace drivers &amp; device-aware
3082 applications through ioctls and sysfs files.
3083 </para>
3084 <para>
3085 External interfaces include: memory mapping, context management,
3086 DMA operations, AGP management, vblank control, fence
3087 management, memory management, and output management.
3088 </para>
3089 <para>
3090 Cover generic ioctls and sysfs layout here. We only need high-level
3091 info, since man pages should cover the rest.
3092 </para>
3093
3094 <!-- External: render nodes -->
3095
3096 <sect1>
3097 <title>Render nodes</title>
3098 <para>
3099 DRM core provides multiple character-devices for user-space to use.
3100 Depending on which device is opened, user-space can perform a different
3101 set of operations (mainly ioctls). The primary node is always created
3102 and called card&lt;num&gt;. Additionally, a currently
3103 unused control node, called controlD&lt;num&gt; is also
3104 created. The primary node provides all legacy operations and
3105 historically was the only interface used by userspace. With KMS, the
3106 control node was introduced. However, the planned KMS control interface
3107 has never been written and so the control node stays unused to date.
3108 </para>
3109 <para>
3110 With the increased use of offscreen renderers and GPGPU applications,
3111 clients no longer require running compositors or graphics servers to
3112 make use of a GPU. But the DRM API required unprivileged clients to
3113 authenticate to a DRM-Master prior to getting GPU access. To avoid this
3114 step and to grant clients GPU access without authenticating, render
3115 nodes were introduced. Render nodes solely serve render clients, that
3116 is, no modesetting or privileged ioctls can be issued on render nodes.
3117 Only non-global rendering commands are allowed. If a driver supports
3118 render nodes, it must advertise it via the DRIVER_RENDER
3119 DRM driver capability. If not supported, the primary node must be used
3120 for render clients together with the legacy drmAuth authentication
3121 procedure.
3122 </para>
3123 <para>
3124 If a driver advertises render node support, DRM core will create a
3125 separate render node called renderD&lt;num&gt;. There will
3126 be one render node per device. No ioctls except PRIME-related ioctls
3127 will be allowed on this node. Especially GEM_OPEN will be
3128 explicitly prohibited. Render nodes are designed to avoid the
3129 buffer-leaks, which occur if clients guess the flink names or mmap
3130 offsets on the legacy interface. Additionally to this basic interface,
3131 drivers must mark their driver-dependent render-only ioctls as
3132 DRM_RENDER_ALLOW so render clients can use them. Driver
3133 authors must be careful not to allow any privileged ioctls on render
3134 nodes.
3135 </para>
3136 <para>
3137 With render nodes, user-space can now control access to the render node
3138 via basic file-system access-modes. A running graphics server which
3139 authenticates clients on the privileged primary/legacy node is no longer
3140 required. Instead, a client can open the render node and is immediately
3141 granted GPU access. Communication between clients (or servers) is done
3142 via PRIME. FLINK from render node to legacy node is not supported. New
3143 clients must not use the insecure FLINK interface.
3144 </para>
3145 <para>
3146 Besides dropping all modeset/global ioctls, render nodes also drop the
3147 DRM-Master concept. There is no reason to associate render clients with
3148 a DRM-Master as they are independent of any graphics server. Besides,
3149 they must work without any running master, anyway.
3150 Drivers must be able to run without a master object if they support
3151 render nodes. If, on the other hand, a driver requires shared state
3152 between clients which is visible to user-space and accessible beyond
3153 open-file boundaries, they cannot support render nodes.
3154 </para>
3155 </sect1>
3156
3157 <!-- External: vblank handling -->
3158
3159 <sect1>
3160 <title>VBlank event handling</title>
3161 <para>
3162 The DRM core exposes two vertical blank related ioctls:
3163 <variablelist>
3164 <varlistentry>
3165 <term>DRM_IOCTL_WAIT_VBLANK</term>
3166 <listitem>
3167 <para>
3168 This takes a struct drm_wait_vblank structure as its argument,
3169 and it is used to block or request a signal when a specified
3170 vblank event occurs.
3171 </para>
3172 </listitem>
3173 </varlistentry>
3174 <varlistentry>
3175 <term>DRM_IOCTL_MODESET_CTL</term>
3176 <listitem>
3177 <para>
3178 This was only used for user-mode-settind drivers around
3179 modesetting changes to allow the kernel to update the vblank
3180 interrupt after mode setting, since on many devices the vertical
3181 blank counter is reset to 0 at some point during modeset. Modern
3182 drivers should not call this any more since with kernel mode
3183 setting it is a no-op.
3184 </para>
3185 </listitem>
3186 </varlistentry>
3187 </variablelist>
3188 </para>
3189 </sect1>
3190
3191 </chapter>
3192 </part>
3193 <part id="drmDrivers">
3194 <title>DRM Drivers</title>
3195
3196 <partintro>
3197 <para>
3198 This second part of the GPU Driver Developer's Guide documents driver
3199 code, implementation details and also all the driver-specific userspace
3200 interfaces. Especially since all hardware-acceleration interfaces to
3201 userspace are driver specific for efficiency and other reasons these
3202 interfaces can be rather substantial. Hence every driver has its own
3203 chapter.
3204 </para>
3205 </partintro>
3206
3207 <chapter id="drmI915">
3208 <title>drm/i915 Intel GFX Driver</title>
3209 <para>
3210 The drm/i915 driver supports all (with the exception of some very early
3211 models) integrated GFX chipsets with both Intel display and rendering
3212 blocks. This excludes a set of SoC platforms with an SGX rendering unit,
3213 those have basic support through the gma500 drm driver.
3214 </para>
3215 <sect1>
3216 <title>Core Driver Infrastructure</title>
3217 <para>
3218 This section covers core driver infrastructure used by both the display
3219 and the GEM parts of the driver.
3220 </para>
3221 <sect2>
3222 <title>Runtime Power Management</title>
3223 !Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm
3224 !Idrivers/gpu/drm/i915/intel_runtime_pm.c
3225 !Idrivers/gpu/drm/i915/intel_uncore.c
3226 </sect2>
3227 <sect2>
3228 <title>Interrupt Handling</title>
3229 !Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling
3230 !Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init
3231 !Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts
3232 !Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts
3233 </sect2>
3234 <sect2>
3235 <title>Intel GVT-g Guest Support(vGPU)</title>
3236 !Pdrivers/gpu/drm/i915/i915_vgpu.c Intel GVT-g guest support
3237 !Idrivers/gpu/drm/i915/i915_vgpu.c
3238 </sect2>
3239 </sect1>
3240 <sect1>
3241 <title>Display Hardware Handling</title>
3242 <para>
3243 This section covers everything related to the display hardware including
3244 the mode setting infrastructure, plane, sprite and cursor handling and
3245 display, output probing and related topics.
3246 </para>
3247 <sect2>
3248 <title>Mode Setting Infrastructure</title>
3249 <para>
3250 The i915 driver is thus far the only DRM driver which doesn't use the
3251 common DRM helper code to implement mode setting sequences. Thus it
3252 has its own tailor-made infrastructure for executing a display
3253 configuration change.
3254 </para>
3255 </sect2>
3256 <sect2>
3257 <title>Frontbuffer Tracking</title>
3258 !Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking
3259 !Idrivers/gpu/drm/i915/intel_frontbuffer.c
3260 !Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb
3261 </sect2>
3262 <sect2>
3263 <title>Display FIFO Underrun Reporting</title>
3264 !Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling
3265 !Idrivers/gpu/drm/i915/intel_fifo_underrun.c
3266 </sect2>
3267 <sect2>
3268 <title>Plane Configuration</title>
3269 <para>
3270 This section covers plane configuration and composition with the
3271 primary plane, sprites, cursors and overlays. This includes the
3272 infrastructure to do atomic vsync'ed updates of all this state and
3273 also tightly coupled topics like watermark setup and computation,
3274 framebuffer compression and panel self refresh.
3275 </para>
3276 </sect2>
3277 <sect2>
3278 <title>Atomic Plane Helpers</title>
3279 !Pdrivers/gpu/drm/i915/intel_atomic_plane.c atomic plane helpers
3280 !Idrivers/gpu/drm/i915/intel_atomic_plane.c
3281 </sect2>
3282 <sect2>
3283 <title>Output Probing</title>
3284 <para>
3285 This section covers output probing and related infrastructure like the
3286 hotplug interrupt storm detection and mitigation code. Note that the
3287 i915 driver still uses most of the common DRM helper code for output
3288 probing, so those sections fully apply.
3289 </para>
3290 </sect2>
3291 <sect2>
3292 <title>Hotplug</title>
3293 !Pdrivers/gpu/drm/i915/intel_hotplug.c Hotplug
3294 !Idrivers/gpu/drm/i915/intel_hotplug.c
3295 </sect2>
3296 <sect2>
3297 <title>High Definition Audio</title>
3298 !Pdrivers/gpu/drm/i915/intel_audio.c High Definition Audio over HDMI and Display Port
3299 !Idrivers/gpu/drm/i915/intel_audio.c
3300 !Iinclude/drm/i915_component.h
3301 </sect2>
3302 <sect2>
3303 <title>Panel Self Refresh PSR (PSR/SRD)</title>
3304 !Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD)
3305 !Idrivers/gpu/drm/i915/intel_psr.c
3306 </sect2>
3307 <sect2>
3308 <title>Frame Buffer Compression (FBC)</title>
3309 !Pdrivers/gpu/drm/i915/intel_fbc.c Frame Buffer Compression (FBC)
3310 !Idrivers/gpu/drm/i915/intel_fbc.c
3311 </sect2>
3312 <sect2>
3313 <title>Display Refresh Rate Switching (DRRS)</title>
3314 !Pdrivers/gpu/drm/i915/intel_dp.c Display Refresh Rate Switching (DRRS)
3315 !Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_set_drrs_state
3316 !Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_enable
3317 !Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_disable
3318 !Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_invalidate
3319 !Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_flush
3320 !Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_drrs_init
3321
3322 </sect2>
3323 <sect2>
3324 <title>DPIO</title>
3325 !Pdrivers/gpu/drm/i915/i915_reg.h DPIO
3326 </sect2>
3327
3328 <sect2>
3329 <title>CSR firmware support for DMC</title>
3330 !Pdrivers/gpu/drm/i915/intel_csr.c csr support for dmc
3331 !Idrivers/gpu/drm/i915/intel_csr.c
3332 </sect2>
3333 <sect2>
3334 <title>Video BIOS Table (VBT)</title>
3335 !Pdrivers/gpu/drm/i915/intel_bios.c Video BIOS Table (VBT)
3336 !Idrivers/gpu/drm/i915/intel_bios.c
3337 !Idrivers/gpu/drm/i915/intel_bios.h
3338 </sect2>
3339 </sect1>
3340
3341 <sect1>
3342 <title>Memory Management and Command Submission</title>
3343 <para>
3344 This sections covers all things related to the GEM implementation in the
3345 i915 driver.
3346 </para>
3347 <sect2>
3348 <title>Batchbuffer Parsing</title>
3349 !Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
3350 !Idrivers/gpu/drm/i915/i915_cmd_parser.c
3351 </sect2>
3352 <sect2>
3353 <title>Batchbuffer Pools</title>
3354 !Pdrivers/gpu/drm/i915/i915_gem_batch_pool.c batch pool
3355 !Idrivers/gpu/drm/i915/i915_gem_batch_pool.c
3356 </sect2>
3357 <sect2>
3358 <title>Logical Rings, Logical Ring Contexts and Execlists</title>
3359 !Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
3360 !Idrivers/gpu/drm/i915/intel_lrc.c
3361 </sect2>
3362 <sect2>
3363 <title>Global GTT views</title>
3364 !Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views
3365 !Idrivers/gpu/drm/i915/i915_gem_gtt.c
3366 </sect2>
3367 <sect2>
3368 <title>GTT Fences and Swizzling</title>
3369 !Idrivers/gpu/drm/i915/i915_gem_fence.c
3370 <sect3>
3371 <title>Global GTT Fence Handling</title>
3372 !Pdrivers/gpu/drm/i915/i915_gem_fence.c fence register handling
3373 </sect3>
3374 <sect3>
3375 <title>Hardware Tiling and Swizzling Details</title>
3376 !Pdrivers/gpu/drm/i915/i915_gem_fence.c tiling swizzling details
3377 </sect3>
3378 </sect2>
3379 <sect2>
3380 <title>Object Tiling IOCTLs</title>
3381 !Idrivers/gpu/drm/i915/i915_gem_tiling.c
3382 !Pdrivers/gpu/drm/i915/i915_gem_tiling.c buffer object tiling
3383 </sect2>
3384 <sect2>
3385 <title>Buffer Object Eviction</title>
3386 <para>
3387 This section documents the interface functions for evicting buffer
3388 objects to make space available in the virtual gpu address spaces.
3389 Note that this is mostly orthogonal to shrinking buffer objects
3390 caches, which has the goal to make main memory (shared with the gpu
3391 through the unified memory architecture) available.
3392 </para>
3393 !Idrivers/gpu/drm/i915/i915_gem_evict.c
3394 </sect2>
3395 <sect2>
3396 <title>Buffer Object Memory Shrinking</title>
3397 <para>
3398 This section documents the interface function for shrinking memory
3399 usage of buffer object caches. Shrinking is used to make main memory
3400 available. Note that this is mostly orthogonal to evicting buffer
3401 objects, which has the goal to make space in gpu virtual address
3402 spaces.
3403 </para>
3404 !Idrivers/gpu/drm/i915/i915_gem_shrinker.c
3405 </sect2>
3406 </sect1>
3407 <sect1>
3408 <title>GuC</title>
3409 <sect2>
3410 <title>GuC-specific firmware loader</title>
3411 !Pdrivers/gpu/drm/i915/intel_guc_loader.c GuC-specific firmware loader
3412 !Idrivers/gpu/drm/i915/intel_guc_loader.c
3413 </sect2>
3414 <sect2>
3415 <title>GuC-based command submission</title>
3416 !Pdrivers/gpu/drm/i915/i915_guc_submission.c GuC-based command submission
3417 !Idrivers/gpu/drm/i915/i915_guc_submission.c
3418 </sect2>
3419 <sect2>
3420 <title>GuC Firmware Layout</title>
3421 !Pdrivers/gpu/drm/i915/intel_guc_fwif.h GuC Firmware Layout
3422 </sect2>
3423 </sect1>
3424
3425 <sect1>
3426 <title> Tracing </title>
3427 <para>
3428 This sections covers all things related to the tracepoints implemented in
3429 the i915 driver.
3430 </para>
3431 <sect2>
3432 <title> i915_ppgtt_create and i915_ppgtt_release </title>
3433 !Pdrivers/gpu/drm/i915/i915_trace.h i915_ppgtt_create and i915_ppgtt_release tracepoints
3434 </sect2>
3435 <sect2>
3436 <title> i915_context_create and i915_context_free </title>
3437 !Pdrivers/gpu/drm/i915/i915_trace.h i915_context_create and i915_context_free tracepoints
3438 </sect2>
3439 <sect2>
3440 <title> switch_mm </title>
3441 !Pdrivers/gpu/drm/i915/i915_trace.h switch_mm tracepoint
3442 </sect2>
3443 </sect1>
3444
3445 </chapter>
3446 !Cdrivers/gpu/drm/i915/i915_irq.c
3447 </part>
3448
3449 <part id="vga_switcheroo">
3450 <title>vga_switcheroo</title>
3451 <partintro>
3452 !Pdrivers/gpu/vga/vga_switcheroo.c Overview
3453 </partintro>
3454
3455 <chapter id="modes_of_use">
3456 <title>Modes of Use</title>
3457 <sect1>
3458 <title>Manual switching and manual power control</title>
3459 !Pdrivers/gpu/vga/vga_switcheroo.c Manual switching and manual power control
3460 </sect1>
3461 <sect1>
3462 <title>Driver power control</title>
3463 !Pdrivers/gpu/vga/vga_switcheroo.c Driver power control
3464 </sect1>
3465 </chapter>
3466
3467 <chapter id="api">
3468 <title>API</title>
3469 <sect1>
3470 <title>Public functions</title>
3471 !Edrivers/gpu/vga/vga_switcheroo.c
3472 </sect1>
3473 <sect1>
3474 <title>Public structures</title>
3475 !Finclude/linux/vga_switcheroo.h vga_switcheroo_handler
3476 !Finclude/linux/vga_switcheroo.h vga_switcheroo_client_ops
3477 </sect1>
3478 <sect1>
3479 <title>Public constants</title>
3480 !Finclude/linux/vga_switcheroo.h vga_switcheroo_handler_flags_t
3481 !Finclude/linux/vga_switcheroo.h vga_switcheroo_client_id
3482 !Finclude/linux/vga_switcheroo.h vga_switcheroo_state
3483 </sect1>
3484 <sect1>
3485 <title>Private structures</title>
3486 !Fdrivers/gpu/vga/vga_switcheroo.c vgasr_priv
3487 !Fdrivers/gpu/vga/vga_switcheroo.c vga_switcheroo_client
3488 </sect1>
3489 </chapter>
3490
3491 <chapter id="handlers">
3492 <title>Handlers</title>
3493 <sect1>
3494 <title>apple-gmux Handler</title>
3495 !Pdrivers/platform/x86/apple-gmux.c Overview
3496 !Pdrivers/platform/x86/apple-gmux.c Interrupt
3497 <sect2>
3498 <title>Graphics mux</title>
3499 !Pdrivers/platform/x86/apple-gmux.c Graphics mux
3500 </sect2>
3501 <sect2>
3502 <title>Power control</title>
3503 !Pdrivers/platform/x86/apple-gmux.c Power control
3504 </sect2>
3505 <sect2>
3506 <title>Backlight control</title>
3507 !Pdrivers/platform/x86/apple-gmux.c Backlight control
3508 </sect2>
3509 <sect2>
3510 <title>Public functions</title>
3511 !Iinclude/linux/apple-gmux.h
3512 </sect2>
3513 </sect1>
3514 </chapter>
3515
3516 !Cdrivers/gpu/vga/vga_switcheroo.c
3517 !Cinclude/linux/vga_switcheroo.h
3518 !Cdrivers/platform/x86/apple-gmux.c
3519 </part>
3520
3521 </book>