]> git.proxmox.com Git - mirror_ovs.git/blob - FAQ
FAQ: Add question and answer about PPP.
[mirror_ovs.git] / FAQ
1 Open vSwitch <http://openvswitch.org>
2
3 Frequently Asked Questions
4 ==========================
5
6 General
7 -------
8
9 Q: What is Open vSwitch?
10
11 A: Open vSwitch is a production quality open source software switch
12 designed to be used as a vswitch in virtualized server environments. A
13 vswitch forwards traffic between different VMs on the same physical host
14 and also forwards traffic between VMs and the physical network. Open
15 vSwitch supports standard management interfaces (e.g. sFlow, NetFlow,
16 RSPAN, CLI), and is open to programmatic extension and control using
17 OpenFlow and the OVSDB management protocol.
18
19 Open vSwitch as designed to be compatible with modern switching
20 chipsets. This means that it can be ported to existing high-fanout
21 switches allowing the same flexible control of the physical
22 infrastructure as the virtual infrastructure. It also means that
23 Open vSwitch will be able to take advantage of on-NIC switching
24 chipsets as their functionality matures.
25
26 Q: What virtualization platforms can use Open vSwitch?
27
28 A: Open vSwitch can currently run on any Linux-based virtualization
29 platform (kernel 2.6.18 and newer), including: KVM, VirtualBox, Xen,
30 Xen Cloud Platform, XenServer. As of Linux 3.3 it is part of the
31 mainline kernel. The bulk of the code is written in platform-
32 independent C and is easily ported to other environments. We welcome
33 inquires about integrating Open vSwitch with other virtualization
34 platforms.
35
36 Q: How can I try Open vSwitch?
37
38 A: The Open vSwitch source code can be built on a Linux system. You can
39 build and experiment with Open vSwitch on any Linux machine.
40 Packages for various Linux distributions are available on many
41 platforms, including: Debian, Ubuntu, Fedora.
42
43 You may also download and run a virtualization platform that already
44 has Open vSwitch integrated. For example, download a recent ISO for
45 XenServer or Xen Cloud Platform. Be aware that the version
46 integrated with a particular platform may not be the most recent Open
47 vSwitch release.
48
49 Q: Does Open vSwitch only work on Linux?
50
51 A: No, Open vSwitch has been ported to a number of different operating
52 systems and hardware platforms. Most of the development work occurs
53 on Linux, but the code should be portable to any POSIX system. We've
54 seen Open vSwitch ported to a number of different platforms,
55 including FreeBSD, Windows, and even non-POSIX embedded systems.
56
57 By definition, the Open vSwitch Linux kernel module only works on
58 Linux and will provide the highest performance. However, a userspace
59 datapath is available that should be very portable.
60
61 Q: What's involved with porting Open vSwitch to a new platform or
62 switching ASIC?
63
64 A: The PORTING document describes how one would go about porting Open
65 vSwitch to a new operating system or hardware platform.
66
67 Q: Why would I use Open vSwitch instead of the Linux bridge?
68
69 A: Open vSwitch is specially designed to make it easier to manage VM
70 network configuration and monitor state spread across many physical
71 hosts in dynamic virtualized environments. Please see WHY-OVS for a
72 more detailed description of how Open vSwitch relates to the Linux
73 Bridge.
74
75 Q: How is Open vSwitch related to distributed virtual switches like the
76 VMware vNetwork distributed switch or the Cisco Nexus 1000V?
77
78 A: Distributed vswitch applications (e.g., VMware vNetwork distributed
79 switch, Cisco Nexus 1000V) provide a centralized way to configure and
80 monitor the network state of VMs that are spread across many physical
81 hosts. Open vSwitch is not a distributed vswitch itself, rather it
82 runs on each physical host and supports remote management in a way
83 that makes it easier for developers of virtualization/cloud
84 management platforms to offer distributed vswitch capabilities.
85
86 To aid in distribution, Open vSwitch provides two open protocols that
87 are specially designed for remote management in virtualized network
88 environments: OpenFlow, which exposes flow-based forwarding state,
89 and the OVSDB management protocol, which exposes switch port state.
90 In addition to the switch implementation itself, Open vSwitch
91 includes tools (ovs-controller, ovs-ofctl, ovs-vsctl) that developers
92 can script and extend to provide distributed vswitch capabilities
93 that are closely integrated with their virtualization management
94 platform.
95
96 Q: Why doesn't Open vSwitch support distribution?
97
98 A: Open vSwitch is intended to be a useful component for building
99 flexible network infrastructure. There are many different approaches
100 to distribution which balance trade-offs between simplicity,
101 scalability, hardware compatibility, convergence times, logical
102 forwarding model, etc. The goal of Open vSwitch is to be able to
103 support all as a primitive building block rather than choose a
104 particular point in the distributed design space.
105
106 Q: How can I contribute to the Open vSwitch Community?
107
108 A: You can start by joining the mailing lists and helping to answer
109 questions. You can also suggest improvements to documentation. If
110 you have a feature or bug you would like to work on, send a mail to
111 one of the mailing lists:
112
113 http://openvswitch.org/mlists/
114
115
116
117 Releases
118 --------
119
120 Q: What does it mean for an Open vSwitch release to be LTS (long-term
121 support)?
122
123 A: All official releases have been through a comprehensive testing
124 process and are suitable for production use. Planned releases will
125 occur several times a year. If a significant bug is identified in an
126 LTS release, we will provide an updated release that includes the
127 fix. Releases that are not LTS may not be fixed and may just be
128 supplanted by the next major release. The current LTS release is
129 1.4.x.
130
131 Q: What Linux kernel versions does each Open vSwitch release work with?
132
133 A: The following table lists the Linux kernel versions against which the
134 given versions of the Open vSwitch kernel module will successfully
135 build. The Linux kernel versions are upstream kernel versions, so
136 Linux kernels modified from the upstream sources may not build in
137 some cases even if they are based on a supported version. This is
138 most notably true of Red Hat Enterprise Linux (RHEL) kernels, which
139 are extensively modified from upstream.
140
141 Open vSwitch Linux kernel
142 ------------ -------------
143 1.4.x 2.6.18 to 3.2
144 1.5.x 2.6.18 to 3.2
145 1.6.x 2.6.18 to 3.2
146 1.7.x 2.6.18 to 3.3
147 1.8.x 2.6.18 to 3.4
148 1.9.x 2.6.18 to 3.8
149
150 Open vSwitch userspace should also work with the Linux kernel module
151 built into Linux 3.3 and later.
152
153 Open vSwitch userspace is not sensitive to the Linux kernel version.
154 It should build against almost any kernel, certainly against 2.6.18
155 and later.
156
157 Q: Should userspace or kernel be upgraded first to minimize downtime?
158
159 In general, the Open vSwitch userspace should be used with the
160 kernel version included in the same release or with the version
161 from upstream Linux. However, when upgrading between two releases
162 of Open vSwitch it is best to migrate userspace first to reduce
163 the possbility of incompatibilities.
164
165 Q: What features are not available in the Open vSwitch kernel datapath
166 that ships as part of the upstream Linux kernel?
167
168 A: The kernel module in upstream Linux 3.3 and later does not include
169 tunnel virtual ports, that is, interfaces with type "gre",
170 "ipsec_gre", "gre64", "ipsec_gre64", "vxlan", or "capwap". It is
171 possible to create tunnels in Linux and attach them to Open vSwitch
172 as system devices. However, they cannot be dynamically created
173 through the OVSDB protocol or set the tunnel ids as a flow action.
174
175 Work is in progress in adding tunnel virtual ports to the upstream
176 Linux version of the Open vSwitch kernel module. For now, if you
177 need these features, use the kernel module from the Open vSwitch
178 distribution instead of the upstream Linux kernel module.
179
180 The upstream kernel module does not include patch ports, but this
181 only matters for Open vSwitch 1.9 and earlier, because Open vSwitch
182 1.10 and later implement patch ports without using this kernel
183 feature.
184
185 Q: What features are not available when using the userspace datapath?
186
187 A: Tunnel virtual ports are not supported, as described in the
188 previous answer. It is also not possible to use queue-related
189 actions. On Linux kernels before 2.6.39, maximum-sized VLAN packets
190 may not be transmitted.
191
192
193 Terminology
194 -----------
195
196 Q: I thought Open vSwitch was a virtual Ethernet switch, but the
197 documentation keeps talking about bridges. What's a bridge?
198
199 A: In networking, the terms "bridge" and "switch" are synonyms. Open
200 vSwitch implements an Ethernet switch, which means that it is also
201 an Ethernet bridge.
202
203 Q: What's a VLAN?
204
205 A: See the "VLAN" section below.
206
207
208 Basic Configuration
209 -------------------
210
211 Q: How do I configure a port as an access port?
212
213 A: Add "tag=VLAN" to your "ovs-vsctl add-port" command. For example,
214 the following commands configure br0 with eth0 as a trunk port (the
215 default) and tap0 as an access port for VLAN 9:
216
217 ovs-vsctl add-br br0
218 ovs-vsctl add-port br0 eth0
219 ovs-vsctl add-port br0 tap0 tag=9
220
221 If you want to configure an already added port as an access port,
222 use "ovs-vsctl set", e.g.:
223
224 ovs-vsctl set port tap0 tag=9
225
226 Q: How do I configure a port as a SPAN port, that is, enable mirroring
227 of all traffic to that port?
228
229 A: The following commands configure br0 with eth0 and tap0 as trunk
230 ports. All traffic coming in or going out on eth0 or tap0 is also
231 mirrored to tap1; any traffic arriving on tap1 is dropped:
232
233 ovs-vsctl add-br br0
234 ovs-vsctl add-port br0 eth0
235 ovs-vsctl add-port br0 tap0
236 ovs-vsctl add-port br0 tap1 \
237 -- --id=@p get port tap1 \
238 -- --id=@m create mirror name=m0 select-all=true output-port=@p \
239 -- set bridge br0 mirrors=@m
240
241 To later disable mirroring, run:
242
243 ovs-vsctl clear bridge br0 mirrors
244
245 Q: How do I configure a VLAN as an RSPAN VLAN, that is, enable
246 mirroring of all traffic to that VLAN?
247
248 A: The following commands configure br0 with eth0 as a trunk port and
249 tap0 as an access port for VLAN 10. All traffic coming in or going
250 out on tap0, as well as traffic coming in or going out on eth0 in
251 VLAN 10, is also mirrored to VLAN 15 on eth0. The original tag for
252 VLAN 10, in cases where one is present, is dropped as part of
253 mirroring:
254
255 ovs-vsctl add-br br0
256 ovs-vsctl add-port br0 eth0
257 ovs-vsctl add-port br0 tap0 tag=10
258 ovs-vsctl \
259 -- --id=@m create mirror name=m0 select-all=true select-vlan=10 \
260 output-vlan=15 \
261 -- set bridge br0 mirrors=@m
262
263 To later disable mirroring, run:
264
265 ovs-vsctl clear bridge br0 mirrors
266
267 Mirroring to a VLAN can disrupt a network that contains unmanaged
268 switches. See ovs-vswitchd.conf.db(5) for details. Mirroring to a
269 GRE tunnel has fewer caveats than mirroring to a VLAN and should
270 generally be preferred.
271
272 Q: Can I mirror more than one input VLAN to an RSPAN VLAN?
273
274 A: Yes, but mirroring to a VLAN strips the original VLAN tag in favor
275 of the specified output-vlan. This loss of information may make
276 the mirrored traffic too hard to interpret.
277
278 To mirror multiple VLANs, use the commands above, but specify a
279 comma-separated list of VLANs as the value for select-vlan. To
280 mirror every VLAN, use the commands above, but omit select-vlan and
281 its value entirely.
282
283 When a packet arrives on a VLAN that is used as a mirror output
284 VLAN, the mirror is disregarded. Instead, in standalone mode, OVS
285 floods the packet across all the ports for which the mirror output
286 VLAN is configured. (If an OpenFlow controller is in use, then it
287 can override this behavior through the flow table.) If OVS is used
288 as an intermediate switch, rather than an edge switch, this ensures
289 that the RSPAN traffic is distributed through the network.
290
291 Mirroring to a VLAN can disrupt a network that contains unmanaged
292 switches. See ovs-vswitchd.conf.db(5) for details. Mirroring to a
293 GRE tunnel has fewer caveats than mirroring to a VLAN and should
294 generally be preferred.
295
296 Q: How do I configure mirroring of all traffic to a GRE tunnel?
297
298 A: The following commands configure br0 with eth0 and tap0 as trunk
299 ports. All traffic coming in or going out on eth0 or tap0 is also
300 mirrored to gre0, a GRE tunnel to the remote host 192.168.1.10; any
301 traffic arriving on gre0 is dropped:
302
303 ovs-vsctl add-br br0
304 ovs-vsctl add-port br0 eth0
305 ovs-vsctl add-port br0 tap0
306 ovs-vsctl add-port br0 gre0 \
307 -- set interface gre0 type=gre options:remote_ip=192.168.1.10 \
308 -- --id=@p get port gre0 \
309 -- --id=@m create mirror name=m0 select-all=true output-port=@p \
310 -- set bridge br0 mirrors=@m
311
312 To later disable mirroring and destroy the GRE tunnel:
313
314 ovs-vsctl clear bridge br0 mirrors
315 ovs-vcstl del-port br0 gre0
316
317 Q: Does Open vSwitch support ERSPAN?
318
319 A: No. ERSPAN is an undocumented proprietary protocol. As an
320 alternative, Open vSwitch supports mirroring to a GRE tunnel (see
321 above).
322
323
324 Configuration Problems
325 ----------------------
326
327 Q: I created a bridge and added my Ethernet port to it, using commands
328 like these:
329
330 ovs-vsctl add-br br0
331 ovs-vsctl add-port br0 eth0
332
333 and as soon as I ran the "add-port" command I lost all connectivity
334 through eth0. Help!
335
336 A: A physical Ethernet device that is part of an Open vSwitch bridge
337 should not have an IP address. If one does, then that IP address
338 will not be fully functional.
339
340 You can restore functionality by moving the IP address to an Open
341 vSwitch "internal" device, such as the network device named after
342 the bridge itself. For example, assuming that eth0's IP address is
343 192.168.128.5, you could run the commands below to fix up the
344 situation:
345
346 ifconfig eth0 0.0.0.0
347 ifconfig br0 192.168.128.5
348
349 (If your only connection to the machine running OVS is through the
350 IP address in question, then you would want to run all of these
351 commands on a single command line, or put them into a script.) If
352 there were any additional routes assigned to eth0, then you would
353 also want to use commands to adjust these routes to go through br0.
354
355 If you use DHCP to obtain an IP address, then you should kill the
356 DHCP client that was listening on the physical Ethernet interface
357 (e.g. eth0) and start one listening on the internal interface
358 (e.g. br0). You might still need to manually clear the IP address
359 from the physical interface (e.g. with "ifconfig eth0 0.0.0.0").
360
361 There is no compelling reason why Open vSwitch must work this way.
362 However, this is the way that the Linux kernel bridge module has
363 always worked, so it's a model that those accustomed to Linux
364 bridging are already used to. Also, the model that most people
365 expect is not implementable without kernel changes on all the
366 versions of Linux that Open vSwitch supports.
367
368 By the way, this issue is not specific to physical Ethernet
369 devices. It applies to all network devices except Open vswitch
370 "internal" devices.
371
372 Q: I created a bridge and added a couple of Ethernet ports to it,
373 using commands like these:
374
375 ovs-vsctl add-br br0
376 ovs-vsctl add-port br0 eth0
377 ovs-vsctl add-port br0 eth1
378
379 and now my network seems to have melted: connectivity is unreliable
380 (even connectivity that doesn't go through Open vSwitch), all the
381 LEDs on my physical switches are blinking, wireshark shows
382 duplicated packets, and CPU usage is very high.
383
384 A: More than likely, you've looped your network. Probably, eth0 and
385 eth1 are connected to the same physical Ethernet switch. This
386 yields a scenario where OVS receives a broadcast packet on eth0 and
387 sends it out on eth1, then the physical switch connected to eth1
388 sends the packet back on eth0, and so on forever. More complicated
389 scenarios, involving a loop through multiple switches, are possible
390 too.
391
392 The solution depends on what you are trying to do:
393
394 - If you added eth0 and eth1 to get higher bandwidth or higher
395 reliability between OVS and your physical Ethernet switch,
396 use a bond. The following commands create br0 and then add
397 eth0 and eth1 as a bond:
398
399 ovs-vsctl add-br br0
400 ovs-vsctl add-bond br0 bond0 eth0 eth1
401
402 Bonds have tons of configuration options. Please read the
403 documentation on the Port table in ovs-vswitchd.conf.db(5)
404 for all the details.
405
406 - Perhaps you don't actually need eth0 and eth1 to be on the
407 same bridge. For example, if you simply want to be able to
408 connect each of them to virtual machines, then you can put
409 each of them on a bridge of its own:
410
411 ovs-vsctl add-br br0
412 ovs-vsctl add-port br0 eth0
413
414 ovs-vsctl add-br br1
415 ovs-vsctl add-port br1 eth1
416
417 and then connect VMs to br0 and br1. (A potential
418 disadvantage is that traffic cannot directly pass between br0
419 and br1. Instead, it will go out eth0 and come back in eth1,
420 or vice versa.)
421
422 - If you have a redundant or complex network topology and you
423 want to prevent loops, turn on spanning tree protocol (STP).
424 The following commands create br0, enable STP, and add eth0
425 and eth1 to the bridge. The order is important because you
426 don't want have to have a loop in your network even
427 transiently:
428
429 ovs-vsctl add-br br0
430 ovs-vsctl set bridge br0 stp_enable=true
431 ovs-vsctl add-port br0 eth0
432 ovs-vsctl add-port br0 eth1
433
434 The Open vSwitch implementation of STP is not well tested.
435 Please report any bugs you observe, but if you'd rather avoid
436 acting as a beta tester then another option might be your
437 best shot.
438
439 Q: I can't seem to use Open vSwitch in a wireless network.
440
441 A: Wireless base stations generally only allow packets with the source
442 MAC address of NIC that completed the initial handshake.
443 Therefore, without MAC rewriting, only a single device can
444 communicate over a single wireless link.
445
446 This isn't specific to Open vSwitch, it's enforced by the access
447 point, so the same problems will show up with the Linux bridge or
448 any other way to do bridging.
449
450 Q: I can't seem to add my PPP interface to an Open vSwitch bridge.
451
452 A: PPP most commonly carries IP packets, but Open vSwitch works only
453 with Ethernet frames. The correct way to interface PPP to an
454 Ethernet network is usually to use routing instead of switching.
455
456 Q: Is there any documentation on the database tables and fields?
457
458 A: Yes. ovs-vswitchd.conf.db(5) is a comprehensive reference.
459
460 Q: When I run ovs-dpctl I no longer see the bridges I created. Instead,
461 I only see a datapath called "ovs-system". How can I see datapath
462 information about a particular bridge?
463
464 A: In version 1.9.0, OVS switched to using a single datapath that is
465 shared by all bridges of that type. The "ovs-appctl dpif/*"
466 commands provide similar functionality that is scoped by the bridge.
467
468
469 Quality of Service (QoS)
470 ------------------------
471
472 Q: How do I configure Quality of Service (QoS)?
473
474 A: Suppose that you want to set up bridge br0 connected to physical
475 Ethernet port eth0 (a 1 Gbps device) and virtual machine interfaces
476 vif1.0 and vif2.0, and that you want to limit traffic from vif1.0
477 to eth0 to 10 Mbps and from vif2.0 to eth0 to 20 Mbps. Then, you
478 could configure the bridge this way:
479
480 ovs-vsctl -- \
481 add-br br0 -- \
482 add-port br0 eth0 -- \
483 add-port br0 vif1.0 -- set interface vif1.0 ofport_request=5 -- \
484 add-port br0 vif2.0 -- set interface vif2.0 ofport_request=6 -- \
485 set port eth0 qos=@newqos -- \
486 --id=@newqos create qos type=linux-htb \
487 other-config:max-rate=1000000000 \
488 queues:123=@vif10queue \
489 queues:234=@vif20queue -- \
490 --id=@vif10queue create queue other-config:max-rate=10000000 -- \
491 --id=@vif20queue create queue other-config:max-rate=20000000
492
493 At this point, bridge br0 is configured with the ports and eth0 is
494 configured with the queues that you need for QoS, but nothing is
495 actually directing packets from vif1.0 or vif2.0 to the queues that
496 we have set up for them. That means that all of the packets to
497 eth0 are going to the "default queue", which is not what we want.
498
499 We use OpenFlow to direct packets from vif1.0 and vif2.0 to the
500 queues reserved for them:
501
502 ovs-ofctl add-flow br0 in_port=5,actions=set_queue:123,normal
503 ovs-ofctl add-flow br0 in_port=6,actions=set_queue:234,normal
504
505 Each of the above flows matches on the input port, sets up the
506 appropriate queue (123 for vif1.0, 234 for vif2.0), and then
507 executes the "normal" action, which performs the same switching
508 that Open vSwitch would have done without any OpenFlow flows being
509 present. (We know that vif1.0 and vif2.0 have OpenFlow port
510 numbers 5 and 6, respectively, because we set their ofport_request
511 columns above. If we had not done that, then we would have needed
512 to find out their port numbers before setting up these flows.)
513
514 Now traffic going from vif1.0 or vif2.0 to eth0 should be
515 rate-limited.
516
517 By the way, if you delete the bridge created by the above commands,
518 with:
519
520 ovs-vsctl del-br br0
521
522 then that will leave one unreferenced QoS record and two
523 unreferenced Queue records in the Open vSwich database. One way to
524 clear them out, assuming you don't have other QoS or Queue records
525 that you want to keep, is:
526
527 ovs-vsctl -- --all destroy QoS -- --all destroy Queue
528
529 Q: I configured Quality of Service (QoS) in my OpenFlow network by
530 adding records to the QoS and Queue table, but the results aren't
531 what I expect.
532
533 A: Did you install OpenFlow flows that use your queues? This is the
534 primary way to tell Open vSwitch which queues you want to use. If
535 you don't do this, then the default queue will be used, which will
536 probably not have the effect you want.
537
538 Refer to the previous question for an example.
539
540 Q: I configured QoS, correctly, but my measurements show that it isn't
541 working as well as I expect.
542
543 A: With the Linux kernel, the Open vSwitch implementation of QoS has
544 two aspects:
545
546 - Open vSwitch configures a subset of Linux kernel QoS
547 features, according to what is in OVSDB. It is possible that
548 this code has bugs. If you believe that this is so, then you
549 can configure the Linux traffic control (QoS) stack directly
550 with the "tc" program. If you get better results that way,
551 you can send a detailed bug report to bugs@openvswitch.org.
552
553 It is certain that Open vSwitch cannot configure every Linux
554 kernel QoS feature. If you need some feature that OVS cannot
555 configure, then you can also use "tc" directly (or add that
556 feature to OVS).
557
558 - The Open vSwitch implementation of OpenFlow allows flows to
559 be directed to particular queues. This is pretty simple and
560 unlikely to have serious bugs at this point.
561
562 However, most problems with QoS on Linux are not bugs in Open
563 vSwitch at all. They tend to be either configuration errors
564 (please see the earlier questions in this section) or issues with
565 the traffic control (QoS) stack in Linux. The Open vSwitch
566 developers are not experts on Linux traffic control. We suggest
567 that, if you believe you are encountering a problem with Linux
568 traffic control, that you consult the tc manpages (e.g. tc(8),
569 tc-htb(8), tc-hfsc(8)), web resources (e.g. http://lartc.org/), or
570 mailing lists (e.g. http://vger.kernel.org/vger-lists.html#netdev).
571
572
573 VLANs
574 -----
575
576 Q: What's a VLAN?
577
578 A: At the simplest level, a VLAN (short for "virtual LAN") is a way to
579 partition a single switch into multiple switches. Suppose, for
580 example, that you have two groups of machines, group A and group B.
581 You want the machines in group A to be able to talk to each other,
582 and you want the machine in group B to be able to talk to each
583 other, but you don't want the machines in group A to be able to
584 talk to the machines in group B. You can do this with two
585 switches, by plugging the machines in group A into one switch and
586 the machines in group B into the other switch.
587
588 If you only have one switch, then you can use VLANs to do the same
589 thing, by configuring the ports for machines in group A as VLAN
590 "access ports" for one VLAN and the ports for group B as "access
591 ports" for a different VLAN. The switch will only forward packets
592 between ports that are assigned to the same VLAN, so this
593 effectively subdivides your single switch into two independent
594 switches, one for each group of machines.
595
596 So far we haven't said anything about VLAN headers. With access
597 ports, like we've described so far, no VLAN header is present in
598 the Ethernet frame. This means that the machines (or switches)
599 connected to access ports need not be aware that VLANs are
600 involved, just like in the case where we use two different physical
601 switches.
602
603 Now suppose that you have a whole bunch of switches in your
604 network, instead of just one, and that some machines in group A are
605 connected directly to both switches 1 and 2. To allow these
606 machines to talk to each other, you could add an access port for
607 group A's VLAN to switch 1 and another to switch 2, and then
608 connect an Ethernet cable between those ports. That works fine,
609 but it doesn't scale well as the number of switches and the number
610 of VLANs increases, because you use up a lot of valuable switch
611 ports just connecting together your VLANs.
612
613 This is where VLAN headers come in. Instead of using one cable and
614 two ports per VLAN to connect a pair of switches, we configure a
615 port on each switch as a VLAN "trunk port". Packets sent and
616 received on a trunk port carry a VLAN header that says what VLAN
617 the packet belongs to, so that only two ports total are required to
618 connect the switches, regardless of the number of VLANs in use.
619 Normally, only switches (either physical or virtual) are connected
620 to a trunk port, not individual hosts, because individual hosts
621 don't expect to see a VLAN header in the traffic that they receive.
622
623 None of the above discussion says anything about particular VLAN
624 numbers. This is because VLAN numbers are completely arbitrary.
625 One must only ensure that a given VLAN is numbered consistently
626 throughout a network and that different VLANs are given different
627 numbers. (That said, VLAN 0 is usually synonymous with a packet
628 that has no VLAN header, and VLAN 4095 is reserved.)
629
630 Q: VLANs don't work.
631
632 A: Many drivers in Linux kernels before version 3.3 had VLAN-related
633 bugs. If you are having problems with VLANs that you suspect to be
634 driver related, then you have several options:
635
636 - Upgrade to Linux 3.3 or later.
637
638 - Build and install a fixed version of the particular driver
639 that is causing trouble, if one is available.
640
641 - Use a NIC whose driver does not have VLAN problems.
642
643 - Use "VLAN splinters", a feature in Open vSwitch 1.4 and later
644 that works around bugs in kernel drivers. To enable VLAN
645 splinters on interface eth0, use the command:
646
647 ovs-vsctl set interface eth0 other-config:enable-vlan-splinters=true
648
649 For VLAN splinters to be effective, Open vSwitch must know
650 which VLANs are in use. See the "VLAN splinters" section in
651 the Interface table in ovs-vswitchd.conf.db(5) for details on
652 how Open vSwitch infers in-use VLANs.
653
654 VLAN splinters increase memory use and reduce performance, so
655 use them only if needed.
656
657 - Apply the "vlan workaround" patch from the XenServer kernel
658 patch queue, build Open vSwitch against this patched kernel,
659 and then use ovs-vlan-bug-workaround(8) to enable the VLAN
660 workaround for each interface whose driver is buggy.
661
662 (This is a nontrivial exercise, so this option is included
663 only for completeness.)
664
665 It is not always easy to tell whether a Linux kernel driver has
666 buggy VLAN support. The ovs-vlan-test(8) and ovs-test(8) utilities
667 can help you test. See their manpages for details. Of the two
668 utilities, ovs-test(8) is newer and more thorough, but
669 ovs-vlan-test(8) may be easier to use.
670
671 Q: VLANs still don't work. I've tested the driver so I know that it's OK.
672
673 A: Do you have VLANs enabled on the physical switch that OVS is
674 attached to? Make sure that the port is configured to trunk the
675 VLAN or VLANs that you are using with OVS.
676
677 Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch
678 and to its destination host, but OVS seems to drop incoming return
679 traffic.
680
681 A: It's possible that you have the VLAN configured on your physical
682 switch as the "native" VLAN. In this mode, the switch treats
683 incoming packets either tagged with the native VLAN or untagged as
684 part of the native VLAN. It may also send outgoing packets in the
685 native VLAN without a VLAN tag.
686
687 If this is the case, you have two choices:
688
689 - Change the physical switch port configuration to tag packets
690 it forwards to OVS with the native VLAN instead of forwarding
691 them untagged.
692
693 - Change the OVS configuration for the physical port to a
694 native VLAN mode. For example, the following sets up a
695 bridge with port eth0 in "native-tagged" mode in VLAN 9:
696
697 ovs-vsctl add-br br0
698 ovs-vsctl add-port br0 eth0 tag=9 vlan_mode=native-tagged
699
700 In this situation, "native-untagged" mode will probably work
701 equally well. Refer to the documentation for the Port table
702 in ovs-vswitchd.conf.db(5) for more information.
703
704 Q: I added a pair of VMs on different VLANs, like this:
705
706 ovs-vsctl add-br br0
707 ovs-vsctl add-port br0 eth0
708 ovs-vsctl add-port br0 tap0 tag=9
709 ovs-vsctl add-port br0 tap1 tag=10
710
711 but the VMs can't access each other, the external network, or the
712 Internet.
713
714 A: It is to be expected that the VMs can't access each other. VLANs
715 are a means to partition a network. When you configured tap0 and
716 tap1 as access ports for different VLANs, you indicated that they
717 should be isolated from each other.
718
719 As for the external network and the Internet, it seems likely that
720 the machines you are trying to access are not on VLAN 9 (or 10) and
721 that the Internet is not available on VLAN 9 (or 10).
722
723 Q: Can I configure an IP address on a VLAN?
724
725 A: Yes. Use an "internal port" configured as an access port. For
726 example, the following configures IP address 192.168.0.7 on VLAN 9.
727 That is, OVS will forward packets from eth0 to 192.168.0.7 only if
728 they have an 802.1Q header with VLAN 9. Conversely, traffic
729 forwarded from 192.168.0.7 to eth0 will be tagged with an 802.1Q
730 header with VLAN 9:
731
732 ovs-vsctl add-br br0
733 ovs-vsctl add-port br0 eth0
734 ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
735 ifconfig vlan9 192.168.0.7
736
737 Q: My OpenFlow controller doesn't see the VLANs that I expect.
738
739 A: The configuration for VLANs in the Open vSwitch database (e.g. via
740 ovs-vsctl) only affects traffic that goes through Open vSwitch's
741 implementation of the OpenFlow "normal switching" action. By
742 default, when Open vSwitch isn't connected to a controller and
743 nothing has been manually configured in the flow table, all traffic
744 goes through the "normal switching" action. But, if you set up
745 OpenFlow flows on your own, through a controller or using ovs-ofctl
746 or through other means, then you have to implement VLAN handling
747 yourself.
748
749 You can use "normal switching" as a component of your OpenFlow
750 actions, e.g. by putting "normal" into the lists of actions on
751 ovs-ofctl or by outputting to OFPP_NORMAL from an OpenFlow
752 controller. This will only be suitable for some situations,
753 though.
754
755 Q: I configured ports on a bridge as access ports with different VLAN
756 tags, like this:
757
758 ovs-vsctl add-br br0
759 ovs-vsctl set-controller br0 tcp:192.168.0.10:6633
760 ovs-vsctl add-port br0 eth0
761 ovs-vsctl add-port br0 tap0 tag=9
762 ovs-vsctl add-port br0 tap1 tag=10
763
764 but the VMs running behind tap0 and tap1 can still communicate,
765 that is, they are not isolated from each other even though they are
766 on different VLANs.
767
768 A: Do you have a controller configured on br0 (as the commands above
769 do)? If so, then this is a variant on the previous question, "My
770 OpenFlow controller doesn't see the VLANs that I expect," and you
771 can refer to the answer there for more information.
772
773
774 Controllers
775 -----------
776
777 Q: What versions of OpenFlow does Open vSwitch support?
778
779 A: Open vSwitch 1.9 and earlier support only OpenFlow 1.0 (plus
780 extensions that bring in many of the features from later versions
781 of OpenFlow).
782
783 Open vSwitch versions 1.10 and later will have experimental support
784 for OpenFlow 1.2 and 1.3. On these versions of Open vSwitch, the
785 following command enables OpenFlow 1.0, 1.2, and 1.3 on bridge br0:
786
787 ovs-vsctl set bridge br0 protocols=openflow10,openflow12,openflow13
788
789 Support for OpenFlow 1.1 is incomplete enough that it cannot yet be
790 enabled, even experimentally.
791
792 Support for OpenFlow 1.2 and 1.3 is still incomplete. Work to be
793 done is tracked in OPENFLOW-1.1+ in the Open vSwitch source tree
794 (also via http://openvswitch.org/development/openflow-1-x-plan/).
795 When support for a given OpenFlow version is solidly implemented,
796 Open vSwitch will enable that version by default.
797
798 Q: I'm getting "error type 45250 code 0". What's that?
799
800 A: This is a Open vSwitch extension to OpenFlow error codes. Open
801 vSwitch uses this extension when it must report an error to an
802 OpenFlow controller but no standard OpenFlow error code is
803 suitable.
804
805 Open vSwitch logs the errors that it sends to controllers, so the
806 easiest thing to do is probably to look at the ovs-vswitchd log to
807 find out what the error was.
808
809 If you want to dissect the extended error message yourself, the
810 format is documented in include/openflow/nicira-ext.h in the Open
811 vSwitch source distribution. The extended error codes are
812 documented in lib/ofp-errors.h.
813
814 Q1: Some of the traffic that I'd expect my OpenFlow controller to see
815 doesn't actually appear through the OpenFlow connection, even
816 though I know that it's going through.
817 Q2: Some of the OpenFlow flows that my controller sets up don't seem
818 to apply to certain traffic, especially traffic between OVS and
819 the controller itself.
820
821 A: By default, Open vSwitch assumes that OpenFlow controllers are
822 connected "in-band", that is, that the controllers are actually
823 part of the network that is being controlled. In in-band mode,
824 Open vSwitch sets up special "hidden" flows to make sure that
825 traffic can make it back and forth between OVS and the controllers.
826 These hidden flows are higher priority than any flows that can be
827 set up through OpenFlow, and they are not visible through normal
828 OpenFlow flow table dumps.
829
830 Usually, the hidden flows are desirable and helpful, but
831 occasionally they can cause unexpected behavior. You can view the
832 full OpenFlow flow table, including hidden flows, on bridge br0
833 with the command:
834
835 ovs-appctl bridge/dump-flows br0
836
837 to help you debug. The hidden flows are those with priorities
838 greater than 65535 (the maximum priority that can be set with
839 OpenFlow).
840
841 The DESIGN file at the top level of the Open vSwitch source
842 distribution describes the in-band model in detail.
843
844 If your controllers are not actually in-band (e.g. they are on
845 localhost via 127.0.0.1, or on a separate network), then you should
846 configure your controllers in "out-of-band" mode. If you have one
847 controller on bridge br0, then you can configure out-of-band mode
848 on it with:
849
850 ovs-vsctl set controller br0 connection-mode=out-of-band
851
852 Q: I configured all my controllers for out-of-band control mode but
853 "ovs-appctl bridge/dump-flows" still shows some hidden flows.
854
855 A: You probably have a remote manager configured (e.g. with "ovs-vsctl
856 set-manager"). By default, Open vSwitch assumes that managers need
857 in-band rules set up on every bridge. You can disable these rules
858 on bridge br0 with:
859
860 ovs-vsctl set bridge br0 other-config:disable-in-band=true
861
862 This actually disables in-band control entirely for the bridge, as
863 if all the bridge's controllers were configured for out-of-band
864 control.
865
866 Q: My OpenFlow controller doesn't see the VLANs that I expect.
867
868 A: See answer under "VLANs", above.
869
870 Q: I ran "ovs-ofctl add-flow br0 nw_dst=192.168.0.1,actions=drop"
871 but I got a funny message like this:
872
873 ofp_util|INFO|normalization changed ofp_match, details:
874 ofp_util|INFO| pre: nw_dst=192.168.0.1
875 ofp_util|INFO|post:
876
877 and when I ran "ovs-ofctl dump-flows br0" I saw that my nw_dst
878 match had disappeared, so that the flow ends up matching every
879 packet.
880
881 A: The term "normalization" in the log message means that a flow
882 cannot match on an L3 field without saying what L3 protocol is in
883 use. The "ovs-ofctl" command above didn't specify an L3 protocol,
884 so the L3 field match was dropped.
885
886 In this case, the L3 protocol could be IP or ARP. A correct
887 command for each possibility is, respectively:
888
889 ovs-ofctl add-flow br0 ip,nw_dst=192.168.0.1,actions=drop
890
891 and
892
893 ovs-ofctl add-flow br0 arp,nw_dst=192.168.0.1,actions=drop
894
895 Similarly, a flow cannot match on an L4 field without saying what
896 L4 protocol is in use. For example, the flow match "tp_src=1234"
897 is, by itself, meaningless and will be ignored. Instead, to match
898 TCP source port 1234, write "tcp,tp_src=1234", or to match UDP
899 source port 1234, write "udp,tp_src=1234".
900
901 Q: How can I figure out the OpenFlow port number for a given port?
902
903 A: The OFPT_FEATURES_REQUEST message requests an OpenFlow switch to
904 respond with an OFPT_FEATURES_REPLY that, among other information,
905 includes a mapping between OpenFlow port names and numbers. From a
906 command prompt, "ovs-ofctl show br0" makes such a request and
907 prints the response for switch br0.
908
909 The Interface table in the Open vSwitch database also maps OpenFlow
910 port names to numbers. To print the OpenFlow port number
911 associated with interface eth0, run:
912
913 ovs-vsctl get Interface eth0 ofport
914
915 You can print the entire mapping with:
916
917 ovs-vsctl -- --columns=name,ofport list Interface
918
919 but the output mixes together interfaces from all bridges in the
920 database, so it may be confusing if more than one bridge exists.
921
922 In the Open vSwitch database, ofport value -1 means that the
923 interface could not be created due to an error. (The Open vSwitch
924 log should indicate the reason.) ofport value [] (the empty set)
925 means that the interface hasn't been created yet. The latter is
926 normally an intermittent condition (unless ovs-vswitchd is not
927 running).
928
929 Q: I added some flows with my controller or with ovs-ofctl, but when I
930 run "ovs-dpctl dump-flows" I don't see them.
931
932 A: ovs-dpctl queries a kernel datapath, not an OpenFlow switch. It
933 won't display the information that you want. You want to use
934 "ovs-ofctl dump-flows" instead.
935
936 Q: It looks like each of the interfaces in my bonded port shows up
937 as an individual OpenFlow port. Is that right?
938
939 A: Yes, Open vSwitch makes individual bond interfaces visible as
940 OpenFlow ports, rather than the bond as a whole. The interfaces
941 are treated together as a bond for only a few purposes:
942
943 - Sending a packet to the OFPP_NORMAL port. (When an OpenFlow
944 controller is not configured, this happens implicitly to
945 every packet.)
946
947 - The "autopath" Nicira extension action. However, "autopath"
948 is deprecated and scheduled for removal in February 2013.
949
950 - Mirrors configured for output to a bonded port.
951
952 It would make a lot of sense for Open vSwitch to present a bond as
953 a single OpenFlow port. If you want to contribute an
954 implementation of such a feature, please bring it up on the Open
955 vSwitch development mailing list at dev@openvswitch.org.
956
957 Contact
958 -------
959
960 bugs@openvswitch.org
961 http://openvswitch.org/