]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
target/ppc: Fix icount access for some hypervisor instructions
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61 * need to use the real host PAGE_SIZE, as that's what KVM will use.
62 */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71
72 //#define DEBUG_KVM
73
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79 do { } while (0)
80 #endif
81
82 struct KVMParkedVcpu {
83 unsigned long vcpu_id;
84 int kvm_fd;
85 QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_eventfds_allowed;
94 bool kvm_irqfds_allowed;
95 bool kvm_resamplefds_allowed;
96 bool kvm_msi_via_irqfd_allowed;
97 bool kvm_gsi_routing_allowed;
98 bool kvm_gsi_direct_mapping;
99 bool kvm_allowed;
100 bool kvm_readonly_mem_allowed;
101 bool kvm_vm_attributes_allowed;
102 bool kvm_direct_msi_allowed;
103 bool kvm_ioeventfd_any_length_allowed;
104 bool kvm_msi_use_devid;
105 bool kvm_has_guest_debug;
106 static int kvm_sstep_flags;
107 static bool kvm_immediate_exit;
108 static hwaddr kvm_max_slot_size = ~0;
109
110 static const KVMCapabilityInfo kvm_required_capabilites[] = {
111 KVM_CAP_INFO(USER_MEMORY),
112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114 KVM_CAP_LAST_INFO
115 };
116
117 static NotifierList kvm_irqchip_change_notifiers =
118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
119
120 struct KVMResampleFd {
121 int gsi;
122 EventNotifier *resample_event;
123 QLIST_ENTRY(KVMResampleFd) node;
124 };
125 typedef struct KVMResampleFd KVMResampleFd;
126
127 /*
128 * Only used with split irqchip where we need to do the resample fd
129 * kick for the kernel from userspace.
130 */
131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
133
134 static QemuMutex kml_slots_lock;
135
136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
138
139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
140
141 static inline void kvm_resample_fd_remove(int gsi)
142 {
143 KVMResampleFd *rfd;
144
145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
146 if (rfd->gsi == gsi) {
147 QLIST_REMOVE(rfd, node);
148 g_free(rfd);
149 break;
150 }
151 }
152 }
153
154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
155 {
156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
157
158 rfd->gsi = gsi;
159 rfd->resample_event = event;
160
161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
162 }
163
164 void kvm_resample_fd_notify(int gsi)
165 {
166 KVMResampleFd *rfd;
167
168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
169 if (rfd->gsi == gsi) {
170 event_notifier_set(rfd->resample_event);
171 trace_kvm_resample_fd_notify(gsi);
172 return;
173 }
174 }
175 }
176
177 int kvm_get_max_memslots(void)
178 {
179 KVMState *s = KVM_STATE(current_accel());
180
181 return s->nr_slots;
182 }
183
184 /* Called with KVMMemoryListener.slots_lock held */
185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
186 {
187 KVMState *s = kvm_state;
188 int i;
189
190 for (i = 0; i < s->nr_slots; i++) {
191 if (kml->slots[i].memory_size == 0) {
192 return &kml->slots[i];
193 }
194 }
195
196 return NULL;
197 }
198
199 bool kvm_has_free_slot(MachineState *ms)
200 {
201 KVMState *s = KVM_STATE(ms->accelerator);
202 bool result;
203 KVMMemoryListener *kml = &s->memory_listener;
204
205 kvm_slots_lock();
206 result = !!kvm_get_free_slot(kml);
207 kvm_slots_unlock();
208
209 return result;
210 }
211
212 /* Called with KVMMemoryListener.slots_lock held */
213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
214 {
215 KVMSlot *slot = kvm_get_free_slot(kml);
216
217 if (slot) {
218 return slot;
219 }
220
221 fprintf(stderr, "%s: no free slot available\n", __func__);
222 abort();
223 }
224
225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
226 hwaddr start_addr,
227 hwaddr size)
228 {
229 KVMState *s = kvm_state;
230 int i;
231
232 for (i = 0; i < s->nr_slots; i++) {
233 KVMSlot *mem = &kml->slots[i];
234
235 if (start_addr == mem->start_addr && size == mem->memory_size) {
236 return mem;
237 }
238 }
239
240 return NULL;
241 }
242
243 /*
244 * Calculate and align the start address and the size of the section.
245 * Return the size. If the size is 0, the aligned section is empty.
246 */
247 static hwaddr kvm_align_section(MemoryRegionSection *section,
248 hwaddr *start)
249 {
250 hwaddr size = int128_get64(section->size);
251 hwaddr delta, aligned;
252
253 /* kvm works in page size chunks, but the function may be called
254 with sub-page size and unaligned start address. Pad the start
255 address to next and truncate size to previous page boundary. */
256 aligned = ROUND_UP(section->offset_within_address_space,
257 qemu_real_host_page_size());
258 delta = aligned - section->offset_within_address_space;
259 *start = aligned;
260 if (delta > size) {
261 return 0;
262 }
263
264 return (size - delta) & qemu_real_host_page_mask();
265 }
266
267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
268 hwaddr *phys_addr)
269 {
270 KVMMemoryListener *kml = &s->memory_listener;
271 int i, ret = 0;
272
273 kvm_slots_lock();
274 for (i = 0; i < s->nr_slots; i++) {
275 KVMSlot *mem = &kml->slots[i];
276
277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
278 *phys_addr = mem->start_addr + (ram - mem->ram);
279 ret = 1;
280 break;
281 }
282 }
283 kvm_slots_unlock();
284
285 return ret;
286 }
287
288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
289 {
290 KVMState *s = kvm_state;
291 struct kvm_userspace_memory_region mem;
292 int ret;
293
294 mem.slot = slot->slot | (kml->as_id << 16);
295 mem.guest_phys_addr = slot->start_addr;
296 mem.userspace_addr = (unsigned long)slot->ram;
297 mem.flags = slot->flags;
298
299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
300 /* Set the slot size to 0 before setting the slot to the desired
301 * value. This is needed based on KVM commit 75d61fbc. */
302 mem.memory_size = 0;
303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304 if (ret < 0) {
305 goto err;
306 }
307 }
308 mem.memory_size = slot->memory_size;
309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
310 slot->old_flags = mem.flags;
311 err:
312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
313 mem.memory_size, mem.userspace_addr, ret);
314 if (ret < 0) {
315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
317 __func__, mem.slot, slot->start_addr,
318 (uint64_t)mem.memory_size, strerror(errno));
319 }
320 return ret;
321 }
322
323 static int do_kvm_destroy_vcpu(CPUState *cpu)
324 {
325 KVMState *s = kvm_state;
326 long mmap_size;
327 struct KVMParkedVcpu *vcpu = NULL;
328 int ret = 0;
329
330 DPRINTF("kvm_destroy_vcpu\n");
331
332 ret = kvm_arch_destroy_vcpu(cpu);
333 if (ret < 0) {
334 goto err;
335 }
336
337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
338 if (mmap_size < 0) {
339 ret = mmap_size;
340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
341 goto err;
342 }
343
344 ret = munmap(cpu->kvm_run, mmap_size);
345 if (ret < 0) {
346 goto err;
347 }
348
349 if (cpu->kvm_dirty_gfns) {
350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
351 if (ret < 0) {
352 goto err;
353 }
354 }
355
356 vcpu = g_malloc0(sizeof(*vcpu));
357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
358 vcpu->kvm_fd = cpu->kvm_fd;
359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
360 err:
361 return ret;
362 }
363
364 void kvm_destroy_vcpu(CPUState *cpu)
365 {
366 if (do_kvm_destroy_vcpu(cpu) < 0) {
367 error_report("kvm_destroy_vcpu failed");
368 exit(EXIT_FAILURE);
369 }
370 }
371
372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
373 {
374 struct KVMParkedVcpu *cpu;
375
376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
377 if (cpu->vcpu_id == vcpu_id) {
378 int kvm_fd;
379
380 QLIST_REMOVE(cpu, node);
381 kvm_fd = cpu->kvm_fd;
382 g_free(cpu);
383 return kvm_fd;
384 }
385 }
386
387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
388 }
389
390 int kvm_init_vcpu(CPUState *cpu, Error **errp)
391 {
392 KVMState *s = kvm_state;
393 long mmap_size;
394 int ret;
395
396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
397
398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
399 if (ret < 0) {
400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
401 kvm_arch_vcpu_id(cpu));
402 goto err;
403 }
404
405 cpu->kvm_fd = ret;
406 cpu->kvm_state = s;
407 cpu->vcpu_dirty = true;
408 cpu->dirty_pages = 0;
409 cpu->throttle_us_per_full = 0;
410
411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
412 if (mmap_size < 0) {
413 ret = mmap_size;
414 error_setg_errno(errp, -mmap_size,
415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
416 goto err;
417 }
418
419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
420 cpu->kvm_fd, 0);
421 if (cpu->kvm_run == MAP_FAILED) {
422 ret = -errno;
423 error_setg_errno(errp, ret,
424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
425 kvm_arch_vcpu_id(cpu));
426 goto err;
427 }
428
429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
430 s->coalesced_mmio_ring =
431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
432 }
433
434 if (s->kvm_dirty_ring_size) {
435 /* Use MAP_SHARED to share pages with the kernel */
436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
437 PROT_READ | PROT_WRITE, MAP_SHARED,
438 cpu->kvm_fd,
439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
440 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
441 ret = -errno;
442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
443 goto err;
444 }
445 }
446
447 ret = kvm_arch_init_vcpu(cpu);
448 if (ret < 0) {
449 error_setg_errno(errp, -ret,
450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
451 kvm_arch_vcpu_id(cpu));
452 }
453 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
454
455 err:
456 return ret;
457 }
458
459 /*
460 * dirty pages logging control
461 */
462
463 static int kvm_mem_flags(MemoryRegion *mr)
464 {
465 bool readonly = mr->readonly || memory_region_is_romd(mr);
466 int flags = 0;
467
468 if (memory_region_get_dirty_log_mask(mr) != 0) {
469 flags |= KVM_MEM_LOG_DIRTY_PAGES;
470 }
471 if (readonly && kvm_readonly_mem_allowed) {
472 flags |= KVM_MEM_READONLY;
473 }
474 return flags;
475 }
476
477 /* Called with KVMMemoryListener.slots_lock held */
478 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
479 MemoryRegion *mr)
480 {
481 mem->flags = kvm_mem_flags(mr);
482
483 /* If nothing changed effectively, no need to issue ioctl */
484 if (mem->flags == mem->old_flags) {
485 return 0;
486 }
487
488 kvm_slot_init_dirty_bitmap(mem);
489 return kvm_set_user_memory_region(kml, mem, false);
490 }
491
492 static int kvm_section_update_flags(KVMMemoryListener *kml,
493 MemoryRegionSection *section)
494 {
495 hwaddr start_addr, size, slot_size;
496 KVMSlot *mem;
497 int ret = 0;
498
499 size = kvm_align_section(section, &start_addr);
500 if (!size) {
501 return 0;
502 }
503
504 kvm_slots_lock();
505
506 while (size && !ret) {
507 slot_size = MIN(kvm_max_slot_size, size);
508 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
509 if (!mem) {
510 /* We don't have a slot if we want to trap every access. */
511 goto out;
512 }
513
514 ret = kvm_slot_update_flags(kml, mem, section->mr);
515 start_addr += slot_size;
516 size -= slot_size;
517 }
518
519 out:
520 kvm_slots_unlock();
521 return ret;
522 }
523
524 static void kvm_log_start(MemoryListener *listener,
525 MemoryRegionSection *section,
526 int old, int new)
527 {
528 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
529 int r;
530
531 if (old != 0) {
532 return;
533 }
534
535 r = kvm_section_update_flags(kml, section);
536 if (r < 0) {
537 abort();
538 }
539 }
540
541 static void kvm_log_stop(MemoryListener *listener,
542 MemoryRegionSection *section,
543 int old, int new)
544 {
545 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
546 int r;
547
548 if (new != 0) {
549 return;
550 }
551
552 r = kvm_section_update_flags(kml, section);
553 if (r < 0) {
554 abort();
555 }
556 }
557
558 /* get kvm's dirty pages bitmap and update qemu's */
559 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
560 {
561 ram_addr_t start = slot->ram_start_offset;
562 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
563
564 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
565 }
566
567 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
568 {
569 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
570 }
571
572 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
573
574 /* Allocate the dirty bitmap for a slot */
575 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
576 {
577 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
578 return;
579 }
580
581 /*
582 * XXX bad kernel interface alert
583 * For dirty bitmap, kernel allocates array of size aligned to
584 * bits-per-long. But for case when the kernel is 64bits and
585 * the userspace is 32bits, userspace can't align to the same
586 * bits-per-long, since sizeof(long) is different between kernel
587 * and user space. This way, userspace will provide buffer which
588 * may be 4 bytes less than the kernel will use, resulting in
589 * userspace memory corruption (which is not detectable by valgrind
590 * too, in most cases).
591 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
592 * a hope that sizeof(long) won't become >8 any time soon.
593 *
594 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
595 * And mem->memory_size is aligned to it (otherwise this mem can't
596 * be registered to KVM).
597 */
598 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
599 /*HOST_LONG_BITS*/ 64) / 8;
600 mem->dirty_bmap = g_malloc0(bitmap_size);
601 mem->dirty_bmap_size = bitmap_size;
602 }
603
604 /*
605 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
606 * succeeded, false otherwise
607 */
608 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
609 {
610 struct kvm_dirty_log d = {};
611 int ret;
612
613 d.dirty_bitmap = slot->dirty_bmap;
614 d.slot = slot->slot | (slot->as_id << 16);
615 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
616
617 if (ret == -ENOENT) {
618 /* kernel does not have dirty bitmap in this slot */
619 ret = 0;
620 }
621 if (ret) {
622 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
623 __func__, ret);
624 }
625 return ret == 0;
626 }
627
628 /* Should be with all slots_lock held for the address spaces. */
629 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
630 uint32_t slot_id, uint64_t offset)
631 {
632 KVMMemoryListener *kml;
633 KVMSlot *mem;
634
635 if (as_id >= s->nr_as) {
636 return;
637 }
638
639 kml = s->as[as_id].ml;
640 mem = &kml->slots[slot_id];
641
642 if (!mem->memory_size || offset >=
643 (mem->memory_size / qemu_real_host_page_size())) {
644 return;
645 }
646
647 set_bit(offset, mem->dirty_bmap);
648 }
649
650 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
651 {
652 /*
653 * Read the flags before the value. Pairs with barrier in
654 * KVM's kvm_dirty_ring_push() function.
655 */
656 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
657 }
658
659 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
660 {
661 /*
662 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
663 * sees the full content of the ring:
664 *
665 * CPU0 CPU1 CPU2
666 * ------------------------------------------------------------------------------
667 * fill gfn0
668 * store-rel flags for gfn0
669 * load-acq flags for gfn0
670 * store-rel RESET for gfn0
671 * ioctl(RESET_RINGS)
672 * load-acq flags for gfn0
673 * check if flags have RESET
674 *
675 * The synchronization goes from CPU2 to CPU0 to CPU1.
676 */
677 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
678 }
679
680 /*
681 * Should be with all slots_lock held for the address spaces. It returns the
682 * dirty page we've collected on this dirty ring.
683 */
684 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
685 {
686 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
687 uint32_t ring_size = s->kvm_dirty_ring_size;
688 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
689
690 /*
691 * It's possible that we race with vcpu creation code where the vcpu is
692 * put onto the vcpus list but not yet initialized the dirty ring
693 * structures. If so, skip it.
694 */
695 if (!cpu->created) {
696 return 0;
697 }
698
699 assert(dirty_gfns && ring_size);
700 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
701
702 while (true) {
703 cur = &dirty_gfns[fetch % ring_size];
704 if (!dirty_gfn_is_dirtied(cur)) {
705 break;
706 }
707 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
708 cur->offset);
709 dirty_gfn_set_collected(cur);
710 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
711 fetch++;
712 count++;
713 }
714 cpu->kvm_fetch_index = fetch;
715 cpu->dirty_pages += count;
716
717 return count;
718 }
719
720 /* Must be with slots_lock held */
721 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
722 {
723 int ret;
724 uint64_t total = 0;
725 int64_t stamp;
726
727 stamp = get_clock();
728
729 if (cpu) {
730 total = kvm_dirty_ring_reap_one(s, cpu);
731 } else {
732 CPU_FOREACH(cpu) {
733 total += kvm_dirty_ring_reap_one(s, cpu);
734 }
735 }
736
737 if (total) {
738 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
739 assert(ret == total);
740 }
741
742 stamp = get_clock() - stamp;
743
744 if (total) {
745 trace_kvm_dirty_ring_reap(total, stamp / 1000);
746 }
747
748 return total;
749 }
750
751 /*
752 * Currently for simplicity, we must hold BQL before calling this. We can
753 * consider to drop the BQL if we're clear with all the race conditions.
754 */
755 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
756 {
757 uint64_t total;
758
759 /*
760 * We need to lock all kvm slots for all address spaces here,
761 * because:
762 *
763 * (1) We need to mark dirty for dirty bitmaps in multiple slots
764 * and for tons of pages, so it's better to take the lock here
765 * once rather than once per page. And more importantly,
766 *
767 * (2) We must _NOT_ publish dirty bits to the other threads
768 * (e.g., the migration thread) via the kvm memory slot dirty
769 * bitmaps before correctly re-protect those dirtied pages.
770 * Otherwise we can have potential risk of data corruption if
771 * the page data is read in the other thread before we do
772 * reset below.
773 */
774 kvm_slots_lock();
775 total = kvm_dirty_ring_reap_locked(s, cpu);
776 kvm_slots_unlock();
777
778 return total;
779 }
780
781 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
782 {
783 /* No need to do anything */
784 }
785
786 /*
787 * Kick all vcpus out in a synchronized way. When returned, we
788 * guarantee that every vcpu has been kicked and at least returned to
789 * userspace once.
790 */
791 static void kvm_cpu_synchronize_kick_all(void)
792 {
793 CPUState *cpu;
794
795 CPU_FOREACH(cpu) {
796 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
797 }
798 }
799
800 /*
801 * Flush all the existing dirty pages to the KVM slot buffers. When
802 * this call returns, we guarantee that all the touched dirty pages
803 * before calling this function have been put into the per-kvmslot
804 * dirty bitmap.
805 *
806 * This function must be called with BQL held.
807 */
808 static void kvm_dirty_ring_flush(void)
809 {
810 trace_kvm_dirty_ring_flush(0);
811 /*
812 * The function needs to be serialized. Since this function
813 * should always be with BQL held, serialization is guaranteed.
814 * However, let's be sure of it.
815 */
816 assert(qemu_mutex_iothread_locked());
817 /*
818 * First make sure to flush the hardware buffers by kicking all
819 * vcpus out in a synchronous way.
820 */
821 kvm_cpu_synchronize_kick_all();
822 kvm_dirty_ring_reap(kvm_state, NULL);
823 trace_kvm_dirty_ring_flush(1);
824 }
825
826 /**
827 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
828 *
829 * This function will first try to fetch dirty bitmap from the kernel,
830 * and then updates qemu's dirty bitmap.
831 *
832 * NOTE: caller must be with kml->slots_lock held.
833 *
834 * @kml: the KVM memory listener object
835 * @section: the memory section to sync the dirty bitmap with
836 */
837 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
838 MemoryRegionSection *section)
839 {
840 KVMState *s = kvm_state;
841 KVMSlot *mem;
842 hwaddr start_addr, size;
843 hwaddr slot_size;
844
845 size = kvm_align_section(section, &start_addr);
846 while (size) {
847 slot_size = MIN(kvm_max_slot_size, size);
848 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
849 if (!mem) {
850 /* We don't have a slot if we want to trap every access. */
851 return;
852 }
853 if (kvm_slot_get_dirty_log(s, mem)) {
854 kvm_slot_sync_dirty_pages(mem);
855 }
856 start_addr += slot_size;
857 size -= slot_size;
858 }
859 }
860
861 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
862 #define KVM_CLEAR_LOG_SHIFT 6
863 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
864 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
865
866 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
867 uint64_t size)
868 {
869 KVMState *s = kvm_state;
870 uint64_t end, bmap_start, start_delta, bmap_npages;
871 struct kvm_clear_dirty_log d;
872 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
873 int ret;
874
875 /*
876 * We need to extend either the start or the size or both to
877 * satisfy the KVM interface requirement. Firstly, do the start
878 * page alignment on 64 host pages
879 */
880 bmap_start = start & KVM_CLEAR_LOG_MASK;
881 start_delta = start - bmap_start;
882 bmap_start /= psize;
883
884 /*
885 * The kernel interface has restriction on the size too, that either:
886 *
887 * (1) the size is 64 host pages aligned (just like the start), or
888 * (2) the size fills up until the end of the KVM memslot.
889 */
890 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
891 << KVM_CLEAR_LOG_SHIFT;
892 end = mem->memory_size / psize;
893 if (bmap_npages > end - bmap_start) {
894 bmap_npages = end - bmap_start;
895 }
896 start_delta /= psize;
897
898 /*
899 * Prepare the bitmap to clear dirty bits. Here we must guarantee
900 * that we won't clear any unknown dirty bits otherwise we might
901 * accidentally clear some set bits which are not yet synced from
902 * the kernel into QEMU's bitmap, then we'll lose track of the
903 * guest modifications upon those pages (which can directly lead
904 * to guest data loss or panic after migration).
905 *
906 * Layout of the KVMSlot.dirty_bmap:
907 *
908 * |<-------- bmap_npages -----------..>|
909 * [1]
910 * start_delta size
911 * |----------------|-------------|------------------|------------|
912 * ^ ^ ^ ^
913 * | | | |
914 * start bmap_start (start) end
915 * of memslot of memslot
916 *
917 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
918 */
919
920 assert(bmap_start % BITS_PER_LONG == 0);
921 /* We should never do log_clear before log_sync */
922 assert(mem->dirty_bmap);
923 if (start_delta || bmap_npages - size / psize) {
924 /* Slow path - we need to manipulate a temp bitmap */
925 bmap_clear = bitmap_new(bmap_npages);
926 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
927 bmap_start, start_delta + size / psize);
928 /*
929 * We need to fill the holes at start because that was not
930 * specified by the caller and we extended the bitmap only for
931 * 64 pages alignment
932 */
933 bitmap_clear(bmap_clear, 0, start_delta);
934 d.dirty_bitmap = bmap_clear;
935 } else {
936 /*
937 * Fast path - both start and size align well with BITS_PER_LONG
938 * (or the end of memory slot)
939 */
940 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
941 }
942
943 d.first_page = bmap_start;
944 /* It should never overflow. If it happens, say something */
945 assert(bmap_npages <= UINT32_MAX);
946 d.num_pages = bmap_npages;
947 d.slot = mem->slot | (as_id << 16);
948
949 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
950 if (ret < 0 && ret != -ENOENT) {
951 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
952 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
953 __func__, d.slot, (uint64_t)d.first_page,
954 (uint32_t)d.num_pages, ret);
955 } else {
956 ret = 0;
957 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
958 }
959
960 /*
961 * After we have updated the remote dirty bitmap, we update the
962 * cached bitmap as well for the memslot, then if another user
963 * clears the same region we know we shouldn't clear it again on
964 * the remote otherwise it's data loss as well.
965 */
966 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
967 size / psize);
968 /* This handles the NULL case well */
969 g_free(bmap_clear);
970 return ret;
971 }
972
973
974 /**
975 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
976 *
977 * NOTE: this will be a no-op if we haven't enabled manual dirty log
978 * protection in the host kernel because in that case this operation
979 * will be done within log_sync().
980 *
981 * @kml: the kvm memory listener
982 * @section: the memory range to clear dirty bitmap
983 */
984 static int kvm_physical_log_clear(KVMMemoryListener *kml,
985 MemoryRegionSection *section)
986 {
987 KVMState *s = kvm_state;
988 uint64_t start, size, offset, count;
989 KVMSlot *mem;
990 int ret = 0, i;
991
992 if (!s->manual_dirty_log_protect) {
993 /* No need to do explicit clear */
994 return ret;
995 }
996
997 start = section->offset_within_address_space;
998 size = int128_get64(section->size);
999
1000 if (!size) {
1001 /* Nothing more we can do... */
1002 return ret;
1003 }
1004
1005 kvm_slots_lock();
1006
1007 for (i = 0; i < s->nr_slots; i++) {
1008 mem = &kml->slots[i];
1009 /* Discard slots that are empty or do not overlap the section */
1010 if (!mem->memory_size ||
1011 mem->start_addr > start + size - 1 ||
1012 start > mem->start_addr + mem->memory_size - 1) {
1013 continue;
1014 }
1015
1016 if (start >= mem->start_addr) {
1017 /* The slot starts before section or is aligned to it. */
1018 offset = start - mem->start_addr;
1019 count = MIN(mem->memory_size - offset, size);
1020 } else {
1021 /* The slot starts after section. */
1022 offset = 0;
1023 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1024 }
1025 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1026 if (ret < 0) {
1027 break;
1028 }
1029 }
1030
1031 kvm_slots_unlock();
1032
1033 return ret;
1034 }
1035
1036 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1037 MemoryRegionSection *secion,
1038 hwaddr start, hwaddr size)
1039 {
1040 KVMState *s = kvm_state;
1041
1042 if (s->coalesced_mmio) {
1043 struct kvm_coalesced_mmio_zone zone;
1044
1045 zone.addr = start;
1046 zone.size = size;
1047 zone.pad = 0;
1048
1049 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1050 }
1051 }
1052
1053 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1054 MemoryRegionSection *secion,
1055 hwaddr start, hwaddr size)
1056 {
1057 KVMState *s = kvm_state;
1058
1059 if (s->coalesced_mmio) {
1060 struct kvm_coalesced_mmio_zone zone;
1061
1062 zone.addr = start;
1063 zone.size = size;
1064 zone.pad = 0;
1065
1066 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1067 }
1068 }
1069
1070 static void kvm_coalesce_pio_add(MemoryListener *listener,
1071 MemoryRegionSection *section,
1072 hwaddr start, hwaddr size)
1073 {
1074 KVMState *s = kvm_state;
1075
1076 if (s->coalesced_pio) {
1077 struct kvm_coalesced_mmio_zone zone;
1078
1079 zone.addr = start;
1080 zone.size = size;
1081 zone.pio = 1;
1082
1083 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1084 }
1085 }
1086
1087 static void kvm_coalesce_pio_del(MemoryListener *listener,
1088 MemoryRegionSection *section,
1089 hwaddr start, hwaddr size)
1090 {
1091 KVMState *s = kvm_state;
1092
1093 if (s->coalesced_pio) {
1094 struct kvm_coalesced_mmio_zone zone;
1095
1096 zone.addr = start;
1097 zone.size = size;
1098 zone.pio = 1;
1099
1100 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1101 }
1102 }
1103
1104 static MemoryListener kvm_coalesced_pio_listener = {
1105 .name = "kvm-coalesced-pio",
1106 .coalesced_io_add = kvm_coalesce_pio_add,
1107 .coalesced_io_del = kvm_coalesce_pio_del,
1108 .priority = MEMORY_LISTENER_PRIORITY_MIN,
1109 };
1110
1111 int kvm_check_extension(KVMState *s, unsigned int extension)
1112 {
1113 int ret;
1114
1115 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1116 if (ret < 0) {
1117 ret = 0;
1118 }
1119
1120 return ret;
1121 }
1122
1123 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1124 {
1125 int ret;
1126
1127 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1128 if (ret < 0) {
1129 /* VM wide version not implemented, use global one instead */
1130 ret = kvm_check_extension(s, extension);
1131 }
1132
1133 return ret;
1134 }
1135
1136 typedef struct HWPoisonPage {
1137 ram_addr_t ram_addr;
1138 QLIST_ENTRY(HWPoisonPage) list;
1139 } HWPoisonPage;
1140
1141 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1142 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1143
1144 static void kvm_unpoison_all(void *param)
1145 {
1146 HWPoisonPage *page, *next_page;
1147
1148 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1149 QLIST_REMOVE(page, list);
1150 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1151 g_free(page);
1152 }
1153 }
1154
1155 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1156 {
1157 HWPoisonPage *page;
1158
1159 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1160 if (page->ram_addr == ram_addr) {
1161 return;
1162 }
1163 }
1164 page = g_new(HWPoisonPage, 1);
1165 page->ram_addr = ram_addr;
1166 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1167 }
1168
1169 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1170 {
1171 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1172 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1173 * endianness, but the memory core hands them in target endianness.
1174 * For example, PPC is always treated as big-endian even if running
1175 * on KVM and on PPC64LE. Correct here.
1176 */
1177 switch (size) {
1178 case 2:
1179 val = bswap16(val);
1180 break;
1181 case 4:
1182 val = bswap32(val);
1183 break;
1184 }
1185 #endif
1186 return val;
1187 }
1188
1189 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1190 bool assign, uint32_t size, bool datamatch)
1191 {
1192 int ret;
1193 struct kvm_ioeventfd iofd = {
1194 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1195 .addr = addr,
1196 .len = size,
1197 .flags = 0,
1198 .fd = fd,
1199 };
1200
1201 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1202 datamatch);
1203 if (!kvm_enabled()) {
1204 return -ENOSYS;
1205 }
1206
1207 if (datamatch) {
1208 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1209 }
1210 if (!assign) {
1211 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1212 }
1213
1214 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1215
1216 if (ret < 0) {
1217 return -errno;
1218 }
1219
1220 return 0;
1221 }
1222
1223 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1224 bool assign, uint32_t size, bool datamatch)
1225 {
1226 struct kvm_ioeventfd kick = {
1227 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1228 .addr = addr,
1229 .flags = KVM_IOEVENTFD_FLAG_PIO,
1230 .len = size,
1231 .fd = fd,
1232 };
1233 int r;
1234 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1235 if (!kvm_enabled()) {
1236 return -ENOSYS;
1237 }
1238 if (datamatch) {
1239 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1240 }
1241 if (!assign) {
1242 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1243 }
1244 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1245 if (r < 0) {
1246 return r;
1247 }
1248 return 0;
1249 }
1250
1251
1252 static int kvm_check_many_ioeventfds(void)
1253 {
1254 /* Userspace can use ioeventfd for io notification. This requires a host
1255 * that supports eventfd(2) and an I/O thread; since eventfd does not
1256 * support SIGIO it cannot interrupt the vcpu.
1257 *
1258 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1259 * can avoid creating too many ioeventfds.
1260 */
1261 #if defined(CONFIG_EVENTFD)
1262 int ioeventfds[7];
1263 int i, ret = 0;
1264 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1265 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1266 if (ioeventfds[i] < 0) {
1267 break;
1268 }
1269 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1270 if (ret < 0) {
1271 close(ioeventfds[i]);
1272 break;
1273 }
1274 }
1275
1276 /* Decide whether many devices are supported or not */
1277 ret = i == ARRAY_SIZE(ioeventfds);
1278
1279 while (i-- > 0) {
1280 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1281 close(ioeventfds[i]);
1282 }
1283 return ret;
1284 #else
1285 return 0;
1286 #endif
1287 }
1288
1289 static const KVMCapabilityInfo *
1290 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1291 {
1292 while (list->name) {
1293 if (!kvm_check_extension(s, list->value)) {
1294 return list;
1295 }
1296 list++;
1297 }
1298 return NULL;
1299 }
1300
1301 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1302 {
1303 g_assert(
1304 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1305 );
1306 kvm_max_slot_size = max_slot_size;
1307 }
1308
1309 /* Called with KVMMemoryListener.slots_lock held */
1310 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1311 MemoryRegionSection *section, bool add)
1312 {
1313 KVMSlot *mem;
1314 int err;
1315 MemoryRegion *mr = section->mr;
1316 bool writable = !mr->readonly && !mr->rom_device;
1317 hwaddr start_addr, size, slot_size, mr_offset;
1318 ram_addr_t ram_start_offset;
1319 void *ram;
1320
1321 if (!memory_region_is_ram(mr)) {
1322 if (writable || !kvm_readonly_mem_allowed) {
1323 return;
1324 } else if (!mr->romd_mode) {
1325 /* If the memory device is not in romd_mode, then we actually want
1326 * to remove the kvm memory slot so all accesses will trap. */
1327 add = false;
1328 }
1329 }
1330
1331 size = kvm_align_section(section, &start_addr);
1332 if (!size) {
1333 return;
1334 }
1335
1336 /* The offset of the kvmslot within the memory region */
1337 mr_offset = section->offset_within_region + start_addr -
1338 section->offset_within_address_space;
1339
1340 /* use aligned delta to align the ram address and offset */
1341 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1342 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1343
1344 if (!add) {
1345 do {
1346 slot_size = MIN(kvm_max_slot_size, size);
1347 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1348 if (!mem) {
1349 return;
1350 }
1351 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1352 /*
1353 * NOTE: We should be aware of the fact that here we're only
1354 * doing a best effort to sync dirty bits. No matter whether
1355 * we're using dirty log or dirty ring, we ignored two facts:
1356 *
1357 * (1) dirty bits can reside in hardware buffers (PML)
1358 *
1359 * (2) after we collected dirty bits here, pages can be dirtied
1360 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1361 * remove the slot.
1362 *
1363 * Not easy. Let's cross the fingers until it's fixed.
1364 */
1365 if (kvm_state->kvm_dirty_ring_size) {
1366 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1367 if (kvm_state->kvm_dirty_ring_with_bitmap) {
1368 kvm_slot_sync_dirty_pages(mem);
1369 kvm_slot_get_dirty_log(kvm_state, mem);
1370 }
1371 } else {
1372 kvm_slot_get_dirty_log(kvm_state, mem);
1373 }
1374 kvm_slot_sync_dirty_pages(mem);
1375 }
1376
1377 /* unregister the slot */
1378 g_free(mem->dirty_bmap);
1379 mem->dirty_bmap = NULL;
1380 mem->memory_size = 0;
1381 mem->flags = 0;
1382 err = kvm_set_user_memory_region(kml, mem, false);
1383 if (err) {
1384 fprintf(stderr, "%s: error unregistering slot: %s\n",
1385 __func__, strerror(-err));
1386 abort();
1387 }
1388 start_addr += slot_size;
1389 size -= slot_size;
1390 } while (size);
1391 return;
1392 }
1393
1394 /* register the new slot */
1395 do {
1396 slot_size = MIN(kvm_max_slot_size, size);
1397 mem = kvm_alloc_slot(kml);
1398 mem->as_id = kml->as_id;
1399 mem->memory_size = slot_size;
1400 mem->start_addr = start_addr;
1401 mem->ram_start_offset = ram_start_offset;
1402 mem->ram = ram;
1403 mem->flags = kvm_mem_flags(mr);
1404 kvm_slot_init_dirty_bitmap(mem);
1405 err = kvm_set_user_memory_region(kml, mem, true);
1406 if (err) {
1407 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1408 strerror(-err));
1409 abort();
1410 }
1411 start_addr += slot_size;
1412 ram_start_offset += slot_size;
1413 ram += slot_size;
1414 size -= slot_size;
1415 } while (size);
1416 }
1417
1418 static void *kvm_dirty_ring_reaper_thread(void *data)
1419 {
1420 KVMState *s = data;
1421 struct KVMDirtyRingReaper *r = &s->reaper;
1422
1423 rcu_register_thread();
1424
1425 trace_kvm_dirty_ring_reaper("init");
1426
1427 while (true) {
1428 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1429 trace_kvm_dirty_ring_reaper("wait");
1430 /*
1431 * TODO: provide a smarter timeout rather than a constant?
1432 */
1433 sleep(1);
1434
1435 /* keep sleeping so that dirtylimit not be interfered by reaper */
1436 if (dirtylimit_in_service()) {
1437 continue;
1438 }
1439
1440 trace_kvm_dirty_ring_reaper("wakeup");
1441 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1442
1443 qemu_mutex_lock_iothread();
1444 kvm_dirty_ring_reap(s, NULL);
1445 qemu_mutex_unlock_iothread();
1446
1447 r->reaper_iteration++;
1448 }
1449
1450 trace_kvm_dirty_ring_reaper("exit");
1451
1452 rcu_unregister_thread();
1453
1454 return NULL;
1455 }
1456
1457 static int kvm_dirty_ring_reaper_init(KVMState *s)
1458 {
1459 struct KVMDirtyRingReaper *r = &s->reaper;
1460
1461 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1462 kvm_dirty_ring_reaper_thread,
1463 s, QEMU_THREAD_JOINABLE);
1464
1465 return 0;
1466 }
1467
1468 static int kvm_dirty_ring_init(KVMState *s)
1469 {
1470 uint32_t ring_size = s->kvm_dirty_ring_size;
1471 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1472 unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1473 int ret;
1474
1475 s->kvm_dirty_ring_size = 0;
1476 s->kvm_dirty_ring_bytes = 0;
1477
1478 /* Bail if the dirty ring size isn't specified */
1479 if (!ring_size) {
1480 return 0;
1481 }
1482
1483 /*
1484 * Read the max supported pages. Fall back to dirty logging mode
1485 * if the dirty ring isn't supported.
1486 */
1487 ret = kvm_vm_check_extension(s, capability);
1488 if (ret <= 0) {
1489 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1490 ret = kvm_vm_check_extension(s, capability);
1491 }
1492
1493 if (ret <= 0) {
1494 warn_report("KVM dirty ring not available, using bitmap method");
1495 return 0;
1496 }
1497
1498 if (ring_bytes > ret) {
1499 error_report("KVM dirty ring size %" PRIu32 " too big "
1500 "(maximum is %ld). Please use a smaller value.",
1501 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1502 return -EINVAL;
1503 }
1504
1505 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1506 if (ret) {
1507 error_report("Enabling of KVM dirty ring failed: %s. "
1508 "Suggested minimum value is 1024.", strerror(-ret));
1509 return -EIO;
1510 }
1511
1512 /* Enable the backup bitmap if it is supported */
1513 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1514 if (ret > 0) {
1515 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1516 if (ret) {
1517 error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1518 "%s. ", strerror(-ret));
1519 return -EIO;
1520 }
1521
1522 s->kvm_dirty_ring_with_bitmap = true;
1523 }
1524
1525 s->kvm_dirty_ring_size = ring_size;
1526 s->kvm_dirty_ring_bytes = ring_bytes;
1527
1528 return 0;
1529 }
1530
1531 static void kvm_region_add(MemoryListener *listener,
1532 MemoryRegionSection *section)
1533 {
1534 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1535 KVMMemoryUpdate *update;
1536
1537 update = g_new0(KVMMemoryUpdate, 1);
1538 update->section = *section;
1539
1540 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1541 }
1542
1543 static void kvm_region_del(MemoryListener *listener,
1544 MemoryRegionSection *section)
1545 {
1546 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1547 KVMMemoryUpdate *update;
1548
1549 update = g_new0(KVMMemoryUpdate, 1);
1550 update->section = *section;
1551
1552 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1553 }
1554
1555 static void kvm_region_commit(MemoryListener *listener)
1556 {
1557 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1558 listener);
1559 KVMMemoryUpdate *u1, *u2;
1560 bool need_inhibit = false;
1561
1562 if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1563 QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1564 return;
1565 }
1566
1567 /*
1568 * We have to be careful when regions to add overlap with ranges to remove.
1569 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1570 * is currently active.
1571 *
1572 * The lists are order by addresses, so it's easy to find overlaps.
1573 */
1574 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1575 u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1576 while (u1 && u2) {
1577 Range r1, r2;
1578
1579 range_init_nofail(&r1, u1->section.offset_within_address_space,
1580 int128_get64(u1->section.size));
1581 range_init_nofail(&r2, u2->section.offset_within_address_space,
1582 int128_get64(u2->section.size));
1583
1584 if (range_overlaps_range(&r1, &r2)) {
1585 need_inhibit = true;
1586 break;
1587 }
1588 if (range_lob(&r1) < range_lob(&r2)) {
1589 u1 = QSIMPLEQ_NEXT(u1, next);
1590 } else {
1591 u2 = QSIMPLEQ_NEXT(u2, next);
1592 }
1593 }
1594
1595 kvm_slots_lock();
1596 if (need_inhibit) {
1597 accel_ioctl_inhibit_begin();
1598 }
1599
1600 /* Remove all memslots before adding the new ones. */
1601 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1602 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1603 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1604
1605 kvm_set_phys_mem(kml, &u1->section, false);
1606 memory_region_unref(u1->section.mr);
1607
1608 g_free(u1);
1609 }
1610 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1611 u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1612 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1613
1614 memory_region_ref(u1->section.mr);
1615 kvm_set_phys_mem(kml, &u1->section, true);
1616
1617 g_free(u1);
1618 }
1619
1620 if (need_inhibit) {
1621 accel_ioctl_inhibit_end();
1622 }
1623 kvm_slots_unlock();
1624 }
1625
1626 static void kvm_log_sync(MemoryListener *listener,
1627 MemoryRegionSection *section)
1628 {
1629 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1630
1631 kvm_slots_lock();
1632 kvm_physical_sync_dirty_bitmap(kml, section);
1633 kvm_slots_unlock();
1634 }
1635
1636 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1637 {
1638 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1639 KVMState *s = kvm_state;
1640 KVMSlot *mem;
1641 int i;
1642
1643 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1644 kvm_dirty_ring_flush();
1645
1646 /*
1647 * TODO: make this faster when nr_slots is big while there are
1648 * only a few used slots (small VMs).
1649 */
1650 kvm_slots_lock();
1651 for (i = 0; i < s->nr_slots; i++) {
1652 mem = &kml->slots[i];
1653 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1654 kvm_slot_sync_dirty_pages(mem);
1655
1656 if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1657 kvm_slot_get_dirty_log(s, mem)) {
1658 kvm_slot_sync_dirty_pages(mem);
1659 }
1660
1661 /*
1662 * This is not needed by KVM_GET_DIRTY_LOG because the
1663 * ioctl will unconditionally overwrite the whole region.
1664 * However kvm dirty ring has no such side effect.
1665 */
1666 kvm_slot_reset_dirty_pages(mem);
1667 }
1668 }
1669 kvm_slots_unlock();
1670 }
1671
1672 static void kvm_log_clear(MemoryListener *listener,
1673 MemoryRegionSection *section)
1674 {
1675 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1676 int r;
1677
1678 r = kvm_physical_log_clear(kml, section);
1679 if (r < 0) {
1680 error_report_once("%s: kvm log clear failed: mr=%s "
1681 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1682 section->mr->name, section->offset_within_region,
1683 int128_get64(section->size));
1684 abort();
1685 }
1686 }
1687
1688 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1689 MemoryRegionSection *section,
1690 bool match_data, uint64_t data,
1691 EventNotifier *e)
1692 {
1693 int fd = event_notifier_get_fd(e);
1694 int r;
1695
1696 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1697 data, true, int128_get64(section->size),
1698 match_data);
1699 if (r < 0) {
1700 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1701 __func__, strerror(-r), -r);
1702 abort();
1703 }
1704 }
1705
1706 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1707 MemoryRegionSection *section,
1708 bool match_data, uint64_t data,
1709 EventNotifier *e)
1710 {
1711 int fd = event_notifier_get_fd(e);
1712 int r;
1713
1714 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1715 data, false, int128_get64(section->size),
1716 match_data);
1717 if (r < 0) {
1718 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1719 __func__, strerror(-r), -r);
1720 abort();
1721 }
1722 }
1723
1724 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1725 MemoryRegionSection *section,
1726 bool match_data, uint64_t data,
1727 EventNotifier *e)
1728 {
1729 int fd = event_notifier_get_fd(e);
1730 int r;
1731
1732 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1733 data, true, int128_get64(section->size),
1734 match_data);
1735 if (r < 0) {
1736 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1737 __func__, strerror(-r), -r);
1738 abort();
1739 }
1740 }
1741
1742 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1743 MemoryRegionSection *section,
1744 bool match_data, uint64_t data,
1745 EventNotifier *e)
1746
1747 {
1748 int fd = event_notifier_get_fd(e);
1749 int r;
1750
1751 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1752 data, false, int128_get64(section->size),
1753 match_data);
1754 if (r < 0) {
1755 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1756 __func__, strerror(-r), -r);
1757 abort();
1758 }
1759 }
1760
1761 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1762 AddressSpace *as, int as_id, const char *name)
1763 {
1764 int i;
1765
1766 kml->slots = g_new0(KVMSlot, s->nr_slots);
1767 kml->as_id = as_id;
1768
1769 for (i = 0; i < s->nr_slots; i++) {
1770 kml->slots[i].slot = i;
1771 }
1772
1773 QSIMPLEQ_INIT(&kml->transaction_add);
1774 QSIMPLEQ_INIT(&kml->transaction_del);
1775
1776 kml->listener.region_add = kvm_region_add;
1777 kml->listener.region_del = kvm_region_del;
1778 kml->listener.commit = kvm_region_commit;
1779 kml->listener.log_start = kvm_log_start;
1780 kml->listener.log_stop = kvm_log_stop;
1781 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1782 kml->listener.name = name;
1783
1784 if (s->kvm_dirty_ring_size) {
1785 kml->listener.log_sync_global = kvm_log_sync_global;
1786 } else {
1787 kml->listener.log_sync = kvm_log_sync;
1788 kml->listener.log_clear = kvm_log_clear;
1789 }
1790
1791 memory_listener_register(&kml->listener, as);
1792
1793 for (i = 0; i < s->nr_as; ++i) {
1794 if (!s->as[i].as) {
1795 s->as[i].as = as;
1796 s->as[i].ml = kml;
1797 break;
1798 }
1799 }
1800 }
1801
1802 static MemoryListener kvm_io_listener = {
1803 .name = "kvm-io",
1804 .eventfd_add = kvm_io_ioeventfd_add,
1805 .eventfd_del = kvm_io_ioeventfd_del,
1806 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1807 };
1808
1809 int kvm_set_irq(KVMState *s, int irq, int level)
1810 {
1811 struct kvm_irq_level event;
1812 int ret;
1813
1814 assert(kvm_async_interrupts_enabled());
1815
1816 event.level = level;
1817 event.irq = irq;
1818 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1819 if (ret < 0) {
1820 perror("kvm_set_irq");
1821 abort();
1822 }
1823
1824 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1825 }
1826
1827 #ifdef KVM_CAP_IRQ_ROUTING
1828 typedef struct KVMMSIRoute {
1829 struct kvm_irq_routing_entry kroute;
1830 QTAILQ_ENTRY(KVMMSIRoute) entry;
1831 } KVMMSIRoute;
1832
1833 static void set_gsi(KVMState *s, unsigned int gsi)
1834 {
1835 set_bit(gsi, s->used_gsi_bitmap);
1836 }
1837
1838 static void clear_gsi(KVMState *s, unsigned int gsi)
1839 {
1840 clear_bit(gsi, s->used_gsi_bitmap);
1841 }
1842
1843 void kvm_init_irq_routing(KVMState *s)
1844 {
1845 int gsi_count, i;
1846
1847 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1848 if (gsi_count > 0) {
1849 /* Round up so we can search ints using ffs */
1850 s->used_gsi_bitmap = bitmap_new(gsi_count);
1851 s->gsi_count = gsi_count;
1852 }
1853
1854 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1855 s->nr_allocated_irq_routes = 0;
1856
1857 if (!kvm_direct_msi_allowed) {
1858 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1859 QTAILQ_INIT(&s->msi_hashtab[i]);
1860 }
1861 }
1862
1863 kvm_arch_init_irq_routing(s);
1864 }
1865
1866 void kvm_irqchip_commit_routes(KVMState *s)
1867 {
1868 int ret;
1869
1870 if (kvm_gsi_direct_mapping()) {
1871 return;
1872 }
1873
1874 if (!kvm_gsi_routing_enabled()) {
1875 return;
1876 }
1877
1878 s->irq_routes->flags = 0;
1879 trace_kvm_irqchip_commit_routes();
1880 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1881 assert(ret == 0);
1882 }
1883
1884 static void kvm_add_routing_entry(KVMState *s,
1885 struct kvm_irq_routing_entry *entry)
1886 {
1887 struct kvm_irq_routing_entry *new;
1888 int n, size;
1889
1890 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1891 n = s->nr_allocated_irq_routes * 2;
1892 if (n < 64) {
1893 n = 64;
1894 }
1895 size = sizeof(struct kvm_irq_routing);
1896 size += n * sizeof(*new);
1897 s->irq_routes = g_realloc(s->irq_routes, size);
1898 s->nr_allocated_irq_routes = n;
1899 }
1900 n = s->irq_routes->nr++;
1901 new = &s->irq_routes->entries[n];
1902
1903 *new = *entry;
1904
1905 set_gsi(s, entry->gsi);
1906 }
1907
1908 static int kvm_update_routing_entry(KVMState *s,
1909 struct kvm_irq_routing_entry *new_entry)
1910 {
1911 struct kvm_irq_routing_entry *entry;
1912 int n;
1913
1914 for (n = 0; n < s->irq_routes->nr; n++) {
1915 entry = &s->irq_routes->entries[n];
1916 if (entry->gsi != new_entry->gsi) {
1917 continue;
1918 }
1919
1920 if(!memcmp(entry, new_entry, sizeof *entry)) {
1921 return 0;
1922 }
1923
1924 *entry = *new_entry;
1925
1926 return 0;
1927 }
1928
1929 return -ESRCH;
1930 }
1931
1932 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1933 {
1934 struct kvm_irq_routing_entry e = {};
1935
1936 assert(pin < s->gsi_count);
1937
1938 e.gsi = irq;
1939 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1940 e.flags = 0;
1941 e.u.irqchip.irqchip = irqchip;
1942 e.u.irqchip.pin = pin;
1943 kvm_add_routing_entry(s, &e);
1944 }
1945
1946 void kvm_irqchip_release_virq(KVMState *s, int virq)
1947 {
1948 struct kvm_irq_routing_entry *e;
1949 int i;
1950
1951 if (kvm_gsi_direct_mapping()) {
1952 return;
1953 }
1954
1955 for (i = 0; i < s->irq_routes->nr; i++) {
1956 e = &s->irq_routes->entries[i];
1957 if (e->gsi == virq) {
1958 s->irq_routes->nr--;
1959 *e = s->irq_routes->entries[s->irq_routes->nr];
1960 }
1961 }
1962 clear_gsi(s, virq);
1963 kvm_arch_release_virq_post(virq);
1964 trace_kvm_irqchip_release_virq(virq);
1965 }
1966
1967 void kvm_irqchip_add_change_notifier(Notifier *n)
1968 {
1969 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1970 }
1971
1972 void kvm_irqchip_remove_change_notifier(Notifier *n)
1973 {
1974 notifier_remove(n);
1975 }
1976
1977 void kvm_irqchip_change_notify(void)
1978 {
1979 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1980 }
1981
1982 static unsigned int kvm_hash_msi(uint32_t data)
1983 {
1984 /* This is optimized for IA32 MSI layout. However, no other arch shall
1985 * repeat the mistake of not providing a direct MSI injection API. */
1986 return data & 0xff;
1987 }
1988
1989 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1990 {
1991 KVMMSIRoute *route, *next;
1992 unsigned int hash;
1993
1994 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1995 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1996 kvm_irqchip_release_virq(s, route->kroute.gsi);
1997 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1998 g_free(route);
1999 }
2000 }
2001 }
2002
2003 static int kvm_irqchip_get_virq(KVMState *s)
2004 {
2005 int next_virq;
2006
2007 /*
2008 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
2009 * GSI numbers are more than the number of IRQ route. Allocating a GSI
2010 * number can succeed even though a new route entry cannot be added.
2011 * When this happens, flush dynamic MSI entries to free IRQ route entries.
2012 */
2013 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
2014 kvm_flush_dynamic_msi_routes(s);
2015 }
2016
2017 /* Return the lowest unused GSI in the bitmap */
2018 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2019 if (next_virq >= s->gsi_count) {
2020 return -ENOSPC;
2021 } else {
2022 return next_virq;
2023 }
2024 }
2025
2026 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
2027 {
2028 unsigned int hash = kvm_hash_msi(msg.data);
2029 KVMMSIRoute *route;
2030
2031 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
2032 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
2033 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
2034 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
2035 return route;
2036 }
2037 }
2038 return NULL;
2039 }
2040
2041 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2042 {
2043 struct kvm_msi msi;
2044 KVMMSIRoute *route;
2045
2046 if (kvm_direct_msi_allowed) {
2047 msi.address_lo = (uint32_t)msg.address;
2048 msi.address_hi = msg.address >> 32;
2049 msi.data = le32_to_cpu(msg.data);
2050 msi.flags = 0;
2051 memset(msi.pad, 0, sizeof(msi.pad));
2052
2053 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2054 }
2055
2056 route = kvm_lookup_msi_route(s, msg);
2057 if (!route) {
2058 int virq;
2059
2060 virq = kvm_irqchip_get_virq(s);
2061 if (virq < 0) {
2062 return virq;
2063 }
2064
2065 route = g_new0(KVMMSIRoute, 1);
2066 route->kroute.gsi = virq;
2067 route->kroute.type = KVM_IRQ_ROUTING_MSI;
2068 route->kroute.flags = 0;
2069 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
2070 route->kroute.u.msi.address_hi = msg.address >> 32;
2071 route->kroute.u.msi.data = le32_to_cpu(msg.data);
2072
2073 kvm_add_routing_entry(s, &route->kroute);
2074 kvm_irqchip_commit_routes(s);
2075
2076 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
2077 entry);
2078 }
2079
2080 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
2081
2082 return kvm_set_irq(s, route->kroute.gsi, 1);
2083 }
2084
2085 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2086 {
2087 struct kvm_irq_routing_entry kroute = {};
2088 int virq;
2089 KVMState *s = c->s;
2090 MSIMessage msg = {0, 0};
2091
2092 if (pci_available && dev) {
2093 msg = pci_get_msi_message(dev, vector);
2094 }
2095
2096 if (kvm_gsi_direct_mapping()) {
2097 return kvm_arch_msi_data_to_gsi(msg.data);
2098 }
2099
2100 if (!kvm_gsi_routing_enabled()) {
2101 return -ENOSYS;
2102 }
2103
2104 virq = kvm_irqchip_get_virq(s);
2105 if (virq < 0) {
2106 return virq;
2107 }
2108
2109 kroute.gsi = virq;
2110 kroute.type = KVM_IRQ_ROUTING_MSI;
2111 kroute.flags = 0;
2112 kroute.u.msi.address_lo = (uint32_t)msg.address;
2113 kroute.u.msi.address_hi = msg.address >> 32;
2114 kroute.u.msi.data = le32_to_cpu(msg.data);
2115 if (pci_available && kvm_msi_devid_required()) {
2116 kroute.flags = KVM_MSI_VALID_DEVID;
2117 kroute.u.msi.devid = pci_requester_id(dev);
2118 }
2119 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2120 kvm_irqchip_release_virq(s, virq);
2121 return -EINVAL;
2122 }
2123
2124 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2125 vector, virq);
2126
2127 kvm_add_routing_entry(s, &kroute);
2128 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2129 c->changes++;
2130
2131 return virq;
2132 }
2133
2134 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2135 PCIDevice *dev)
2136 {
2137 struct kvm_irq_routing_entry kroute = {};
2138
2139 if (kvm_gsi_direct_mapping()) {
2140 return 0;
2141 }
2142
2143 if (!kvm_irqchip_in_kernel()) {
2144 return -ENOSYS;
2145 }
2146
2147 kroute.gsi = virq;
2148 kroute.type = KVM_IRQ_ROUTING_MSI;
2149 kroute.flags = 0;
2150 kroute.u.msi.address_lo = (uint32_t)msg.address;
2151 kroute.u.msi.address_hi = msg.address >> 32;
2152 kroute.u.msi.data = le32_to_cpu(msg.data);
2153 if (pci_available && kvm_msi_devid_required()) {
2154 kroute.flags = KVM_MSI_VALID_DEVID;
2155 kroute.u.msi.devid = pci_requester_id(dev);
2156 }
2157 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2158 return -EINVAL;
2159 }
2160
2161 trace_kvm_irqchip_update_msi_route(virq);
2162
2163 return kvm_update_routing_entry(s, &kroute);
2164 }
2165
2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2167 EventNotifier *resample, int virq,
2168 bool assign)
2169 {
2170 int fd = event_notifier_get_fd(event);
2171 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2172
2173 struct kvm_irqfd irqfd = {
2174 .fd = fd,
2175 .gsi = virq,
2176 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2177 };
2178
2179 if (rfd != -1) {
2180 assert(assign);
2181 if (kvm_irqchip_is_split()) {
2182 /*
2183 * When the slow irqchip (e.g. IOAPIC) is in the
2184 * userspace, KVM kernel resamplefd will not work because
2185 * the EOI of the interrupt will be delivered to userspace
2186 * instead, so the KVM kernel resamplefd kick will be
2187 * skipped. The userspace here mimics what the kernel
2188 * provides with resamplefd, remember the resamplefd and
2189 * kick it when we receive EOI of this IRQ.
2190 *
2191 * This is hackery because IOAPIC is mostly bypassed
2192 * (except EOI broadcasts) when irqfd is used. However
2193 * this can bring much performance back for split irqchip
2194 * with INTx IRQs (for VFIO, this gives 93% perf of the
2195 * full fast path, which is 46% perf boost comparing to
2196 * the INTx slow path).
2197 */
2198 kvm_resample_fd_insert(virq, resample);
2199 } else {
2200 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2201 irqfd.resamplefd = rfd;
2202 }
2203 } else if (!assign) {
2204 if (kvm_irqchip_is_split()) {
2205 kvm_resample_fd_remove(virq);
2206 }
2207 }
2208
2209 if (!kvm_irqfds_enabled()) {
2210 return -ENOSYS;
2211 }
2212
2213 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2214 }
2215
2216 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2217 {
2218 struct kvm_irq_routing_entry kroute = {};
2219 int virq;
2220
2221 if (!kvm_gsi_routing_enabled()) {
2222 return -ENOSYS;
2223 }
2224
2225 virq = kvm_irqchip_get_virq(s);
2226 if (virq < 0) {
2227 return virq;
2228 }
2229
2230 kroute.gsi = virq;
2231 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2232 kroute.flags = 0;
2233 kroute.u.adapter.summary_addr = adapter->summary_addr;
2234 kroute.u.adapter.ind_addr = adapter->ind_addr;
2235 kroute.u.adapter.summary_offset = adapter->summary_offset;
2236 kroute.u.adapter.ind_offset = adapter->ind_offset;
2237 kroute.u.adapter.adapter_id = adapter->adapter_id;
2238
2239 kvm_add_routing_entry(s, &kroute);
2240
2241 return virq;
2242 }
2243
2244 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2245 {
2246 struct kvm_irq_routing_entry kroute = {};
2247 int virq;
2248
2249 if (!kvm_gsi_routing_enabled()) {
2250 return -ENOSYS;
2251 }
2252 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2253 return -ENOSYS;
2254 }
2255 virq = kvm_irqchip_get_virq(s);
2256 if (virq < 0) {
2257 return virq;
2258 }
2259
2260 kroute.gsi = virq;
2261 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2262 kroute.flags = 0;
2263 kroute.u.hv_sint.vcpu = vcpu;
2264 kroute.u.hv_sint.sint = sint;
2265
2266 kvm_add_routing_entry(s, &kroute);
2267 kvm_irqchip_commit_routes(s);
2268
2269 return virq;
2270 }
2271
2272 #else /* !KVM_CAP_IRQ_ROUTING */
2273
2274 void kvm_init_irq_routing(KVMState *s)
2275 {
2276 }
2277
2278 void kvm_irqchip_release_virq(KVMState *s, int virq)
2279 {
2280 }
2281
2282 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2283 {
2284 abort();
2285 }
2286
2287 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2288 {
2289 return -ENOSYS;
2290 }
2291
2292 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2293 {
2294 return -ENOSYS;
2295 }
2296
2297 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2298 {
2299 return -ENOSYS;
2300 }
2301
2302 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2303 EventNotifier *resample, int virq,
2304 bool assign)
2305 {
2306 abort();
2307 }
2308
2309 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2310 {
2311 return -ENOSYS;
2312 }
2313 #endif /* !KVM_CAP_IRQ_ROUTING */
2314
2315 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2316 EventNotifier *rn, int virq)
2317 {
2318 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2319 }
2320
2321 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2322 int virq)
2323 {
2324 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2325 }
2326
2327 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2328 EventNotifier *rn, qemu_irq irq)
2329 {
2330 gpointer key, gsi;
2331 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2332
2333 if (!found) {
2334 return -ENXIO;
2335 }
2336 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2337 }
2338
2339 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2340 qemu_irq irq)
2341 {
2342 gpointer key, gsi;
2343 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2344
2345 if (!found) {
2346 return -ENXIO;
2347 }
2348 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2349 }
2350
2351 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2352 {
2353 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2354 }
2355
2356 static void kvm_irqchip_create(KVMState *s)
2357 {
2358 int ret;
2359
2360 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2361 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2362 ;
2363 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2364 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2365 if (ret < 0) {
2366 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2367 exit(1);
2368 }
2369 } else {
2370 return;
2371 }
2372
2373 /* First probe and see if there's a arch-specific hook to create the
2374 * in-kernel irqchip for us */
2375 ret = kvm_arch_irqchip_create(s);
2376 if (ret == 0) {
2377 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2378 error_report("Split IRQ chip mode not supported.");
2379 exit(1);
2380 } else {
2381 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2382 }
2383 }
2384 if (ret < 0) {
2385 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2386 exit(1);
2387 }
2388
2389 kvm_kernel_irqchip = true;
2390 /* If we have an in-kernel IRQ chip then we must have asynchronous
2391 * interrupt delivery (though the reverse is not necessarily true)
2392 */
2393 kvm_async_interrupts_allowed = true;
2394 kvm_halt_in_kernel_allowed = true;
2395
2396 kvm_init_irq_routing(s);
2397
2398 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2399 }
2400
2401 /* Find number of supported CPUs using the recommended
2402 * procedure from the kernel API documentation to cope with
2403 * older kernels that may be missing capabilities.
2404 */
2405 static int kvm_recommended_vcpus(KVMState *s)
2406 {
2407 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2408 return (ret) ? ret : 4;
2409 }
2410
2411 static int kvm_max_vcpus(KVMState *s)
2412 {
2413 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2414 return (ret) ? ret : kvm_recommended_vcpus(s);
2415 }
2416
2417 static int kvm_max_vcpu_id(KVMState *s)
2418 {
2419 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2420 return (ret) ? ret : kvm_max_vcpus(s);
2421 }
2422
2423 bool kvm_vcpu_id_is_valid(int vcpu_id)
2424 {
2425 KVMState *s = KVM_STATE(current_accel());
2426 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2427 }
2428
2429 bool kvm_dirty_ring_enabled(void)
2430 {
2431 return kvm_state->kvm_dirty_ring_size ? true : false;
2432 }
2433
2434 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2435 strList *names, strList *targets, Error **errp);
2436 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2437
2438 uint32_t kvm_dirty_ring_size(void)
2439 {
2440 return kvm_state->kvm_dirty_ring_size;
2441 }
2442
2443 static int kvm_init(MachineState *ms)
2444 {
2445 MachineClass *mc = MACHINE_GET_CLASS(ms);
2446 static const char upgrade_note[] =
2447 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2448 "(see http://sourceforge.net/projects/kvm).\n";
2449 const struct {
2450 const char *name;
2451 int num;
2452 } num_cpus[] = {
2453 { "SMP", ms->smp.cpus },
2454 { "hotpluggable", ms->smp.max_cpus },
2455 { /* end of list */ }
2456 }, *nc = num_cpus;
2457 int soft_vcpus_limit, hard_vcpus_limit;
2458 KVMState *s;
2459 const KVMCapabilityInfo *missing_cap;
2460 int ret;
2461 int type = 0;
2462 uint64_t dirty_log_manual_caps;
2463
2464 qemu_mutex_init(&kml_slots_lock);
2465
2466 s = KVM_STATE(ms->accelerator);
2467
2468 /*
2469 * On systems where the kernel can support different base page
2470 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2471 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2472 * page size for the system though.
2473 */
2474 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2475
2476 s->sigmask_len = 8;
2477 accel_blocker_init();
2478
2479 #ifdef KVM_CAP_SET_GUEST_DEBUG
2480 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2481 #endif
2482 QLIST_INIT(&s->kvm_parked_vcpus);
2483 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2484 if (s->fd == -1) {
2485 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2486 ret = -errno;
2487 goto err;
2488 }
2489
2490 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2491 if (ret < KVM_API_VERSION) {
2492 if (ret >= 0) {
2493 ret = -EINVAL;
2494 }
2495 fprintf(stderr, "kvm version too old\n");
2496 goto err;
2497 }
2498
2499 if (ret > KVM_API_VERSION) {
2500 ret = -EINVAL;
2501 fprintf(stderr, "kvm version not supported\n");
2502 goto err;
2503 }
2504
2505 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2506 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2507
2508 /* If unspecified, use the default value */
2509 if (!s->nr_slots) {
2510 s->nr_slots = 32;
2511 }
2512
2513 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2514 if (s->nr_as <= 1) {
2515 s->nr_as = 1;
2516 }
2517 s->as = g_new0(struct KVMAs, s->nr_as);
2518
2519 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2520 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2521 "kvm-type",
2522 &error_abort);
2523 type = mc->kvm_type(ms, kvm_type);
2524 } else if (mc->kvm_type) {
2525 type = mc->kvm_type(ms, NULL);
2526 }
2527
2528 do {
2529 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2530 } while (ret == -EINTR);
2531
2532 if (ret < 0) {
2533 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2534 strerror(-ret));
2535
2536 #ifdef TARGET_S390X
2537 if (ret == -EINVAL) {
2538 fprintf(stderr,
2539 "Host kernel setup problem detected. Please verify:\n");
2540 fprintf(stderr, "- for kernels supporting the switch_amode or"
2541 " user_mode parameters, whether\n");
2542 fprintf(stderr,
2543 " user space is running in primary address space\n");
2544 fprintf(stderr,
2545 "- for kernels supporting the vm.allocate_pgste sysctl, "
2546 "whether it is enabled\n");
2547 }
2548 #elif defined(TARGET_PPC)
2549 if (ret == -EINVAL) {
2550 fprintf(stderr,
2551 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2552 (type == 2) ? "pr" : "hv");
2553 }
2554 #endif
2555 goto err;
2556 }
2557
2558 s->vmfd = ret;
2559
2560 /* check the vcpu limits */
2561 soft_vcpus_limit = kvm_recommended_vcpus(s);
2562 hard_vcpus_limit = kvm_max_vcpus(s);
2563
2564 while (nc->name) {
2565 if (nc->num > soft_vcpus_limit) {
2566 warn_report("Number of %s cpus requested (%d) exceeds "
2567 "the recommended cpus supported by KVM (%d)",
2568 nc->name, nc->num, soft_vcpus_limit);
2569
2570 if (nc->num > hard_vcpus_limit) {
2571 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2572 "the maximum cpus supported by KVM (%d)\n",
2573 nc->name, nc->num, hard_vcpus_limit);
2574 exit(1);
2575 }
2576 }
2577 nc++;
2578 }
2579
2580 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2581 if (!missing_cap) {
2582 missing_cap =
2583 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2584 }
2585 if (missing_cap) {
2586 ret = -EINVAL;
2587 fprintf(stderr, "kvm does not support %s\n%s",
2588 missing_cap->name, upgrade_note);
2589 goto err;
2590 }
2591
2592 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2593 s->coalesced_pio = s->coalesced_mmio &&
2594 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2595
2596 /*
2597 * Enable KVM dirty ring if supported, otherwise fall back to
2598 * dirty logging mode
2599 */
2600 ret = kvm_dirty_ring_init(s);
2601 if (ret < 0) {
2602 goto err;
2603 }
2604
2605 /*
2606 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2607 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2608 * page is wr-protected initially, which is against how kvm dirty ring is
2609 * usage - kvm dirty ring requires all pages are wr-protected at the very
2610 * beginning. Enabling this feature for dirty ring causes data corruption.
2611 *
2612 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2613 * we may expect a higher stall time when starting the migration. In the
2614 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2615 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2616 * guest pages.
2617 */
2618 if (!s->kvm_dirty_ring_size) {
2619 dirty_log_manual_caps =
2620 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2621 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2622 KVM_DIRTY_LOG_INITIALLY_SET);
2623 s->manual_dirty_log_protect = dirty_log_manual_caps;
2624 if (dirty_log_manual_caps) {
2625 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2626 dirty_log_manual_caps);
2627 if (ret) {
2628 warn_report("Trying to enable capability %"PRIu64" of "
2629 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2630 "Falling back to the legacy mode. ",
2631 dirty_log_manual_caps);
2632 s->manual_dirty_log_protect = 0;
2633 }
2634 }
2635 }
2636
2637 #ifdef KVM_CAP_VCPU_EVENTS
2638 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2639 #endif
2640
2641 s->robust_singlestep =
2642 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2643
2644 #ifdef KVM_CAP_DEBUGREGS
2645 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2646 #endif
2647
2648 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2649
2650 #ifdef KVM_CAP_IRQ_ROUTING
2651 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2652 #endif
2653
2654 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2655
2656 s->irq_set_ioctl = KVM_IRQ_LINE;
2657 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2658 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2659 }
2660
2661 kvm_readonly_mem_allowed =
2662 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2663
2664 kvm_eventfds_allowed =
2665 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2666
2667 kvm_irqfds_allowed =
2668 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2669
2670 kvm_resamplefds_allowed =
2671 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2672
2673 kvm_vm_attributes_allowed =
2674 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2675
2676 kvm_ioeventfd_any_length_allowed =
2677 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2678
2679 #ifdef KVM_CAP_SET_GUEST_DEBUG
2680 kvm_has_guest_debug =
2681 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2682 #endif
2683
2684 kvm_sstep_flags = 0;
2685 if (kvm_has_guest_debug) {
2686 kvm_sstep_flags = SSTEP_ENABLE;
2687
2688 #if defined KVM_CAP_SET_GUEST_DEBUG2
2689 int guest_debug_flags =
2690 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2691
2692 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2693 kvm_sstep_flags |= SSTEP_NOIRQ;
2694 }
2695 #endif
2696 }
2697
2698 kvm_state = s;
2699
2700 ret = kvm_arch_init(ms, s);
2701 if (ret < 0) {
2702 goto err;
2703 }
2704
2705 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2706 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2707 }
2708
2709 qemu_register_reset(kvm_unpoison_all, NULL);
2710
2711 if (s->kernel_irqchip_allowed) {
2712 kvm_irqchip_create(s);
2713 }
2714
2715 if (kvm_eventfds_allowed) {
2716 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2717 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2718 }
2719 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2720 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2721
2722 kvm_memory_listener_register(s, &s->memory_listener,
2723 &address_space_memory, 0, "kvm-memory");
2724 if (kvm_eventfds_allowed) {
2725 memory_listener_register(&kvm_io_listener,
2726 &address_space_io);
2727 }
2728 memory_listener_register(&kvm_coalesced_pio_listener,
2729 &address_space_io);
2730
2731 s->many_ioeventfds = kvm_check_many_ioeventfds();
2732
2733 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2734 if (!s->sync_mmu) {
2735 ret = ram_block_discard_disable(true);
2736 assert(!ret);
2737 }
2738
2739 if (s->kvm_dirty_ring_size) {
2740 ret = kvm_dirty_ring_reaper_init(s);
2741 if (ret) {
2742 goto err;
2743 }
2744 }
2745
2746 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2747 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2748 query_stats_schemas_cb);
2749 }
2750
2751 return 0;
2752
2753 err:
2754 assert(ret < 0);
2755 if (s->vmfd >= 0) {
2756 close(s->vmfd);
2757 }
2758 if (s->fd != -1) {
2759 close(s->fd);
2760 }
2761 g_free(s->memory_listener.slots);
2762
2763 return ret;
2764 }
2765
2766 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2767 {
2768 s->sigmask_len = sigmask_len;
2769 }
2770
2771 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2772 int size, uint32_t count)
2773 {
2774 int i;
2775 uint8_t *ptr = data;
2776
2777 for (i = 0; i < count; i++) {
2778 address_space_rw(&address_space_io, port, attrs,
2779 ptr, size,
2780 direction == KVM_EXIT_IO_OUT);
2781 ptr += size;
2782 }
2783 }
2784
2785 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2786 {
2787 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2788 run->internal.suberror);
2789
2790 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2791 int i;
2792
2793 for (i = 0; i < run->internal.ndata; ++i) {
2794 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2795 i, (uint64_t)run->internal.data[i]);
2796 }
2797 }
2798 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2799 fprintf(stderr, "emulation failure\n");
2800 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2801 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2802 return EXCP_INTERRUPT;
2803 }
2804 }
2805 /* FIXME: Should trigger a qmp message to let management know
2806 * something went wrong.
2807 */
2808 return -1;
2809 }
2810
2811 void kvm_flush_coalesced_mmio_buffer(void)
2812 {
2813 KVMState *s = kvm_state;
2814
2815 if (s->coalesced_flush_in_progress) {
2816 return;
2817 }
2818
2819 s->coalesced_flush_in_progress = true;
2820
2821 if (s->coalesced_mmio_ring) {
2822 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2823 while (ring->first != ring->last) {
2824 struct kvm_coalesced_mmio *ent;
2825
2826 ent = &ring->coalesced_mmio[ring->first];
2827
2828 if (ent->pio == 1) {
2829 address_space_write(&address_space_io, ent->phys_addr,
2830 MEMTXATTRS_UNSPECIFIED, ent->data,
2831 ent->len);
2832 } else {
2833 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2834 }
2835 smp_wmb();
2836 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2837 }
2838 }
2839
2840 s->coalesced_flush_in_progress = false;
2841 }
2842
2843 bool kvm_cpu_check_are_resettable(void)
2844 {
2845 return kvm_arch_cpu_check_are_resettable();
2846 }
2847
2848 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2849 {
2850 if (!cpu->vcpu_dirty) {
2851 kvm_arch_get_registers(cpu);
2852 cpu->vcpu_dirty = true;
2853 }
2854 }
2855
2856 void kvm_cpu_synchronize_state(CPUState *cpu)
2857 {
2858 if (!cpu->vcpu_dirty) {
2859 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2860 }
2861 }
2862
2863 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2864 {
2865 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2866 cpu->vcpu_dirty = false;
2867 }
2868
2869 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2870 {
2871 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2872 }
2873
2874 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2875 {
2876 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2877 cpu->vcpu_dirty = false;
2878 }
2879
2880 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2881 {
2882 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2883 }
2884
2885 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2886 {
2887 cpu->vcpu_dirty = true;
2888 }
2889
2890 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2891 {
2892 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2893 }
2894
2895 #ifdef KVM_HAVE_MCE_INJECTION
2896 static __thread void *pending_sigbus_addr;
2897 static __thread int pending_sigbus_code;
2898 static __thread bool have_sigbus_pending;
2899 #endif
2900
2901 static void kvm_cpu_kick(CPUState *cpu)
2902 {
2903 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2904 }
2905
2906 static void kvm_cpu_kick_self(void)
2907 {
2908 if (kvm_immediate_exit) {
2909 kvm_cpu_kick(current_cpu);
2910 } else {
2911 qemu_cpu_kick_self();
2912 }
2913 }
2914
2915 static void kvm_eat_signals(CPUState *cpu)
2916 {
2917 struct timespec ts = { 0, 0 };
2918 siginfo_t siginfo;
2919 sigset_t waitset;
2920 sigset_t chkset;
2921 int r;
2922
2923 if (kvm_immediate_exit) {
2924 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2925 /* Write kvm_run->immediate_exit before the cpu->exit_request
2926 * write in kvm_cpu_exec.
2927 */
2928 smp_wmb();
2929 return;
2930 }
2931
2932 sigemptyset(&waitset);
2933 sigaddset(&waitset, SIG_IPI);
2934
2935 do {
2936 r = sigtimedwait(&waitset, &siginfo, &ts);
2937 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2938 perror("sigtimedwait");
2939 exit(1);
2940 }
2941
2942 r = sigpending(&chkset);
2943 if (r == -1) {
2944 perror("sigpending");
2945 exit(1);
2946 }
2947 } while (sigismember(&chkset, SIG_IPI));
2948 }
2949
2950 int kvm_cpu_exec(CPUState *cpu)
2951 {
2952 struct kvm_run *run = cpu->kvm_run;
2953 int ret, run_ret;
2954
2955 DPRINTF("kvm_cpu_exec()\n");
2956
2957 if (kvm_arch_process_async_events(cpu)) {
2958 qatomic_set(&cpu->exit_request, 0);
2959 return EXCP_HLT;
2960 }
2961
2962 qemu_mutex_unlock_iothread();
2963 cpu_exec_start(cpu);
2964
2965 do {
2966 MemTxAttrs attrs;
2967
2968 if (cpu->vcpu_dirty) {
2969 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2970 cpu->vcpu_dirty = false;
2971 }
2972
2973 kvm_arch_pre_run(cpu, run);
2974 if (qatomic_read(&cpu->exit_request)) {
2975 DPRINTF("interrupt exit requested\n");
2976 /*
2977 * KVM requires us to reenter the kernel after IO exits to complete
2978 * instruction emulation. This self-signal will ensure that we
2979 * leave ASAP again.
2980 */
2981 kvm_cpu_kick_self();
2982 }
2983
2984 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2985 * Matching barrier in kvm_eat_signals.
2986 */
2987 smp_rmb();
2988
2989 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2990
2991 attrs = kvm_arch_post_run(cpu, run);
2992
2993 #ifdef KVM_HAVE_MCE_INJECTION
2994 if (unlikely(have_sigbus_pending)) {
2995 qemu_mutex_lock_iothread();
2996 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2997 pending_sigbus_addr);
2998 have_sigbus_pending = false;
2999 qemu_mutex_unlock_iothread();
3000 }
3001 #endif
3002
3003 if (run_ret < 0) {
3004 if (run_ret == -EINTR || run_ret == -EAGAIN) {
3005 DPRINTF("io window exit\n");
3006 kvm_eat_signals(cpu);
3007 ret = EXCP_INTERRUPT;
3008 break;
3009 }
3010 fprintf(stderr, "error: kvm run failed %s\n",
3011 strerror(-run_ret));
3012 #ifdef TARGET_PPC
3013 if (run_ret == -EBUSY) {
3014 fprintf(stderr,
3015 "This is probably because your SMT is enabled.\n"
3016 "VCPU can only run on primary threads with all "
3017 "secondary threads offline.\n");
3018 }
3019 #endif
3020 ret = -1;
3021 break;
3022 }
3023
3024 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3025 switch (run->exit_reason) {
3026 case KVM_EXIT_IO:
3027 DPRINTF("handle_io\n");
3028 /* Called outside BQL */
3029 kvm_handle_io(run->io.port, attrs,
3030 (uint8_t *)run + run->io.data_offset,
3031 run->io.direction,
3032 run->io.size,
3033 run->io.count);
3034 ret = 0;
3035 break;
3036 case KVM_EXIT_MMIO:
3037 DPRINTF("handle_mmio\n");
3038 /* Called outside BQL */
3039 address_space_rw(&address_space_memory,
3040 run->mmio.phys_addr, attrs,
3041 run->mmio.data,
3042 run->mmio.len,
3043 run->mmio.is_write);
3044 ret = 0;
3045 break;
3046 case KVM_EXIT_IRQ_WINDOW_OPEN:
3047 DPRINTF("irq_window_open\n");
3048 ret = EXCP_INTERRUPT;
3049 break;
3050 case KVM_EXIT_SHUTDOWN:
3051 DPRINTF("shutdown\n");
3052 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3053 ret = EXCP_INTERRUPT;
3054 break;
3055 case KVM_EXIT_UNKNOWN:
3056 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3057 (uint64_t)run->hw.hardware_exit_reason);
3058 ret = -1;
3059 break;
3060 case KVM_EXIT_INTERNAL_ERROR:
3061 ret = kvm_handle_internal_error(cpu, run);
3062 break;
3063 case KVM_EXIT_DIRTY_RING_FULL:
3064 /*
3065 * We shouldn't continue if the dirty ring of this vcpu is
3066 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3067 */
3068 trace_kvm_dirty_ring_full(cpu->cpu_index);
3069 qemu_mutex_lock_iothread();
3070 /*
3071 * We throttle vCPU by making it sleep once it exit from kernel
3072 * due to dirty ring full. In the dirtylimit scenario, reaping
3073 * all vCPUs after a single vCPU dirty ring get full result in
3074 * the miss of sleep, so just reap the ring-fulled vCPU.
3075 */
3076 if (dirtylimit_in_service()) {
3077 kvm_dirty_ring_reap(kvm_state, cpu);
3078 } else {
3079 kvm_dirty_ring_reap(kvm_state, NULL);
3080 }
3081 qemu_mutex_unlock_iothread();
3082 dirtylimit_vcpu_execute(cpu);
3083 ret = 0;
3084 break;
3085 case KVM_EXIT_SYSTEM_EVENT:
3086 switch (run->system_event.type) {
3087 case KVM_SYSTEM_EVENT_SHUTDOWN:
3088 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3089 ret = EXCP_INTERRUPT;
3090 break;
3091 case KVM_SYSTEM_EVENT_RESET:
3092 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3093 ret = EXCP_INTERRUPT;
3094 break;
3095 case KVM_SYSTEM_EVENT_CRASH:
3096 kvm_cpu_synchronize_state(cpu);
3097 qemu_mutex_lock_iothread();
3098 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3099 qemu_mutex_unlock_iothread();
3100 ret = 0;
3101 break;
3102 default:
3103 DPRINTF("kvm_arch_handle_exit\n");
3104 ret = kvm_arch_handle_exit(cpu, run);
3105 break;
3106 }
3107 break;
3108 default:
3109 DPRINTF("kvm_arch_handle_exit\n");
3110 ret = kvm_arch_handle_exit(cpu, run);
3111 break;
3112 }
3113 } while (ret == 0);
3114
3115 cpu_exec_end(cpu);
3116 qemu_mutex_lock_iothread();
3117
3118 if (ret < 0) {
3119 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3120 vm_stop(RUN_STATE_INTERNAL_ERROR);
3121 }
3122
3123 qatomic_set(&cpu->exit_request, 0);
3124 return ret;
3125 }
3126
3127 int kvm_ioctl(KVMState *s, int type, ...)
3128 {
3129 int ret;
3130 void *arg;
3131 va_list ap;
3132
3133 va_start(ap, type);
3134 arg = va_arg(ap, void *);
3135 va_end(ap);
3136
3137 trace_kvm_ioctl(type, arg);
3138 ret = ioctl(s->fd, type, arg);
3139 if (ret == -1) {
3140 ret = -errno;
3141 }
3142 return ret;
3143 }
3144
3145 int kvm_vm_ioctl(KVMState *s, int type, ...)
3146 {
3147 int ret;
3148 void *arg;
3149 va_list ap;
3150
3151 va_start(ap, type);
3152 arg = va_arg(ap, void *);
3153 va_end(ap);
3154
3155 trace_kvm_vm_ioctl(type, arg);
3156 accel_ioctl_begin();
3157 ret = ioctl(s->vmfd, type, arg);
3158 accel_ioctl_end();
3159 if (ret == -1) {
3160 ret = -errno;
3161 }
3162 return ret;
3163 }
3164
3165 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3166 {
3167 int ret;
3168 void *arg;
3169 va_list ap;
3170
3171 va_start(ap, type);
3172 arg = va_arg(ap, void *);
3173 va_end(ap);
3174
3175 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3176 accel_cpu_ioctl_begin(cpu);
3177 ret = ioctl(cpu->kvm_fd, type, arg);
3178 accel_cpu_ioctl_end(cpu);
3179 if (ret == -1) {
3180 ret = -errno;
3181 }
3182 return ret;
3183 }
3184
3185 int kvm_device_ioctl(int fd, int type, ...)
3186 {
3187 int ret;
3188 void *arg;
3189 va_list ap;
3190
3191 va_start(ap, type);
3192 arg = va_arg(ap, void *);
3193 va_end(ap);
3194
3195 trace_kvm_device_ioctl(fd, type, arg);
3196 accel_ioctl_begin();
3197 ret = ioctl(fd, type, arg);
3198 accel_ioctl_end();
3199 if (ret == -1) {
3200 ret = -errno;
3201 }
3202 return ret;
3203 }
3204
3205 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3206 {
3207 int ret;
3208 struct kvm_device_attr attribute = {
3209 .group = group,
3210 .attr = attr,
3211 };
3212
3213 if (!kvm_vm_attributes_allowed) {
3214 return 0;
3215 }
3216
3217 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3218 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3219 return ret ? 0 : 1;
3220 }
3221
3222 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3223 {
3224 struct kvm_device_attr attribute = {
3225 .group = group,
3226 .attr = attr,
3227 .flags = 0,
3228 };
3229
3230 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3231 }
3232
3233 int kvm_device_access(int fd, int group, uint64_t attr,
3234 void *val, bool write, Error **errp)
3235 {
3236 struct kvm_device_attr kvmattr;
3237 int err;
3238
3239 kvmattr.flags = 0;
3240 kvmattr.group = group;
3241 kvmattr.attr = attr;
3242 kvmattr.addr = (uintptr_t)val;
3243
3244 err = kvm_device_ioctl(fd,
3245 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3246 &kvmattr);
3247 if (err < 0) {
3248 error_setg_errno(errp, -err,
3249 "KVM_%s_DEVICE_ATTR failed: Group %d "
3250 "attr 0x%016" PRIx64,
3251 write ? "SET" : "GET", group, attr);
3252 }
3253 return err;
3254 }
3255
3256 bool kvm_has_sync_mmu(void)
3257 {
3258 return kvm_state->sync_mmu;
3259 }
3260
3261 int kvm_has_vcpu_events(void)
3262 {
3263 return kvm_state->vcpu_events;
3264 }
3265
3266 int kvm_has_robust_singlestep(void)
3267 {
3268 return kvm_state->robust_singlestep;
3269 }
3270
3271 int kvm_has_debugregs(void)
3272 {
3273 return kvm_state->debugregs;
3274 }
3275
3276 int kvm_max_nested_state_length(void)
3277 {
3278 return kvm_state->max_nested_state_len;
3279 }
3280
3281 int kvm_has_many_ioeventfds(void)
3282 {
3283 if (!kvm_enabled()) {
3284 return 0;
3285 }
3286 return kvm_state->many_ioeventfds;
3287 }
3288
3289 int kvm_has_gsi_routing(void)
3290 {
3291 #ifdef KVM_CAP_IRQ_ROUTING
3292 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3293 #else
3294 return false;
3295 #endif
3296 }
3297
3298 int kvm_has_intx_set_mask(void)
3299 {
3300 return kvm_state->intx_set_mask;
3301 }
3302
3303 bool kvm_arm_supports_user_irq(void)
3304 {
3305 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3306 }
3307
3308 #ifdef KVM_CAP_SET_GUEST_DEBUG
3309 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3310 target_ulong pc)
3311 {
3312 struct kvm_sw_breakpoint *bp;
3313
3314 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3315 if (bp->pc == pc) {
3316 return bp;
3317 }
3318 }
3319 return NULL;
3320 }
3321
3322 int kvm_sw_breakpoints_active(CPUState *cpu)
3323 {
3324 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3325 }
3326
3327 struct kvm_set_guest_debug_data {
3328 struct kvm_guest_debug dbg;
3329 int err;
3330 };
3331
3332 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3333 {
3334 struct kvm_set_guest_debug_data *dbg_data =
3335 (struct kvm_set_guest_debug_data *) data.host_ptr;
3336
3337 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3338 &dbg_data->dbg);
3339 }
3340
3341 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3342 {
3343 struct kvm_set_guest_debug_data data;
3344
3345 data.dbg.control = reinject_trap;
3346
3347 if (cpu->singlestep_enabled) {
3348 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3349
3350 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3351 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3352 }
3353 }
3354 kvm_arch_update_guest_debug(cpu, &data.dbg);
3355
3356 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3357 RUN_ON_CPU_HOST_PTR(&data));
3358 return data.err;
3359 }
3360
3361 bool kvm_supports_guest_debug(void)
3362 {
3363 /* probed during kvm_init() */
3364 return kvm_has_guest_debug;
3365 }
3366
3367 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3368 {
3369 struct kvm_sw_breakpoint *bp;
3370 int err;
3371
3372 if (type == GDB_BREAKPOINT_SW) {
3373 bp = kvm_find_sw_breakpoint(cpu, addr);
3374 if (bp) {
3375 bp->use_count++;
3376 return 0;
3377 }
3378
3379 bp = g_new(struct kvm_sw_breakpoint, 1);
3380 bp->pc = addr;
3381 bp->use_count = 1;
3382 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3383 if (err) {
3384 g_free(bp);
3385 return err;
3386 }
3387
3388 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3389 } else {
3390 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3391 if (err) {
3392 return err;
3393 }
3394 }
3395
3396 CPU_FOREACH(cpu) {
3397 err = kvm_update_guest_debug(cpu, 0);
3398 if (err) {
3399 return err;
3400 }
3401 }
3402 return 0;
3403 }
3404
3405 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3406 {
3407 struct kvm_sw_breakpoint *bp;
3408 int err;
3409
3410 if (type == GDB_BREAKPOINT_SW) {
3411 bp = kvm_find_sw_breakpoint(cpu, addr);
3412 if (!bp) {
3413 return -ENOENT;
3414 }
3415
3416 if (bp->use_count > 1) {
3417 bp->use_count--;
3418 return 0;
3419 }
3420
3421 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3422 if (err) {
3423 return err;
3424 }
3425
3426 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3427 g_free(bp);
3428 } else {
3429 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3430 if (err) {
3431 return err;
3432 }
3433 }
3434
3435 CPU_FOREACH(cpu) {
3436 err = kvm_update_guest_debug(cpu, 0);
3437 if (err) {
3438 return err;
3439 }
3440 }
3441 return 0;
3442 }
3443
3444 void kvm_remove_all_breakpoints(CPUState *cpu)
3445 {
3446 struct kvm_sw_breakpoint *bp, *next;
3447 KVMState *s = cpu->kvm_state;
3448 CPUState *tmpcpu;
3449
3450 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3451 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3452 /* Try harder to find a CPU that currently sees the breakpoint. */
3453 CPU_FOREACH(tmpcpu) {
3454 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3455 break;
3456 }
3457 }
3458 }
3459 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3460 g_free(bp);
3461 }
3462 kvm_arch_remove_all_hw_breakpoints();
3463
3464 CPU_FOREACH(cpu) {
3465 kvm_update_guest_debug(cpu, 0);
3466 }
3467 }
3468
3469 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3470
3471 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3472 {
3473 KVMState *s = kvm_state;
3474 struct kvm_signal_mask *sigmask;
3475 int r;
3476
3477 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3478
3479 sigmask->len = s->sigmask_len;
3480 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3481 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3482 g_free(sigmask);
3483
3484 return r;
3485 }
3486
3487 static void kvm_ipi_signal(int sig)
3488 {
3489 if (current_cpu) {
3490 assert(kvm_immediate_exit);
3491 kvm_cpu_kick(current_cpu);
3492 }
3493 }
3494
3495 void kvm_init_cpu_signals(CPUState *cpu)
3496 {
3497 int r;
3498 sigset_t set;
3499 struct sigaction sigact;
3500
3501 memset(&sigact, 0, sizeof(sigact));
3502 sigact.sa_handler = kvm_ipi_signal;
3503 sigaction(SIG_IPI, &sigact, NULL);
3504
3505 pthread_sigmask(SIG_BLOCK, NULL, &set);
3506 #if defined KVM_HAVE_MCE_INJECTION
3507 sigdelset(&set, SIGBUS);
3508 pthread_sigmask(SIG_SETMASK, &set, NULL);
3509 #endif
3510 sigdelset(&set, SIG_IPI);
3511 if (kvm_immediate_exit) {
3512 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3513 } else {
3514 r = kvm_set_signal_mask(cpu, &set);
3515 }
3516 if (r) {
3517 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3518 exit(1);
3519 }
3520 }
3521
3522 /* Called asynchronously in VCPU thread. */
3523 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3524 {
3525 #ifdef KVM_HAVE_MCE_INJECTION
3526 if (have_sigbus_pending) {
3527 return 1;
3528 }
3529 have_sigbus_pending = true;
3530 pending_sigbus_addr = addr;
3531 pending_sigbus_code = code;
3532 qatomic_set(&cpu->exit_request, 1);
3533 return 0;
3534 #else
3535 return 1;
3536 #endif
3537 }
3538
3539 /* Called synchronously (via signalfd) in main thread. */
3540 int kvm_on_sigbus(int code, void *addr)
3541 {
3542 #ifdef KVM_HAVE_MCE_INJECTION
3543 /* Action required MCE kills the process if SIGBUS is blocked. Because
3544 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3545 * we can only get action optional here.
3546 */
3547 assert(code != BUS_MCEERR_AR);
3548 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3549 return 0;
3550 #else
3551 return 1;
3552 #endif
3553 }
3554
3555 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3556 {
3557 int ret;
3558 struct kvm_create_device create_dev;
3559
3560 create_dev.type = type;
3561 create_dev.fd = -1;
3562 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3563
3564 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3565 return -ENOTSUP;
3566 }
3567
3568 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3569 if (ret) {
3570 return ret;
3571 }
3572
3573 return test ? 0 : create_dev.fd;
3574 }
3575
3576 bool kvm_device_supported(int vmfd, uint64_t type)
3577 {
3578 struct kvm_create_device create_dev = {
3579 .type = type,
3580 .fd = -1,
3581 .flags = KVM_CREATE_DEVICE_TEST,
3582 };
3583
3584 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3585 return false;
3586 }
3587
3588 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3589 }
3590
3591 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3592 {
3593 struct kvm_one_reg reg;
3594 int r;
3595
3596 reg.id = id;
3597 reg.addr = (uintptr_t) source;
3598 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3599 if (r) {
3600 trace_kvm_failed_reg_set(id, strerror(-r));
3601 }
3602 return r;
3603 }
3604
3605 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3606 {
3607 struct kvm_one_reg reg;
3608 int r;
3609
3610 reg.id = id;
3611 reg.addr = (uintptr_t) target;
3612 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3613 if (r) {
3614 trace_kvm_failed_reg_get(id, strerror(-r));
3615 }
3616 return r;
3617 }
3618
3619 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3620 hwaddr start_addr, hwaddr size)
3621 {
3622 KVMState *kvm = KVM_STATE(ms->accelerator);
3623 int i;
3624
3625 for (i = 0; i < kvm->nr_as; ++i) {
3626 if (kvm->as[i].as == as && kvm->as[i].ml) {
3627 size = MIN(kvm_max_slot_size, size);
3628 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3629 start_addr, size);
3630 }
3631 }
3632
3633 return false;
3634 }
3635
3636 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3637 const char *name, void *opaque,
3638 Error **errp)
3639 {
3640 KVMState *s = KVM_STATE(obj);
3641 int64_t value = s->kvm_shadow_mem;
3642
3643 visit_type_int(v, name, &value, errp);
3644 }
3645
3646 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3647 const char *name, void *opaque,
3648 Error **errp)
3649 {
3650 KVMState *s = KVM_STATE(obj);
3651 int64_t value;
3652
3653 if (s->fd != -1) {
3654 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3655 return;
3656 }
3657
3658 if (!visit_type_int(v, name, &value, errp)) {
3659 return;
3660 }
3661
3662 s->kvm_shadow_mem = value;
3663 }
3664
3665 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3666 const char *name, void *opaque,
3667 Error **errp)
3668 {
3669 KVMState *s = KVM_STATE(obj);
3670 OnOffSplit mode;
3671
3672 if (s->fd != -1) {
3673 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3674 return;
3675 }
3676
3677 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3678 return;
3679 }
3680 switch (mode) {
3681 case ON_OFF_SPLIT_ON:
3682 s->kernel_irqchip_allowed = true;
3683 s->kernel_irqchip_required = true;
3684 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3685 break;
3686 case ON_OFF_SPLIT_OFF:
3687 s->kernel_irqchip_allowed = false;
3688 s->kernel_irqchip_required = false;
3689 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3690 break;
3691 case ON_OFF_SPLIT_SPLIT:
3692 s->kernel_irqchip_allowed = true;
3693 s->kernel_irqchip_required = true;
3694 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3695 break;
3696 default:
3697 /* The value was checked in visit_type_OnOffSplit() above. If
3698 * we get here, then something is wrong in QEMU.
3699 */
3700 abort();
3701 }
3702 }
3703
3704 bool kvm_kernel_irqchip_allowed(void)
3705 {
3706 return kvm_state->kernel_irqchip_allowed;
3707 }
3708
3709 bool kvm_kernel_irqchip_required(void)
3710 {
3711 return kvm_state->kernel_irqchip_required;
3712 }
3713
3714 bool kvm_kernel_irqchip_split(void)
3715 {
3716 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3717 }
3718
3719 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3720 const char *name, void *opaque,
3721 Error **errp)
3722 {
3723 KVMState *s = KVM_STATE(obj);
3724 uint32_t value = s->kvm_dirty_ring_size;
3725
3726 visit_type_uint32(v, name, &value, errp);
3727 }
3728
3729 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3730 const char *name, void *opaque,
3731 Error **errp)
3732 {
3733 KVMState *s = KVM_STATE(obj);
3734 uint32_t value;
3735
3736 if (s->fd != -1) {
3737 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3738 return;
3739 }
3740
3741 if (!visit_type_uint32(v, name, &value, errp)) {
3742 return;
3743 }
3744 if (value & (value - 1)) {
3745 error_setg(errp, "dirty-ring-size must be a power of two.");
3746 return;
3747 }
3748
3749 s->kvm_dirty_ring_size = value;
3750 }
3751
3752 static void kvm_accel_instance_init(Object *obj)
3753 {
3754 KVMState *s = KVM_STATE(obj);
3755
3756 s->fd = -1;
3757 s->vmfd = -1;
3758 s->kvm_shadow_mem = -1;
3759 s->kernel_irqchip_allowed = true;
3760 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3761 /* KVM dirty ring is by default off */
3762 s->kvm_dirty_ring_size = 0;
3763 s->kvm_dirty_ring_with_bitmap = false;
3764 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3765 s->notify_window = 0;
3766 s->xen_version = 0;
3767 s->xen_gnttab_max_frames = 64;
3768 s->xen_evtchn_max_pirq = 256;
3769 }
3770
3771 /**
3772 * kvm_gdbstub_sstep_flags():
3773 *
3774 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3775 * support is probed during kvm_init()
3776 */
3777 static int kvm_gdbstub_sstep_flags(void)
3778 {
3779 return kvm_sstep_flags;
3780 }
3781
3782 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3783 {
3784 AccelClass *ac = ACCEL_CLASS(oc);
3785 ac->name = "KVM";
3786 ac->init_machine = kvm_init;
3787 ac->has_memory = kvm_accel_has_memory;
3788 ac->allowed = &kvm_allowed;
3789 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3790
3791 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3792 NULL, kvm_set_kernel_irqchip,
3793 NULL, NULL);
3794 object_class_property_set_description(oc, "kernel-irqchip",
3795 "Configure KVM in-kernel irqchip");
3796
3797 object_class_property_add(oc, "kvm-shadow-mem", "int",
3798 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3799 NULL, NULL);
3800 object_class_property_set_description(oc, "kvm-shadow-mem",
3801 "KVM shadow MMU size");
3802
3803 object_class_property_add(oc, "dirty-ring-size", "uint32",
3804 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3805 NULL, NULL);
3806 object_class_property_set_description(oc, "dirty-ring-size",
3807 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3808
3809 kvm_arch_accel_class_init(oc);
3810 }
3811
3812 static const TypeInfo kvm_accel_type = {
3813 .name = TYPE_KVM_ACCEL,
3814 .parent = TYPE_ACCEL,
3815 .instance_init = kvm_accel_instance_init,
3816 .class_init = kvm_accel_class_init,
3817 .instance_size = sizeof(KVMState),
3818 };
3819
3820 static void kvm_type_init(void)
3821 {
3822 type_register_static(&kvm_accel_type);
3823 }
3824
3825 type_init(kvm_type_init);
3826
3827 typedef struct StatsArgs {
3828 union StatsResultsType {
3829 StatsResultList **stats;
3830 StatsSchemaList **schema;
3831 } result;
3832 strList *names;
3833 Error **errp;
3834 } StatsArgs;
3835
3836 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3837 uint64_t *stats_data,
3838 StatsList *stats_list,
3839 Error **errp)
3840 {
3841
3842 Stats *stats;
3843 uint64List *val_list = NULL;
3844
3845 /* Only add stats that we understand. */
3846 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3847 case KVM_STATS_TYPE_CUMULATIVE:
3848 case KVM_STATS_TYPE_INSTANT:
3849 case KVM_STATS_TYPE_PEAK:
3850 case KVM_STATS_TYPE_LINEAR_HIST:
3851 case KVM_STATS_TYPE_LOG_HIST:
3852 break;
3853 default:
3854 return stats_list;
3855 }
3856
3857 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3858 case KVM_STATS_UNIT_NONE:
3859 case KVM_STATS_UNIT_BYTES:
3860 case KVM_STATS_UNIT_CYCLES:
3861 case KVM_STATS_UNIT_SECONDS:
3862 case KVM_STATS_UNIT_BOOLEAN:
3863 break;
3864 default:
3865 return stats_list;
3866 }
3867
3868 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3869 case KVM_STATS_BASE_POW10:
3870 case KVM_STATS_BASE_POW2:
3871 break;
3872 default:
3873 return stats_list;
3874 }
3875
3876 /* Alloc and populate data list */
3877 stats = g_new0(Stats, 1);
3878 stats->name = g_strdup(pdesc->name);
3879 stats->value = g_new0(StatsValue, 1);;
3880
3881 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3882 stats->value->u.boolean = *stats_data;
3883 stats->value->type = QTYPE_QBOOL;
3884 } else if (pdesc->size == 1) {
3885 stats->value->u.scalar = *stats_data;
3886 stats->value->type = QTYPE_QNUM;
3887 } else {
3888 int i;
3889 for (i = 0; i < pdesc->size; i++) {
3890 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3891 }
3892 stats->value->u.list = val_list;
3893 stats->value->type = QTYPE_QLIST;
3894 }
3895
3896 QAPI_LIST_PREPEND(stats_list, stats);
3897 return stats_list;
3898 }
3899
3900 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3901 StatsSchemaValueList *list,
3902 Error **errp)
3903 {
3904 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3905 schema_entry->value = g_new0(StatsSchemaValue, 1);
3906
3907 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3908 case KVM_STATS_TYPE_CUMULATIVE:
3909 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3910 break;
3911 case KVM_STATS_TYPE_INSTANT:
3912 schema_entry->value->type = STATS_TYPE_INSTANT;
3913 break;
3914 case KVM_STATS_TYPE_PEAK:
3915 schema_entry->value->type = STATS_TYPE_PEAK;
3916 break;
3917 case KVM_STATS_TYPE_LINEAR_HIST:
3918 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3919 schema_entry->value->bucket_size = pdesc->bucket_size;
3920 schema_entry->value->has_bucket_size = true;
3921 break;
3922 case KVM_STATS_TYPE_LOG_HIST:
3923 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3924 break;
3925 default:
3926 goto exit;
3927 }
3928
3929 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3930 case KVM_STATS_UNIT_NONE:
3931 break;
3932 case KVM_STATS_UNIT_BOOLEAN:
3933 schema_entry->value->has_unit = true;
3934 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3935 break;
3936 case KVM_STATS_UNIT_BYTES:
3937 schema_entry->value->has_unit = true;
3938 schema_entry->value->unit = STATS_UNIT_BYTES;
3939 break;
3940 case KVM_STATS_UNIT_CYCLES:
3941 schema_entry->value->has_unit = true;
3942 schema_entry->value->unit = STATS_UNIT_CYCLES;
3943 break;
3944 case KVM_STATS_UNIT_SECONDS:
3945 schema_entry->value->has_unit = true;
3946 schema_entry->value->unit = STATS_UNIT_SECONDS;
3947 break;
3948 default:
3949 goto exit;
3950 }
3951
3952 schema_entry->value->exponent = pdesc->exponent;
3953 if (pdesc->exponent) {
3954 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3955 case KVM_STATS_BASE_POW10:
3956 schema_entry->value->has_base = true;
3957 schema_entry->value->base = 10;
3958 break;
3959 case KVM_STATS_BASE_POW2:
3960 schema_entry->value->has_base = true;
3961 schema_entry->value->base = 2;
3962 break;
3963 default:
3964 goto exit;
3965 }
3966 }
3967
3968 schema_entry->value->name = g_strdup(pdesc->name);
3969 schema_entry->next = list;
3970 return schema_entry;
3971 exit:
3972 g_free(schema_entry->value);
3973 g_free(schema_entry);
3974 return list;
3975 }
3976
3977 /* Cached stats descriptors */
3978 typedef struct StatsDescriptors {
3979 const char *ident; /* cache key, currently the StatsTarget */
3980 struct kvm_stats_desc *kvm_stats_desc;
3981 struct kvm_stats_header kvm_stats_header;
3982 QTAILQ_ENTRY(StatsDescriptors) next;
3983 } StatsDescriptors;
3984
3985 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3986 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3987
3988 /*
3989 * Return the descriptors for 'target', that either have already been read
3990 * or are retrieved from 'stats_fd'.
3991 */
3992 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3993 Error **errp)
3994 {
3995 StatsDescriptors *descriptors;
3996 const char *ident;
3997 struct kvm_stats_desc *kvm_stats_desc;
3998 struct kvm_stats_header *kvm_stats_header;
3999 size_t size_desc;
4000 ssize_t ret;
4001
4002 ident = StatsTarget_str(target);
4003 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4004 if (g_str_equal(descriptors->ident, ident)) {
4005 return descriptors;
4006 }
4007 }
4008
4009 descriptors = g_new0(StatsDescriptors, 1);
4010
4011 /* Read stats header */
4012 kvm_stats_header = &descriptors->kvm_stats_header;
4013 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4014 if (ret != sizeof(*kvm_stats_header)) {
4015 error_setg(errp, "KVM stats: failed to read stats header: "
4016 "expected %zu actual %zu",
4017 sizeof(*kvm_stats_header), ret);
4018 g_free(descriptors);
4019 return NULL;
4020 }
4021 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4022
4023 /* Read stats descriptors */
4024 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4025 ret = pread(stats_fd, kvm_stats_desc,
4026 size_desc * kvm_stats_header->num_desc,
4027 kvm_stats_header->desc_offset);
4028
4029 if (ret != size_desc * kvm_stats_header->num_desc) {
4030 error_setg(errp, "KVM stats: failed to read stats descriptors: "
4031 "expected %zu actual %zu",
4032 size_desc * kvm_stats_header->num_desc, ret);
4033 g_free(descriptors);
4034 g_free(kvm_stats_desc);
4035 return NULL;
4036 }
4037 descriptors->kvm_stats_desc = kvm_stats_desc;
4038 descriptors->ident = ident;
4039 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4040 return descriptors;
4041 }
4042
4043 static void query_stats(StatsResultList **result, StatsTarget target,
4044 strList *names, int stats_fd, CPUState *cpu,
4045 Error **errp)
4046 {
4047 struct kvm_stats_desc *kvm_stats_desc;
4048 struct kvm_stats_header *kvm_stats_header;
4049 StatsDescriptors *descriptors;
4050 g_autofree uint64_t *stats_data = NULL;
4051 struct kvm_stats_desc *pdesc;
4052 StatsList *stats_list = NULL;
4053 size_t size_desc, size_data = 0;
4054 ssize_t ret;
4055 int i;
4056
4057 descriptors = find_stats_descriptors(target, stats_fd, errp);
4058 if (!descriptors) {
4059 return;
4060 }
4061
4062 kvm_stats_header = &descriptors->kvm_stats_header;
4063 kvm_stats_desc = descriptors->kvm_stats_desc;
4064 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4065
4066 /* Tally the total data size; read schema data */
4067 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4068 pdesc = (void *)kvm_stats_desc + i * size_desc;
4069 size_data += pdesc->size * sizeof(*stats_data);
4070 }
4071
4072 stats_data = g_malloc0(size_data);
4073 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4074
4075 if (ret != size_data) {
4076 error_setg(errp, "KVM stats: failed to read data: "
4077 "expected %zu actual %zu", size_data, ret);
4078 return;
4079 }
4080
4081 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4082 uint64_t *stats;
4083 pdesc = (void *)kvm_stats_desc + i * size_desc;
4084
4085 /* Add entry to the list */
4086 stats = (void *)stats_data + pdesc->offset;
4087 if (!apply_str_list_filter(pdesc->name, names)) {
4088 continue;
4089 }
4090 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4091 }
4092
4093 if (!stats_list) {
4094 return;
4095 }
4096
4097 switch (target) {
4098 case STATS_TARGET_VM:
4099 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4100 break;
4101 case STATS_TARGET_VCPU:
4102 add_stats_entry(result, STATS_PROVIDER_KVM,
4103 cpu->parent_obj.canonical_path,
4104 stats_list);
4105 break;
4106 default:
4107 g_assert_not_reached();
4108 }
4109 }
4110
4111 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4112 int stats_fd, Error **errp)
4113 {
4114 struct kvm_stats_desc *kvm_stats_desc;
4115 struct kvm_stats_header *kvm_stats_header;
4116 StatsDescriptors *descriptors;
4117 struct kvm_stats_desc *pdesc;
4118 StatsSchemaValueList *stats_list = NULL;
4119 size_t size_desc;
4120 int i;
4121
4122 descriptors = find_stats_descriptors(target, stats_fd, errp);
4123 if (!descriptors) {
4124 return;
4125 }
4126
4127 kvm_stats_header = &descriptors->kvm_stats_header;
4128 kvm_stats_desc = descriptors->kvm_stats_desc;
4129 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4130
4131 /* Tally the total data size; read schema data */
4132 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4133 pdesc = (void *)kvm_stats_desc + i * size_desc;
4134 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4135 }
4136
4137 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4138 }
4139
4140 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4141 {
4142 int stats_fd = cpu->kvm_vcpu_stats_fd;
4143 Error *local_err = NULL;
4144
4145 if (stats_fd == -1) {
4146 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4147 error_propagate(kvm_stats_args->errp, local_err);
4148 return;
4149 }
4150 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4151 kvm_stats_args->names, stats_fd, cpu,
4152 kvm_stats_args->errp);
4153 }
4154
4155 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4156 {
4157 int stats_fd = cpu->kvm_vcpu_stats_fd;
4158 Error *local_err = NULL;
4159
4160 if (stats_fd == -1) {
4161 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4162 error_propagate(kvm_stats_args->errp, local_err);
4163 return;
4164 }
4165 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4166 kvm_stats_args->errp);
4167 }
4168
4169 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4170 strList *names, strList *targets, Error **errp)
4171 {
4172 KVMState *s = kvm_state;
4173 CPUState *cpu;
4174 int stats_fd;
4175
4176 switch (target) {
4177 case STATS_TARGET_VM:
4178 {
4179 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4180 if (stats_fd == -1) {
4181 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4182 return;
4183 }
4184 query_stats(result, target, names, stats_fd, NULL, errp);
4185 close(stats_fd);
4186 break;
4187 }
4188 case STATS_TARGET_VCPU:
4189 {
4190 StatsArgs stats_args;
4191 stats_args.result.stats = result;
4192 stats_args.names = names;
4193 stats_args.errp = errp;
4194 CPU_FOREACH(cpu) {
4195 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4196 continue;
4197 }
4198 query_stats_vcpu(cpu, &stats_args);
4199 }
4200 break;
4201 }
4202 default:
4203 break;
4204 }
4205 }
4206
4207 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4208 {
4209 StatsArgs stats_args;
4210 KVMState *s = kvm_state;
4211 int stats_fd;
4212
4213 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4214 if (stats_fd == -1) {
4215 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4216 return;
4217 }
4218 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4219 close(stats_fd);
4220
4221 if (first_cpu) {
4222 stats_args.result.schema = result;
4223 stats_args.errp = errp;
4224 query_stats_schema_vcpu(first_cpu, &stats_args);
4225 }
4226 }