]> git.proxmox.com Git - mirror_qemu.git/blob - accel/hvf/hvf-accel-ops.c
Merge remote-tracking branch 'remotes/thuth/tags/pull-request-2021-10-15' into staging
[mirror_qemu.git] / accel / hvf / hvf-accel-ops.c
1 /*
2 * Copyright 2008 IBM Corporation
3 * 2008 Red Hat, Inc.
4 * Copyright 2011 Intel Corporation
5 * Copyright 2016 Veertu, Inc.
6 * Copyright 2017 The Android Open Source Project
7 *
8 * QEMU Hypervisor.framework support
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of version 2 of the GNU General Public
12 * License as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 *
22 * This file contain code under public domain from the hvdos project:
23 * https://github.com/mist64/hvdos
24 *
25 * Parts Copyright (c) 2011 NetApp, Inc.
26 * All rights reserved.
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 *
37 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
48 */
49
50 #include "qemu/osdep.h"
51 #include "qemu/error-report.h"
52 #include "qemu/main-loop.h"
53 #include "exec/address-spaces.h"
54 #include "exec/exec-all.h"
55 #include "sysemu/cpus.h"
56 #include "sysemu/hvf.h"
57 #include "sysemu/hvf_int.h"
58 #include "sysemu/runstate.h"
59 #include "qemu/guest-random.h"
60
61 HVFState *hvf_state;
62
63 #ifdef __aarch64__
64 #define HV_VM_DEFAULT NULL
65 #endif
66
67 /* Memory slots */
68
69 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
70 {
71 hvf_slot *slot;
72 int x;
73 for (x = 0; x < hvf_state->num_slots; ++x) {
74 slot = &hvf_state->slots[x];
75 if (slot->size && start < (slot->start + slot->size) &&
76 (start + size) > slot->start) {
77 return slot;
78 }
79 }
80 return NULL;
81 }
82
83 struct mac_slot {
84 int present;
85 uint64_t size;
86 uint64_t gpa_start;
87 uint64_t gva;
88 };
89
90 struct mac_slot mac_slots[32];
91
92 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
93 {
94 struct mac_slot *macslot;
95 hv_return_t ret;
96
97 macslot = &mac_slots[slot->slot_id];
98
99 if (macslot->present) {
100 if (macslot->size != slot->size) {
101 macslot->present = 0;
102 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
103 assert_hvf_ok(ret);
104 }
105 }
106
107 if (!slot->size) {
108 return 0;
109 }
110
111 macslot->present = 1;
112 macslot->gpa_start = slot->start;
113 macslot->size = slot->size;
114 ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
115 assert_hvf_ok(ret);
116 return 0;
117 }
118
119 static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
120 {
121 hvf_slot *mem;
122 MemoryRegion *area = section->mr;
123 bool writeable = !area->readonly && !area->rom_device;
124 hv_memory_flags_t flags;
125
126 if (!memory_region_is_ram(area)) {
127 if (writeable) {
128 return;
129 } else if (!memory_region_is_romd(area)) {
130 /*
131 * If the memory device is not in romd_mode, then we actually want
132 * to remove the hvf memory slot so all accesses will trap.
133 */
134 add = false;
135 }
136 }
137
138 mem = hvf_find_overlap_slot(
139 section->offset_within_address_space,
140 int128_get64(section->size));
141
142 if (mem && add) {
143 if (mem->size == int128_get64(section->size) &&
144 mem->start == section->offset_within_address_space &&
145 mem->mem == (memory_region_get_ram_ptr(area) +
146 section->offset_within_region)) {
147 return; /* Same region was attempted to register, go away. */
148 }
149 }
150
151 /* Region needs to be reset. set the size to 0 and remap it. */
152 if (mem) {
153 mem->size = 0;
154 if (do_hvf_set_memory(mem, 0)) {
155 error_report("Failed to reset overlapping slot");
156 abort();
157 }
158 }
159
160 if (!add) {
161 return;
162 }
163
164 if (area->readonly ||
165 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
166 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
167 } else {
168 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
169 }
170
171 /* Now make a new slot. */
172 int x;
173
174 for (x = 0; x < hvf_state->num_slots; ++x) {
175 mem = &hvf_state->slots[x];
176 if (!mem->size) {
177 break;
178 }
179 }
180
181 if (x == hvf_state->num_slots) {
182 error_report("No free slots");
183 abort();
184 }
185
186 mem->size = int128_get64(section->size);
187 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
188 mem->start = section->offset_within_address_space;
189 mem->region = area;
190
191 if (do_hvf_set_memory(mem, flags)) {
192 error_report("Error registering new memory slot");
193 abort();
194 }
195 }
196
197 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
198 {
199 if (!cpu->vcpu_dirty) {
200 hvf_get_registers(cpu);
201 cpu->vcpu_dirty = true;
202 }
203 }
204
205 static void hvf_cpu_synchronize_state(CPUState *cpu)
206 {
207 if (!cpu->vcpu_dirty) {
208 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
209 }
210 }
211
212 static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
213 run_on_cpu_data arg)
214 {
215 /* QEMU state is the reference, push it to HVF now and on next entry */
216 cpu->vcpu_dirty = true;
217 }
218
219 static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
220 {
221 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
222 }
223
224 static void hvf_cpu_synchronize_post_init(CPUState *cpu)
225 {
226 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
227 }
228
229 static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
230 {
231 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
232 }
233
234 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
235 {
236 hvf_slot *slot;
237
238 slot = hvf_find_overlap_slot(
239 section->offset_within_address_space,
240 int128_get64(section->size));
241
242 /* protect region against writes; begin tracking it */
243 if (on) {
244 slot->flags |= HVF_SLOT_LOG;
245 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
246 HV_MEMORY_READ | HV_MEMORY_EXEC);
247 /* stop tracking region*/
248 } else {
249 slot->flags &= ~HVF_SLOT_LOG;
250 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
251 HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
252 }
253 }
254
255 static void hvf_log_start(MemoryListener *listener,
256 MemoryRegionSection *section, int old, int new)
257 {
258 if (old != 0) {
259 return;
260 }
261
262 hvf_set_dirty_tracking(section, 1);
263 }
264
265 static void hvf_log_stop(MemoryListener *listener,
266 MemoryRegionSection *section, int old, int new)
267 {
268 if (new != 0) {
269 return;
270 }
271
272 hvf_set_dirty_tracking(section, 0);
273 }
274
275 static void hvf_log_sync(MemoryListener *listener,
276 MemoryRegionSection *section)
277 {
278 /*
279 * sync of dirty pages is handled elsewhere; just make sure we keep
280 * tracking the region.
281 */
282 hvf_set_dirty_tracking(section, 1);
283 }
284
285 static void hvf_region_add(MemoryListener *listener,
286 MemoryRegionSection *section)
287 {
288 hvf_set_phys_mem(section, true);
289 }
290
291 static void hvf_region_del(MemoryListener *listener,
292 MemoryRegionSection *section)
293 {
294 hvf_set_phys_mem(section, false);
295 }
296
297 static MemoryListener hvf_memory_listener = {
298 .name = "hvf",
299 .priority = 10,
300 .region_add = hvf_region_add,
301 .region_del = hvf_region_del,
302 .log_start = hvf_log_start,
303 .log_stop = hvf_log_stop,
304 .log_sync = hvf_log_sync,
305 };
306
307 static void dummy_signal(int sig)
308 {
309 }
310
311 bool hvf_allowed;
312
313 static int hvf_accel_init(MachineState *ms)
314 {
315 int x;
316 hv_return_t ret;
317 HVFState *s;
318
319 ret = hv_vm_create(HV_VM_DEFAULT);
320 assert_hvf_ok(ret);
321
322 s = g_new0(HVFState, 1);
323
324 s->num_slots = ARRAY_SIZE(s->slots);
325 for (x = 0; x < s->num_slots; ++x) {
326 s->slots[x].size = 0;
327 s->slots[x].slot_id = x;
328 }
329
330 hvf_state = s;
331 memory_listener_register(&hvf_memory_listener, &address_space_memory);
332
333 return hvf_arch_init();
334 }
335
336 static void hvf_accel_class_init(ObjectClass *oc, void *data)
337 {
338 AccelClass *ac = ACCEL_CLASS(oc);
339 ac->name = "HVF";
340 ac->init_machine = hvf_accel_init;
341 ac->allowed = &hvf_allowed;
342 }
343
344 static const TypeInfo hvf_accel_type = {
345 .name = TYPE_HVF_ACCEL,
346 .parent = TYPE_ACCEL,
347 .class_init = hvf_accel_class_init,
348 };
349
350 static void hvf_type_init(void)
351 {
352 type_register_static(&hvf_accel_type);
353 }
354
355 type_init(hvf_type_init);
356
357 static void hvf_vcpu_destroy(CPUState *cpu)
358 {
359 hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
360 assert_hvf_ok(ret);
361
362 hvf_arch_vcpu_destroy(cpu);
363 g_free(cpu->hvf);
364 cpu->hvf = NULL;
365 }
366
367 static int hvf_init_vcpu(CPUState *cpu)
368 {
369 int r;
370
371 cpu->hvf = g_malloc0(sizeof(*cpu->hvf));
372
373 /* init cpu signals */
374 struct sigaction sigact;
375
376 memset(&sigact, 0, sizeof(sigact));
377 sigact.sa_handler = dummy_signal;
378 sigaction(SIG_IPI, &sigact, NULL);
379
380 pthread_sigmask(SIG_BLOCK, NULL, &cpu->hvf->unblock_ipi_mask);
381 sigdelset(&cpu->hvf->unblock_ipi_mask, SIG_IPI);
382
383 #ifdef __aarch64__
384 r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL);
385 #else
386 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
387 #endif
388 cpu->vcpu_dirty = 1;
389 assert_hvf_ok(r);
390
391 return hvf_arch_init_vcpu(cpu);
392 }
393
394 /*
395 * The HVF-specific vCPU thread function. This one should only run when the host
396 * CPU supports the VMX "unrestricted guest" feature.
397 */
398 static void *hvf_cpu_thread_fn(void *arg)
399 {
400 CPUState *cpu = arg;
401
402 int r;
403
404 assert(hvf_enabled());
405
406 rcu_register_thread();
407
408 qemu_mutex_lock_iothread();
409 qemu_thread_get_self(cpu->thread);
410
411 cpu->thread_id = qemu_get_thread_id();
412 cpu->can_do_io = 1;
413 current_cpu = cpu;
414
415 hvf_init_vcpu(cpu);
416
417 /* signal CPU creation */
418 cpu_thread_signal_created(cpu);
419 qemu_guest_random_seed_thread_part2(cpu->random_seed);
420
421 do {
422 if (cpu_can_run(cpu)) {
423 r = hvf_vcpu_exec(cpu);
424 if (r == EXCP_DEBUG) {
425 cpu_handle_guest_debug(cpu);
426 }
427 }
428 qemu_wait_io_event(cpu);
429 } while (!cpu->unplug || cpu_can_run(cpu));
430
431 hvf_vcpu_destroy(cpu);
432 cpu_thread_signal_destroyed(cpu);
433 qemu_mutex_unlock_iothread();
434 rcu_unregister_thread();
435 return NULL;
436 }
437
438 static void hvf_start_vcpu_thread(CPUState *cpu)
439 {
440 char thread_name[VCPU_THREAD_NAME_SIZE];
441
442 /*
443 * HVF currently does not support TCG, and only runs in
444 * unrestricted-guest mode.
445 */
446 assert(hvf_enabled());
447
448 cpu->thread = g_malloc0(sizeof(QemuThread));
449 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
450 qemu_cond_init(cpu->halt_cond);
451
452 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
453 cpu->cpu_index);
454 qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
455 cpu, QEMU_THREAD_JOINABLE);
456 }
457
458 static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
459 {
460 AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
461
462 ops->create_vcpu_thread = hvf_start_vcpu_thread;
463 ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
464
465 ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
466 ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
467 ops->synchronize_state = hvf_cpu_synchronize_state;
468 ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
469 };
470 static const TypeInfo hvf_accel_ops_type = {
471 .name = ACCEL_OPS_NAME("hvf"),
472
473 .parent = TYPE_ACCEL_OPS,
474 .class_init = hvf_accel_ops_class_init,
475 .abstract = true,
476 };
477 static void hvf_accel_ops_register_types(void)
478 {
479 type_register_static(&hvf_accel_ops_type);
480 }
481 type_init(hvf_accel_ops_register_types);