]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - Documentation/lguest/lguest.c
virtio: de-structify virtio_block status byte
[mirror_ubuntu-artful-kernel.git] / Documentation / lguest / lguest.c
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include "linux/lguest_launcher.h"
40 #include "linux/virtio_config.h"
41 #include "linux/virtio_net.h"
42 #include "linux/virtio_blk.h"
43 #include "linux/virtio_console.h"
44 #include "linux/virtio_ring.h"
45 #include "asm-x86/bootparam.h"
46 /*L:110 We can ignore the 39 include files we need for this program, but I do
47 * want to draw attention to the use of kernel-style types.
48 *
49 * As Linus said, "C is a Spartan language, and so should your naming be." I
50 * like these abbreviations, so we define them here. Note that u64 is always
51 * unsigned long long, which works on all Linux systems: this means that we can
52 * use %llu in printf for any u64. */
53 typedef unsigned long long u64;
54 typedef uint32_t u32;
55 typedef uint16_t u16;
56 typedef uint8_t u8;
57 /*:*/
58
59 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
60 #define NET_PEERNUM 1
61 #define BRIDGE_PFX "bridge:"
62 #ifndef SIOCBRADDIF
63 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
64 #endif
65 /* We can have up to 256 pages for devices. */
66 #define DEVICE_PAGES 256
67 /* This will occupy 2 pages: it must be a power of 2. */
68 #define VIRTQUEUE_NUM 128
69
70 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
71 * this, and although I wouldn't recommend it, it works quite nicely here. */
72 static bool verbose;
73 #define verbose(args...) \
74 do { if (verbose) printf(args); } while(0)
75 /*:*/
76
77 /* The pipe to send commands to the waker process */
78 static int waker_fd;
79 /* The pointer to the start of guest memory. */
80 static void *guest_base;
81 /* The maximum guest physical address allowed, and maximum possible. */
82 static unsigned long guest_limit, guest_max;
83
84 /* a per-cpu variable indicating whose vcpu is currently running */
85 static unsigned int __thread cpu_id;
86
87 /* This is our list of devices. */
88 struct device_list
89 {
90 /* Summary information about the devices in our list: ready to pass to
91 * select() to ask which need servicing.*/
92 fd_set infds;
93 int max_infd;
94
95 /* Counter to assign interrupt numbers. */
96 unsigned int next_irq;
97
98 /* Counter to print out convenient device numbers. */
99 unsigned int device_num;
100
101 /* The descriptor page for the devices. */
102 u8 *descpage;
103
104 /* A single linked list of devices. */
105 struct device *dev;
106 /* And a pointer to the last device for easy append and also for
107 * configuration appending. */
108 struct device *lastdev;
109 };
110
111 /* The list of Guest devices, based on command line arguments. */
112 static struct device_list devices;
113
114 /* The device structure describes a single device. */
115 struct device
116 {
117 /* The linked-list pointer. */
118 struct device *next;
119
120 /* The this device's descriptor, as mapped into the Guest. */
121 struct lguest_device_desc *desc;
122
123 /* The name of this device, for --verbose. */
124 const char *name;
125
126 /* If handle_input is set, it wants to be called when this file
127 * descriptor is ready. */
128 int fd;
129 bool (*handle_input)(int fd, struct device *me);
130
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
133
134 /* Device-specific data. */
135 void *priv;
136 };
137
138 /* The virtqueue structure describes a queue attached to a device. */
139 struct virtqueue
140 {
141 struct virtqueue *next;
142
143 /* Which device owns me. */
144 struct device *dev;
145
146 /* The configuration for this queue. */
147 struct lguest_vqconfig config;
148
149 /* The actual ring of buffers. */
150 struct vring vring;
151
152 /* Last available index we saw. */
153 u16 last_avail_idx;
154
155 /* The routine to call when the Guest pings us. */
156 void (*handle_output)(int fd, struct virtqueue *me);
157 };
158
159 /* Remember the arguments to the program so we can "reboot" */
160 static char **main_args;
161
162 /* Since guest is UP and we don't run at the same time, we don't need barriers.
163 * But I include them in the code in case others copy it. */
164 #define wmb()
165
166 /* Convert an iovec element to the given type.
167 *
168 * This is a fairly ugly trick: we need to know the size of the type and
169 * alignment requirement to check the pointer is kosher. It's also nice to
170 * have the name of the type in case we report failure.
171 *
172 * Typing those three things all the time is cumbersome and error prone, so we
173 * have a macro which sets them all up and passes to the real function. */
174 #define convert(iov, type) \
175 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
176
177 static void *_convert(struct iovec *iov, size_t size, size_t align,
178 const char *name)
179 {
180 if (iov->iov_len != size)
181 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
182 if ((unsigned long)iov->iov_base % align != 0)
183 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
184 return iov->iov_base;
185 }
186
187 /* The virtio configuration space is defined to be little-endian. x86 is
188 * little-endian too, but it's nice to be explicit so we have these helpers. */
189 #define cpu_to_le16(v16) (v16)
190 #define cpu_to_le32(v32) (v32)
191 #define cpu_to_le64(v64) (v64)
192 #define le16_to_cpu(v16) (v16)
193 #define le32_to_cpu(v32) (v32)
194 #define le64_to_cpu(v64) (v64)
195
196 /* The device virtqueue descriptors are followed by feature bitmasks. */
197 static u8 *get_feature_bits(struct device *dev)
198 {
199 return (u8 *)(dev->desc + 1)
200 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
201 }
202
203 /*L:100 The Launcher code itself takes us out into userspace, that scary place
204 * where pointers run wild and free! Unfortunately, like most userspace
205 * programs, it's quite boring (which is why everyone likes to hack on the
206 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
207 * will get you through this section. Or, maybe not.
208 *
209 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
210 * memory and stores it in "guest_base". In other words, Guest physical ==
211 * Launcher virtual with an offset.
212 *
213 * This can be tough to get your head around, but usually it just means that we
214 * use these trivial conversion functions when the Guest gives us it's
215 * "physical" addresses: */
216 static void *from_guest_phys(unsigned long addr)
217 {
218 return guest_base + addr;
219 }
220
221 static unsigned long to_guest_phys(const void *addr)
222 {
223 return (addr - guest_base);
224 }
225
226 /*L:130
227 * Loading the Kernel.
228 *
229 * We start with couple of simple helper routines. open_or_die() avoids
230 * error-checking code cluttering the callers: */
231 static int open_or_die(const char *name, int flags)
232 {
233 int fd = open(name, flags);
234 if (fd < 0)
235 err(1, "Failed to open %s", name);
236 return fd;
237 }
238
239 /* map_zeroed_pages() takes a number of pages. */
240 static void *map_zeroed_pages(unsigned int num)
241 {
242 int fd = open_or_die("/dev/zero", O_RDONLY);
243 void *addr;
244
245 /* We use a private mapping (ie. if we write to the page, it will be
246 * copied). */
247 addr = mmap(NULL, getpagesize() * num,
248 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
249 if (addr == MAP_FAILED)
250 err(1, "Mmaping %u pages of /dev/zero", num);
251
252 return addr;
253 }
254
255 /* Get some more pages for a device. */
256 static void *get_pages(unsigned int num)
257 {
258 void *addr = from_guest_phys(guest_limit);
259
260 guest_limit += num * getpagesize();
261 if (guest_limit > guest_max)
262 errx(1, "Not enough memory for devices");
263 return addr;
264 }
265
266 /* This routine is used to load the kernel or initrd. It tries mmap, but if
267 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
268 * it falls back to reading the memory in. */
269 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
270 {
271 ssize_t r;
272
273 /* We map writable even though for some segments are marked read-only.
274 * The kernel really wants to be writable: it patches its own
275 * instructions.
276 *
277 * MAP_PRIVATE means that the page won't be copied until a write is
278 * done to it. This allows us to share untouched memory between
279 * Guests. */
280 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
281 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
282 return;
283
284 /* pread does a seek and a read in one shot: saves a few lines. */
285 r = pread(fd, addr, len, offset);
286 if (r != len)
287 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
288 }
289
290 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
291 * the Guest memory. ELF = Embedded Linking Format, which is the format used
292 * by all modern binaries on Linux including the kernel.
293 *
294 * The ELF headers give *two* addresses: a physical address, and a virtual
295 * address. We use the physical address; the Guest will map itself to the
296 * virtual address.
297 *
298 * We return the starting address. */
299 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
300 {
301 Elf32_Phdr phdr[ehdr->e_phnum];
302 unsigned int i;
303
304 /* Sanity checks on the main ELF header: an x86 executable with a
305 * reasonable number of correctly-sized program headers. */
306 if (ehdr->e_type != ET_EXEC
307 || ehdr->e_machine != EM_386
308 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
309 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
310 errx(1, "Malformed elf header");
311
312 /* An ELF executable contains an ELF header and a number of "program"
313 * headers which indicate which parts ("segments") of the program to
314 * load where. */
315
316 /* We read in all the program headers at once: */
317 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
318 err(1, "Seeking to program headers");
319 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
320 err(1, "Reading program headers");
321
322 /* Try all the headers: there are usually only three. A read-only one,
323 * a read-write one, and a "note" section which we don't load. */
324 for (i = 0; i < ehdr->e_phnum; i++) {
325 /* If this isn't a loadable segment, we ignore it */
326 if (phdr[i].p_type != PT_LOAD)
327 continue;
328
329 verbose("Section %i: size %i addr %p\n",
330 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
331
332 /* We map this section of the file at its physical address. */
333 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
334 phdr[i].p_offset, phdr[i].p_filesz);
335 }
336
337 /* The entry point is given in the ELF header. */
338 return ehdr->e_entry;
339 }
340
341 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
342 * supposed to jump into it and it will unpack itself. We used to have to
343 * perform some hairy magic because the unpacking code scared me.
344 *
345 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
346 * a small patch to jump over the tricky bits in the Guest, so now we just read
347 * the funky header so we know where in the file to load, and away we go! */
348 static unsigned long load_bzimage(int fd)
349 {
350 struct boot_params boot;
351 int r;
352 /* Modern bzImages get loaded at 1M. */
353 void *p = from_guest_phys(0x100000);
354
355 /* Go back to the start of the file and read the header. It should be
356 * a Linux boot header (see Documentation/i386/boot.txt) */
357 lseek(fd, 0, SEEK_SET);
358 read(fd, &boot, sizeof(boot));
359
360 /* Inside the setup_hdr, we expect the magic "HdrS" */
361 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
362 errx(1, "This doesn't look like a bzImage to me");
363
364 /* Skip over the extra sectors of the header. */
365 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
366
367 /* Now read everything into memory. in nice big chunks. */
368 while ((r = read(fd, p, 65536)) > 0)
369 p += r;
370
371 /* Finally, code32_start tells us where to enter the kernel. */
372 return boot.hdr.code32_start;
373 }
374
375 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
376 * come wrapped up in the self-decompressing "bzImage" format. With a little
377 * work, we can load those, too. */
378 static unsigned long load_kernel(int fd)
379 {
380 Elf32_Ehdr hdr;
381
382 /* Read in the first few bytes. */
383 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
384 err(1, "Reading kernel");
385
386 /* If it's an ELF file, it starts with "\177ELF" */
387 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
388 return map_elf(fd, &hdr);
389
390 /* Otherwise we assume it's a bzImage, and try to load it. */
391 return load_bzimage(fd);
392 }
393
394 /* This is a trivial little helper to align pages. Andi Kleen hated it because
395 * it calls getpagesize() twice: "it's dumb code."
396 *
397 * Kernel guys get really het up about optimization, even when it's not
398 * necessary. I leave this code as a reaction against that. */
399 static inline unsigned long page_align(unsigned long addr)
400 {
401 /* Add upwards and truncate downwards. */
402 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
403 }
404
405 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
406 * the kernel which the kernel can use to boot from without needing any
407 * drivers. Most distributions now use this as standard: the initrd contains
408 * the code to load the appropriate driver modules for the current machine.
409 *
410 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
411 * kernels. He sent me this (and tells me when I break it). */
412 static unsigned long load_initrd(const char *name, unsigned long mem)
413 {
414 int ifd;
415 struct stat st;
416 unsigned long len;
417
418 ifd = open_or_die(name, O_RDONLY);
419 /* fstat() is needed to get the file size. */
420 if (fstat(ifd, &st) < 0)
421 err(1, "fstat() on initrd '%s'", name);
422
423 /* We map the initrd at the top of memory, but mmap wants it to be
424 * page-aligned, so we round the size up for that. */
425 len = page_align(st.st_size);
426 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
427 /* Once a file is mapped, you can close the file descriptor. It's a
428 * little odd, but quite useful. */
429 close(ifd);
430 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
431
432 /* We return the initrd size. */
433 return len;
434 }
435
436 /* Once we know how much memory we have we can construct simple linear page
437 * tables which set virtual == physical which will get the Guest far enough
438 * into the boot to create its own.
439 *
440 * We lay them out of the way, just below the initrd (which is why we need to
441 * know its size here). */
442 static unsigned long setup_pagetables(unsigned long mem,
443 unsigned long initrd_size)
444 {
445 unsigned long *pgdir, *linear;
446 unsigned int mapped_pages, i, linear_pages;
447 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
448
449 mapped_pages = mem/getpagesize();
450
451 /* Each PTE page can map ptes_per_page pages: how many do we need? */
452 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
453
454 /* We put the toplevel page directory page at the top of memory. */
455 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
456
457 /* Now we use the next linear_pages pages as pte pages */
458 linear = (void *)pgdir - linear_pages*getpagesize();
459
460 /* Linear mapping is easy: put every page's address into the mapping in
461 * order. PAGE_PRESENT contains the flags Present, Writable and
462 * Executable. */
463 for (i = 0; i < mapped_pages; i++)
464 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
465
466 /* The top level points to the linear page table pages above. */
467 for (i = 0; i < mapped_pages; i += ptes_per_page) {
468 pgdir[i/ptes_per_page]
469 = ((to_guest_phys(linear) + i*sizeof(void *))
470 | PAGE_PRESENT);
471 }
472
473 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
474 mapped_pages, linear_pages, to_guest_phys(linear));
475
476 /* We return the top level (guest-physical) address: the kernel needs
477 * to know where it is. */
478 return to_guest_phys(pgdir);
479 }
480 /*:*/
481
482 /* Simple routine to roll all the commandline arguments together with spaces
483 * between them. */
484 static void concat(char *dst, char *args[])
485 {
486 unsigned int i, len = 0;
487
488 for (i = 0; args[i]; i++) {
489 if (i) {
490 strcat(dst+len, " ");
491 len++;
492 }
493 strcpy(dst+len, args[i]);
494 len += strlen(args[i]);
495 }
496 /* In case it's empty. */
497 dst[len] = '\0';
498 }
499
500 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
501 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
502 * the base of Guest "physical" memory, the top physical page to allow, the
503 * top level pagetable and the entry point for the Guest. */
504 static int tell_kernel(unsigned long pgdir, unsigned long start)
505 {
506 unsigned long args[] = { LHREQ_INITIALIZE,
507 (unsigned long)guest_base,
508 guest_limit / getpagesize(), pgdir, start };
509 int fd;
510
511 verbose("Guest: %p - %p (%#lx)\n",
512 guest_base, guest_base + guest_limit, guest_limit);
513 fd = open_or_die("/dev/lguest", O_RDWR);
514 if (write(fd, args, sizeof(args)) < 0)
515 err(1, "Writing to /dev/lguest");
516
517 /* We return the /dev/lguest file descriptor to control this Guest */
518 return fd;
519 }
520 /*:*/
521
522 static void add_device_fd(int fd)
523 {
524 FD_SET(fd, &devices.infds);
525 if (fd > devices.max_infd)
526 devices.max_infd = fd;
527 }
528
529 /*L:200
530 * The Waker.
531 *
532 * With console, block and network devices, we can have lots of input which we
533 * need to process. We could try to tell the kernel what file descriptors to
534 * watch, but handing a file descriptor mask through to the kernel is fairly
535 * icky.
536 *
537 * Instead, we fork off a process which watches the file descriptors and writes
538 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
539 * stop running the Guest. This causes the Launcher to return from the
540 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
541 * the LHREQ_BREAK and wake us up again.
542 *
543 * This, of course, is merely a different *kind* of icky.
544 */
545 static void wake_parent(int pipefd, int lguest_fd)
546 {
547 /* Add the pipe from the Launcher to the fdset in the device_list, so
548 * we watch it, too. */
549 add_device_fd(pipefd);
550
551 for (;;) {
552 fd_set rfds = devices.infds;
553 unsigned long args[] = { LHREQ_BREAK, 1 };
554
555 /* Wait until input is ready from one of the devices. */
556 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
557 /* Is it a message from the Launcher? */
558 if (FD_ISSET(pipefd, &rfds)) {
559 int fd;
560 /* If read() returns 0, it means the Launcher has
561 * exited. We silently follow. */
562 if (read(pipefd, &fd, sizeof(fd)) == 0)
563 exit(0);
564 /* Otherwise it's telling us to change what file
565 * descriptors we're to listen to. Positive means
566 * listen to a new one, negative means stop
567 * listening. */
568 if (fd >= 0)
569 FD_SET(fd, &devices.infds);
570 else
571 FD_CLR(-fd - 1, &devices.infds);
572 } else /* Send LHREQ_BREAK command. */
573 pwrite(lguest_fd, args, sizeof(args), cpu_id);
574 }
575 }
576
577 /* This routine just sets up a pipe to the Waker process. */
578 static int setup_waker(int lguest_fd)
579 {
580 int pipefd[2], child;
581
582 /* We create a pipe to talk to the Waker, and also so it knows when the
583 * Launcher dies (and closes pipe). */
584 pipe(pipefd);
585 child = fork();
586 if (child == -1)
587 err(1, "forking");
588
589 if (child == 0) {
590 /* We are the Waker: close the "writing" end of our copy of the
591 * pipe and start waiting for input. */
592 close(pipefd[1]);
593 wake_parent(pipefd[0], lguest_fd);
594 }
595 /* Close the reading end of our copy of the pipe. */
596 close(pipefd[0]);
597
598 /* Here is the fd used to talk to the waker. */
599 return pipefd[1];
600 }
601
602 /*
603 * Device Handling.
604 *
605 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
606 * We need to make sure it's not trying to reach into the Launcher itself, so
607 * we have a convenient routine which checks it and exits with an error message
608 * if something funny is going on:
609 */
610 static void *_check_pointer(unsigned long addr, unsigned int size,
611 unsigned int line)
612 {
613 /* We have to separately check addr and addr+size, because size could
614 * be huge and addr + size might wrap around. */
615 if (addr >= guest_limit || addr + size >= guest_limit)
616 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
617 /* We return a pointer for the caller's convenience, now we know it's
618 * safe to use. */
619 return from_guest_phys(addr);
620 }
621 /* A macro which transparently hands the line number to the real function. */
622 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
623
624 /* Each buffer in the virtqueues is actually a chain of descriptors. This
625 * function returns the next descriptor in the chain, or vq->vring.num if we're
626 * at the end. */
627 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
628 {
629 unsigned int next;
630
631 /* If this descriptor says it doesn't chain, we're done. */
632 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
633 return vq->vring.num;
634
635 /* Check they're not leading us off end of descriptors. */
636 next = vq->vring.desc[i].next;
637 /* Make sure compiler knows to grab that: we don't want it changing! */
638 wmb();
639
640 if (next >= vq->vring.num)
641 errx(1, "Desc next is %u", next);
642
643 return next;
644 }
645
646 /* This looks in the virtqueue and for the first available buffer, and converts
647 * it to an iovec for convenient access. Since descriptors consist of some
648 * number of output then some number of input descriptors, it's actually two
649 * iovecs, but we pack them into one and note how many of each there were.
650 *
651 * This function returns the descriptor number found, or vq->vring.num (which
652 * is never a valid descriptor number) if none was found. */
653 static unsigned get_vq_desc(struct virtqueue *vq,
654 struct iovec iov[],
655 unsigned int *out_num, unsigned int *in_num)
656 {
657 unsigned int i, head;
658
659 /* Check it isn't doing very strange things with descriptor numbers. */
660 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
661 errx(1, "Guest moved used index from %u to %u",
662 vq->last_avail_idx, vq->vring.avail->idx);
663
664 /* If there's nothing new since last we looked, return invalid. */
665 if (vq->vring.avail->idx == vq->last_avail_idx)
666 return vq->vring.num;
667
668 /* Grab the next descriptor number they're advertising, and increment
669 * the index we've seen. */
670 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
671
672 /* If their number is silly, that's a fatal mistake. */
673 if (head >= vq->vring.num)
674 errx(1, "Guest says index %u is available", head);
675
676 /* When we start there are none of either input nor output. */
677 *out_num = *in_num = 0;
678
679 i = head;
680 do {
681 /* Grab the first descriptor, and check it's OK. */
682 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
683 iov[*out_num + *in_num].iov_base
684 = check_pointer(vq->vring.desc[i].addr,
685 vq->vring.desc[i].len);
686 /* If this is an input descriptor, increment that count. */
687 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
688 (*in_num)++;
689 else {
690 /* If it's an output descriptor, they're all supposed
691 * to come before any input descriptors. */
692 if (*in_num)
693 errx(1, "Descriptor has out after in");
694 (*out_num)++;
695 }
696
697 /* If we've got too many, that implies a descriptor loop. */
698 if (*out_num + *in_num > vq->vring.num)
699 errx(1, "Looped descriptor");
700 } while ((i = next_desc(vq, i)) != vq->vring.num);
701
702 return head;
703 }
704
705 /* After we've used one of their buffers, we tell them about it. We'll then
706 * want to send them an interrupt, using trigger_irq(). */
707 static void add_used(struct virtqueue *vq, unsigned int head, int len)
708 {
709 struct vring_used_elem *used;
710
711 /* The virtqueue contains a ring of used buffers. Get a pointer to the
712 * next entry in that used ring. */
713 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
714 used->id = head;
715 used->len = len;
716 /* Make sure buffer is written before we update index. */
717 wmb();
718 vq->vring.used->idx++;
719 }
720
721 /* This actually sends the interrupt for this virtqueue */
722 static void trigger_irq(int fd, struct virtqueue *vq)
723 {
724 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
725
726 /* If they don't want an interrupt, don't send one. */
727 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
728 return;
729
730 /* Send the Guest an interrupt tell them we used something up. */
731 if (write(fd, buf, sizeof(buf)) != 0)
732 err(1, "Triggering irq %i", vq->config.irq);
733 }
734
735 /* And here's the combo meal deal. Supersize me! */
736 static void add_used_and_trigger(int fd, struct virtqueue *vq,
737 unsigned int head, int len)
738 {
739 add_used(vq, head, len);
740 trigger_irq(fd, vq);
741 }
742
743 /*
744 * The Console
745 *
746 * Here is the input terminal setting we save, and the routine to restore them
747 * on exit so the user gets their terminal back. */
748 static struct termios orig_term;
749 static void restore_term(void)
750 {
751 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
752 }
753
754 /* We associate some data with the console for our exit hack. */
755 struct console_abort
756 {
757 /* How many times have they hit ^C? */
758 int count;
759 /* When did they start? */
760 struct timeval start;
761 };
762
763 /* This is the routine which handles console input (ie. stdin). */
764 static bool handle_console_input(int fd, struct device *dev)
765 {
766 int len;
767 unsigned int head, in_num, out_num;
768 struct iovec iov[dev->vq->vring.num];
769 struct console_abort *abort = dev->priv;
770
771 /* First we need a console buffer from the Guests's input virtqueue. */
772 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
773
774 /* If they're not ready for input, stop listening to this file
775 * descriptor. We'll start again once they add an input buffer. */
776 if (head == dev->vq->vring.num)
777 return false;
778
779 if (out_num)
780 errx(1, "Output buffers in console in queue?");
781
782 /* This is why we convert to iovecs: the readv() call uses them, and so
783 * it reads straight into the Guest's buffer. */
784 len = readv(dev->fd, iov, in_num);
785 if (len <= 0) {
786 /* This implies that the console is closed, is /dev/null, or
787 * something went terribly wrong. */
788 warnx("Failed to get console input, ignoring console.");
789 /* Put the input terminal back. */
790 restore_term();
791 /* Remove callback from input vq, so it doesn't restart us. */
792 dev->vq->handle_output = NULL;
793 /* Stop listening to this fd: don't call us again. */
794 return false;
795 }
796
797 /* Tell the Guest about the new input. */
798 add_used_and_trigger(fd, dev->vq, head, len);
799
800 /* Three ^C within one second? Exit.
801 *
802 * This is such a hack, but works surprisingly well. Each ^C has to be
803 * in a buffer by itself, so they can't be too fast. But we check that
804 * we get three within about a second, so they can't be too slow. */
805 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
806 if (!abort->count++)
807 gettimeofday(&abort->start, NULL);
808 else if (abort->count == 3) {
809 struct timeval now;
810 gettimeofday(&now, NULL);
811 if (now.tv_sec <= abort->start.tv_sec+1) {
812 unsigned long args[] = { LHREQ_BREAK, 0 };
813 /* Close the fd so Waker will know it has to
814 * exit. */
815 close(waker_fd);
816 /* Just in case waker is blocked in BREAK, send
817 * unbreak now. */
818 write(fd, args, sizeof(args));
819 exit(2);
820 }
821 abort->count = 0;
822 }
823 } else
824 /* Any other key resets the abort counter. */
825 abort->count = 0;
826
827 /* Everything went OK! */
828 return true;
829 }
830
831 /* Handling output for console is simple: we just get all the output buffers
832 * and write them to stdout. */
833 static void handle_console_output(int fd, struct virtqueue *vq)
834 {
835 unsigned int head, out, in;
836 int len;
837 struct iovec iov[vq->vring.num];
838
839 /* Keep getting output buffers from the Guest until we run out. */
840 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
841 if (in)
842 errx(1, "Input buffers in output queue?");
843 len = writev(STDOUT_FILENO, iov, out);
844 add_used_and_trigger(fd, vq, head, len);
845 }
846 }
847
848 /*
849 * The Network
850 *
851 * Handling output for network is also simple: we get all the output buffers
852 * and write them (ignoring the first element) to this device's file descriptor
853 * (/dev/net/tun).
854 */
855 static void handle_net_output(int fd, struct virtqueue *vq)
856 {
857 unsigned int head, out, in;
858 int len;
859 struct iovec iov[vq->vring.num];
860
861 /* Keep getting output buffers from the Guest until we run out. */
862 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
863 if (in)
864 errx(1, "Input buffers in output queue?");
865 /* Check header, but otherwise ignore it (we told the Guest we
866 * supported no features, so it shouldn't have anything
867 * interesting). */
868 (void)convert(&iov[0], struct virtio_net_hdr);
869 len = writev(vq->dev->fd, iov+1, out-1);
870 add_used_and_trigger(fd, vq, head, len);
871 }
872 }
873
874 /* This is where we handle a packet coming in from the tun device to our
875 * Guest. */
876 static bool handle_tun_input(int fd, struct device *dev)
877 {
878 unsigned int head, in_num, out_num;
879 int len;
880 struct iovec iov[dev->vq->vring.num];
881 struct virtio_net_hdr *hdr;
882
883 /* First we need a network buffer from the Guests's recv virtqueue. */
884 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
885 if (head == dev->vq->vring.num) {
886 /* Now, it's expected that if we try to send a packet too
887 * early, the Guest won't be ready yet. Wait until the device
888 * status says it's ready. */
889 /* FIXME: Actually want DRIVER_ACTIVE here. */
890 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
891 warn("network: no dma buffer!");
892 /* We'll turn this back on if input buffers are registered. */
893 return false;
894 } else if (out_num)
895 errx(1, "Output buffers in network recv queue?");
896
897 /* First element is the header: we set it to 0 (no features). */
898 hdr = convert(&iov[0], struct virtio_net_hdr);
899 hdr->flags = 0;
900 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
901
902 /* Read the packet from the device directly into the Guest's buffer. */
903 len = readv(dev->fd, iov+1, in_num-1);
904 if (len <= 0)
905 err(1, "reading network");
906
907 /* Tell the Guest about the new packet. */
908 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
909
910 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
911 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
912 head != dev->vq->vring.num ? "sent" : "discarded");
913
914 /* All good. */
915 return true;
916 }
917
918 /*L:215 This is the callback attached to the network and console input
919 * virtqueues: it ensures we try again, in case we stopped console or net
920 * delivery because Guest didn't have any buffers. */
921 static void enable_fd(int fd, struct virtqueue *vq)
922 {
923 add_device_fd(vq->dev->fd);
924 /* Tell waker to listen to it again */
925 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
926 }
927
928 /* When the Guest asks us to reset a device, it's is fairly easy. */
929 static void reset_device(struct device *dev)
930 {
931 struct virtqueue *vq;
932
933 verbose("Resetting device %s\n", dev->name);
934 /* Clear the status. */
935 dev->desc->status = 0;
936
937 /* Clear any features they've acked. */
938 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
939 dev->desc->feature_len);
940
941 /* Zero out the virtqueues. */
942 for (vq = dev->vq; vq; vq = vq->next) {
943 memset(vq->vring.desc, 0,
944 vring_size(vq->config.num, getpagesize()));
945 vq->last_avail_idx = 0;
946 }
947 }
948
949 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
950 static void handle_output(int fd, unsigned long addr)
951 {
952 struct device *i;
953 struct virtqueue *vq;
954
955 /* Check each device and virtqueue. */
956 for (i = devices.dev; i; i = i->next) {
957 /* Notifications to device descriptors reset the device. */
958 if (from_guest_phys(addr) == i->desc) {
959 reset_device(i);
960 return;
961 }
962
963 /* Notifications to virtqueues mean output has occurred. */
964 for (vq = i->vq; vq; vq = vq->next) {
965 if (vq->config.pfn != addr/getpagesize())
966 continue;
967
968 /* Guest should acknowledge (and set features!) before
969 * using the device. */
970 if (i->desc->status == 0) {
971 warnx("%s gave early output", i->name);
972 return;
973 }
974
975 if (strcmp(vq->dev->name, "console") != 0)
976 verbose("Output to %s\n", vq->dev->name);
977 if (vq->handle_output)
978 vq->handle_output(fd, vq);
979 return;
980 }
981 }
982
983 /* Early console write is done using notify on a nul-terminated string
984 * in Guest memory. */
985 if (addr >= guest_limit)
986 errx(1, "Bad NOTIFY %#lx", addr);
987
988 write(STDOUT_FILENO, from_guest_phys(addr),
989 strnlen(from_guest_phys(addr), guest_limit - addr));
990 }
991
992 /* This is called when the Waker wakes us up: check for incoming file
993 * descriptors. */
994 static void handle_input(int fd)
995 {
996 /* select() wants a zeroed timeval to mean "don't wait". */
997 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
998
999 for (;;) {
1000 struct device *i;
1001 fd_set fds = devices.infds;
1002
1003 /* If nothing is ready, we're done. */
1004 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
1005 break;
1006
1007 /* Otherwise, call the device(s) which have readable file
1008 * descriptors and a method of handling them. */
1009 for (i = devices.dev; i; i = i->next) {
1010 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1011 int dev_fd;
1012 if (i->handle_input(fd, i))
1013 continue;
1014
1015 /* If handle_input() returns false, it means we
1016 * should no longer service it. Networking and
1017 * console do this when there's no input
1018 * buffers to deliver into. Console also uses
1019 * it when it discovers that stdin is closed. */
1020 FD_CLR(i->fd, &devices.infds);
1021 /* Tell waker to ignore it too, by sending a
1022 * negative fd number (-1, since 0 is a valid
1023 * FD number). */
1024 dev_fd = -i->fd - 1;
1025 write(waker_fd, &dev_fd, sizeof(dev_fd));
1026 }
1027 }
1028 }
1029 }
1030
1031 /*L:190
1032 * Device Setup
1033 *
1034 * All devices need a descriptor so the Guest knows it exists, and a "struct
1035 * device" so the Launcher can keep track of it. We have common helper
1036 * routines to allocate and manage them.
1037 */
1038
1039 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1040 * number of virtqueue descriptors, then two sets of feature bits, then an
1041 * array of configuration bytes. This routine returns the configuration
1042 * pointer. */
1043 static u8 *device_config(const struct device *dev)
1044 {
1045 return (void *)(dev->desc + 1)
1046 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1047 + dev->desc->feature_len * 2;
1048 }
1049
1050 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1051 * table page just above the Guest's normal memory. It returns a pointer to
1052 * that descriptor. */
1053 static struct lguest_device_desc *new_dev_desc(u16 type)
1054 {
1055 struct lguest_device_desc d = { .type = type };
1056 void *p;
1057
1058 /* Figure out where the next device config is, based on the last one. */
1059 if (devices.lastdev)
1060 p = device_config(devices.lastdev)
1061 + devices.lastdev->desc->config_len;
1062 else
1063 p = devices.descpage;
1064
1065 /* We only have one page for all the descriptors. */
1066 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1067 errx(1, "Too many devices");
1068
1069 /* p might not be aligned, so we memcpy in. */
1070 return memcpy(p, &d, sizeof(d));
1071 }
1072
1073 /* Each device descriptor is followed by the description of its virtqueues. We
1074 * specify how many descriptors the virtqueue is to have. */
1075 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1076 void (*handle_output)(int fd, struct virtqueue *me))
1077 {
1078 unsigned int pages;
1079 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1080 void *p;
1081
1082 /* First we need some memory for this virtqueue. */
1083 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1084 / getpagesize();
1085 p = get_pages(pages);
1086
1087 /* Initialize the virtqueue */
1088 vq->next = NULL;
1089 vq->last_avail_idx = 0;
1090 vq->dev = dev;
1091
1092 /* Initialize the configuration. */
1093 vq->config.num = num_descs;
1094 vq->config.irq = devices.next_irq++;
1095 vq->config.pfn = to_guest_phys(p) / getpagesize();
1096
1097 /* Initialize the vring. */
1098 vring_init(&vq->vring, num_descs, p, getpagesize());
1099
1100 /* Append virtqueue to this device's descriptor. We use
1101 * device_config() to get the end of the device's current virtqueues;
1102 * we check that we haven't added any config or feature information
1103 * yet, otherwise we'd be overwriting them. */
1104 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1105 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1106 dev->desc->num_vq++;
1107
1108 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1109
1110 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1111 * second. */
1112 for (i = &dev->vq; *i; i = &(*i)->next);
1113 *i = vq;
1114
1115 /* Set the routine to call when the Guest does something to this
1116 * virtqueue. */
1117 vq->handle_output = handle_output;
1118
1119 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1120 * don't have a handler */
1121 if (!handle_output)
1122 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1123 }
1124
1125 /* The first half of the feature bitmask is for us to advertise features. The
1126 * second half is for the Guest to accept features. */
1127 static void add_feature(struct device *dev, unsigned bit)
1128 {
1129 u8 *features = get_feature_bits(dev);
1130
1131 /* We can't extend the feature bits once we've added config bytes */
1132 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1133 assert(dev->desc->config_len == 0);
1134 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1135 }
1136
1137 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1138 }
1139
1140 /* This routine sets the configuration fields for an existing device's
1141 * descriptor. It only works for the last device, but that's OK because that's
1142 * how we use it. */
1143 static void set_config(struct device *dev, unsigned len, const void *conf)
1144 {
1145 /* Check we haven't overflowed our single page. */
1146 if (device_config(dev) + len > devices.descpage + getpagesize())
1147 errx(1, "Too many devices");
1148
1149 /* Copy in the config information, and store the length. */
1150 memcpy(device_config(dev), conf, len);
1151 dev->desc->config_len = len;
1152 }
1153
1154 /* This routine does all the creation and setup of a new device, including
1155 * calling new_dev_desc() to allocate the descriptor and device memory.
1156 *
1157 * See what I mean about userspace being boring? */
1158 static struct device *new_device(const char *name, u16 type, int fd,
1159 bool (*handle_input)(int, struct device *))
1160 {
1161 struct device *dev = malloc(sizeof(*dev));
1162
1163 /* Now we populate the fields one at a time. */
1164 dev->fd = fd;
1165 /* If we have an input handler for this file descriptor, then we add it
1166 * to the device_list's fdset and maxfd. */
1167 if (handle_input)
1168 add_device_fd(dev->fd);
1169 dev->desc = new_dev_desc(type);
1170 dev->handle_input = handle_input;
1171 dev->name = name;
1172 dev->vq = NULL;
1173
1174 /* Append to device list. Prepending to a single-linked list is
1175 * easier, but the user expects the devices to be arranged on the bus
1176 * in command-line order. The first network device on the command line
1177 * is eth0, the first block device /dev/vda, etc. */
1178 if (devices.lastdev)
1179 devices.lastdev->next = dev;
1180 else
1181 devices.dev = dev;
1182 devices.lastdev = dev;
1183
1184 return dev;
1185 }
1186
1187 /* Our first setup routine is the console. It's a fairly simple device, but
1188 * UNIX tty handling makes it uglier than it could be. */
1189 static void setup_console(void)
1190 {
1191 struct device *dev;
1192
1193 /* If we can save the initial standard input settings... */
1194 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1195 struct termios term = orig_term;
1196 /* Then we turn off echo, line buffering and ^C etc. We want a
1197 * raw input stream to the Guest. */
1198 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1199 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1200 /* If we exit gracefully, the original settings will be
1201 * restored so the user can see what they're typing. */
1202 atexit(restore_term);
1203 }
1204
1205 dev = new_device("console", VIRTIO_ID_CONSOLE,
1206 STDIN_FILENO, handle_console_input);
1207 /* We store the console state in dev->priv, and initialize it. */
1208 dev->priv = malloc(sizeof(struct console_abort));
1209 ((struct console_abort *)dev->priv)->count = 0;
1210
1211 /* The console needs two virtqueues: the input then the output. When
1212 * they put something the input queue, we make sure we're listening to
1213 * stdin. When they put something in the output queue, we write it to
1214 * stdout. */
1215 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1216 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1217
1218 verbose("device %u: console\n", devices.device_num++);
1219 }
1220 /*:*/
1221
1222 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1223 * --sharenet=<name> option which opens or creates a named pipe. This can be
1224 * used to send packets to another guest in a 1:1 manner.
1225 *
1226 * More sopisticated is to use one of the tools developed for project like UML
1227 * to do networking.
1228 *
1229 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1230 * completely generic ("here's my vring, attach to your vring") and would work
1231 * for any traffic. Of course, namespace and permissions issues need to be
1232 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1233 * multiple inter-guest channels behind one interface, although it would
1234 * require some manner of hotplugging new virtio channels.
1235 *
1236 * Finally, we could implement a virtio network switch in the kernel. :*/
1237
1238 static u32 str2ip(const char *ipaddr)
1239 {
1240 unsigned int byte[4];
1241
1242 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1243 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1244 }
1245
1246 /* This code is "adapted" from libbridge: it attaches the Host end of the
1247 * network device to the bridge device specified by the command line.
1248 *
1249 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1250 * dislike bridging), and I just try not to break it. */
1251 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1252 {
1253 int ifidx;
1254 struct ifreq ifr;
1255
1256 if (!*br_name)
1257 errx(1, "must specify bridge name");
1258
1259 ifidx = if_nametoindex(if_name);
1260 if (!ifidx)
1261 errx(1, "interface %s does not exist!", if_name);
1262
1263 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1264 ifr.ifr_ifindex = ifidx;
1265 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1266 err(1, "can't add %s to bridge %s", if_name, br_name);
1267 }
1268
1269 /* This sets up the Host end of the network device with an IP address, brings
1270 * it up so packets will flow, the copies the MAC address into the hwaddr
1271 * pointer. */
1272 static void configure_device(int fd, const char *devname, u32 ipaddr,
1273 unsigned char hwaddr[6])
1274 {
1275 struct ifreq ifr;
1276 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1277
1278 /* Don't read these incantations. Just cut & paste them like I did! */
1279 memset(&ifr, 0, sizeof(ifr));
1280 strcpy(ifr.ifr_name, devname);
1281 sin->sin_family = AF_INET;
1282 sin->sin_addr.s_addr = htonl(ipaddr);
1283 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1284 err(1, "Setting %s interface address", devname);
1285 ifr.ifr_flags = IFF_UP;
1286 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1287 err(1, "Bringing interface %s up", devname);
1288
1289 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1290 * above). IF means Interface, and HWADDR is hardware address.
1291 * Simple! */
1292 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1293 err(1, "getting hw address for %s", devname);
1294 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1295 }
1296
1297 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1298 * routing, but the principle is the same: it uses the "tun" device to inject
1299 * packets into the Host as if they came in from a normal network card. We
1300 * just shunt packets between the Guest and the tun device. */
1301 static void setup_tun_net(const char *arg)
1302 {
1303 struct device *dev;
1304 struct ifreq ifr;
1305 int netfd, ipfd;
1306 u32 ip;
1307 const char *br_name = NULL;
1308 struct virtio_net_config conf;
1309
1310 /* We open the /dev/net/tun device and tell it we want a tap device. A
1311 * tap device is like a tun device, only somehow different. To tell
1312 * the truth, I completely blundered my way through this code, but it
1313 * works now! */
1314 netfd = open_or_die("/dev/net/tun", O_RDWR);
1315 memset(&ifr, 0, sizeof(ifr));
1316 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1317 strcpy(ifr.ifr_name, "tap%d");
1318 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1319 err(1, "configuring /dev/net/tun");
1320 /* We don't need checksums calculated for packets coming in this
1321 * device: trust us! */
1322 ioctl(netfd, TUNSETNOCSUM, 1);
1323
1324 /* First we create a new network device. */
1325 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1326
1327 /* Network devices need a receive and a send queue, just like
1328 * console. */
1329 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1330 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1331
1332 /* We need a socket to perform the magic network ioctls to bring up the
1333 * tap interface, connect to the bridge etc. Any socket will do! */
1334 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1335 if (ipfd < 0)
1336 err(1, "opening IP socket");
1337
1338 /* If the command line was --tunnet=bridge:<name> do bridging. */
1339 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1340 ip = INADDR_ANY;
1341 br_name = arg + strlen(BRIDGE_PFX);
1342 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1343 } else /* It is an IP address to set up the device with */
1344 ip = str2ip(arg);
1345
1346 /* Set up the tun device, and get the mac address for the interface. */
1347 configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
1348
1349 /* Tell Guest what MAC address to use. */
1350 add_feature(dev, VIRTIO_NET_F_MAC);
1351 set_config(dev, sizeof(conf), &conf);
1352
1353 /* We don't need the socket any more; setup is done. */
1354 close(ipfd);
1355
1356 verbose("device %u: tun net %u.%u.%u.%u\n",
1357 devices.device_num++,
1358 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1359 if (br_name)
1360 verbose("attached to bridge: %s\n", br_name);
1361 }
1362
1363 /* Our block (disk) device should be really simple: the Guest asks for a block
1364 * number and we read or write that position in the file. Unfortunately, that
1365 * was amazingly slow: the Guest waits until the read is finished before
1366 * running anything else, even if it could have been doing useful work.
1367 *
1368 * We could use async I/O, except it's reputed to suck so hard that characters
1369 * actually go missing from your code when you try to use it.
1370 *
1371 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1372
1373 /* This hangs off device->priv. */
1374 struct vblk_info
1375 {
1376 /* The size of the file. */
1377 off64_t len;
1378
1379 /* The file descriptor for the file. */
1380 int fd;
1381
1382 /* IO thread listens on this file descriptor [0]. */
1383 int workpipe[2];
1384
1385 /* IO thread writes to this file descriptor to mark it done, then
1386 * Launcher triggers interrupt to Guest. */
1387 int done_fd;
1388 };
1389
1390 /*L:210
1391 * The Disk
1392 *
1393 * Remember that the block device is handled by a separate I/O thread. We head
1394 * straight into the core of that thread here:
1395 */
1396 static bool service_io(struct device *dev)
1397 {
1398 struct vblk_info *vblk = dev->priv;
1399 unsigned int head, out_num, in_num, wlen;
1400 int ret;
1401 u8 *in;
1402 struct virtio_blk_outhdr *out;
1403 struct iovec iov[dev->vq->vring.num];
1404 off64_t off;
1405
1406 /* See if there's a request waiting. If not, nothing to do. */
1407 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1408 if (head == dev->vq->vring.num)
1409 return false;
1410
1411 /* Every block request should contain at least one output buffer
1412 * (detailing the location on disk and the type of request) and one
1413 * input buffer (to hold the result). */
1414 if (out_num == 0 || in_num == 0)
1415 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1416 head, out_num, in_num);
1417
1418 out = convert(&iov[0], struct virtio_blk_outhdr);
1419 in = convert(&iov[out_num+in_num-1], u8);
1420 off = out->sector * 512;
1421
1422 /* The block device implements "barriers", where the Guest indicates
1423 * that it wants all previous writes to occur before this write. We
1424 * don't have a way of asking our kernel to do a barrier, so we just
1425 * synchronize all the data in the file. Pretty poor, no? */
1426 if (out->type & VIRTIO_BLK_T_BARRIER)
1427 fdatasync(vblk->fd);
1428
1429 /* In general the virtio block driver is allowed to try SCSI commands.
1430 * It'd be nice if we supported eject, for example, but we don't. */
1431 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1432 fprintf(stderr, "Scsi commands unsupported\n");
1433 *in = VIRTIO_BLK_S_UNSUPP;
1434 wlen = sizeof(*in);
1435 } else if (out->type & VIRTIO_BLK_T_OUT) {
1436 /* Write */
1437
1438 /* Move to the right location in the block file. This can fail
1439 * if they try to write past end. */
1440 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1441 err(1, "Bad seek to sector %llu", out->sector);
1442
1443 ret = writev(vblk->fd, iov+1, out_num-1);
1444 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1445
1446 /* Grr... Now we know how long the descriptor they sent was, we
1447 * make sure they didn't try to write over the end of the block
1448 * file (possibly extending it). */
1449 if (ret > 0 && off + ret > vblk->len) {
1450 /* Trim it back to the correct length */
1451 ftruncate64(vblk->fd, vblk->len);
1452 /* Die, bad Guest, die. */
1453 errx(1, "Write past end %llu+%u", off, ret);
1454 }
1455 wlen = sizeof(*in);
1456 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1457 } else {
1458 /* Read */
1459
1460 /* Move to the right location in the block file. This can fail
1461 * if they try to read past end. */
1462 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1463 err(1, "Bad seek to sector %llu", out->sector);
1464
1465 ret = readv(vblk->fd, iov+1, in_num-1);
1466 verbose("READ from sector %llu: %i\n", out->sector, ret);
1467 if (ret >= 0) {
1468 wlen = sizeof(*in) + ret;
1469 *in = VIRTIO_BLK_S_OK;
1470 } else {
1471 wlen = sizeof(*in);
1472 *in = VIRTIO_BLK_S_IOERR;
1473 }
1474 }
1475
1476 /* We can't trigger an IRQ, because we're not the Launcher. It does
1477 * that when we tell it we're done. */
1478 add_used(dev->vq, head, wlen);
1479 return true;
1480 }
1481
1482 /* This is the thread which actually services the I/O. */
1483 static int io_thread(void *_dev)
1484 {
1485 struct device *dev = _dev;
1486 struct vblk_info *vblk = dev->priv;
1487 char c;
1488
1489 /* Close other side of workpipe so we get 0 read when main dies. */
1490 close(vblk->workpipe[1]);
1491 /* Close the other side of the done_fd pipe. */
1492 close(dev->fd);
1493
1494 /* When this read fails, it means Launcher died, so we follow. */
1495 while (read(vblk->workpipe[0], &c, 1) == 1) {
1496 /* We acknowledge each request immediately to reduce latency,
1497 * rather than waiting until we've done them all. I haven't
1498 * measured to see if it makes any difference.
1499 *
1500 * That would be an interesting test, wouldn't it? You could
1501 * also try having more than one I/O thread. */
1502 while (service_io(dev))
1503 write(vblk->done_fd, &c, 1);
1504 }
1505 return 0;
1506 }
1507
1508 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1509 * when that thread tells us it's completed some I/O. */
1510 static bool handle_io_finish(int fd, struct device *dev)
1511 {
1512 char c;
1513
1514 /* If the I/O thread died, presumably it printed the error, so we
1515 * simply exit. */
1516 if (read(dev->fd, &c, 1) != 1)
1517 exit(1);
1518
1519 /* It did some work, so trigger the irq. */
1520 trigger_irq(fd, dev->vq);
1521 return true;
1522 }
1523
1524 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1525 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1526 {
1527 struct vblk_info *vblk = vq->dev->priv;
1528 char c = 0;
1529
1530 /* Wake up I/O thread and tell it to go to work! */
1531 if (write(vblk->workpipe[1], &c, 1) != 1)
1532 /* Presumably it indicated why it died. */
1533 exit(1);
1534 }
1535
1536 /*L:198 This actually sets up a virtual block device. */
1537 static void setup_block_file(const char *filename)
1538 {
1539 int p[2];
1540 struct device *dev;
1541 struct vblk_info *vblk;
1542 void *stack;
1543 struct virtio_blk_config conf;
1544
1545 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1546 pipe(p);
1547
1548 /* The device responds to return from I/O thread. */
1549 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1550
1551 /* The device has one virtqueue, where the Guest places requests. */
1552 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1553
1554 /* Allocate the room for our own bookkeeping */
1555 vblk = dev->priv = malloc(sizeof(*vblk));
1556
1557 /* First we open the file and store the length. */
1558 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1559 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1560
1561 /* We support barriers. */
1562 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1563
1564 /* Tell Guest how many sectors this device has. */
1565 conf.capacity = cpu_to_le64(vblk->len / 512);
1566
1567 /* Tell Guest not to put in too many descriptors at once: two are used
1568 * for the in and out elements. */
1569 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1570 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1571
1572 set_config(dev, sizeof(conf), &conf);
1573
1574 /* The I/O thread writes to this end of the pipe when done. */
1575 vblk->done_fd = p[1];
1576
1577 /* This is the second pipe, which is how we tell the I/O thread about
1578 * more work. */
1579 pipe(vblk->workpipe);
1580
1581 /* Create stack for thread and run it. Since stack grows upwards, we
1582 * point the stack pointer to the end of this region. */
1583 stack = malloc(32768);
1584 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1585 * becoming a zombie. */
1586 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1587 err(1, "Creating clone");
1588
1589 /* We don't need to keep the I/O thread's end of the pipes open. */
1590 close(vblk->done_fd);
1591 close(vblk->workpipe[0]);
1592
1593 verbose("device %u: virtblock %llu sectors\n",
1594 devices.device_num, le64_to_cpu(conf.capacity));
1595 }
1596 /* That's the end of device setup. */
1597
1598 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1599 static void __attribute__((noreturn)) restart_guest(void)
1600 {
1601 unsigned int i;
1602
1603 /* Closing pipes causes the Waker thread and io_threads to die, and
1604 * closing /dev/lguest cleans up the Guest. Since we don't track all
1605 * open fds, we simply close everything beyond stderr. */
1606 for (i = 3; i < FD_SETSIZE; i++)
1607 close(i);
1608 execv(main_args[0], main_args);
1609 err(1, "Could not exec %s", main_args[0]);
1610 }
1611
1612 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1613 * its input and output, and finally, lays it to rest. */
1614 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1615 {
1616 for (;;) {
1617 unsigned long args[] = { LHREQ_BREAK, 0 };
1618 unsigned long notify_addr;
1619 int readval;
1620
1621 /* We read from the /dev/lguest device to run the Guest. */
1622 readval = pread(lguest_fd, &notify_addr,
1623 sizeof(notify_addr), cpu_id);
1624
1625 /* One unsigned long means the Guest did HCALL_NOTIFY */
1626 if (readval == sizeof(notify_addr)) {
1627 verbose("Notify on address %#lx\n", notify_addr);
1628 handle_output(lguest_fd, notify_addr);
1629 continue;
1630 /* ENOENT means the Guest died. Reading tells us why. */
1631 } else if (errno == ENOENT) {
1632 char reason[1024] = { 0 };
1633 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1634 errx(1, "%s", reason);
1635 /* ERESTART means that we need to reboot the guest */
1636 } else if (errno == ERESTART) {
1637 restart_guest();
1638 /* EAGAIN means the Waker wanted us to look at some input.
1639 * Anything else means a bug or incompatible change. */
1640 } else if (errno != EAGAIN)
1641 err(1, "Running guest failed");
1642
1643 /* Only service input on thread for CPU 0. */
1644 if (cpu_id != 0)
1645 continue;
1646
1647 /* Service input, then unset the BREAK to release the Waker. */
1648 handle_input(lguest_fd);
1649 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1650 err(1, "Resetting break");
1651 }
1652 }
1653 /*L:240
1654 * This is the end of the Launcher. The good news: we are over halfway
1655 * through! The bad news: the most fiendish part of the code still lies ahead
1656 * of us.
1657 *
1658 * Are you ready? Take a deep breath and join me in the core of the Host, in
1659 * "make Host".
1660 :*/
1661
1662 static struct option opts[] = {
1663 { "verbose", 0, NULL, 'v' },
1664 { "tunnet", 1, NULL, 't' },
1665 { "block", 1, NULL, 'b' },
1666 { "initrd", 1, NULL, 'i' },
1667 { NULL },
1668 };
1669 static void usage(void)
1670 {
1671 errx(1, "Usage: lguest [--verbose] "
1672 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1673 "|--block=<filename>|--initrd=<filename>]...\n"
1674 "<mem-in-mb> vmlinux [args...]");
1675 }
1676
1677 /*L:105 The main routine is where the real work begins: */
1678 int main(int argc, char *argv[])
1679 {
1680 /* Memory, top-level pagetable, code startpoint and size of the
1681 * (optional) initrd. */
1682 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1683 /* Two temporaries and the /dev/lguest file descriptor. */
1684 int i, c, lguest_fd;
1685 /* The boot information for the Guest. */
1686 struct boot_params *boot;
1687 /* If they specify an initrd file to load. */
1688 const char *initrd_name = NULL;
1689
1690 /* Save the args: we "reboot" by execing ourselves again. */
1691 main_args = argv;
1692 /* We don't "wait" for the children, so prevent them from becoming
1693 * zombies. */
1694 signal(SIGCHLD, SIG_IGN);
1695
1696 /* First we initialize the device list. Since console and network
1697 * device receive input from a file descriptor, we keep an fdset
1698 * (infds) and the maximum fd number (max_infd) with the head of the
1699 * list. We also keep a pointer to the last device. Finally, we keep
1700 * the next interrupt number to use for devices (1: remember that 0 is
1701 * used by the timer). */
1702 FD_ZERO(&devices.infds);
1703 devices.max_infd = -1;
1704 devices.lastdev = NULL;
1705 devices.next_irq = 1;
1706
1707 cpu_id = 0;
1708 /* We need to know how much memory so we can set up the device
1709 * descriptor and memory pages for the devices as we parse the command
1710 * line. So we quickly look through the arguments to find the amount
1711 * of memory now. */
1712 for (i = 1; i < argc; i++) {
1713 if (argv[i][0] != '-') {
1714 mem = atoi(argv[i]) * 1024 * 1024;
1715 /* We start by mapping anonymous pages over all of
1716 * guest-physical memory range. This fills it with 0,
1717 * and ensures that the Guest won't be killed when it
1718 * tries to access it. */
1719 guest_base = map_zeroed_pages(mem / getpagesize()
1720 + DEVICE_PAGES);
1721 guest_limit = mem;
1722 guest_max = mem + DEVICE_PAGES*getpagesize();
1723 devices.descpage = get_pages(1);
1724 break;
1725 }
1726 }
1727
1728 /* The options are fairly straight-forward */
1729 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1730 switch (c) {
1731 case 'v':
1732 verbose = true;
1733 break;
1734 case 't':
1735 setup_tun_net(optarg);
1736 break;
1737 case 'b':
1738 setup_block_file(optarg);
1739 break;
1740 case 'i':
1741 initrd_name = optarg;
1742 break;
1743 default:
1744 warnx("Unknown argument %s", argv[optind]);
1745 usage();
1746 }
1747 }
1748 /* After the other arguments we expect memory and kernel image name,
1749 * followed by command line arguments for the kernel. */
1750 if (optind + 2 > argc)
1751 usage();
1752
1753 verbose("Guest base is at %p\n", guest_base);
1754
1755 /* We always have a console device */
1756 setup_console();
1757
1758 /* Now we load the kernel */
1759 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1760
1761 /* Boot information is stashed at physical address 0 */
1762 boot = from_guest_phys(0);
1763
1764 /* Map the initrd image if requested (at top of physical memory) */
1765 if (initrd_name) {
1766 initrd_size = load_initrd(initrd_name, mem);
1767 /* These are the location in the Linux boot header where the
1768 * start and size of the initrd are expected to be found. */
1769 boot->hdr.ramdisk_image = mem - initrd_size;
1770 boot->hdr.ramdisk_size = initrd_size;
1771 /* The bootloader type 0xFF means "unknown"; that's OK. */
1772 boot->hdr.type_of_loader = 0xFF;
1773 }
1774
1775 /* Set up the initial linear pagetables, starting below the initrd. */
1776 pgdir = setup_pagetables(mem, initrd_size);
1777
1778 /* The Linux boot header contains an "E820" memory map: ours is a
1779 * simple, single region. */
1780 boot->e820_entries = 1;
1781 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1782 /* The boot header contains a command line pointer: we put the command
1783 * line after the boot header. */
1784 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1785 /* We use a simple helper to copy the arguments separated by spaces. */
1786 concat((char *)(boot + 1), argv+optind+2);
1787
1788 /* Boot protocol version: 2.07 supports the fields for lguest. */
1789 boot->hdr.version = 0x207;
1790
1791 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1792 boot->hdr.hardware_subarch = 1;
1793
1794 /* Tell the entry path not to try to reload segment registers. */
1795 boot->hdr.loadflags |= KEEP_SEGMENTS;
1796
1797 /* We tell the kernel to initialize the Guest: this returns the open
1798 * /dev/lguest file descriptor. */
1799 lguest_fd = tell_kernel(pgdir, start);
1800
1801 /* We fork off a child process, which wakes the Launcher whenever one
1802 * of the input file descriptors needs attention. We call this the
1803 * Waker, and we'll cover it in a moment. */
1804 waker_fd = setup_waker(lguest_fd);
1805
1806 /* Finally, run the Guest. This doesn't return. */
1807 run_guest(lguest_fd);
1808 }
1809 /*:*/
1810
1811 /*M:999
1812 * Mastery is done: you now know everything I do.
1813 *
1814 * But surely you have seen code, features and bugs in your wanderings which
1815 * you now yearn to attack? That is the real game, and I look forward to you
1816 * patching and forking lguest into the Your-Name-Here-visor.
1817 *
1818 * Farewell, and good coding!
1819 * Rusty Russell.
1820 */