]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48
49 #include "hw/boards.h"
50
51 /* This check must be after config-host.h is included */
52 #ifdef CONFIG_EVENTFD
53 #include <sys/eventfd.h>
54 #endif
55
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
58 */
59 #ifdef PAGE_SIZE
60 #undef PAGE_SIZE
61 #endif
62 #define PAGE_SIZE qemu_real_host_page_size()
63
64 #ifndef KVM_GUESTDBG_BLOCKIRQ
65 #define KVM_GUESTDBG_BLOCKIRQ 0
66 #endif
67
68 //#define DEBUG_KVM
69
70 #ifdef DEBUG_KVM
71 #define DPRINTF(fmt, ...) \
72 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
73 #else
74 #define DPRINTF(fmt, ...) \
75 do { } while (0)
76 #endif
77
78 #define KVM_MSI_HASHTAB_SIZE 256
79
80 struct KVMParkedVcpu {
81 unsigned long vcpu_id;
82 int kvm_fd;
83 QLIST_ENTRY(KVMParkedVcpu) node;
84 };
85
86 enum KVMDirtyRingReaperState {
87 KVM_DIRTY_RING_REAPER_NONE = 0,
88 /* The reaper is sleeping */
89 KVM_DIRTY_RING_REAPER_WAIT,
90 /* The reaper is reaping for dirty pages */
91 KVM_DIRTY_RING_REAPER_REAPING,
92 };
93
94 /*
95 * KVM reaper instance, responsible for collecting the KVM dirty bits
96 * via the dirty ring.
97 */
98 struct KVMDirtyRingReaper {
99 /* The reaper thread */
100 QemuThread reaper_thr;
101 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
102 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
103 };
104
105 struct KVMState
106 {
107 AccelState parent_obj;
108
109 int nr_slots;
110 int fd;
111 int vmfd;
112 int coalesced_mmio;
113 int coalesced_pio;
114 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
115 bool coalesced_flush_in_progress;
116 int vcpu_events;
117 int robust_singlestep;
118 int debugregs;
119 #ifdef KVM_CAP_SET_GUEST_DEBUG
120 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
121 #endif
122 int max_nested_state_len;
123 int many_ioeventfds;
124 int intx_set_mask;
125 int kvm_shadow_mem;
126 bool kernel_irqchip_allowed;
127 bool kernel_irqchip_required;
128 OnOffAuto kernel_irqchip_split;
129 bool sync_mmu;
130 uint64_t manual_dirty_log_protect;
131 /* The man page (and posix) say ioctl numbers are signed int, but
132 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
133 * unsigned, and treating them as signed here can break things */
134 unsigned irq_set_ioctl;
135 unsigned int sigmask_len;
136 GHashTable *gsimap;
137 #ifdef KVM_CAP_IRQ_ROUTING
138 struct kvm_irq_routing *irq_routes;
139 int nr_allocated_irq_routes;
140 unsigned long *used_gsi_bitmap;
141 unsigned int gsi_count;
142 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
143 #endif
144 KVMMemoryListener memory_listener;
145 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
146
147 /* For "info mtree -f" to tell if an MR is registered in KVM */
148 int nr_as;
149 struct KVMAs {
150 KVMMemoryListener *ml;
151 AddressSpace *as;
152 } *as;
153 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */
154 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */
155 struct KVMDirtyRingReaper reaper;
156 };
157
158 KVMState *kvm_state;
159 bool kvm_kernel_irqchip;
160 bool kvm_split_irqchip;
161 bool kvm_async_interrupts_allowed;
162 bool kvm_halt_in_kernel_allowed;
163 bool kvm_eventfds_allowed;
164 bool kvm_irqfds_allowed;
165 bool kvm_resamplefds_allowed;
166 bool kvm_msi_via_irqfd_allowed;
167 bool kvm_gsi_routing_allowed;
168 bool kvm_gsi_direct_mapping;
169 bool kvm_allowed;
170 bool kvm_readonly_mem_allowed;
171 bool kvm_vm_attributes_allowed;
172 bool kvm_direct_msi_allowed;
173 bool kvm_ioeventfd_any_length_allowed;
174 bool kvm_msi_use_devid;
175 bool kvm_has_guest_debug;
176 int kvm_sstep_flags;
177 static bool kvm_immediate_exit;
178 static hwaddr kvm_max_slot_size = ~0;
179
180 static const KVMCapabilityInfo kvm_required_capabilites[] = {
181 KVM_CAP_INFO(USER_MEMORY),
182 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
183 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
184 KVM_CAP_LAST_INFO
185 };
186
187 static NotifierList kvm_irqchip_change_notifiers =
188 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
189
190 struct KVMResampleFd {
191 int gsi;
192 EventNotifier *resample_event;
193 QLIST_ENTRY(KVMResampleFd) node;
194 };
195 typedef struct KVMResampleFd KVMResampleFd;
196
197 /*
198 * Only used with split irqchip where we need to do the resample fd
199 * kick for the kernel from userspace.
200 */
201 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
202 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
203
204 static QemuMutex kml_slots_lock;
205
206 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
207 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
208
209 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
210
211 static inline void kvm_resample_fd_remove(int gsi)
212 {
213 KVMResampleFd *rfd;
214
215 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
216 if (rfd->gsi == gsi) {
217 QLIST_REMOVE(rfd, node);
218 g_free(rfd);
219 break;
220 }
221 }
222 }
223
224 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
225 {
226 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
227
228 rfd->gsi = gsi;
229 rfd->resample_event = event;
230
231 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
232 }
233
234 void kvm_resample_fd_notify(int gsi)
235 {
236 KVMResampleFd *rfd;
237
238 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
239 if (rfd->gsi == gsi) {
240 event_notifier_set(rfd->resample_event);
241 trace_kvm_resample_fd_notify(gsi);
242 return;
243 }
244 }
245 }
246
247 int kvm_get_max_memslots(void)
248 {
249 KVMState *s = KVM_STATE(current_accel());
250
251 return s->nr_slots;
252 }
253
254 /* Called with KVMMemoryListener.slots_lock held */
255 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
256 {
257 KVMState *s = kvm_state;
258 int i;
259
260 for (i = 0; i < s->nr_slots; i++) {
261 if (kml->slots[i].memory_size == 0) {
262 return &kml->slots[i];
263 }
264 }
265
266 return NULL;
267 }
268
269 bool kvm_has_free_slot(MachineState *ms)
270 {
271 KVMState *s = KVM_STATE(ms->accelerator);
272 bool result;
273 KVMMemoryListener *kml = &s->memory_listener;
274
275 kvm_slots_lock();
276 result = !!kvm_get_free_slot(kml);
277 kvm_slots_unlock();
278
279 return result;
280 }
281
282 /* Called with KVMMemoryListener.slots_lock held */
283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
284 {
285 KVMSlot *slot = kvm_get_free_slot(kml);
286
287 if (slot) {
288 return slot;
289 }
290
291 fprintf(stderr, "%s: no free slot available\n", __func__);
292 abort();
293 }
294
295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
296 hwaddr start_addr,
297 hwaddr size)
298 {
299 KVMState *s = kvm_state;
300 int i;
301
302 for (i = 0; i < s->nr_slots; i++) {
303 KVMSlot *mem = &kml->slots[i];
304
305 if (start_addr == mem->start_addr && size == mem->memory_size) {
306 return mem;
307 }
308 }
309
310 return NULL;
311 }
312
313 /*
314 * Calculate and align the start address and the size of the section.
315 * Return the size. If the size is 0, the aligned section is empty.
316 */
317 static hwaddr kvm_align_section(MemoryRegionSection *section,
318 hwaddr *start)
319 {
320 hwaddr size = int128_get64(section->size);
321 hwaddr delta, aligned;
322
323 /* kvm works in page size chunks, but the function may be called
324 with sub-page size and unaligned start address. Pad the start
325 address to next and truncate size to previous page boundary. */
326 aligned = ROUND_UP(section->offset_within_address_space,
327 qemu_real_host_page_size());
328 delta = aligned - section->offset_within_address_space;
329 *start = aligned;
330 if (delta > size) {
331 return 0;
332 }
333
334 return (size - delta) & qemu_real_host_page_mask();
335 }
336
337 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
338 hwaddr *phys_addr)
339 {
340 KVMMemoryListener *kml = &s->memory_listener;
341 int i, ret = 0;
342
343 kvm_slots_lock();
344 for (i = 0; i < s->nr_slots; i++) {
345 KVMSlot *mem = &kml->slots[i];
346
347 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
348 *phys_addr = mem->start_addr + (ram - mem->ram);
349 ret = 1;
350 break;
351 }
352 }
353 kvm_slots_unlock();
354
355 return ret;
356 }
357
358 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
359 {
360 KVMState *s = kvm_state;
361 struct kvm_userspace_memory_region mem;
362 int ret;
363
364 mem.slot = slot->slot | (kml->as_id << 16);
365 mem.guest_phys_addr = slot->start_addr;
366 mem.userspace_addr = (unsigned long)slot->ram;
367 mem.flags = slot->flags;
368
369 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
370 /* Set the slot size to 0 before setting the slot to the desired
371 * value. This is needed based on KVM commit 75d61fbc. */
372 mem.memory_size = 0;
373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
374 if (ret < 0) {
375 goto err;
376 }
377 }
378 mem.memory_size = slot->memory_size;
379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
380 slot->old_flags = mem.flags;
381 err:
382 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
383 mem.memory_size, mem.userspace_addr, ret);
384 if (ret < 0) {
385 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
386 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
387 __func__, mem.slot, slot->start_addr,
388 (uint64_t)mem.memory_size, strerror(errno));
389 }
390 return ret;
391 }
392
393 static int do_kvm_destroy_vcpu(CPUState *cpu)
394 {
395 KVMState *s = kvm_state;
396 long mmap_size;
397 struct KVMParkedVcpu *vcpu = NULL;
398 int ret = 0;
399
400 DPRINTF("kvm_destroy_vcpu\n");
401
402 ret = kvm_arch_destroy_vcpu(cpu);
403 if (ret < 0) {
404 goto err;
405 }
406
407 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
408 if (mmap_size < 0) {
409 ret = mmap_size;
410 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
411 goto err;
412 }
413
414 ret = munmap(cpu->kvm_run, mmap_size);
415 if (ret < 0) {
416 goto err;
417 }
418
419 if (cpu->kvm_dirty_gfns) {
420 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
421 if (ret < 0) {
422 goto err;
423 }
424 }
425
426 vcpu = g_malloc0(sizeof(*vcpu));
427 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
428 vcpu->kvm_fd = cpu->kvm_fd;
429 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
430 err:
431 return ret;
432 }
433
434 void kvm_destroy_vcpu(CPUState *cpu)
435 {
436 if (do_kvm_destroy_vcpu(cpu) < 0) {
437 error_report("kvm_destroy_vcpu failed");
438 exit(EXIT_FAILURE);
439 }
440 }
441
442 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
443 {
444 struct KVMParkedVcpu *cpu;
445
446 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
447 if (cpu->vcpu_id == vcpu_id) {
448 int kvm_fd;
449
450 QLIST_REMOVE(cpu, node);
451 kvm_fd = cpu->kvm_fd;
452 g_free(cpu);
453 return kvm_fd;
454 }
455 }
456
457 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
458 }
459
460 int kvm_init_vcpu(CPUState *cpu, Error **errp)
461 {
462 KVMState *s = kvm_state;
463 long mmap_size;
464 int ret;
465
466 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
467
468 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
469 if (ret < 0) {
470 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
471 kvm_arch_vcpu_id(cpu));
472 goto err;
473 }
474
475 cpu->kvm_fd = ret;
476 cpu->kvm_state = s;
477 cpu->vcpu_dirty = true;
478 cpu->dirty_pages = 0;
479
480 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
481 if (mmap_size < 0) {
482 ret = mmap_size;
483 error_setg_errno(errp, -mmap_size,
484 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
485 goto err;
486 }
487
488 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
489 cpu->kvm_fd, 0);
490 if (cpu->kvm_run == MAP_FAILED) {
491 ret = -errno;
492 error_setg_errno(errp, ret,
493 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
494 kvm_arch_vcpu_id(cpu));
495 goto err;
496 }
497
498 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
499 s->coalesced_mmio_ring =
500 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
501 }
502
503 if (s->kvm_dirty_ring_size) {
504 /* Use MAP_SHARED to share pages with the kernel */
505 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
506 PROT_READ | PROT_WRITE, MAP_SHARED,
507 cpu->kvm_fd,
508 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
509 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
510 ret = -errno;
511 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
512 goto err;
513 }
514 }
515
516 ret = kvm_arch_init_vcpu(cpu);
517 if (ret < 0) {
518 error_setg_errno(errp, -ret,
519 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
520 kvm_arch_vcpu_id(cpu));
521 }
522 err:
523 return ret;
524 }
525
526 /*
527 * dirty pages logging control
528 */
529
530 static int kvm_mem_flags(MemoryRegion *mr)
531 {
532 bool readonly = mr->readonly || memory_region_is_romd(mr);
533 int flags = 0;
534
535 if (memory_region_get_dirty_log_mask(mr) != 0) {
536 flags |= KVM_MEM_LOG_DIRTY_PAGES;
537 }
538 if (readonly && kvm_readonly_mem_allowed) {
539 flags |= KVM_MEM_READONLY;
540 }
541 return flags;
542 }
543
544 /* Called with KVMMemoryListener.slots_lock held */
545 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
546 MemoryRegion *mr)
547 {
548 mem->flags = kvm_mem_flags(mr);
549
550 /* If nothing changed effectively, no need to issue ioctl */
551 if (mem->flags == mem->old_flags) {
552 return 0;
553 }
554
555 kvm_slot_init_dirty_bitmap(mem);
556 return kvm_set_user_memory_region(kml, mem, false);
557 }
558
559 static int kvm_section_update_flags(KVMMemoryListener *kml,
560 MemoryRegionSection *section)
561 {
562 hwaddr start_addr, size, slot_size;
563 KVMSlot *mem;
564 int ret = 0;
565
566 size = kvm_align_section(section, &start_addr);
567 if (!size) {
568 return 0;
569 }
570
571 kvm_slots_lock();
572
573 while (size && !ret) {
574 slot_size = MIN(kvm_max_slot_size, size);
575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
576 if (!mem) {
577 /* We don't have a slot if we want to trap every access. */
578 goto out;
579 }
580
581 ret = kvm_slot_update_flags(kml, mem, section->mr);
582 start_addr += slot_size;
583 size -= slot_size;
584 }
585
586 out:
587 kvm_slots_unlock();
588 return ret;
589 }
590
591 static void kvm_log_start(MemoryListener *listener,
592 MemoryRegionSection *section,
593 int old, int new)
594 {
595 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
596 int r;
597
598 if (old != 0) {
599 return;
600 }
601
602 r = kvm_section_update_flags(kml, section);
603 if (r < 0) {
604 abort();
605 }
606 }
607
608 static void kvm_log_stop(MemoryListener *listener,
609 MemoryRegionSection *section,
610 int old, int new)
611 {
612 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
613 int r;
614
615 if (new != 0) {
616 return;
617 }
618
619 r = kvm_section_update_flags(kml, section);
620 if (r < 0) {
621 abort();
622 }
623 }
624
625 /* get kvm's dirty pages bitmap and update qemu's */
626 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
627 {
628 ram_addr_t start = slot->ram_start_offset;
629 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
630
631 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
632 }
633
634 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
635 {
636 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
637 }
638
639 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
640
641 /* Allocate the dirty bitmap for a slot */
642 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
643 {
644 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
645 return;
646 }
647
648 /*
649 * XXX bad kernel interface alert
650 * For dirty bitmap, kernel allocates array of size aligned to
651 * bits-per-long. But for case when the kernel is 64bits and
652 * the userspace is 32bits, userspace can't align to the same
653 * bits-per-long, since sizeof(long) is different between kernel
654 * and user space. This way, userspace will provide buffer which
655 * may be 4 bytes less than the kernel will use, resulting in
656 * userspace memory corruption (which is not detectable by valgrind
657 * too, in most cases).
658 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
659 * a hope that sizeof(long) won't become >8 any time soon.
660 *
661 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
662 * And mem->memory_size is aligned to it (otherwise this mem can't
663 * be registered to KVM).
664 */
665 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
666 /*HOST_LONG_BITS*/ 64) / 8;
667 mem->dirty_bmap = g_malloc0(bitmap_size);
668 mem->dirty_bmap_size = bitmap_size;
669 }
670
671 /*
672 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
673 * succeeded, false otherwise
674 */
675 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
676 {
677 struct kvm_dirty_log d = {};
678 int ret;
679
680 d.dirty_bitmap = slot->dirty_bmap;
681 d.slot = slot->slot | (slot->as_id << 16);
682 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
683
684 if (ret == -ENOENT) {
685 /* kernel does not have dirty bitmap in this slot */
686 ret = 0;
687 }
688 if (ret) {
689 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
690 __func__, ret);
691 }
692 return ret == 0;
693 }
694
695 /* Should be with all slots_lock held for the address spaces. */
696 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
697 uint32_t slot_id, uint64_t offset)
698 {
699 KVMMemoryListener *kml;
700 KVMSlot *mem;
701
702 if (as_id >= s->nr_as) {
703 return;
704 }
705
706 kml = s->as[as_id].ml;
707 mem = &kml->slots[slot_id];
708
709 if (!mem->memory_size || offset >=
710 (mem->memory_size / qemu_real_host_page_size())) {
711 return;
712 }
713
714 set_bit(offset, mem->dirty_bmap);
715 }
716
717 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
718 {
719 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
720 }
721
722 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
723 {
724 gfn->flags = KVM_DIRTY_GFN_F_RESET;
725 }
726
727 /*
728 * Should be with all slots_lock held for the address spaces. It returns the
729 * dirty page we've collected on this dirty ring.
730 */
731 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
732 {
733 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
734 uint32_t ring_size = s->kvm_dirty_ring_size;
735 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
736
737 assert(dirty_gfns && ring_size);
738 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
739
740 while (true) {
741 cur = &dirty_gfns[fetch % ring_size];
742 if (!dirty_gfn_is_dirtied(cur)) {
743 break;
744 }
745 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
746 cur->offset);
747 dirty_gfn_set_collected(cur);
748 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
749 fetch++;
750 count++;
751 }
752 cpu->kvm_fetch_index = fetch;
753 cpu->dirty_pages += count;
754
755 return count;
756 }
757
758 /* Must be with slots_lock held */
759 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
760 {
761 int ret;
762 CPUState *cpu;
763 uint64_t total = 0;
764 int64_t stamp;
765
766 stamp = get_clock();
767
768 CPU_FOREACH(cpu) {
769 total += kvm_dirty_ring_reap_one(s, cpu);
770 }
771
772 if (total) {
773 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
774 assert(ret == total);
775 }
776
777 stamp = get_clock() - stamp;
778
779 if (total) {
780 trace_kvm_dirty_ring_reap(total, stamp / 1000);
781 }
782
783 return total;
784 }
785
786 /*
787 * Currently for simplicity, we must hold BQL before calling this. We can
788 * consider to drop the BQL if we're clear with all the race conditions.
789 */
790 static uint64_t kvm_dirty_ring_reap(KVMState *s)
791 {
792 uint64_t total;
793
794 /*
795 * We need to lock all kvm slots for all address spaces here,
796 * because:
797 *
798 * (1) We need to mark dirty for dirty bitmaps in multiple slots
799 * and for tons of pages, so it's better to take the lock here
800 * once rather than once per page. And more importantly,
801 *
802 * (2) We must _NOT_ publish dirty bits to the other threads
803 * (e.g., the migration thread) via the kvm memory slot dirty
804 * bitmaps before correctly re-protect those dirtied pages.
805 * Otherwise we can have potential risk of data corruption if
806 * the page data is read in the other thread before we do
807 * reset below.
808 */
809 kvm_slots_lock();
810 total = kvm_dirty_ring_reap_locked(s);
811 kvm_slots_unlock();
812
813 return total;
814 }
815
816 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
817 {
818 /* No need to do anything */
819 }
820
821 /*
822 * Kick all vcpus out in a synchronized way. When returned, we
823 * guarantee that every vcpu has been kicked and at least returned to
824 * userspace once.
825 */
826 static void kvm_cpu_synchronize_kick_all(void)
827 {
828 CPUState *cpu;
829
830 CPU_FOREACH(cpu) {
831 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
832 }
833 }
834
835 /*
836 * Flush all the existing dirty pages to the KVM slot buffers. When
837 * this call returns, we guarantee that all the touched dirty pages
838 * before calling this function have been put into the per-kvmslot
839 * dirty bitmap.
840 *
841 * This function must be called with BQL held.
842 */
843 static void kvm_dirty_ring_flush(void)
844 {
845 trace_kvm_dirty_ring_flush(0);
846 /*
847 * The function needs to be serialized. Since this function
848 * should always be with BQL held, serialization is guaranteed.
849 * However, let's be sure of it.
850 */
851 assert(qemu_mutex_iothread_locked());
852 /*
853 * First make sure to flush the hardware buffers by kicking all
854 * vcpus out in a synchronous way.
855 */
856 kvm_cpu_synchronize_kick_all();
857 kvm_dirty_ring_reap(kvm_state);
858 trace_kvm_dirty_ring_flush(1);
859 }
860
861 /**
862 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
863 *
864 * This function will first try to fetch dirty bitmap from the kernel,
865 * and then updates qemu's dirty bitmap.
866 *
867 * NOTE: caller must be with kml->slots_lock held.
868 *
869 * @kml: the KVM memory listener object
870 * @section: the memory section to sync the dirty bitmap with
871 */
872 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
873 MemoryRegionSection *section)
874 {
875 KVMState *s = kvm_state;
876 KVMSlot *mem;
877 hwaddr start_addr, size;
878 hwaddr slot_size;
879
880 size = kvm_align_section(section, &start_addr);
881 while (size) {
882 slot_size = MIN(kvm_max_slot_size, size);
883 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
884 if (!mem) {
885 /* We don't have a slot if we want to trap every access. */
886 return;
887 }
888 if (kvm_slot_get_dirty_log(s, mem)) {
889 kvm_slot_sync_dirty_pages(mem);
890 }
891 start_addr += slot_size;
892 size -= slot_size;
893 }
894 }
895
896 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
897 #define KVM_CLEAR_LOG_SHIFT 6
898 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
899 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
900
901 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
902 uint64_t size)
903 {
904 KVMState *s = kvm_state;
905 uint64_t end, bmap_start, start_delta, bmap_npages;
906 struct kvm_clear_dirty_log d;
907 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
908 int ret;
909
910 /*
911 * We need to extend either the start or the size or both to
912 * satisfy the KVM interface requirement. Firstly, do the start
913 * page alignment on 64 host pages
914 */
915 bmap_start = start & KVM_CLEAR_LOG_MASK;
916 start_delta = start - bmap_start;
917 bmap_start /= psize;
918
919 /*
920 * The kernel interface has restriction on the size too, that either:
921 *
922 * (1) the size is 64 host pages aligned (just like the start), or
923 * (2) the size fills up until the end of the KVM memslot.
924 */
925 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
926 << KVM_CLEAR_LOG_SHIFT;
927 end = mem->memory_size / psize;
928 if (bmap_npages > end - bmap_start) {
929 bmap_npages = end - bmap_start;
930 }
931 start_delta /= psize;
932
933 /*
934 * Prepare the bitmap to clear dirty bits. Here we must guarantee
935 * that we won't clear any unknown dirty bits otherwise we might
936 * accidentally clear some set bits which are not yet synced from
937 * the kernel into QEMU's bitmap, then we'll lose track of the
938 * guest modifications upon those pages (which can directly lead
939 * to guest data loss or panic after migration).
940 *
941 * Layout of the KVMSlot.dirty_bmap:
942 *
943 * |<-------- bmap_npages -----------..>|
944 * [1]
945 * start_delta size
946 * |----------------|-------------|------------------|------------|
947 * ^ ^ ^ ^
948 * | | | |
949 * start bmap_start (start) end
950 * of memslot of memslot
951 *
952 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
953 */
954
955 assert(bmap_start % BITS_PER_LONG == 0);
956 /* We should never do log_clear before log_sync */
957 assert(mem->dirty_bmap);
958 if (start_delta || bmap_npages - size / psize) {
959 /* Slow path - we need to manipulate a temp bitmap */
960 bmap_clear = bitmap_new(bmap_npages);
961 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
962 bmap_start, start_delta + size / psize);
963 /*
964 * We need to fill the holes at start because that was not
965 * specified by the caller and we extended the bitmap only for
966 * 64 pages alignment
967 */
968 bitmap_clear(bmap_clear, 0, start_delta);
969 d.dirty_bitmap = bmap_clear;
970 } else {
971 /*
972 * Fast path - both start and size align well with BITS_PER_LONG
973 * (or the end of memory slot)
974 */
975 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
976 }
977
978 d.first_page = bmap_start;
979 /* It should never overflow. If it happens, say something */
980 assert(bmap_npages <= UINT32_MAX);
981 d.num_pages = bmap_npages;
982 d.slot = mem->slot | (as_id << 16);
983
984 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
985 if (ret < 0 && ret != -ENOENT) {
986 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
987 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
988 __func__, d.slot, (uint64_t)d.first_page,
989 (uint32_t)d.num_pages, ret);
990 } else {
991 ret = 0;
992 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
993 }
994
995 /*
996 * After we have updated the remote dirty bitmap, we update the
997 * cached bitmap as well for the memslot, then if another user
998 * clears the same region we know we shouldn't clear it again on
999 * the remote otherwise it's data loss as well.
1000 */
1001 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1002 size / psize);
1003 /* This handles the NULL case well */
1004 g_free(bmap_clear);
1005 return ret;
1006 }
1007
1008
1009 /**
1010 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1011 *
1012 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1013 * protection in the host kernel because in that case this operation
1014 * will be done within log_sync().
1015 *
1016 * @kml: the kvm memory listener
1017 * @section: the memory range to clear dirty bitmap
1018 */
1019 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1020 MemoryRegionSection *section)
1021 {
1022 KVMState *s = kvm_state;
1023 uint64_t start, size, offset, count;
1024 KVMSlot *mem;
1025 int ret = 0, i;
1026
1027 if (!s->manual_dirty_log_protect) {
1028 /* No need to do explicit clear */
1029 return ret;
1030 }
1031
1032 start = section->offset_within_address_space;
1033 size = int128_get64(section->size);
1034
1035 if (!size) {
1036 /* Nothing more we can do... */
1037 return ret;
1038 }
1039
1040 kvm_slots_lock();
1041
1042 for (i = 0; i < s->nr_slots; i++) {
1043 mem = &kml->slots[i];
1044 /* Discard slots that are empty or do not overlap the section */
1045 if (!mem->memory_size ||
1046 mem->start_addr > start + size - 1 ||
1047 start > mem->start_addr + mem->memory_size - 1) {
1048 continue;
1049 }
1050
1051 if (start >= mem->start_addr) {
1052 /* The slot starts before section or is aligned to it. */
1053 offset = start - mem->start_addr;
1054 count = MIN(mem->memory_size - offset, size);
1055 } else {
1056 /* The slot starts after section. */
1057 offset = 0;
1058 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1059 }
1060 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1061 if (ret < 0) {
1062 break;
1063 }
1064 }
1065
1066 kvm_slots_unlock();
1067
1068 return ret;
1069 }
1070
1071 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1072 MemoryRegionSection *secion,
1073 hwaddr start, hwaddr size)
1074 {
1075 KVMState *s = kvm_state;
1076
1077 if (s->coalesced_mmio) {
1078 struct kvm_coalesced_mmio_zone zone;
1079
1080 zone.addr = start;
1081 zone.size = size;
1082 zone.pad = 0;
1083
1084 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1085 }
1086 }
1087
1088 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1089 MemoryRegionSection *secion,
1090 hwaddr start, hwaddr size)
1091 {
1092 KVMState *s = kvm_state;
1093
1094 if (s->coalesced_mmio) {
1095 struct kvm_coalesced_mmio_zone zone;
1096
1097 zone.addr = start;
1098 zone.size = size;
1099 zone.pad = 0;
1100
1101 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1102 }
1103 }
1104
1105 static void kvm_coalesce_pio_add(MemoryListener *listener,
1106 MemoryRegionSection *section,
1107 hwaddr start, hwaddr size)
1108 {
1109 KVMState *s = kvm_state;
1110
1111 if (s->coalesced_pio) {
1112 struct kvm_coalesced_mmio_zone zone;
1113
1114 zone.addr = start;
1115 zone.size = size;
1116 zone.pio = 1;
1117
1118 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1119 }
1120 }
1121
1122 static void kvm_coalesce_pio_del(MemoryListener *listener,
1123 MemoryRegionSection *section,
1124 hwaddr start, hwaddr size)
1125 {
1126 KVMState *s = kvm_state;
1127
1128 if (s->coalesced_pio) {
1129 struct kvm_coalesced_mmio_zone zone;
1130
1131 zone.addr = start;
1132 zone.size = size;
1133 zone.pio = 1;
1134
1135 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1136 }
1137 }
1138
1139 static MemoryListener kvm_coalesced_pio_listener = {
1140 .name = "kvm-coalesced-pio",
1141 .coalesced_io_add = kvm_coalesce_pio_add,
1142 .coalesced_io_del = kvm_coalesce_pio_del,
1143 };
1144
1145 int kvm_check_extension(KVMState *s, unsigned int extension)
1146 {
1147 int ret;
1148
1149 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1150 if (ret < 0) {
1151 ret = 0;
1152 }
1153
1154 return ret;
1155 }
1156
1157 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1158 {
1159 int ret;
1160
1161 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1162 if (ret < 0) {
1163 /* VM wide version not implemented, use global one instead */
1164 ret = kvm_check_extension(s, extension);
1165 }
1166
1167 return ret;
1168 }
1169
1170 typedef struct HWPoisonPage {
1171 ram_addr_t ram_addr;
1172 QLIST_ENTRY(HWPoisonPage) list;
1173 } HWPoisonPage;
1174
1175 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1176 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1177
1178 static void kvm_unpoison_all(void *param)
1179 {
1180 HWPoisonPage *page, *next_page;
1181
1182 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1183 QLIST_REMOVE(page, list);
1184 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1185 g_free(page);
1186 }
1187 }
1188
1189 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1190 {
1191 HWPoisonPage *page;
1192
1193 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1194 if (page->ram_addr == ram_addr) {
1195 return;
1196 }
1197 }
1198 page = g_new(HWPoisonPage, 1);
1199 page->ram_addr = ram_addr;
1200 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1201 }
1202
1203 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1204 {
1205 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1206 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1207 * endianness, but the memory core hands them in target endianness.
1208 * For example, PPC is always treated as big-endian even if running
1209 * on KVM and on PPC64LE. Correct here.
1210 */
1211 switch (size) {
1212 case 2:
1213 val = bswap16(val);
1214 break;
1215 case 4:
1216 val = bswap32(val);
1217 break;
1218 }
1219 #endif
1220 return val;
1221 }
1222
1223 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1224 bool assign, uint32_t size, bool datamatch)
1225 {
1226 int ret;
1227 struct kvm_ioeventfd iofd = {
1228 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1229 .addr = addr,
1230 .len = size,
1231 .flags = 0,
1232 .fd = fd,
1233 };
1234
1235 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1236 datamatch);
1237 if (!kvm_enabled()) {
1238 return -ENOSYS;
1239 }
1240
1241 if (datamatch) {
1242 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1243 }
1244 if (!assign) {
1245 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1246 }
1247
1248 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1249
1250 if (ret < 0) {
1251 return -errno;
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1258 bool assign, uint32_t size, bool datamatch)
1259 {
1260 struct kvm_ioeventfd kick = {
1261 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1262 .addr = addr,
1263 .flags = KVM_IOEVENTFD_FLAG_PIO,
1264 .len = size,
1265 .fd = fd,
1266 };
1267 int r;
1268 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1269 if (!kvm_enabled()) {
1270 return -ENOSYS;
1271 }
1272 if (datamatch) {
1273 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1274 }
1275 if (!assign) {
1276 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1277 }
1278 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1279 if (r < 0) {
1280 return r;
1281 }
1282 return 0;
1283 }
1284
1285
1286 static int kvm_check_many_ioeventfds(void)
1287 {
1288 /* Userspace can use ioeventfd for io notification. This requires a host
1289 * that supports eventfd(2) and an I/O thread; since eventfd does not
1290 * support SIGIO it cannot interrupt the vcpu.
1291 *
1292 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1293 * can avoid creating too many ioeventfds.
1294 */
1295 #if defined(CONFIG_EVENTFD)
1296 int ioeventfds[7];
1297 int i, ret = 0;
1298 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1299 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1300 if (ioeventfds[i] < 0) {
1301 break;
1302 }
1303 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1304 if (ret < 0) {
1305 close(ioeventfds[i]);
1306 break;
1307 }
1308 }
1309
1310 /* Decide whether many devices are supported or not */
1311 ret = i == ARRAY_SIZE(ioeventfds);
1312
1313 while (i-- > 0) {
1314 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1315 close(ioeventfds[i]);
1316 }
1317 return ret;
1318 #else
1319 return 0;
1320 #endif
1321 }
1322
1323 static const KVMCapabilityInfo *
1324 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1325 {
1326 while (list->name) {
1327 if (!kvm_check_extension(s, list->value)) {
1328 return list;
1329 }
1330 list++;
1331 }
1332 return NULL;
1333 }
1334
1335 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1336 {
1337 g_assert(
1338 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1339 );
1340 kvm_max_slot_size = max_slot_size;
1341 }
1342
1343 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1344 MemoryRegionSection *section, bool add)
1345 {
1346 KVMSlot *mem;
1347 int err;
1348 MemoryRegion *mr = section->mr;
1349 bool writeable = !mr->readonly && !mr->rom_device;
1350 hwaddr start_addr, size, slot_size, mr_offset;
1351 ram_addr_t ram_start_offset;
1352 void *ram;
1353
1354 if (!memory_region_is_ram(mr)) {
1355 if (writeable || !kvm_readonly_mem_allowed) {
1356 return;
1357 } else if (!mr->romd_mode) {
1358 /* If the memory device is not in romd_mode, then we actually want
1359 * to remove the kvm memory slot so all accesses will trap. */
1360 add = false;
1361 }
1362 }
1363
1364 size = kvm_align_section(section, &start_addr);
1365 if (!size) {
1366 return;
1367 }
1368
1369 /* The offset of the kvmslot within the memory region */
1370 mr_offset = section->offset_within_region + start_addr -
1371 section->offset_within_address_space;
1372
1373 /* use aligned delta to align the ram address and offset */
1374 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1375 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1376
1377 kvm_slots_lock();
1378
1379 if (!add) {
1380 do {
1381 slot_size = MIN(kvm_max_slot_size, size);
1382 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1383 if (!mem) {
1384 goto out;
1385 }
1386 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1387 /*
1388 * NOTE: We should be aware of the fact that here we're only
1389 * doing a best effort to sync dirty bits. No matter whether
1390 * we're using dirty log or dirty ring, we ignored two facts:
1391 *
1392 * (1) dirty bits can reside in hardware buffers (PML)
1393 *
1394 * (2) after we collected dirty bits here, pages can be dirtied
1395 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1396 * remove the slot.
1397 *
1398 * Not easy. Let's cross the fingers until it's fixed.
1399 */
1400 if (kvm_state->kvm_dirty_ring_size) {
1401 kvm_dirty_ring_reap_locked(kvm_state);
1402 } else {
1403 kvm_slot_get_dirty_log(kvm_state, mem);
1404 }
1405 kvm_slot_sync_dirty_pages(mem);
1406 }
1407
1408 /* unregister the slot */
1409 g_free(mem->dirty_bmap);
1410 mem->dirty_bmap = NULL;
1411 mem->memory_size = 0;
1412 mem->flags = 0;
1413 err = kvm_set_user_memory_region(kml, mem, false);
1414 if (err) {
1415 fprintf(stderr, "%s: error unregistering slot: %s\n",
1416 __func__, strerror(-err));
1417 abort();
1418 }
1419 start_addr += slot_size;
1420 size -= slot_size;
1421 } while (size);
1422 goto out;
1423 }
1424
1425 /* register the new slot */
1426 do {
1427 slot_size = MIN(kvm_max_slot_size, size);
1428 mem = kvm_alloc_slot(kml);
1429 mem->as_id = kml->as_id;
1430 mem->memory_size = slot_size;
1431 mem->start_addr = start_addr;
1432 mem->ram_start_offset = ram_start_offset;
1433 mem->ram = ram;
1434 mem->flags = kvm_mem_flags(mr);
1435 kvm_slot_init_dirty_bitmap(mem);
1436 err = kvm_set_user_memory_region(kml, mem, true);
1437 if (err) {
1438 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1439 strerror(-err));
1440 abort();
1441 }
1442 start_addr += slot_size;
1443 ram_start_offset += slot_size;
1444 ram += slot_size;
1445 size -= slot_size;
1446 } while (size);
1447
1448 out:
1449 kvm_slots_unlock();
1450 }
1451
1452 static void *kvm_dirty_ring_reaper_thread(void *data)
1453 {
1454 KVMState *s = data;
1455 struct KVMDirtyRingReaper *r = &s->reaper;
1456
1457 rcu_register_thread();
1458
1459 trace_kvm_dirty_ring_reaper("init");
1460
1461 while (true) {
1462 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1463 trace_kvm_dirty_ring_reaper("wait");
1464 /*
1465 * TODO: provide a smarter timeout rather than a constant?
1466 */
1467 sleep(1);
1468
1469 trace_kvm_dirty_ring_reaper("wakeup");
1470 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1471
1472 qemu_mutex_lock_iothread();
1473 kvm_dirty_ring_reap(s);
1474 qemu_mutex_unlock_iothread();
1475
1476 r->reaper_iteration++;
1477 }
1478
1479 trace_kvm_dirty_ring_reaper("exit");
1480
1481 rcu_unregister_thread();
1482
1483 return NULL;
1484 }
1485
1486 static int kvm_dirty_ring_reaper_init(KVMState *s)
1487 {
1488 struct KVMDirtyRingReaper *r = &s->reaper;
1489
1490 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1491 kvm_dirty_ring_reaper_thread,
1492 s, QEMU_THREAD_JOINABLE);
1493
1494 return 0;
1495 }
1496
1497 static void kvm_region_add(MemoryListener *listener,
1498 MemoryRegionSection *section)
1499 {
1500 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1501
1502 memory_region_ref(section->mr);
1503 kvm_set_phys_mem(kml, section, true);
1504 }
1505
1506 static void kvm_region_del(MemoryListener *listener,
1507 MemoryRegionSection *section)
1508 {
1509 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1510
1511 kvm_set_phys_mem(kml, section, false);
1512 memory_region_unref(section->mr);
1513 }
1514
1515 static void kvm_log_sync(MemoryListener *listener,
1516 MemoryRegionSection *section)
1517 {
1518 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1519
1520 kvm_slots_lock();
1521 kvm_physical_sync_dirty_bitmap(kml, section);
1522 kvm_slots_unlock();
1523 }
1524
1525 static void kvm_log_sync_global(MemoryListener *l)
1526 {
1527 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1528 KVMState *s = kvm_state;
1529 KVMSlot *mem;
1530 int i;
1531
1532 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1533 kvm_dirty_ring_flush();
1534
1535 /*
1536 * TODO: make this faster when nr_slots is big while there are
1537 * only a few used slots (small VMs).
1538 */
1539 kvm_slots_lock();
1540 for (i = 0; i < s->nr_slots; i++) {
1541 mem = &kml->slots[i];
1542 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1543 kvm_slot_sync_dirty_pages(mem);
1544 /*
1545 * This is not needed by KVM_GET_DIRTY_LOG because the
1546 * ioctl will unconditionally overwrite the whole region.
1547 * However kvm dirty ring has no such side effect.
1548 */
1549 kvm_slot_reset_dirty_pages(mem);
1550 }
1551 }
1552 kvm_slots_unlock();
1553 }
1554
1555 static void kvm_log_clear(MemoryListener *listener,
1556 MemoryRegionSection *section)
1557 {
1558 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1559 int r;
1560
1561 r = kvm_physical_log_clear(kml, section);
1562 if (r < 0) {
1563 error_report_once("%s: kvm log clear failed: mr=%s "
1564 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1565 section->mr->name, section->offset_within_region,
1566 int128_get64(section->size));
1567 abort();
1568 }
1569 }
1570
1571 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1572 MemoryRegionSection *section,
1573 bool match_data, uint64_t data,
1574 EventNotifier *e)
1575 {
1576 int fd = event_notifier_get_fd(e);
1577 int r;
1578
1579 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1580 data, true, int128_get64(section->size),
1581 match_data);
1582 if (r < 0) {
1583 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1584 __func__, strerror(-r), -r);
1585 abort();
1586 }
1587 }
1588
1589 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1590 MemoryRegionSection *section,
1591 bool match_data, uint64_t data,
1592 EventNotifier *e)
1593 {
1594 int fd = event_notifier_get_fd(e);
1595 int r;
1596
1597 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1598 data, false, int128_get64(section->size),
1599 match_data);
1600 if (r < 0) {
1601 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1602 __func__, strerror(-r), -r);
1603 abort();
1604 }
1605 }
1606
1607 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1608 MemoryRegionSection *section,
1609 bool match_data, uint64_t data,
1610 EventNotifier *e)
1611 {
1612 int fd = event_notifier_get_fd(e);
1613 int r;
1614
1615 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1616 data, true, int128_get64(section->size),
1617 match_data);
1618 if (r < 0) {
1619 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1620 __func__, strerror(-r), -r);
1621 abort();
1622 }
1623 }
1624
1625 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1626 MemoryRegionSection *section,
1627 bool match_data, uint64_t data,
1628 EventNotifier *e)
1629
1630 {
1631 int fd = event_notifier_get_fd(e);
1632 int r;
1633
1634 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1635 data, false, int128_get64(section->size),
1636 match_data);
1637 if (r < 0) {
1638 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1639 __func__, strerror(-r), -r);
1640 abort();
1641 }
1642 }
1643
1644 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1645 AddressSpace *as, int as_id, const char *name)
1646 {
1647 int i;
1648
1649 kml->slots = g_new0(KVMSlot, s->nr_slots);
1650 kml->as_id = as_id;
1651
1652 for (i = 0; i < s->nr_slots; i++) {
1653 kml->slots[i].slot = i;
1654 }
1655
1656 kml->listener.region_add = kvm_region_add;
1657 kml->listener.region_del = kvm_region_del;
1658 kml->listener.log_start = kvm_log_start;
1659 kml->listener.log_stop = kvm_log_stop;
1660 kml->listener.priority = 10;
1661 kml->listener.name = name;
1662
1663 if (s->kvm_dirty_ring_size) {
1664 kml->listener.log_sync_global = kvm_log_sync_global;
1665 } else {
1666 kml->listener.log_sync = kvm_log_sync;
1667 kml->listener.log_clear = kvm_log_clear;
1668 }
1669
1670 memory_listener_register(&kml->listener, as);
1671
1672 for (i = 0; i < s->nr_as; ++i) {
1673 if (!s->as[i].as) {
1674 s->as[i].as = as;
1675 s->as[i].ml = kml;
1676 break;
1677 }
1678 }
1679 }
1680
1681 static MemoryListener kvm_io_listener = {
1682 .name = "kvm-io",
1683 .eventfd_add = kvm_io_ioeventfd_add,
1684 .eventfd_del = kvm_io_ioeventfd_del,
1685 .priority = 10,
1686 };
1687
1688 int kvm_set_irq(KVMState *s, int irq, int level)
1689 {
1690 struct kvm_irq_level event;
1691 int ret;
1692
1693 assert(kvm_async_interrupts_enabled());
1694
1695 event.level = level;
1696 event.irq = irq;
1697 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1698 if (ret < 0) {
1699 perror("kvm_set_irq");
1700 abort();
1701 }
1702
1703 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1704 }
1705
1706 #ifdef KVM_CAP_IRQ_ROUTING
1707 typedef struct KVMMSIRoute {
1708 struct kvm_irq_routing_entry kroute;
1709 QTAILQ_ENTRY(KVMMSIRoute) entry;
1710 } KVMMSIRoute;
1711
1712 static void set_gsi(KVMState *s, unsigned int gsi)
1713 {
1714 set_bit(gsi, s->used_gsi_bitmap);
1715 }
1716
1717 static void clear_gsi(KVMState *s, unsigned int gsi)
1718 {
1719 clear_bit(gsi, s->used_gsi_bitmap);
1720 }
1721
1722 void kvm_init_irq_routing(KVMState *s)
1723 {
1724 int gsi_count, i;
1725
1726 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1727 if (gsi_count > 0) {
1728 /* Round up so we can search ints using ffs */
1729 s->used_gsi_bitmap = bitmap_new(gsi_count);
1730 s->gsi_count = gsi_count;
1731 }
1732
1733 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1734 s->nr_allocated_irq_routes = 0;
1735
1736 if (!kvm_direct_msi_allowed) {
1737 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1738 QTAILQ_INIT(&s->msi_hashtab[i]);
1739 }
1740 }
1741
1742 kvm_arch_init_irq_routing(s);
1743 }
1744
1745 void kvm_irqchip_commit_routes(KVMState *s)
1746 {
1747 int ret;
1748
1749 if (kvm_gsi_direct_mapping()) {
1750 return;
1751 }
1752
1753 if (!kvm_gsi_routing_enabled()) {
1754 return;
1755 }
1756
1757 s->irq_routes->flags = 0;
1758 trace_kvm_irqchip_commit_routes();
1759 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1760 assert(ret == 0);
1761 }
1762
1763 static void kvm_add_routing_entry(KVMState *s,
1764 struct kvm_irq_routing_entry *entry)
1765 {
1766 struct kvm_irq_routing_entry *new;
1767 int n, size;
1768
1769 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1770 n = s->nr_allocated_irq_routes * 2;
1771 if (n < 64) {
1772 n = 64;
1773 }
1774 size = sizeof(struct kvm_irq_routing);
1775 size += n * sizeof(*new);
1776 s->irq_routes = g_realloc(s->irq_routes, size);
1777 s->nr_allocated_irq_routes = n;
1778 }
1779 n = s->irq_routes->nr++;
1780 new = &s->irq_routes->entries[n];
1781
1782 *new = *entry;
1783
1784 set_gsi(s, entry->gsi);
1785 }
1786
1787 static int kvm_update_routing_entry(KVMState *s,
1788 struct kvm_irq_routing_entry *new_entry)
1789 {
1790 struct kvm_irq_routing_entry *entry;
1791 int n;
1792
1793 for (n = 0; n < s->irq_routes->nr; n++) {
1794 entry = &s->irq_routes->entries[n];
1795 if (entry->gsi != new_entry->gsi) {
1796 continue;
1797 }
1798
1799 if(!memcmp(entry, new_entry, sizeof *entry)) {
1800 return 0;
1801 }
1802
1803 *entry = *new_entry;
1804
1805 return 0;
1806 }
1807
1808 return -ESRCH;
1809 }
1810
1811 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1812 {
1813 struct kvm_irq_routing_entry e = {};
1814
1815 assert(pin < s->gsi_count);
1816
1817 e.gsi = irq;
1818 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1819 e.flags = 0;
1820 e.u.irqchip.irqchip = irqchip;
1821 e.u.irqchip.pin = pin;
1822 kvm_add_routing_entry(s, &e);
1823 }
1824
1825 void kvm_irqchip_release_virq(KVMState *s, int virq)
1826 {
1827 struct kvm_irq_routing_entry *e;
1828 int i;
1829
1830 if (kvm_gsi_direct_mapping()) {
1831 return;
1832 }
1833
1834 for (i = 0; i < s->irq_routes->nr; i++) {
1835 e = &s->irq_routes->entries[i];
1836 if (e->gsi == virq) {
1837 s->irq_routes->nr--;
1838 *e = s->irq_routes->entries[s->irq_routes->nr];
1839 }
1840 }
1841 clear_gsi(s, virq);
1842 kvm_arch_release_virq_post(virq);
1843 trace_kvm_irqchip_release_virq(virq);
1844 }
1845
1846 void kvm_irqchip_add_change_notifier(Notifier *n)
1847 {
1848 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1849 }
1850
1851 void kvm_irqchip_remove_change_notifier(Notifier *n)
1852 {
1853 notifier_remove(n);
1854 }
1855
1856 void kvm_irqchip_change_notify(void)
1857 {
1858 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1859 }
1860
1861 static unsigned int kvm_hash_msi(uint32_t data)
1862 {
1863 /* This is optimized for IA32 MSI layout. However, no other arch shall
1864 * repeat the mistake of not providing a direct MSI injection API. */
1865 return data & 0xff;
1866 }
1867
1868 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1869 {
1870 KVMMSIRoute *route, *next;
1871 unsigned int hash;
1872
1873 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1874 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1875 kvm_irqchip_release_virq(s, route->kroute.gsi);
1876 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1877 g_free(route);
1878 }
1879 }
1880 }
1881
1882 static int kvm_irqchip_get_virq(KVMState *s)
1883 {
1884 int next_virq;
1885
1886 /*
1887 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1888 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1889 * number can succeed even though a new route entry cannot be added.
1890 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1891 */
1892 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1893 kvm_flush_dynamic_msi_routes(s);
1894 }
1895
1896 /* Return the lowest unused GSI in the bitmap */
1897 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1898 if (next_virq >= s->gsi_count) {
1899 return -ENOSPC;
1900 } else {
1901 return next_virq;
1902 }
1903 }
1904
1905 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1906 {
1907 unsigned int hash = kvm_hash_msi(msg.data);
1908 KVMMSIRoute *route;
1909
1910 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1911 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1912 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1913 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1914 return route;
1915 }
1916 }
1917 return NULL;
1918 }
1919
1920 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1921 {
1922 struct kvm_msi msi;
1923 KVMMSIRoute *route;
1924
1925 if (kvm_direct_msi_allowed) {
1926 msi.address_lo = (uint32_t)msg.address;
1927 msi.address_hi = msg.address >> 32;
1928 msi.data = le32_to_cpu(msg.data);
1929 msi.flags = 0;
1930 memset(msi.pad, 0, sizeof(msi.pad));
1931
1932 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1933 }
1934
1935 route = kvm_lookup_msi_route(s, msg);
1936 if (!route) {
1937 int virq;
1938
1939 virq = kvm_irqchip_get_virq(s);
1940 if (virq < 0) {
1941 return virq;
1942 }
1943
1944 route = g_new0(KVMMSIRoute, 1);
1945 route->kroute.gsi = virq;
1946 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1947 route->kroute.flags = 0;
1948 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1949 route->kroute.u.msi.address_hi = msg.address >> 32;
1950 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1951
1952 kvm_add_routing_entry(s, &route->kroute);
1953 kvm_irqchip_commit_routes(s);
1954
1955 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1956 entry);
1957 }
1958
1959 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1960
1961 return kvm_set_irq(s, route->kroute.gsi, 1);
1962 }
1963
1964 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1965 {
1966 struct kvm_irq_routing_entry kroute = {};
1967 int virq;
1968 KVMState *s = c->s;
1969 MSIMessage msg = {0, 0};
1970
1971 if (pci_available && dev) {
1972 msg = pci_get_msi_message(dev, vector);
1973 }
1974
1975 if (kvm_gsi_direct_mapping()) {
1976 return kvm_arch_msi_data_to_gsi(msg.data);
1977 }
1978
1979 if (!kvm_gsi_routing_enabled()) {
1980 return -ENOSYS;
1981 }
1982
1983 virq = kvm_irqchip_get_virq(s);
1984 if (virq < 0) {
1985 return virq;
1986 }
1987
1988 kroute.gsi = virq;
1989 kroute.type = KVM_IRQ_ROUTING_MSI;
1990 kroute.flags = 0;
1991 kroute.u.msi.address_lo = (uint32_t)msg.address;
1992 kroute.u.msi.address_hi = msg.address >> 32;
1993 kroute.u.msi.data = le32_to_cpu(msg.data);
1994 if (pci_available && kvm_msi_devid_required()) {
1995 kroute.flags = KVM_MSI_VALID_DEVID;
1996 kroute.u.msi.devid = pci_requester_id(dev);
1997 }
1998 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1999 kvm_irqchip_release_virq(s, virq);
2000 return -EINVAL;
2001 }
2002
2003 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2004 vector, virq);
2005
2006 kvm_add_routing_entry(s, &kroute);
2007 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2008 c->changes++;
2009
2010 return virq;
2011 }
2012
2013 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2014 PCIDevice *dev)
2015 {
2016 struct kvm_irq_routing_entry kroute = {};
2017
2018 if (kvm_gsi_direct_mapping()) {
2019 return 0;
2020 }
2021
2022 if (!kvm_irqchip_in_kernel()) {
2023 return -ENOSYS;
2024 }
2025
2026 kroute.gsi = virq;
2027 kroute.type = KVM_IRQ_ROUTING_MSI;
2028 kroute.flags = 0;
2029 kroute.u.msi.address_lo = (uint32_t)msg.address;
2030 kroute.u.msi.address_hi = msg.address >> 32;
2031 kroute.u.msi.data = le32_to_cpu(msg.data);
2032 if (pci_available && kvm_msi_devid_required()) {
2033 kroute.flags = KVM_MSI_VALID_DEVID;
2034 kroute.u.msi.devid = pci_requester_id(dev);
2035 }
2036 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2037 return -EINVAL;
2038 }
2039
2040 trace_kvm_irqchip_update_msi_route(virq);
2041
2042 return kvm_update_routing_entry(s, &kroute);
2043 }
2044
2045 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2046 EventNotifier *resample, int virq,
2047 bool assign)
2048 {
2049 int fd = event_notifier_get_fd(event);
2050 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2051
2052 struct kvm_irqfd irqfd = {
2053 .fd = fd,
2054 .gsi = virq,
2055 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2056 };
2057
2058 if (rfd != -1) {
2059 assert(assign);
2060 if (kvm_irqchip_is_split()) {
2061 /*
2062 * When the slow irqchip (e.g. IOAPIC) is in the
2063 * userspace, KVM kernel resamplefd will not work because
2064 * the EOI of the interrupt will be delivered to userspace
2065 * instead, so the KVM kernel resamplefd kick will be
2066 * skipped. The userspace here mimics what the kernel
2067 * provides with resamplefd, remember the resamplefd and
2068 * kick it when we receive EOI of this IRQ.
2069 *
2070 * This is hackery because IOAPIC is mostly bypassed
2071 * (except EOI broadcasts) when irqfd is used. However
2072 * this can bring much performance back for split irqchip
2073 * with INTx IRQs (for VFIO, this gives 93% perf of the
2074 * full fast path, which is 46% perf boost comparing to
2075 * the INTx slow path).
2076 */
2077 kvm_resample_fd_insert(virq, resample);
2078 } else {
2079 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2080 irqfd.resamplefd = rfd;
2081 }
2082 } else if (!assign) {
2083 if (kvm_irqchip_is_split()) {
2084 kvm_resample_fd_remove(virq);
2085 }
2086 }
2087
2088 if (!kvm_irqfds_enabled()) {
2089 return -ENOSYS;
2090 }
2091
2092 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2093 }
2094
2095 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2096 {
2097 struct kvm_irq_routing_entry kroute = {};
2098 int virq;
2099
2100 if (!kvm_gsi_routing_enabled()) {
2101 return -ENOSYS;
2102 }
2103
2104 virq = kvm_irqchip_get_virq(s);
2105 if (virq < 0) {
2106 return virq;
2107 }
2108
2109 kroute.gsi = virq;
2110 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2111 kroute.flags = 0;
2112 kroute.u.adapter.summary_addr = adapter->summary_addr;
2113 kroute.u.adapter.ind_addr = adapter->ind_addr;
2114 kroute.u.adapter.summary_offset = adapter->summary_offset;
2115 kroute.u.adapter.ind_offset = adapter->ind_offset;
2116 kroute.u.adapter.adapter_id = adapter->adapter_id;
2117
2118 kvm_add_routing_entry(s, &kroute);
2119
2120 return virq;
2121 }
2122
2123 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2124 {
2125 struct kvm_irq_routing_entry kroute = {};
2126 int virq;
2127
2128 if (!kvm_gsi_routing_enabled()) {
2129 return -ENOSYS;
2130 }
2131 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2132 return -ENOSYS;
2133 }
2134 virq = kvm_irqchip_get_virq(s);
2135 if (virq < 0) {
2136 return virq;
2137 }
2138
2139 kroute.gsi = virq;
2140 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2141 kroute.flags = 0;
2142 kroute.u.hv_sint.vcpu = vcpu;
2143 kroute.u.hv_sint.sint = sint;
2144
2145 kvm_add_routing_entry(s, &kroute);
2146 kvm_irqchip_commit_routes(s);
2147
2148 return virq;
2149 }
2150
2151 #else /* !KVM_CAP_IRQ_ROUTING */
2152
2153 void kvm_init_irq_routing(KVMState *s)
2154 {
2155 }
2156
2157 void kvm_irqchip_release_virq(KVMState *s, int virq)
2158 {
2159 }
2160
2161 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2162 {
2163 abort();
2164 }
2165
2166 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2167 {
2168 return -ENOSYS;
2169 }
2170
2171 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2172 {
2173 return -ENOSYS;
2174 }
2175
2176 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2177 {
2178 return -ENOSYS;
2179 }
2180
2181 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2182 EventNotifier *resample, int virq,
2183 bool assign)
2184 {
2185 abort();
2186 }
2187
2188 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2189 {
2190 return -ENOSYS;
2191 }
2192 #endif /* !KVM_CAP_IRQ_ROUTING */
2193
2194 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2195 EventNotifier *rn, int virq)
2196 {
2197 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2198 }
2199
2200 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2201 int virq)
2202 {
2203 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2204 }
2205
2206 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2207 EventNotifier *rn, qemu_irq irq)
2208 {
2209 gpointer key, gsi;
2210 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2211
2212 if (!found) {
2213 return -ENXIO;
2214 }
2215 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2216 }
2217
2218 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2219 qemu_irq irq)
2220 {
2221 gpointer key, gsi;
2222 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2223
2224 if (!found) {
2225 return -ENXIO;
2226 }
2227 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2228 }
2229
2230 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2231 {
2232 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2233 }
2234
2235 static void kvm_irqchip_create(KVMState *s)
2236 {
2237 int ret;
2238
2239 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2240 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2241 ;
2242 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2243 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2244 if (ret < 0) {
2245 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2246 exit(1);
2247 }
2248 } else {
2249 return;
2250 }
2251
2252 /* First probe and see if there's a arch-specific hook to create the
2253 * in-kernel irqchip for us */
2254 ret = kvm_arch_irqchip_create(s);
2255 if (ret == 0) {
2256 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2257 perror("Split IRQ chip mode not supported.");
2258 exit(1);
2259 } else {
2260 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2261 }
2262 }
2263 if (ret < 0) {
2264 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2265 exit(1);
2266 }
2267
2268 kvm_kernel_irqchip = true;
2269 /* If we have an in-kernel IRQ chip then we must have asynchronous
2270 * interrupt delivery (though the reverse is not necessarily true)
2271 */
2272 kvm_async_interrupts_allowed = true;
2273 kvm_halt_in_kernel_allowed = true;
2274
2275 kvm_init_irq_routing(s);
2276
2277 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2278 }
2279
2280 /* Find number of supported CPUs using the recommended
2281 * procedure from the kernel API documentation to cope with
2282 * older kernels that may be missing capabilities.
2283 */
2284 static int kvm_recommended_vcpus(KVMState *s)
2285 {
2286 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2287 return (ret) ? ret : 4;
2288 }
2289
2290 static int kvm_max_vcpus(KVMState *s)
2291 {
2292 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2293 return (ret) ? ret : kvm_recommended_vcpus(s);
2294 }
2295
2296 static int kvm_max_vcpu_id(KVMState *s)
2297 {
2298 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2299 return (ret) ? ret : kvm_max_vcpus(s);
2300 }
2301
2302 bool kvm_vcpu_id_is_valid(int vcpu_id)
2303 {
2304 KVMState *s = KVM_STATE(current_accel());
2305 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2306 }
2307
2308 bool kvm_dirty_ring_enabled(void)
2309 {
2310 return kvm_state->kvm_dirty_ring_size ? true : false;
2311 }
2312
2313 static int kvm_init(MachineState *ms)
2314 {
2315 MachineClass *mc = MACHINE_GET_CLASS(ms);
2316 static const char upgrade_note[] =
2317 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2318 "(see http://sourceforge.net/projects/kvm).\n";
2319 struct {
2320 const char *name;
2321 int num;
2322 } num_cpus[] = {
2323 { "SMP", ms->smp.cpus },
2324 { "hotpluggable", ms->smp.max_cpus },
2325 { NULL, }
2326 }, *nc = num_cpus;
2327 int soft_vcpus_limit, hard_vcpus_limit;
2328 KVMState *s;
2329 const KVMCapabilityInfo *missing_cap;
2330 int ret;
2331 int type = 0;
2332 uint64_t dirty_log_manual_caps;
2333
2334 qemu_mutex_init(&kml_slots_lock);
2335
2336 s = KVM_STATE(ms->accelerator);
2337
2338 /*
2339 * On systems where the kernel can support different base page
2340 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2341 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2342 * page size for the system though.
2343 */
2344 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2345
2346 s->sigmask_len = 8;
2347
2348 #ifdef KVM_CAP_SET_GUEST_DEBUG
2349 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2350 #endif
2351 QLIST_INIT(&s->kvm_parked_vcpus);
2352 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2353 if (s->fd == -1) {
2354 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2355 ret = -errno;
2356 goto err;
2357 }
2358
2359 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2360 if (ret < KVM_API_VERSION) {
2361 if (ret >= 0) {
2362 ret = -EINVAL;
2363 }
2364 fprintf(stderr, "kvm version too old\n");
2365 goto err;
2366 }
2367
2368 if (ret > KVM_API_VERSION) {
2369 ret = -EINVAL;
2370 fprintf(stderr, "kvm version not supported\n");
2371 goto err;
2372 }
2373
2374 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2375 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2376
2377 /* If unspecified, use the default value */
2378 if (!s->nr_slots) {
2379 s->nr_slots = 32;
2380 }
2381
2382 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2383 if (s->nr_as <= 1) {
2384 s->nr_as = 1;
2385 }
2386 s->as = g_new0(struct KVMAs, s->nr_as);
2387
2388 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2389 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2390 "kvm-type",
2391 &error_abort);
2392 type = mc->kvm_type(ms, kvm_type);
2393 } else if (mc->kvm_type) {
2394 type = mc->kvm_type(ms, NULL);
2395 }
2396
2397 do {
2398 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2399 } while (ret == -EINTR);
2400
2401 if (ret < 0) {
2402 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2403 strerror(-ret));
2404
2405 #ifdef TARGET_S390X
2406 if (ret == -EINVAL) {
2407 fprintf(stderr,
2408 "Host kernel setup problem detected. Please verify:\n");
2409 fprintf(stderr, "- for kernels supporting the switch_amode or"
2410 " user_mode parameters, whether\n");
2411 fprintf(stderr,
2412 " user space is running in primary address space\n");
2413 fprintf(stderr,
2414 "- for kernels supporting the vm.allocate_pgste sysctl, "
2415 "whether it is enabled\n");
2416 }
2417 #elif defined(TARGET_PPC)
2418 if (ret == -EINVAL) {
2419 fprintf(stderr,
2420 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2421 (type == 2) ? "pr" : "hv");
2422 }
2423 #endif
2424 goto err;
2425 }
2426
2427 s->vmfd = ret;
2428
2429 /* check the vcpu limits */
2430 soft_vcpus_limit = kvm_recommended_vcpus(s);
2431 hard_vcpus_limit = kvm_max_vcpus(s);
2432
2433 while (nc->name) {
2434 if (nc->num > soft_vcpus_limit) {
2435 warn_report("Number of %s cpus requested (%d) exceeds "
2436 "the recommended cpus supported by KVM (%d)",
2437 nc->name, nc->num, soft_vcpus_limit);
2438
2439 if (nc->num > hard_vcpus_limit) {
2440 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2441 "the maximum cpus supported by KVM (%d)\n",
2442 nc->name, nc->num, hard_vcpus_limit);
2443 exit(1);
2444 }
2445 }
2446 nc++;
2447 }
2448
2449 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2450 if (!missing_cap) {
2451 missing_cap =
2452 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2453 }
2454 if (missing_cap) {
2455 ret = -EINVAL;
2456 fprintf(stderr, "kvm does not support %s\n%s",
2457 missing_cap->name, upgrade_note);
2458 goto err;
2459 }
2460
2461 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2462 s->coalesced_pio = s->coalesced_mmio &&
2463 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2464
2465 /*
2466 * Enable KVM dirty ring if supported, otherwise fall back to
2467 * dirty logging mode
2468 */
2469 if (s->kvm_dirty_ring_size > 0) {
2470 uint64_t ring_bytes;
2471
2472 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2473
2474 /* Read the max supported pages */
2475 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2476 if (ret > 0) {
2477 if (ring_bytes > ret) {
2478 error_report("KVM dirty ring size %" PRIu32 " too big "
2479 "(maximum is %ld). Please use a smaller value.",
2480 s->kvm_dirty_ring_size,
2481 (long)ret / sizeof(struct kvm_dirty_gfn));
2482 ret = -EINVAL;
2483 goto err;
2484 }
2485
2486 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2487 if (ret) {
2488 error_report("Enabling of KVM dirty ring failed: %s. "
2489 "Suggested minimum value is 1024.", strerror(-ret));
2490 goto err;
2491 }
2492
2493 s->kvm_dirty_ring_bytes = ring_bytes;
2494 } else {
2495 warn_report("KVM dirty ring not available, using bitmap method");
2496 s->kvm_dirty_ring_size = 0;
2497 }
2498 }
2499
2500 /*
2501 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2502 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2503 * page is wr-protected initially, which is against how kvm dirty ring is
2504 * usage - kvm dirty ring requires all pages are wr-protected at the very
2505 * beginning. Enabling this feature for dirty ring causes data corruption.
2506 *
2507 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2508 * we may expect a higher stall time when starting the migration. In the
2509 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2510 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2511 * guest pages.
2512 */
2513 if (!s->kvm_dirty_ring_size) {
2514 dirty_log_manual_caps =
2515 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2516 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2517 KVM_DIRTY_LOG_INITIALLY_SET);
2518 s->manual_dirty_log_protect = dirty_log_manual_caps;
2519 if (dirty_log_manual_caps) {
2520 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2521 dirty_log_manual_caps);
2522 if (ret) {
2523 warn_report("Trying to enable capability %"PRIu64" of "
2524 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2525 "Falling back to the legacy mode. ",
2526 dirty_log_manual_caps);
2527 s->manual_dirty_log_protect = 0;
2528 }
2529 }
2530 }
2531
2532 #ifdef KVM_CAP_VCPU_EVENTS
2533 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2534 #endif
2535
2536 s->robust_singlestep =
2537 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2538
2539 #ifdef KVM_CAP_DEBUGREGS
2540 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2541 #endif
2542
2543 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2544
2545 #ifdef KVM_CAP_IRQ_ROUTING
2546 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2547 #endif
2548
2549 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2550
2551 s->irq_set_ioctl = KVM_IRQ_LINE;
2552 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2553 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2554 }
2555
2556 kvm_readonly_mem_allowed =
2557 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2558
2559 kvm_eventfds_allowed =
2560 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2561
2562 kvm_irqfds_allowed =
2563 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2564
2565 kvm_resamplefds_allowed =
2566 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2567
2568 kvm_vm_attributes_allowed =
2569 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2570
2571 kvm_ioeventfd_any_length_allowed =
2572 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2573
2574 #ifdef KVM_CAP_SET_GUEST_DEBUG
2575 kvm_has_guest_debug =
2576 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2577 #endif
2578
2579 kvm_sstep_flags = 0;
2580 if (kvm_has_guest_debug) {
2581 kvm_sstep_flags = SSTEP_ENABLE;
2582
2583 #if defined KVM_CAP_SET_GUEST_DEBUG2
2584 int guest_debug_flags =
2585 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2586
2587 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2588 kvm_sstep_flags |= SSTEP_NOIRQ;
2589 }
2590 #endif
2591 }
2592
2593 kvm_state = s;
2594
2595 ret = kvm_arch_init(ms, s);
2596 if (ret < 0) {
2597 goto err;
2598 }
2599
2600 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2601 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2602 }
2603
2604 qemu_register_reset(kvm_unpoison_all, NULL);
2605
2606 if (s->kernel_irqchip_allowed) {
2607 kvm_irqchip_create(s);
2608 }
2609
2610 if (kvm_eventfds_allowed) {
2611 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2612 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2613 }
2614 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2615 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2616
2617 kvm_memory_listener_register(s, &s->memory_listener,
2618 &address_space_memory, 0, "kvm-memory");
2619 if (kvm_eventfds_allowed) {
2620 memory_listener_register(&kvm_io_listener,
2621 &address_space_io);
2622 }
2623 memory_listener_register(&kvm_coalesced_pio_listener,
2624 &address_space_io);
2625
2626 s->many_ioeventfds = kvm_check_many_ioeventfds();
2627
2628 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2629 if (!s->sync_mmu) {
2630 ret = ram_block_discard_disable(true);
2631 assert(!ret);
2632 }
2633
2634 if (s->kvm_dirty_ring_size) {
2635 ret = kvm_dirty_ring_reaper_init(s);
2636 if (ret) {
2637 goto err;
2638 }
2639 }
2640
2641 return 0;
2642
2643 err:
2644 assert(ret < 0);
2645 if (s->vmfd >= 0) {
2646 close(s->vmfd);
2647 }
2648 if (s->fd != -1) {
2649 close(s->fd);
2650 }
2651 g_free(s->memory_listener.slots);
2652
2653 return ret;
2654 }
2655
2656 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2657 {
2658 s->sigmask_len = sigmask_len;
2659 }
2660
2661 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2662 int size, uint32_t count)
2663 {
2664 int i;
2665 uint8_t *ptr = data;
2666
2667 for (i = 0; i < count; i++) {
2668 address_space_rw(&address_space_io, port, attrs,
2669 ptr, size,
2670 direction == KVM_EXIT_IO_OUT);
2671 ptr += size;
2672 }
2673 }
2674
2675 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2676 {
2677 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2678 run->internal.suberror);
2679
2680 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2681 int i;
2682
2683 for (i = 0; i < run->internal.ndata; ++i) {
2684 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2685 i, (uint64_t)run->internal.data[i]);
2686 }
2687 }
2688 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2689 fprintf(stderr, "emulation failure\n");
2690 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2691 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2692 return EXCP_INTERRUPT;
2693 }
2694 }
2695 /* FIXME: Should trigger a qmp message to let management know
2696 * something went wrong.
2697 */
2698 return -1;
2699 }
2700
2701 void kvm_flush_coalesced_mmio_buffer(void)
2702 {
2703 KVMState *s = kvm_state;
2704
2705 if (s->coalesced_flush_in_progress) {
2706 return;
2707 }
2708
2709 s->coalesced_flush_in_progress = true;
2710
2711 if (s->coalesced_mmio_ring) {
2712 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2713 while (ring->first != ring->last) {
2714 struct kvm_coalesced_mmio *ent;
2715
2716 ent = &ring->coalesced_mmio[ring->first];
2717
2718 if (ent->pio == 1) {
2719 address_space_write(&address_space_io, ent->phys_addr,
2720 MEMTXATTRS_UNSPECIFIED, ent->data,
2721 ent->len);
2722 } else {
2723 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2724 }
2725 smp_wmb();
2726 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2727 }
2728 }
2729
2730 s->coalesced_flush_in_progress = false;
2731 }
2732
2733 bool kvm_cpu_check_are_resettable(void)
2734 {
2735 return kvm_arch_cpu_check_are_resettable();
2736 }
2737
2738 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2739 {
2740 if (!cpu->vcpu_dirty) {
2741 kvm_arch_get_registers(cpu);
2742 cpu->vcpu_dirty = true;
2743 }
2744 }
2745
2746 void kvm_cpu_synchronize_state(CPUState *cpu)
2747 {
2748 if (!cpu->vcpu_dirty) {
2749 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2750 }
2751 }
2752
2753 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2754 {
2755 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2756 cpu->vcpu_dirty = false;
2757 }
2758
2759 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2760 {
2761 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2762 }
2763
2764 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2765 {
2766 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2767 cpu->vcpu_dirty = false;
2768 }
2769
2770 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2771 {
2772 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2773 }
2774
2775 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2776 {
2777 cpu->vcpu_dirty = true;
2778 }
2779
2780 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2781 {
2782 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2783 }
2784
2785 #ifdef KVM_HAVE_MCE_INJECTION
2786 static __thread void *pending_sigbus_addr;
2787 static __thread int pending_sigbus_code;
2788 static __thread bool have_sigbus_pending;
2789 #endif
2790
2791 static void kvm_cpu_kick(CPUState *cpu)
2792 {
2793 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2794 }
2795
2796 static void kvm_cpu_kick_self(void)
2797 {
2798 if (kvm_immediate_exit) {
2799 kvm_cpu_kick(current_cpu);
2800 } else {
2801 qemu_cpu_kick_self();
2802 }
2803 }
2804
2805 static void kvm_eat_signals(CPUState *cpu)
2806 {
2807 struct timespec ts = { 0, 0 };
2808 siginfo_t siginfo;
2809 sigset_t waitset;
2810 sigset_t chkset;
2811 int r;
2812
2813 if (kvm_immediate_exit) {
2814 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2815 /* Write kvm_run->immediate_exit before the cpu->exit_request
2816 * write in kvm_cpu_exec.
2817 */
2818 smp_wmb();
2819 return;
2820 }
2821
2822 sigemptyset(&waitset);
2823 sigaddset(&waitset, SIG_IPI);
2824
2825 do {
2826 r = sigtimedwait(&waitset, &siginfo, &ts);
2827 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2828 perror("sigtimedwait");
2829 exit(1);
2830 }
2831
2832 r = sigpending(&chkset);
2833 if (r == -1) {
2834 perror("sigpending");
2835 exit(1);
2836 }
2837 } while (sigismember(&chkset, SIG_IPI));
2838 }
2839
2840 int kvm_cpu_exec(CPUState *cpu)
2841 {
2842 struct kvm_run *run = cpu->kvm_run;
2843 int ret, run_ret;
2844
2845 DPRINTF("kvm_cpu_exec()\n");
2846
2847 if (kvm_arch_process_async_events(cpu)) {
2848 qatomic_set(&cpu->exit_request, 0);
2849 return EXCP_HLT;
2850 }
2851
2852 qemu_mutex_unlock_iothread();
2853 cpu_exec_start(cpu);
2854
2855 do {
2856 MemTxAttrs attrs;
2857
2858 if (cpu->vcpu_dirty) {
2859 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2860 cpu->vcpu_dirty = false;
2861 }
2862
2863 kvm_arch_pre_run(cpu, run);
2864 if (qatomic_read(&cpu->exit_request)) {
2865 DPRINTF("interrupt exit requested\n");
2866 /*
2867 * KVM requires us to reenter the kernel after IO exits to complete
2868 * instruction emulation. This self-signal will ensure that we
2869 * leave ASAP again.
2870 */
2871 kvm_cpu_kick_self();
2872 }
2873
2874 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2875 * Matching barrier in kvm_eat_signals.
2876 */
2877 smp_rmb();
2878
2879 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2880
2881 attrs = kvm_arch_post_run(cpu, run);
2882
2883 #ifdef KVM_HAVE_MCE_INJECTION
2884 if (unlikely(have_sigbus_pending)) {
2885 qemu_mutex_lock_iothread();
2886 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2887 pending_sigbus_addr);
2888 have_sigbus_pending = false;
2889 qemu_mutex_unlock_iothread();
2890 }
2891 #endif
2892
2893 if (run_ret < 0) {
2894 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2895 DPRINTF("io window exit\n");
2896 kvm_eat_signals(cpu);
2897 ret = EXCP_INTERRUPT;
2898 break;
2899 }
2900 fprintf(stderr, "error: kvm run failed %s\n",
2901 strerror(-run_ret));
2902 #ifdef TARGET_PPC
2903 if (run_ret == -EBUSY) {
2904 fprintf(stderr,
2905 "This is probably because your SMT is enabled.\n"
2906 "VCPU can only run on primary threads with all "
2907 "secondary threads offline.\n");
2908 }
2909 #endif
2910 ret = -1;
2911 break;
2912 }
2913
2914 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2915 switch (run->exit_reason) {
2916 case KVM_EXIT_IO:
2917 DPRINTF("handle_io\n");
2918 /* Called outside BQL */
2919 kvm_handle_io(run->io.port, attrs,
2920 (uint8_t *)run + run->io.data_offset,
2921 run->io.direction,
2922 run->io.size,
2923 run->io.count);
2924 ret = 0;
2925 break;
2926 case KVM_EXIT_MMIO:
2927 DPRINTF("handle_mmio\n");
2928 /* Called outside BQL */
2929 address_space_rw(&address_space_memory,
2930 run->mmio.phys_addr, attrs,
2931 run->mmio.data,
2932 run->mmio.len,
2933 run->mmio.is_write);
2934 ret = 0;
2935 break;
2936 case KVM_EXIT_IRQ_WINDOW_OPEN:
2937 DPRINTF("irq_window_open\n");
2938 ret = EXCP_INTERRUPT;
2939 break;
2940 case KVM_EXIT_SHUTDOWN:
2941 DPRINTF("shutdown\n");
2942 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2943 ret = EXCP_INTERRUPT;
2944 break;
2945 case KVM_EXIT_UNKNOWN:
2946 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2947 (uint64_t)run->hw.hardware_exit_reason);
2948 ret = -1;
2949 break;
2950 case KVM_EXIT_INTERNAL_ERROR:
2951 ret = kvm_handle_internal_error(cpu, run);
2952 break;
2953 case KVM_EXIT_DIRTY_RING_FULL:
2954 /*
2955 * We shouldn't continue if the dirty ring of this vcpu is
2956 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2957 */
2958 trace_kvm_dirty_ring_full(cpu->cpu_index);
2959 qemu_mutex_lock_iothread();
2960 kvm_dirty_ring_reap(kvm_state);
2961 qemu_mutex_unlock_iothread();
2962 ret = 0;
2963 break;
2964 case KVM_EXIT_SYSTEM_EVENT:
2965 switch (run->system_event.type) {
2966 case KVM_SYSTEM_EVENT_SHUTDOWN:
2967 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2968 ret = EXCP_INTERRUPT;
2969 break;
2970 case KVM_SYSTEM_EVENT_RESET:
2971 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2972 ret = EXCP_INTERRUPT;
2973 break;
2974 case KVM_SYSTEM_EVENT_CRASH:
2975 kvm_cpu_synchronize_state(cpu);
2976 qemu_mutex_lock_iothread();
2977 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2978 qemu_mutex_unlock_iothread();
2979 ret = 0;
2980 break;
2981 default:
2982 DPRINTF("kvm_arch_handle_exit\n");
2983 ret = kvm_arch_handle_exit(cpu, run);
2984 break;
2985 }
2986 break;
2987 default:
2988 DPRINTF("kvm_arch_handle_exit\n");
2989 ret = kvm_arch_handle_exit(cpu, run);
2990 break;
2991 }
2992 } while (ret == 0);
2993
2994 cpu_exec_end(cpu);
2995 qemu_mutex_lock_iothread();
2996
2997 if (ret < 0) {
2998 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2999 vm_stop(RUN_STATE_INTERNAL_ERROR);
3000 }
3001
3002 qatomic_set(&cpu->exit_request, 0);
3003 return ret;
3004 }
3005
3006 int kvm_ioctl(KVMState *s, int type, ...)
3007 {
3008 int ret;
3009 void *arg;
3010 va_list ap;
3011
3012 va_start(ap, type);
3013 arg = va_arg(ap, void *);
3014 va_end(ap);
3015
3016 trace_kvm_ioctl(type, arg);
3017 ret = ioctl(s->fd, type, arg);
3018 if (ret == -1) {
3019 ret = -errno;
3020 }
3021 return ret;
3022 }
3023
3024 int kvm_vm_ioctl(KVMState *s, int type, ...)
3025 {
3026 int ret;
3027 void *arg;
3028 va_list ap;
3029
3030 va_start(ap, type);
3031 arg = va_arg(ap, void *);
3032 va_end(ap);
3033
3034 trace_kvm_vm_ioctl(type, arg);
3035 ret = ioctl(s->vmfd, type, arg);
3036 if (ret == -1) {
3037 ret = -errno;
3038 }
3039 return ret;
3040 }
3041
3042 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3043 {
3044 int ret;
3045 void *arg;
3046 va_list ap;
3047
3048 va_start(ap, type);
3049 arg = va_arg(ap, void *);
3050 va_end(ap);
3051
3052 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3053 ret = ioctl(cpu->kvm_fd, type, arg);
3054 if (ret == -1) {
3055 ret = -errno;
3056 }
3057 return ret;
3058 }
3059
3060 int kvm_device_ioctl(int fd, int type, ...)
3061 {
3062 int ret;
3063 void *arg;
3064 va_list ap;
3065
3066 va_start(ap, type);
3067 arg = va_arg(ap, void *);
3068 va_end(ap);
3069
3070 trace_kvm_device_ioctl(fd, type, arg);
3071 ret = ioctl(fd, type, arg);
3072 if (ret == -1) {
3073 ret = -errno;
3074 }
3075 return ret;
3076 }
3077
3078 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3079 {
3080 int ret;
3081 struct kvm_device_attr attribute = {
3082 .group = group,
3083 .attr = attr,
3084 };
3085
3086 if (!kvm_vm_attributes_allowed) {
3087 return 0;
3088 }
3089
3090 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3091 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3092 return ret ? 0 : 1;
3093 }
3094
3095 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3096 {
3097 struct kvm_device_attr attribute = {
3098 .group = group,
3099 .attr = attr,
3100 .flags = 0,
3101 };
3102
3103 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3104 }
3105
3106 int kvm_device_access(int fd, int group, uint64_t attr,
3107 void *val, bool write, Error **errp)
3108 {
3109 struct kvm_device_attr kvmattr;
3110 int err;
3111
3112 kvmattr.flags = 0;
3113 kvmattr.group = group;
3114 kvmattr.attr = attr;
3115 kvmattr.addr = (uintptr_t)val;
3116
3117 err = kvm_device_ioctl(fd,
3118 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3119 &kvmattr);
3120 if (err < 0) {
3121 error_setg_errno(errp, -err,
3122 "KVM_%s_DEVICE_ATTR failed: Group %d "
3123 "attr 0x%016" PRIx64,
3124 write ? "SET" : "GET", group, attr);
3125 }
3126 return err;
3127 }
3128
3129 bool kvm_has_sync_mmu(void)
3130 {
3131 return kvm_state->sync_mmu;
3132 }
3133
3134 int kvm_has_vcpu_events(void)
3135 {
3136 return kvm_state->vcpu_events;
3137 }
3138
3139 int kvm_has_robust_singlestep(void)
3140 {
3141 return kvm_state->robust_singlestep;
3142 }
3143
3144 int kvm_has_debugregs(void)
3145 {
3146 return kvm_state->debugregs;
3147 }
3148
3149 int kvm_max_nested_state_length(void)
3150 {
3151 return kvm_state->max_nested_state_len;
3152 }
3153
3154 int kvm_has_many_ioeventfds(void)
3155 {
3156 if (!kvm_enabled()) {
3157 return 0;
3158 }
3159 return kvm_state->many_ioeventfds;
3160 }
3161
3162 int kvm_has_gsi_routing(void)
3163 {
3164 #ifdef KVM_CAP_IRQ_ROUTING
3165 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3166 #else
3167 return false;
3168 #endif
3169 }
3170
3171 int kvm_has_intx_set_mask(void)
3172 {
3173 return kvm_state->intx_set_mask;
3174 }
3175
3176 bool kvm_arm_supports_user_irq(void)
3177 {
3178 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3179 }
3180
3181 #ifdef KVM_CAP_SET_GUEST_DEBUG
3182 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3183 target_ulong pc)
3184 {
3185 struct kvm_sw_breakpoint *bp;
3186
3187 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3188 if (bp->pc == pc) {
3189 return bp;
3190 }
3191 }
3192 return NULL;
3193 }
3194
3195 int kvm_sw_breakpoints_active(CPUState *cpu)
3196 {
3197 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3198 }
3199
3200 struct kvm_set_guest_debug_data {
3201 struct kvm_guest_debug dbg;
3202 int err;
3203 };
3204
3205 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3206 {
3207 struct kvm_set_guest_debug_data *dbg_data =
3208 (struct kvm_set_guest_debug_data *) data.host_ptr;
3209
3210 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3211 &dbg_data->dbg);
3212 }
3213
3214 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3215 {
3216 struct kvm_set_guest_debug_data data;
3217
3218 data.dbg.control = reinject_trap;
3219
3220 if (cpu->singlestep_enabled) {
3221 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3222
3223 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3224 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3225 }
3226 }
3227 kvm_arch_update_guest_debug(cpu, &data.dbg);
3228
3229 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3230 RUN_ON_CPU_HOST_PTR(&data));
3231 return data.err;
3232 }
3233
3234 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3235 target_ulong len, int type)
3236 {
3237 struct kvm_sw_breakpoint *bp;
3238 int err;
3239
3240 if (type == GDB_BREAKPOINT_SW) {
3241 bp = kvm_find_sw_breakpoint(cpu, addr);
3242 if (bp) {
3243 bp->use_count++;
3244 return 0;
3245 }
3246
3247 bp = g_new(struct kvm_sw_breakpoint, 1);
3248 bp->pc = addr;
3249 bp->use_count = 1;
3250 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3251 if (err) {
3252 g_free(bp);
3253 return err;
3254 }
3255
3256 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3257 } else {
3258 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3259 if (err) {
3260 return err;
3261 }
3262 }
3263
3264 CPU_FOREACH(cpu) {
3265 err = kvm_update_guest_debug(cpu, 0);
3266 if (err) {
3267 return err;
3268 }
3269 }
3270 return 0;
3271 }
3272
3273 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3274 target_ulong len, int type)
3275 {
3276 struct kvm_sw_breakpoint *bp;
3277 int err;
3278
3279 if (type == GDB_BREAKPOINT_SW) {
3280 bp = kvm_find_sw_breakpoint(cpu, addr);
3281 if (!bp) {
3282 return -ENOENT;
3283 }
3284
3285 if (bp->use_count > 1) {
3286 bp->use_count--;
3287 return 0;
3288 }
3289
3290 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3291 if (err) {
3292 return err;
3293 }
3294
3295 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3296 g_free(bp);
3297 } else {
3298 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3299 if (err) {
3300 return err;
3301 }
3302 }
3303
3304 CPU_FOREACH(cpu) {
3305 err = kvm_update_guest_debug(cpu, 0);
3306 if (err) {
3307 return err;
3308 }
3309 }
3310 return 0;
3311 }
3312
3313 void kvm_remove_all_breakpoints(CPUState *cpu)
3314 {
3315 struct kvm_sw_breakpoint *bp, *next;
3316 KVMState *s = cpu->kvm_state;
3317 CPUState *tmpcpu;
3318
3319 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3320 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3321 /* Try harder to find a CPU that currently sees the breakpoint. */
3322 CPU_FOREACH(tmpcpu) {
3323 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3324 break;
3325 }
3326 }
3327 }
3328 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3329 g_free(bp);
3330 }
3331 kvm_arch_remove_all_hw_breakpoints();
3332
3333 CPU_FOREACH(cpu) {
3334 kvm_update_guest_debug(cpu, 0);
3335 }
3336 }
3337
3338 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3339
3340 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3341 {
3342 return -EINVAL;
3343 }
3344
3345 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3346 target_ulong len, int type)
3347 {
3348 return -EINVAL;
3349 }
3350
3351 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3352 target_ulong len, int type)
3353 {
3354 return -EINVAL;
3355 }
3356
3357 void kvm_remove_all_breakpoints(CPUState *cpu)
3358 {
3359 }
3360 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3361
3362 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3363 {
3364 KVMState *s = kvm_state;
3365 struct kvm_signal_mask *sigmask;
3366 int r;
3367
3368 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3369
3370 sigmask->len = s->sigmask_len;
3371 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3372 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3373 g_free(sigmask);
3374
3375 return r;
3376 }
3377
3378 static void kvm_ipi_signal(int sig)
3379 {
3380 if (current_cpu) {
3381 assert(kvm_immediate_exit);
3382 kvm_cpu_kick(current_cpu);
3383 }
3384 }
3385
3386 void kvm_init_cpu_signals(CPUState *cpu)
3387 {
3388 int r;
3389 sigset_t set;
3390 struct sigaction sigact;
3391
3392 memset(&sigact, 0, sizeof(sigact));
3393 sigact.sa_handler = kvm_ipi_signal;
3394 sigaction(SIG_IPI, &sigact, NULL);
3395
3396 pthread_sigmask(SIG_BLOCK, NULL, &set);
3397 #if defined KVM_HAVE_MCE_INJECTION
3398 sigdelset(&set, SIGBUS);
3399 pthread_sigmask(SIG_SETMASK, &set, NULL);
3400 #endif
3401 sigdelset(&set, SIG_IPI);
3402 if (kvm_immediate_exit) {
3403 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3404 } else {
3405 r = kvm_set_signal_mask(cpu, &set);
3406 }
3407 if (r) {
3408 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3409 exit(1);
3410 }
3411 }
3412
3413 /* Called asynchronously in VCPU thread. */
3414 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3415 {
3416 #ifdef KVM_HAVE_MCE_INJECTION
3417 if (have_sigbus_pending) {
3418 return 1;
3419 }
3420 have_sigbus_pending = true;
3421 pending_sigbus_addr = addr;
3422 pending_sigbus_code = code;
3423 qatomic_set(&cpu->exit_request, 1);
3424 return 0;
3425 #else
3426 return 1;
3427 #endif
3428 }
3429
3430 /* Called synchronously (via signalfd) in main thread. */
3431 int kvm_on_sigbus(int code, void *addr)
3432 {
3433 #ifdef KVM_HAVE_MCE_INJECTION
3434 /* Action required MCE kills the process if SIGBUS is blocked. Because
3435 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3436 * we can only get action optional here.
3437 */
3438 assert(code != BUS_MCEERR_AR);
3439 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3440 return 0;
3441 #else
3442 return 1;
3443 #endif
3444 }
3445
3446 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3447 {
3448 int ret;
3449 struct kvm_create_device create_dev;
3450
3451 create_dev.type = type;
3452 create_dev.fd = -1;
3453 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3454
3455 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3456 return -ENOTSUP;
3457 }
3458
3459 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3460 if (ret) {
3461 return ret;
3462 }
3463
3464 return test ? 0 : create_dev.fd;
3465 }
3466
3467 bool kvm_device_supported(int vmfd, uint64_t type)
3468 {
3469 struct kvm_create_device create_dev = {
3470 .type = type,
3471 .fd = -1,
3472 .flags = KVM_CREATE_DEVICE_TEST,
3473 };
3474
3475 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3476 return false;
3477 }
3478
3479 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3480 }
3481
3482 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3483 {
3484 struct kvm_one_reg reg;
3485 int r;
3486
3487 reg.id = id;
3488 reg.addr = (uintptr_t) source;
3489 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3490 if (r) {
3491 trace_kvm_failed_reg_set(id, strerror(-r));
3492 }
3493 return r;
3494 }
3495
3496 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3497 {
3498 struct kvm_one_reg reg;
3499 int r;
3500
3501 reg.id = id;
3502 reg.addr = (uintptr_t) target;
3503 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3504 if (r) {
3505 trace_kvm_failed_reg_get(id, strerror(-r));
3506 }
3507 return r;
3508 }
3509
3510 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3511 hwaddr start_addr, hwaddr size)
3512 {
3513 KVMState *kvm = KVM_STATE(ms->accelerator);
3514 int i;
3515
3516 for (i = 0; i < kvm->nr_as; ++i) {
3517 if (kvm->as[i].as == as && kvm->as[i].ml) {
3518 size = MIN(kvm_max_slot_size, size);
3519 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3520 start_addr, size);
3521 }
3522 }
3523
3524 return false;
3525 }
3526
3527 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3528 const char *name, void *opaque,
3529 Error **errp)
3530 {
3531 KVMState *s = KVM_STATE(obj);
3532 int64_t value = s->kvm_shadow_mem;
3533
3534 visit_type_int(v, name, &value, errp);
3535 }
3536
3537 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3538 const char *name, void *opaque,
3539 Error **errp)
3540 {
3541 KVMState *s = KVM_STATE(obj);
3542 int64_t value;
3543
3544 if (s->fd != -1) {
3545 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3546 return;
3547 }
3548
3549 if (!visit_type_int(v, name, &value, errp)) {
3550 return;
3551 }
3552
3553 s->kvm_shadow_mem = value;
3554 }
3555
3556 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3557 const char *name, void *opaque,
3558 Error **errp)
3559 {
3560 KVMState *s = KVM_STATE(obj);
3561 OnOffSplit mode;
3562
3563 if (s->fd != -1) {
3564 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3565 return;
3566 }
3567
3568 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3569 return;
3570 }
3571 switch (mode) {
3572 case ON_OFF_SPLIT_ON:
3573 s->kernel_irqchip_allowed = true;
3574 s->kernel_irqchip_required = true;
3575 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3576 break;
3577 case ON_OFF_SPLIT_OFF:
3578 s->kernel_irqchip_allowed = false;
3579 s->kernel_irqchip_required = false;
3580 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3581 break;
3582 case ON_OFF_SPLIT_SPLIT:
3583 s->kernel_irqchip_allowed = true;
3584 s->kernel_irqchip_required = true;
3585 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3586 break;
3587 default:
3588 /* The value was checked in visit_type_OnOffSplit() above. If
3589 * we get here, then something is wrong in QEMU.
3590 */
3591 abort();
3592 }
3593 }
3594
3595 bool kvm_kernel_irqchip_allowed(void)
3596 {
3597 return kvm_state->kernel_irqchip_allowed;
3598 }
3599
3600 bool kvm_kernel_irqchip_required(void)
3601 {
3602 return kvm_state->kernel_irqchip_required;
3603 }
3604
3605 bool kvm_kernel_irqchip_split(void)
3606 {
3607 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3608 }
3609
3610 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3611 const char *name, void *opaque,
3612 Error **errp)
3613 {
3614 KVMState *s = KVM_STATE(obj);
3615 uint32_t value = s->kvm_dirty_ring_size;
3616
3617 visit_type_uint32(v, name, &value, errp);
3618 }
3619
3620 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3621 const char *name, void *opaque,
3622 Error **errp)
3623 {
3624 KVMState *s = KVM_STATE(obj);
3625 Error *error = NULL;
3626 uint32_t value;
3627
3628 if (s->fd != -1) {
3629 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3630 return;
3631 }
3632
3633 visit_type_uint32(v, name, &value, &error);
3634 if (error) {
3635 error_propagate(errp, error);
3636 return;
3637 }
3638 if (value & (value - 1)) {
3639 error_setg(errp, "dirty-ring-size must be a power of two.");
3640 return;
3641 }
3642
3643 s->kvm_dirty_ring_size = value;
3644 }
3645
3646 static void kvm_accel_instance_init(Object *obj)
3647 {
3648 KVMState *s = KVM_STATE(obj);
3649
3650 s->fd = -1;
3651 s->vmfd = -1;
3652 s->kvm_shadow_mem = -1;
3653 s->kernel_irqchip_allowed = true;
3654 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3655 /* KVM dirty ring is by default off */
3656 s->kvm_dirty_ring_size = 0;
3657 }
3658
3659 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3660 {
3661 AccelClass *ac = ACCEL_CLASS(oc);
3662 ac->name = "KVM";
3663 ac->init_machine = kvm_init;
3664 ac->has_memory = kvm_accel_has_memory;
3665 ac->allowed = &kvm_allowed;
3666
3667 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3668 NULL, kvm_set_kernel_irqchip,
3669 NULL, NULL);
3670 object_class_property_set_description(oc, "kernel-irqchip",
3671 "Configure KVM in-kernel irqchip");
3672
3673 object_class_property_add(oc, "kvm-shadow-mem", "int",
3674 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3675 NULL, NULL);
3676 object_class_property_set_description(oc, "kvm-shadow-mem",
3677 "KVM shadow MMU size");
3678
3679 object_class_property_add(oc, "dirty-ring-size", "uint32",
3680 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3681 NULL, NULL);
3682 object_class_property_set_description(oc, "dirty-ring-size",
3683 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3684 }
3685
3686 static const TypeInfo kvm_accel_type = {
3687 .name = TYPE_KVM_ACCEL,
3688 .parent = TYPE_ACCEL,
3689 .instance_init = kvm_accel_instance_init,
3690 .class_init = kvm_accel_class_init,
3691 .instance_size = sizeof(KVMState),
3692 };
3693
3694 static void kvm_type_init(void)
3695 {
3696 type_register_static(&kvm_accel_type);
3697 }
3698
3699 type_init(kvm_type_init);