]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - Documentation/devicetree/bindings/opp/opp.txt
Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-bionic-kernel.git] / Documentation / devicetree / bindings / opp / opp.txt
1 Generic OPP (Operating Performance Points) Bindings
2 ----------------------------------------------------
3
4 Devices work at voltage-current-frequency combinations and some implementations
5 have the liberty of choosing these. These combinations are called Operating
6 Performance Points aka OPPs. This document defines bindings for these OPPs
7 applicable across wide range of devices. For illustration purpose, this document
8 uses CPU as a device.
9
10 This document contain multiple versions of OPP binding and only one of them
11 should be used per device.
12
13 Binding 1: operating-points
14 ============================
15
16 This binding only supports voltage-frequency pairs.
17
18 Properties:
19 - operating-points: An array of 2-tuples items, and each item consists
20 of frequency and voltage like <freq-kHz vol-uV>.
21 freq: clock frequency in kHz
22 vol: voltage in microvolt
23
24 Examples:
25
26 cpu@0 {
27 compatible = "arm,cortex-a9";
28 reg = <0>;
29 next-level-cache = <&L2>;
30 operating-points = <
31 /* kHz uV */
32 792000 1100000
33 396000 950000
34 198000 850000
35 >;
36 };
37
38
39 Binding 2: operating-points-v2
40 ============================
41
42 * Property: operating-points-v2
43
44 Devices supporting OPPs must set their "operating-points-v2" property with
45 phandle to a OPP table in their DT node. The OPP core will use this phandle to
46 find the operating points for the device.
47
48 If required, this can be extended for SoC vendor specific bindings. Such bindings
49 should be documented as Documentation/devicetree/bindings/power/<vendor>-opp.txt
50 and should have a compatible description like: "operating-points-v2-<vendor>".
51
52 * OPP Table Node
53
54 This describes the OPPs belonging to a device. This node can have following
55 properties:
56
57 Required properties:
58 - compatible: Allow OPPs to express their compatibility. It should be:
59 "operating-points-v2".
60
61 - OPP nodes: One or more OPP nodes describing voltage-current-frequency
62 combinations. Their name isn't significant but their phandle can be used to
63 reference an OPP.
64
65 Optional properties:
66 - opp-shared: Indicates that device nodes using this OPP Table Node's phandle
67 switch their DVFS state together, i.e. they share clock/voltage/current lines.
68 Missing property means devices have independent clock/voltage/current lines,
69 but they share OPP tables.
70
71 - status: Marks the OPP table enabled/disabled.
72
73
74 * OPP Node
75
76 This defines voltage-current-frequency combinations along with other related
77 properties.
78
79 Required properties:
80 - opp-hz: Frequency in Hz, expressed as a 64-bit big-endian integer.
81
82 Optional properties:
83 - opp-microvolt: voltage in micro Volts.
84
85 A single regulator's voltage is specified with an array of size one or three.
86 Single entry is for target voltage and three entries are for <target min max>
87 voltages.
88
89 Entries for multiple regulators shall be provided in the same field separated
90 by angular brackets <>. The OPP binding doesn't provide any provisions to
91 relate the values to their power supplies or the order in which the supplies
92 need to be configured and that is left for the implementation specific
93 binding.
94
95 Entries for all regulators shall be of the same size, i.e. either all use a
96 single value or triplets.
97
98 - opp-microvolt-<name>: Named opp-microvolt property. This is exactly similar to
99 the above opp-microvolt property, but allows multiple voltage ranges to be
100 provided for the same OPP. At runtime, the platform can pick a <name> and
101 matching opp-microvolt-<name> property will be enabled for all OPPs. If the
102 platform doesn't pick a specific <name> or the <name> doesn't match with any
103 opp-microvolt-<name> properties, then opp-microvolt property shall be used, if
104 present.
105
106 - opp-microamp: The maximum current drawn by the device in microamperes
107 considering system specific parameters (such as transients, process, aging,
108 maximum operating temperature range etc.) as necessary. This may be used to
109 set the most efficient regulator operating mode.
110
111 Should only be set if opp-microvolt is set for the OPP.
112
113 Entries for multiple regulators shall be provided in the same field separated
114 by angular brackets <>. If current values aren't required for a regulator,
115 then it shall be filled with 0. If current values aren't required for any of
116 the regulators, then this field is not required. The OPP binding doesn't
117 provide any provisions to relate the values to their power supplies or the
118 order in which the supplies need to be configured and that is left for the
119 implementation specific binding.
120
121 - opp-microamp-<name>: Named opp-microamp property. Similar to
122 opp-microvolt-<name> property, but for microamp instead.
123
124 - clock-latency-ns: Specifies the maximum possible transition latency (in
125 nanoseconds) for switching to this OPP from any other OPP.
126
127 - turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is
128 available on some platforms, where the device can run over its operating
129 frequency for a short duration of time limited by the device's power, current
130 and thermal limits.
131
132 - opp-suspend: Marks the OPP to be used during device suspend. Only one OPP in
133 the table should have this.
134
135 - opp-supported-hw: This enables us to select only a subset of OPPs from the
136 larger OPP table, based on what version of the hardware we are running on. We
137 still can't have multiple nodes with the same opp-hz value in OPP table.
138
139 It's a user defined array containing a hierarchy of hardware version numbers,
140 supported by the OPP. For example: a platform with hierarchy of three levels
141 of versions (A, B and C), this field should be like <X Y Z>, where X
142 corresponds to Version hierarchy A, Y corresponds to version hierarchy B and Z
143 corresponds to version hierarchy C.
144
145 Each level of hierarchy is represented by a 32 bit value, and so there can be
146 only 32 different supported version per hierarchy. i.e. 1 bit per version. A
147 value of 0xFFFFFFFF will enable the OPP for all versions for that hierarchy
148 level. And a value of 0x00000000 will disable the OPP completely, and so we
149 never want that to happen.
150
151 If 32 values aren't sufficient for a version hierarchy, than that version
152 hierarchy can be contained in multiple 32 bit values. i.e. <X Y Z1 Z2> in the
153 above example, Z1 & Z2 refer to the version hierarchy Z.
154
155 - status: Marks the node enabled/disabled.
156
157 Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together.
158
159 / {
160 cpus {
161 #address-cells = <1>;
162 #size-cells = <0>;
163
164 cpu@0 {
165 compatible = "arm,cortex-a9";
166 reg = <0>;
167 next-level-cache = <&L2>;
168 clocks = <&clk_controller 0>;
169 clock-names = "cpu";
170 cpu-supply = <&cpu_supply0>;
171 operating-points-v2 = <&cpu0_opp_table>;
172 };
173
174 cpu@1 {
175 compatible = "arm,cortex-a9";
176 reg = <1>;
177 next-level-cache = <&L2>;
178 clocks = <&clk_controller 0>;
179 clock-names = "cpu";
180 cpu-supply = <&cpu_supply0>;
181 operating-points-v2 = <&cpu0_opp_table>;
182 };
183 };
184
185 cpu0_opp_table: opp_table0 {
186 compatible = "operating-points-v2";
187 opp-shared;
188
189 opp@1000000000 {
190 opp-hz = /bits/ 64 <1000000000>;
191 opp-microvolt = <975000 970000 985000>;
192 opp-microamp = <70000>;
193 clock-latency-ns = <300000>;
194 opp-suspend;
195 };
196 opp@1100000000 {
197 opp-hz = /bits/ 64 <1100000000>;
198 opp-microvolt = <1000000 980000 1010000>;
199 opp-microamp = <80000>;
200 clock-latency-ns = <310000>;
201 };
202 opp@1200000000 {
203 opp-hz = /bits/ 64 <1200000000>;
204 opp-microvolt = <1025000>;
205 clock-latency-ns = <290000>;
206 turbo-mode;
207 };
208 };
209 };
210
211 Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
212 independently.
213
214 / {
215 cpus {
216 #address-cells = <1>;
217 #size-cells = <0>;
218
219 cpu@0 {
220 compatible = "qcom,krait";
221 reg = <0>;
222 next-level-cache = <&L2>;
223 clocks = <&clk_controller 0>;
224 clock-names = "cpu";
225 cpu-supply = <&cpu_supply0>;
226 operating-points-v2 = <&cpu_opp_table>;
227 };
228
229 cpu@1 {
230 compatible = "qcom,krait";
231 reg = <1>;
232 next-level-cache = <&L2>;
233 clocks = <&clk_controller 1>;
234 clock-names = "cpu";
235 cpu-supply = <&cpu_supply1>;
236 operating-points-v2 = <&cpu_opp_table>;
237 };
238
239 cpu@2 {
240 compatible = "qcom,krait";
241 reg = <2>;
242 next-level-cache = <&L2>;
243 clocks = <&clk_controller 2>;
244 clock-names = "cpu";
245 cpu-supply = <&cpu_supply2>;
246 operating-points-v2 = <&cpu_opp_table>;
247 };
248
249 cpu@3 {
250 compatible = "qcom,krait";
251 reg = <3>;
252 next-level-cache = <&L2>;
253 clocks = <&clk_controller 3>;
254 clock-names = "cpu";
255 cpu-supply = <&cpu_supply3>;
256 operating-points-v2 = <&cpu_opp_table>;
257 };
258 };
259
260 cpu_opp_table: opp_table {
261 compatible = "operating-points-v2";
262
263 /*
264 * Missing opp-shared property means CPUs switch DVFS states
265 * independently.
266 */
267
268 opp@1000000000 {
269 opp-hz = /bits/ 64 <1000000000>;
270 opp-microvolt = <975000 970000 985000>;
271 opp-microamp = <70000>;
272 clock-latency-ns = <300000>;
273 opp-suspend;
274 };
275 opp@1100000000 {
276 opp-hz = /bits/ 64 <1100000000>;
277 opp-microvolt = <1000000 980000 1010000>;
278 opp-microamp = <80000>;
279 clock-latency-ns = <310000>;
280 };
281 opp@1200000000 {
282 opp-hz = /bits/ 64 <1200000000>;
283 opp-microvolt = <1025000>;
284 opp-microamp = <90000;
285 lock-latency-ns = <290000>;
286 turbo-mode;
287 };
288 };
289 };
290
291 Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
292 DVFS state together.
293
294 / {
295 cpus {
296 #address-cells = <1>;
297 #size-cells = <0>;
298
299 cpu@0 {
300 compatible = "arm,cortex-a7";
301 reg = <0>;
302 next-level-cache = <&L2>;
303 clocks = <&clk_controller 0>;
304 clock-names = "cpu";
305 cpu-supply = <&cpu_supply0>;
306 operating-points-v2 = <&cluster0_opp>;
307 };
308
309 cpu@1 {
310 compatible = "arm,cortex-a7";
311 reg = <1>;
312 next-level-cache = <&L2>;
313 clocks = <&clk_controller 0>;
314 clock-names = "cpu";
315 cpu-supply = <&cpu_supply0>;
316 operating-points-v2 = <&cluster0_opp>;
317 };
318
319 cpu@100 {
320 compatible = "arm,cortex-a15";
321 reg = <100>;
322 next-level-cache = <&L2>;
323 clocks = <&clk_controller 1>;
324 clock-names = "cpu";
325 cpu-supply = <&cpu_supply1>;
326 operating-points-v2 = <&cluster1_opp>;
327 };
328
329 cpu@101 {
330 compatible = "arm,cortex-a15";
331 reg = <101>;
332 next-level-cache = <&L2>;
333 clocks = <&clk_controller 1>;
334 clock-names = "cpu";
335 cpu-supply = <&cpu_supply1>;
336 operating-points-v2 = <&cluster1_opp>;
337 };
338 };
339
340 cluster0_opp: opp_table0 {
341 compatible = "operating-points-v2";
342 opp-shared;
343
344 opp@1000000000 {
345 opp-hz = /bits/ 64 <1000000000>;
346 opp-microvolt = <975000 970000 985000>;
347 opp-microamp = <70000>;
348 clock-latency-ns = <300000>;
349 opp-suspend;
350 };
351 opp@1100000000 {
352 opp-hz = /bits/ 64 <1100000000>;
353 opp-microvolt = <1000000 980000 1010000>;
354 opp-microamp = <80000>;
355 clock-latency-ns = <310000>;
356 };
357 opp@1200000000 {
358 opp-hz = /bits/ 64 <1200000000>;
359 opp-microvolt = <1025000>;
360 opp-microamp = <90000>;
361 clock-latency-ns = <290000>;
362 turbo-mode;
363 };
364 };
365
366 cluster1_opp: opp_table1 {
367 compatible = "operating-points-v2";
368 opp-shared;
369
370 opp@1300000000 {
371 opp-hz = /bits/ 64 <1300000000>;
372 opp-microvolt = <1050000 1045000 1055000>;
373 opp-microamp = <95000>;
374 clock-latency-ns = <400000>;
375 opp-suspend;
376 };
377 opp@1400000000 {
378 opp-hz = /bits/ 64 <1400000000>;
379 opp-microvolt = <1075000>;
380 opp-microamp = <100000>;
381 clock-latency-ns = <400000>;
382 };
383 opp@1500000000 {
384 opp-hz = /bits/ 64 <1500000000>;
385 opp-microvolt = <1100000 1010000 1110000>;
386 opp-microamp = <95000>;
387 clock-latency-ns = <400000>;
388 turbo-mode;
389 };
390 };
391 };
392
393 Example 4: Handling multiple regulators
394
395 / {
396 cpus {
397 cpu@0 {
398 compatible = "vendor,cpu-type";
399 ...
400
401 vcc0-supply = <&cpu_supply0>;
402 vcc1-supply = <&cpu_supply1>;
403 vcc2-supply = <&cpu_supply2>;
404 operating-points-v2 = <&cpu0_opp_table>;
405 };
406 };
407
408 cpu0_opp_table: opp_table0 {
409 compatible = "operating-points-v2";
410 opp-shared;
411
412 opp@1000000000 {
413 opp-hz = /bits/ 64 <1000000000>;
414 opp-microvolt = <970000>, /* Supply 0 */
415 <960000>, /* Supply 1 */
416 <960000>; /* Supply 2 */
417 opp-microamp = <70000>, /* Supply 0 */
418 <70000>, /* Supply 1 */
419 <70000>; /* Supply 2 */
420 clock-latency-ns = <300000>;
421 };
422
423 /* OR */
424
425 opp@1000000000 {
426 opp-hz = /bits/ 64 <1000000000>;
427 opp-microvolt = <975000 970000 985000>, /* Supply 0 */
428 <965000 960000 975000>, /* Supply 1 */
429 <965000 960000 975000>; /* Supply 2 */
430 opp-microamp = <70000>, /* Supply 0 */
431 <70000>, /* Supply 1 */
432 <70000>; /* Supply 2 */
433 clock-latency-ns = <300000>;
434 };
435
436 /* OR */
437
438 opp@1000000000 {
439 opp-hz = /bits/ 64 <1000000000>;
440 opp-microvolt = <975000 970000 985000>, /* Supply 0 */
441 <965000 960000 975000>, /* Supply 1 */
442 <965000 960000 975000>; /* Supply 2 */
443 opp-microamp = <70000>, /* Supply 0 */
444 <0>, /* Supply 1 doesn't need this */
445 <70000>; /* Supply 2 */
446 clock-latency-ns = <300000>;
447 };
448 };
449 };
450
451 Example 5: opp-supported-hw
452 (example: three level hierarchy of versions: cuts, substrate and process)
453
454 / {
455 cpus {
456 cpu@0 {
457 compatible = "arm,cortex-a7";
458 ...
459
460 cpu-supply = <&cpu_supply>
461 operating-points-v2 = <&cpu0_opp_table_slow>;
462 };
463 };
464
465 opp_table {
466 compatible = "operating-points-v2";
467 status = "okay";
468 opp-shared;
469
470 opp@600000000 {
471 /*
472 * Supports all substrate and process versions for 0xF
473 * cuts, i.e. only first four cuts.
474 */
475 opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>
476 opp-hz = /bits/ 64 <600000000>;
477 opp-microvolt = <915000 900000 925000>;
478 ...
479 };
480
481 opp@800000000 {
482 /*
483 * Supports:
484 * - cuts: only one, 6th cut (represented by 6th bit).
485 * - substrate: supports 16 different substrate versions
486 * - process: supports 9 different process versions
487 */
488 opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>
489 opp-hz = /bits/ 64 <800000000>;
490 opp-microvolt = <915000 900000 925000>;
491 ...
492 };
493 };
494 };
495
496 Example 6: opp-microvolt-<name>, opp-microamp-<name>:
497 (example: device with two possible microvolt ranges: slow and fast)
498
499 / {
500 cpus {
501 cpu@0 {
502 compatible = "arm,cortex-a7";
503 ...
504
505 operating-points-v2 = <&cpu0_opp_table>;
506 };
507 };
508
509 cpu0_opp_table: opp_table0 {
510 compatible = "operating-points-v2";
511 opp-shared;
512
513 opp@1000000000 {
514 opp-hz = /bits/ 64 <1000000000>;
515 opp-microvolt-slow = <915000 900000 925000>;
516 opp-microvolt-fast = <975000 970000 985000>;
517 opp-microamp-slow = <70000>;
518 opp-microamp-fast = <71000>;
519 };
520
521 opp@1200000000 {
522 opp-hz = /bits/ 64 <1200000000>;
523 opp-microvolt-slow = <915000 900000 925000>, /* Supply vcc0 */
524 <925000 910000 935000>; /* Supply vcc1 */
525 opp-microvolt-fast = <975000 970000 985000>, /* Supply vcc0 */
526 <965000 960000 975000>; /* Supply vcc1 */
527 opp-microamp = <70000>; /* Will be used for both slow/fast */
528 };
529 };
530 };