]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - Documentation/media/uapi/v4l/buffer.rst
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / Documentation / media / uapi / v4l / buffer.rst
1 .. Permission is granted to copy, distribute and/or modify this
2 .. document under the terms of the GNU Free Documentation License,
3 .. Version 1.1 or any later version published by the Free Software
4 .. Foundation, with no Invariant Sections, no Front-Cover Texts
5 .. and no Back-Cover Texts. A copy of the license is included at
6 .. Documentation/media/uapi/fdl-appendix.rst.
7 ..
8 .. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
9
10 .. _buffer:
11
12 *******
13 Buffers
14 *******
15
16 A buffer contains data exchanged by application and driver using one of
17 the Streaming I/O methods. In the multi-planar API, the data is held in
18 planes, while the buffer structure acts as a container for the planes.
19 Only pointers to buffers (planes) are exchanged, the data itself is not
20 copied. These pointers, together with meta-information like timestamps
21 or field parity, are stored in a struct :c:type:`v4l2_buffer`,
22 argument to the :ref:`VIDIOC_QUERYBUF`,
23 :ref:`VIDIOC_QBUF <VIDIOC_QBUF>` and
24 :ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl. In the multi-planar API,
25 some plane-specific members of struct :c:type:`v4l2_buffer`,
26 such as pointers and sizes for each plane, are stored in struct
27 struct :c:type:`v4l2_plane` instead. In that case, struct
28 struct :c:type:`v4l2_buffer` contains an array of plane structures.
29
30 Dequeued video buffers come with timestamps. The driver decides at which
31 part of the frame and with which clock the timestamp is taken. Please
32 see flags in the masks ``V4L2_BUF_FLAG_TIMESTAMP_MASK`` and
33 ``V4L2_BUF_FLAG_TSTAMP_SRC_MASK`` in :ref:`buffer-flags`. These flags
34 are always valid and constant across all buffers during the whole video
35 stream. Changes in these flags may take place as a side effect of
36 :ref:`VIDIOC_S_INPUT <VIDIOC_G_INPUT>` or
37 :ref:`VIDIOC_S_OUTPUT <VIDIOC_G_OUTPUT>` however. The
38 ``V4L2_BUF_FLAG_TIMESTAMP_COPY`` timestamp type which is used by e.g. on
39 mem-to-mem devices is an exception to the rule: the timestamp source
40 flags are copied from the OUTPUT video buffer to the CAPTURE video
41 buffer.
42
43
44 Interactions between formats, controls and buffers
45 ==================================================
46
47 V4L2 exposes parameters that influence the buffer size, or the way data is
48 laid out in the buffer. Those parameters are exposed through both formats and
49 controls. One example of such a control is the ``V4L2_CID_ROTATE`` control
50 that modifies the direction in which pixels are stored in the buffer, as well
51 as the buffer size when the selected format includes padding at the end of
52 lines.
53
54 The set of information needed to interpret the content of a buffer (e.g. the
55 pixel format, the line stride, the tiling orientation or the rotation) is
56 collectively referred to in the rest of this section as the buffer layout.
57
58 Controls that can modify the buffer layout shall set the
59 ``V4L2_CTRL_FLAG_MODIFY_LAYOUT`` flag.
60
61 Modifying formats or controls that influence the buffer size or layout require
62 the stream to be stopped. Any attempt at such a modification while the stream
63 is active shall cause the ioctl setting the format or the control to return
64 the ``EBUSY`` error code. In that case drivers shall also set the
65 ``V4L2_CTRL_FLAG_GRABBED`` flag when calling
66 :c:func:`VIDIOC_QUERYCTRL` or :c:func:`VIDIOC_QUERY_EXT_CTRL` for such a
67 control while the stream is active.
68
69 .. note::
70
71 The :c:func:`VIDIOC_S_SELECTION` ioctl can, depending on the hardware (for
72 instance if the device doesn't include a scaler), modify the format in
73 addition to the selection rectangle. Similarly, the
74 :c:func:`VIDIOC_S_INPUT`, :c:func:`VIDIOC_S_OUTPUT`, :c:func:`VIDIOC_S_STD`
75 and :c:func:`VIDIOC_S_DV_TIMINGS` ioctls can also modify the format and
76 selection rectangles. When those ioctls result in a buffer size or layout
77 change, drivers shall handle that condition as they would handle it in the
78 :c:func:`VIDIOC_S_FMT` ioctl in all cases described in this section.
79
80 Controls that only influence the buffer layout can be modified at any time
81 when the stream is stopped. As they don't influence the buffer size, no
82 special handling is needed to synchronize those controls with buffer
83 allocation and the ``V4L2_CTRL_FLAG_GRABBED`` flag is cleared once the
84 stream is stopped.
85
86 Formats and controls that influence the buffer size interact with buffer
87 allocation. The simplest way to handle this is for drivers to always require
88 buffers to be reallocated in order to change those formats or controls. In
89 that case, to perform such changes, userspace applications shall first stop
90 the video stream with the :c:func:`VIDIOC_STREAMOFF` ioctl if it is running
91 and free all buffers with the :c:func:`VIDIOC_REQBUFS` ioctl if they are
92 allocated. After freeing all buffers the ``V4L2_CTRL_FLAG_GRABBED`` flag
93 for controls is cleared. The format or controls can then be modified, and
94 buffers shall then be reallocated and the stream restarted. A typical ioctl
95 sequence is
96
97 #. VIDIOC_STREAMOFF
98 #. VIDIOC_REQBUFS(0)
99 #. VIDIOC_S_EXT_CTRLS
100 #. VIDIOC_S_FMT
101 #. VIDIOC_REQBUFS(n)
102 #. VIDIOC_QBUF
103 #. VIDIOC_STREAMON
104
105 The second :c:func:`VIDIOC_REQBUFS` call will take the new format and control
106 value into account to compute the buffer size to allocate. Applications can
107 also retrieve the size by calling the :c:func:`VIDIOC_G_FMT` ioctl if needed.
108
109 .. note::
110
111 The API doesn't mandate the above order for control (3.) and format (4.)
112 changes. Format and controls can be set in a different order, or even
113 interleaved, depending on the device and use case. For instance some
114 controls might behave differently for different pixel formats, in which
115 case the format might need to be set first.
116
117 When reallocation is required, any attempt to modify format or controls that
118 influences the buffer size while buffers are allocated shall cause the format
119 or control set ioctl to return the ``EBUSY`` error. Any attempt to queue a
120 buffer too small for the current format or controls shall cause the
121 :c:func:`VIDIOC_QBUF` ioctl to return a ``EINVAL`` error.
122
123 Buffer reallocation is an expensive operation. To avoid that cost, drivers can
124 (and are encouraged to) allow format or controls that influence the buffer
125 size to be changed with buffers allocated. In that case, a typical ioctl
126 sequence to modify format and controls is
127
128 #. VIDIOC_STREAMOFF
129 #. VIDIOC_S_EXT_CTRLS
130 #. VIDIOC_S_FMT
131 #. VIDIOC_QBUF
132 #. VIDIOC_STREAMON
133
134 For this sequence to operate correctly, queued buffers need to be large enough
135 for the new format or controls. Drivers shall return a ``ENOSPC`` error in
136 response to format change (:c:func:`VIDIOC_S_FMT`) or control changes
137 (:c:func:`VIDIOC_S_CTRL` or :c:func:`VIDIOC_S_EXT_CTRLS`) if buffers too small
138 for the new format are currently queued. As a simplification, drivers are
139 allowed to return a ``EBUSY`` error from these ioctls if any buffer is
140 currently queued, without checking the queued buffers sizes.
141
142 Additionally, drivers shall return a ``EINVAL`` error from the
143 :c:func:`VIDIOC_QBUF` ioctl if the buffer being queued is too small for the
144 current format or controls. Together, these requirements ensure that queued
145 buffers will always be large enough for the configured format and controls.
146
147 Userspace applications can query the buffer size required for a given format
148 and controls by first setting the desired control values and then trying the
149 desired format. The :c:func:`VIDIOC_TRY_FMT` ioctl will return the required
150 buffer size.
151
152 #. VIDIOC_S_EXT_CTRLS(x)
153 #. VIDIOC_TRY_FMT()
154 #. VIDIOC_S_EXT_CTRLS(y)
155 #. VIDIOC_TRY_FMT()
156
157 The :c:func:`VIDIOC_CREATE_BUFS` ioctl can then be used to allocate buffers
158 based on the queried sizes (for instance by allocating a set of buffers large
159 enough for all the desired formats and controls, or by allocating separate set
160 of appropriately sized buffers for each use case).
161
162
163 .. c:type:: v4l2_buffer
164
165 struct v4l2_buffer
166 ==================
167
168 .. tabularcolumns:: |p{2.8cm}|p{2.5cm}|p{1.3cm}|p{10.5cm}|
169
170 .. cssclass:: longtable
171
172 .. flat-table:: struct v4l2_buffer
173 :header-rows: 0
174 :stub-columns: 0
175 :widths: 1 2 1 10
176
177 * - __u32
178 - ``index``
179 -
180 - Number of the buffer, set by the application except when calling
181 :ref:`VIDIOC_DQBUF <VIDIOC_QBUF>`, then it is set by the
182 driver. This field can range from zero to the number of buffers
183 allocated with the :ref:`VIDIOC_REQBUFS` ioctl
184 (struct :c:type:`v4l2_requestbuffers`
185 ``count``), plus any buffers allocated with
186 :ref:`VIDIOC_CREATE_BUFS` minus one.
187 * - __u32
188 - ``type``
189 -
190 - Type of the buffer, same as struct
191 :c:type:`v4l2_format` ``type`` or struct
192 :c:type:`v4l2_requestbuffers` ``type``, set
193 by the application. See :c:type:`v4l2_buf_type`
194 * - __u32
195 - ``bytesused``
196 -
197 - The number of bytes occupied by the data in the buffer. It depends
198 on the negotiated data format and may change with each buffer for
199 compressed variable size data like JPEG images. Drivers must set
200 this field when ``type`` refers to a capture stream, applications
201 when it refers to an output stream. If the application sets this
202 to 0 for an output stream, then ``bytesused`` will be set to the
203 size of the buffer (see the ``length`` field of this struct) by
204 the driver. For multiplanar formats this field is ignored and the
205 ``planes`` pointer is used instead.
206 * - __u32
207 - ``flags``
208 -
209 - Flags set by the application or driver, see :ref:`buffer-flags`.
210 * - __u32
211 - ``field``
212 -
213 - Indicates the field order of the image in the buffer, see
214 :c:type:`v4l2_field`. This field is not used when the buffer
215 contains VBI data. Drivers must set it when ``type`` refers to a
216 capture stream, applications when it refers to an output stream.
217 * - struct timeval
218 - ``timestamp``
219 -
220 - For capture streams this is time when the first data byte was
221 captured, as returned by the :c:func:`clock_gettime()` function
222 for the relevant clock id; see ``V4L2_BUF_FLAG_TIMESTAMP_*`` in
223 :ref:`buffer-flags`. For output streams the driver stores the
224 time at which the last data byte was actually sent out in the
225 ``timestamp`` field. This permits applications to monitor the
226 drift between the video and system clock. For output streams that
227 use ``V4L2_BUF_FLAG_TIMESTAMP_COPY`` the application has to fill
228 in the timestamp which will be copied by the driver to the capture
229 stream.
230 * - struct :c:type:`v4l2_timecode`
231 - ``timecode``
232 -
233 - When the ``V4L2_BUF_FLAG_TIMECODE`` flag is set in ``flags``, this
234 structure contains a frame timecode. In
235 :c:type:`V4L2_FIELD_ALTERNATE <v4l2_field>` mode the top and
236 bottom field contain the same timecode. Timecodes are intended to
237 help video editing and are typically recorded on video tapes, but
238 also embedded in compressed formats like MPEG. This field is
239 independent of the ``timestamp`` and ``sequence`` fields.
240 * - __u32
241 - ``sequence``
242 -
243 - Set by the driver, counting the frames (not fields!) in sequence.
244 This field is set for both input and output devices.
245 * - :cspan:`3`
246
247 In :c:type:`V4L2_FIELD_ALTERNATE <v4l2_field>` mode the top and
248 bottom field have the same sequence number. The count starts at
249 zero and includes dropped or repeated frames. A dropped frame was
250 received by an input device but could not be stored due to lack of
251 free buffer space. A repeated frame was displayed again by an
252 output device because the application did not pass new data in
253 time.
254
255 .. note::
256
257 This may count the frames received e.g. over USB, without
258 taking into account the frames dropped by the remote hardware due
259 to limited compression throughput or bus bandwidth. These devices
260 identify by not enumerating any video standards, see
261 :ref:`standard`.
262
263 * - __u32
264 - ``memory``
265 -
266 - This field must be set by applications and/or drivers in
267 accordance with the selected I/O method. See :c:type:`v4l2_memory`
268 * - union
269 - ``m``
270 * -
271 - __u32
272 - ``offset``
273 - For the single-planar API and when ``memory`` is
274 ``V4L2_MEMORY_MMAP`` this is the offset of the buffer from the
275 start of the device memory. The value is returned by the driver
276 and apart of serving as parameter to the
277 :ref:`mmap() <func-mmap>` function not useful for applications.
278 See :ref:`mmap` for details
279 * -
280 - unsigned long
281 - ``userptr``
282 - For the single-planar API and when ``memory`` is
283 ``V4L2_MEMORY_USERPTR`` this is a pointer to the buffer (casted to
284 unsigned long type) in virtual memory, set by the application. See
285 :ref:`userp` for details.
286 * -
287 - struct v4l2_plane
288 - ``*planes``
289 - When using the multi-planar API, contains a userspace pointer to
290 an array of struct :c:type:`v4l2_plane`. The size of
291 the array should be put in the ``length`` field of this
292 struct :c:type:`v4l2_buffer` structure.
293 * -
294 - int
295 - ``fd``
296 - For the single-plane API and when ``memory`` is
297 ``V4L2_MEMORY_DMABUF`` this is the file descriptor associated with
298 a DMABUF buffer.
299 * - __u32
300 - ``length``
301 -
302 - Size of the buffer (not the payload) in bytes for the
303 single-planar API. This is set by the driver based on the calls to
304 :ref:`VIDIOC_REQBUFS` and/or
305 :ref:`VIDIOC_CREATE_BUFS`. For the
306 multi-planar API the application sets this to the number of
307 elements in the ``planes`` array. The driver will fill in the
308 actual number of valid elements in that array.
309 * - __u32
310 - ``reserved2``
311 -
312 - A place holder for future extensions. Drivers and applications
313 must set this to 0.
314 * - __u32
315 - ``request_fd``
316 -
317 - The file descriptor of the request to queue the buffer to. If the flag
318 ``V4L2_BUF_FLAG_REQUEST_FD`` is set, then the buffer will be
319 queued to this request. If the flag is not set, then this field will
320 be ignored.
321
322 The ``V4L2_BUF_FLAG_REQUEST_FD`` flag and this field are only used by
323 :ref:`ioctl VIDIOC_QBUF <VIDIOC_QBUF>` and ignored by other ioctls that
324 take a :c:type:`v4l2_buffer` as argument.
325
326 Applications should not set ``V4L2_BUF_FLAG_REQUEST_FD`` for any ioctls
327 other than :ref:`VIDIOC_QBUF <VIDIOC_QBUF>`.
328
329 If the device does not support requests, then ``EACCES`` will be returned.
330 If requests are supported but an invalid request file descriptor is
331 given, then ``EINVAL`` will be returned.
332
333
334
335 .. c:type:: v4l2_plane
336
337 struct v4l2_plane
338 =================
339
340 .. tabularcolumns:: |p{3.5cm}|p{3.5cm}|p{3.5cm}|p{7.0cm}|
341
342 .. cssclass:: longtable
343
344 .. flat-table::
345 :header-rows: 0
346 :stub-columns: 0
347 :widths: 1 1 1 2
348
349 * - __u32
350 - ``bytesused``
351 -
352 - The number of bytes occupied by data in the plane (its payload).
353 Drivers must set this field when ``type`` refers to a capture
354 stream, applications when it refers to an output stream. If the
355 application sets this to 0 for an output stream, then
356 ``bytesused`` will be set to the size of the plane (see the
357 ``length`` field of this struct) by the driver.
358
359 .. note::
360
361 Note that the actual image data starts at ``data_offset``
362 which may not be 0.
363 * - __u32
364 - ``length``
365 -
366 - Size in bytes of the plane (not its payload). This is set by the
367 driver based on the calls to
368 :ref:`VIDIOC_REQBUFS` and/or
369 :ref:`VIDIOC_CREATE_BUFS`.
370 * - union
371 - ``m``
372 -
373 -
374 * -
375 - __u32
376 - ``mem_offset``
377 - When the memory type in the containing struct
378 :c:type:`v4l2_buffer` is ``V4L2_MEMORY_MMAP``, this
379 is the value that should be passed to :ref:`mmap() <func-mmap>`,
380 similar to the ``offset`` field in struct
381 :c:type:`v4l2_buffer`.
382 * -
383 - unsigned long
384 - ``userptr``
385 - When the memory type in the containing struct
386 :c:type:`v4l2_buffer` is ``V4L2_MEMORY_USERPTR``,
387 this is a userspace pointer to the memory allocated for this plane
388 by an application.
389 * -
390 - int
391 - ``fd``
392 - When the memory type in the containing struct
393 :c:type:`v4l2_buffer` is ``V4L2_MEMORY_DMABUF``,
394 this is a file descriptor associated with a DMABUF buffer, similar
395 to the ``fd`` field in struct :c:type:`v4l2_buffer`.
396 * - __u32
397 - ``data_offset``
398 -
399 - Offset in bytes to video data in the plane. Drivers must set this
400 field when ``type`` refers to a capture stream, applications when
401 it refers to an output stream.
402
403 .. note::
404
405 That data_offset is included in ``bytesused``. So the
406 size of the image in the plane is ``bytesused``-``data_offset``
407 at offset ``data_offset`` from the start of the plane.
408 * - __u32
409 - ``reserved[11]``
410 -
411 - Reserved for future use. Should be zeroed by drivers and
412 applications.
413
414
415
416 .. c:type:: v4l2_buf_type
417
418 enum v4l2_buf_type
419 ==================
420
421 .. cssclass:: longtable
422
423 .. tabularcolumns:: |p{7.2cm}|p{0.6cm}|p{9.7cm}|
424
425 .. flat-table::
426 :header-rows: 0
427 :stub-columns: 0
428 :widths: 4 1 9
429
430 * - ``V4L2_BUF_TYPE_VIDEO_CAPTURE``
431 - 1
432 - Buffer of a single-planar video capture stream, see
433 :ref:`capture`.
434 * - ``V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE``
435 - 9
436 - Buffer of a multi-planar video capture stream, see
437 :ref:`capture`.
438 * - ``V4L2_BUF_TYPE_VIDEO_OUTPUT``
439 - 2
440 - Buffer of a single-planar video output stream, see
441 :ref:`output`.
442 * - ``V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE``
443 - 10
444 - Buffer of a multi-planar video output stream, see :ref:`output`.
445 * - ``V4L2_BUF_TYPE_VIDEO_OVERLAY``
446 - 3
447 - Buffer for video overlay, see :ref:`overlay`.
448 * - ``V4L2_BUF_TYPE_VBI_CAPTURE``
449 - 4
450 - Buffer of a raw VBI capture stream, see :ref:`raw-vbi`.
451 * - ``V4L2_BUF_TYPE_VBI_OUTPUT``
452 - 5
453 - Buffer of a raw VBI output stream, see :ref:`raw-vbi`.
454 * - ``V4L2_BUF_TYPE_SLICED_VBI_CAPTURE``
455 - 6
456 - Buffer of a sliced VBI capture stream, see :ref:`sliced`.
457 * - ``V4L2_BUF_TYPE_SLICED_VBI_OUTPUT``
458 - 7
459 - Buffer of a sliced VBI output stream, see :ref:`sliced`.
460 * - ``V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY``
461 - 8
462 - Buffer for video output overlay (OSD), see :ref:`osd`.
463 * - ``V4L2_BUF_TYPE_SDR_CAPTURE``
464 - 11
465 - Buffer for Software Defined Radio (SDR) capture stream, see
466 :ref:`sdr`.
467 * - ``V4L2_BUF_TYPE_SDR_OUTPUT``
468 - 12
469 - Buffer for Software Defined Radio (SDR) output stream, see
470 :ref:`sdr`.
471 * - ``V4L2_BUF_TYPE_META_CAPTURE``
472 - 13
473 - Buffer for metadata capture, see :ref:`metadata`.
474 * - ``V4L2_BUF_TYPE_META_OUTPUT``
475 - 14
476 - Buffer for metadata output, see :ref:`metadata`.
477
478
479
480 .. _buffer-flags:
481
482 Buffer Flags
483 ============
484
485 .. tabularcolumns:: |p{7.0cm}|p{2.2cm}|p{8.3cm}|
486
487 .. cssclass:: longtable
488
489 .. flat-table::
490 :header-rows: 0
491 :stub-columns: 0
492 :widths: 3 1 4
493
494 * .. _`V4L2-BUF-FLAG-MAPPED`:
495
496 - ``V4L2_BUF_FLAG_MAPPED``
497 - 0x00000001
498 - The buffer resides in device memory and has been mapped into the
499 application's address space, see :ref:`mmap` for details.
500 Drivers set or clear this flag when the
501 :ref:`VIDIOC_QUERYBUF`,
502 :ref:`VIDIOC_QBUF` or
503 :ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl is called. Set by the
504 driver.
505 * .. _`V4L2-BUF-FLAG-QUEUED`:
506
507 - ``V4L2_BUF_FLAG_QUEUED``
508 - 0x00000002
509 - Internally drivers maintain two buffer queues, an incoming and
510 outgoing queue. When this flag is set, the buffer is currently on
511 the incoming queue. It automatically moves to the outgoing queue
512 after the buffer has been filled (capture devices) or displayed
513 (output devices). Drivers set or clear this flag when the
514 ``VIDIOC_QUERYBUF`` ioctl is called. After (successful) calling
515 the ``VIDIOC_QBUF``\ ioctl it is always set and after
516 ``VIDIOC_DQBUF`` always cleared.
517 * .. _`V4L2-BUF-FLAG-DONE`:
518
519 - ``V4L2_BUF_FLAG_DONE``
520 - 0x00000004
521 - When this flag is set, the buffer is currently on the outgoing
522 queue, ready to be dequeued from the driver. Drivers set or clear
523 this flag when the ``VIDIOC_QUERYBUF`` ioctl is called. After
524 calling the ``VIDIOC_QBUF`` or ``VIDIOC_DQBUF`` it is always
525 cleared. Of course a buffer cannot be on both queues at the same
526 time, the ``V4L2_BUF_FLAG_QUEUED`` and ``V4L2_BUF_FLAG_DONE`` flag
527 are mutually exclusive. They can be both cleared however, then the
528 buffer is in "dequeued" state, in the application domain so to
529 say.
530 * .. _`V4L2-BUF-FLAG-ERROR`:
531
532 - ``V4L2_BUF_FLAG_ERROR``
533 - 0x00000040
534 - When this flag is set, the buffer has been dequeued successfully,
535 although the data might have been corrupted. This is recoverable,
536 streaming may continue as normal and the buffer may be reused
537 normally. Drivers set this flag when the ``VIDIOC_DQBUF`` ioctl is
538 called.
539 * .. _`V4L2-BUF-FLAG-IN-REQUEST`:
540
541 - ``V4L2_BUF_FLAG_IN_REQUEST``
542 - 0x00000080
543 - This buffer is part of a request that hasn't been queued yet.
544 * .. _`V4L2-BUF-FLAG-KEYFRAME`:
545
546 - ``V4L2_BUF_FLAG_KEYFRAME``
547 - 0x00000008
548 - Drivers set or clear this flag when calling the ``VIDIOC_DQBUF``
549 ioctl. It may be set by video capture devices when the buffer
550 contains a compressed image which is a key frame (or field), i. e.
551 can be decompressed on its own. Also known as an I-frame.
552 Applications can set this bit when ``type`` refers to an output
553 stream.
554 * .. _`V4L2-BUF-FLAG-PFRAME`:
555
556 - ``V4L2_BUF_FLAG_PFRAME``
557 - 0x00000010
558 - Similar to ``V4L2_BUF_FLAG_KEYFRAME`` this flags predicted frames
559 or fields which contain only differences to a previous key frame.
560 Applications can set this bit when ``type`` refers to an output
561 stream.
562 * .. _`V4L2-BUF-FLAG-BFRAME`:
563
564 - ``V4L2_BUF_FLAG_BFRAME``
565 - 0x00000020
566 - Similar to ``V4L2_BUF_FLAG_KEYFRAME`` this flags a bi-directional
567 predicted frame or field which contains only the differences
568 between the current frame and both the preceding and following key
569 frames to specify its content. Applications can set this bit when
570 ``type`` refers to an output stream.
571 * .. _`V4L2-BUF-FLAG-TIMECODE`:
572
573 - ``V4L2_BUF_FLAG_TIMECODE``
574 - 0x00000100
575 - The ``timecode`` field is valid. Drivers set or clear this flag
576 when the ``VIDIOC_DQBUF`` ioctl is called. Applications can set
577 this bit and the corresponding ``timecode`` structure when
578 ``type`` refers to an output stream.
579 * .. _`V4L2-BUF-FLAG-PREPARED`:
580
581 - ``V4L2_BUF_FLAG_PREPARED``
582 - 0x00000400
583 - The buffer has been prepared for I/O and can be queued by the
584 application. Drivers set or clear this flag when the
585 :ref:`VIDIOC_QUERYBUF`,
586 :ref:`VIDIOC_PREPARE_BUF <VIDIOC_QBUF>`,
587 :ref:`VIDIOC_QBUF` or
588 :ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl is called.
589 * .. _`V4L2-BUF-FLAG-NO-CACHE-INVALIDATE`:
590
591 - ``V4L2_BUF_FLAG_NO_CACHE_INVALIDATE``
592 - 0x00000800
593 - Caches do not have to be invalidated for this buffer. Typically
594 applications shall use this flag if the data captured in the
595 buffer is not going to be touched by the CPU, instead the buffer
596 will, probably, be passed on to a DMA-capable hardware unit for
597 further processing or output.
598 * .. _`V4L2-BUF-FLAG-NO-CACHE-CLEAN`:
599
600 - ``V4L2_BUF_FLAG_NO_CACHE_CLEAN``
601 - 0x00001000
602 - Caches do not have to be cleaned for this buffer. Typically
603 applications shall use this flag for output buffers if the data in
604 this buffer has not been created by the CPU but by some
605 DMA-capable unit, in which case caches have not been used.
606 * .. _`V4L2-BUF-FLAG-LAST`:
607
608 - ``V4L2_BUF_FLAG_LAST``
609 - 0x00100000
610 - Last buffer produced by the hardware. mem2mem codec drivers set
611 this flag on the capture queue for the last buffer when the
612 :ref:`VIDIOC_QUERYBUF` or
613 :ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl is called. Due to
614 hardware limitations, the last buffer may be empty. In this case
615 the driver will set the ``bytesused`` field to 0, regardless of
616 the format. Any Any subsequent call to the
617 :ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl will not block anymore,
618 but return an ``EPIPE`` error code.
619 * .. _`V4L2-BUF-FLAG-REQUEST-FD`:
620
621 - ``V4L2_BUF_FLAG_REQUEST_FD``
622 - 0x00800000
623 - The ``request_fd`` field contains a valid file descriptor.
624 * .. _`V4L2-BUF-FLAG-TIMESTAMP-MASK`:
625
626 - ``V4L2_BUF_FLAG_TIMESTAMP_MASK``
627 - 0x0000e000
628 - Mask for timestamp types below. To test the timestamp type, mask
629 out bits not belonging to timestamp type by performing a logical
630 and operation with buffer flags and timestamp mask.
631 * .. _`V4L2-BUF-FLAG-TIMESTAMP-UNKNOWN`:
632
633 - ``V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN``
634 - 0x00000000
635 - Unknown timestamp type. This type is used by drivers before Linux
636 3.9 and may be either monotonic (see below) or realtime (wall
637 clock). Monotonic clock has been favoured in embedded systems
638 whereas most of the drivers use the realtime clock. Either kinds
639 of timestamps are available in user space via
640 :c:func:`clock_gettime` using clock IDs ``CLOCK_MONOTONIC``
641 and ``CLOCK_REALTIME``, respectively.
642 * .. _`V4L2-BUF-FLAG-TIMESTAMP-MONOTONIC`:
643
644 - ``V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC``
645 - 0x00002000
646 - The buffer timestamp has been taken from the ``CLOCK_MONOTONIC``
647 clock. To access the same clock outside V4L2, use
648 :c:func:`clock_gettime`.
649 * .. _`V4L2-BUF-FLAG-TIMESTAMP-COPY`:
650
651 - ``V4L2_BUF_FLAG_TIMESTAMP_COPY``
652 - 0x00004000
653 - The CAPTURE buffer timestamp has been taken from the corresponding
654 OUTPUT buffer. This flag applies only to mem2mem devices.
655 * .. _`V4L2-BUF-FLAG-TSTAMP-SRC-MASK`:
656
657 - ``V4L2_BUF_FLAG_TSTAMP_SRC_MASK``
658 - 0x00070000
659 - Mask for timestamp sources below. The timestamp source defines the
660 point of time the timestamp is taken in relation to the frame.
661 Logical 'and' operation between the ``flags`` field and
662 ``V4L2_BUF_FLAG_TSTAMP_SRC_MASK`` produces the value of the
663 timestamp source. Applications must set the timestamp source when
664 ``type`` refers to an output stream and
665 ``V4L2_BUF_FLAG_TIMESTAMP_COPY`` is set.
666 * .. _`V4L2-BUF-FLAG-TSTAMP-SRC-EOF`:
667
668 - ``V4L2_BUF_FLAG_TSTAMP_SRC_EOF``
669 - 0x00000000
670 - End Of Frame. The buffer timestamp has been taken when the last
671 pixel of the frame has been received or the last pixel of the
672 frame has been transmitted. In practice, software generated
673 timestamps will typically be read from the clock a small amount of
674 time after the last pixel has been received or transmitten,
675 depending on the system and other activity in it.
676 * .. _`V4L2-BUF-FLAG-TSTAMP-SRC-SOE`:
677
678 - ``V4L2_BUF_FLAG_TSTAMP_SRC_SOE``
679 - 0x00010000
680 - Start Of Exposure. The buffer timestamp has been taken when the
681 exposure of the frame has begun. This is only valid for the
682 ``V4L2_BUF_TYPE_VIDEO_CAPTURE`` buffer type.
683
684
685
686 .. c:type:: v4l2_memory
687
688 enum v4l2_memory
689 ================
690
691 .. tabularcolumns:: |p{6.6cm}|p{2.2cm}|p{8.7cm}|
692
693 .. flat-table::
694 :header-rows: 0
695 :stub-columns: 0
696 :widths: 3 1 4
697
698 * - ``V4L2_MEMORY_MMAP``
699 - 1
700 - The buffer is used for :ref:`memory mapping <mmap>` I/O.
701 * - ``V4L2_MEMORY_USERPTR``
702 - 2
703 - The buffer is used for :ref:`user pointer <userp>` I/O.
704 * - ``V4L2_MEMORY_OVERLAY``
705 - 3
706 - [to do]
707 * - ``V4L2_MEMORY_DMABUF``
708 - 4
709 - The buffer is used for :ref:`DMA shared buffer <dmabuf>` I/O.
710
711
712
713 Timecodes
714 =========
715
716 The :c:type:`v4l2_buffer_timecode` structure is designed to hold a
717 :ref:`smpte12m` or similar timecode.
718 (struct :c:type:`timeval` timestamps are stored in the struct
719 :c:type:`v4l2_buffer` ``timestamp`` field.)
720
721
722 .. c:type:: v4l2_timecode
723
724 struct v4l2_timecode
725 --------------------
726
727 .. tabularcolumns:: |p{4.4cm}|p{4.4cm}|p{8.7cm}|
728
729 .. flat-table::
730 :header-rows: 0
731 :stub-columns: 0
732 :widths: 1 1 2
733
734 * - __u32
735 - ``type``
736 - Frame rate the timecodes are based on, see :ref:`timecode-type`.
737 * - __u32
738 - ``flags``
739 - Timecode flags, see :ref:`timecode-flags`.
740 * - __u8
741 - ``frames``
742 - Frame count, 0 ... 23/24/29/49/59, depending on the type of
743 timecode.
744 * - __u8
745 - ``seconds``
746 - Seconds count, 0 ... 59. This is a binary, not BCD number.
747 * - __u8
748 - ``minutes``
749 - Minutes count, 0 ... 59. This is a binary, not BCD number.
750 * - __u8
751 - ``hours``
752 - Hours count, 0 ... 29. This is a binary, not BCD number.
753 * - __u8
754 - ``userbits``\ [4]
755 - The "user group" bits from the timecode.
756
757
758
759 .. _timecode-type:
760
761 Timecode Types
762 --------------
763
764 .. tabularcolumns:: |p{6.6cm}|p{2.2cm}|p{8.7cm}|
765
766 .. flat-table::
767 :header-rows: 0
768 :stub-columns: 0
769 :widths: 3 1 4
770
771 * - ``V4L2_TC_TYPE_24FPS``
772 - 1
773 - 24 frames per second, i. e. film.
774 * - ``V4L2_TC_TYPE_25FPS``
775 - 2
776 - 25 frames per second, i. e. PAL or SECAM video.
777 * - ``V4L2_TC_TYPE_30FPS``
778 - 3
779 - 30 frames per second, i. e. NTSC video.
780 * - ``V4L2_TC_TYPE_50FPS``
781 - 4
782 -
783 * - ``V4L2_TC_TYPE_60FPS``
784 - 5
785 -
786
787
788
789 .. _timecode-flags:
790
791 Timecode Flags
792 --------------
793
794 .. tabularcolumns:: |p{6.6cm}|p{1.4cm}|p{9.5cm}|
795
796 .. flat-table::
797 :header-rows: 0
798 :stub-columns: 0
799 :widths: 3 1 4
800
801 * - ``V4L2_TC_FLAG_DROPFRAME``
802 - 0x0001
803 - Indicates "drop frame" semantics for counting frames in 29.97 fps
804 material. When set, frame numbers 0 and 1 at the start of each
805 minute, except minutes 0, 10, 20, 30, 40, 50 are omitted from the
806 count.
807 * - ``V4L2_TC_FLAG_COLORFRAME``
808 - 0x0002
809 - The "color frame" flag.
810 * - ``V4L2_TC_USERBITS_field``
811 - 0x000C
812 - Field mask for the "binary group flags".
813 * - ``V4L2_TC_USERBITS_USERDEFINED``
814 - 0x0000
815 - Unspecified format.
816 * - ``V4L2_TC_USERBITS_8BITCHARS``
817 - 0x0008
818 - 8-bit ISO characters.