]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
cirrus: Building freebsd in a single shot
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "sysemu/reset.h"
47
48 #include "hw/boards.h"
49
50 /* This check must be after config-host.h is included */
51 #ifdef CONFIG_EVENTFD
52 #include <sys/eventfd.h>
53 #endif
54
55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
56 * need to use the real host PAGE_SIZE, as that's what KVM will use.
57 */
58 #define PAGE_SIZE qemu_real_host_page_size
59
60 //#define DEBUG_KVM
61
62 #ifdef DEBUG_KVM
63 #define DPRINTF(fmt, ...) \
64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...) \
67 do { } while (0)
68 #endif
69
70 #define KVM_MSI_HASHTAB_SIZE 256
71
72 struct KVMParkedVcpu {
73 unsigned long vcpu_id;
74 int kvm_fd;
75 QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77
78 struct KVMState
79 {
80 AccelState parent_obj;
81
82 int nr_slots;
83 int fd;
84 int vmfd;
85 int coalesced_mmio;
86 int coalesced_pio;
87 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
88 bool coalesced_flush_in_progress;
89 int vcpu_events;
90 int robust_singlestep;
91 int debugregs;
92 #ifdef KVM_CAP_SET_GUEST_DEBUG
93 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
94 #endif
95 int max_nested_state_len;
96 int many_ioeventfds;
97 int intx_set_mask;
98 int kvm_shadow_mem;
99 bool kernel_irqchip_allowed;
100 bool kernel_irqchip_required;
101 OnOffAuto kernel_irqchip_split;
102 bool sync_mmu;
103 uint64_t manual_dirty_log_protect;
104 /* The man page (and posix) say ioctl numbers are signed int, but
105 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
106 * unsigned, and treating them as signed here can break things */
107 unsigned irq_set_ioctl;
108 unsigned int sigmask_len;
109 GHashTable *gsimap;
110 #ifdef KVM_CAP_IRQ_ROUTING
111 struct kvm_irq_routing *irq_routes;
112 int nr_allocated_irq_routes;
113 unsigned long *used_gsi_bitmap;
114 unsigned int gsi_count;
115 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
116 #endif
117 KVMMemoryListener memory_listener;
118 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
119
120 /* memory encryption */
121 void *memcrypt_handle;
122 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
123
124 /* For "info mtree -f" to tell if an MR is registered in KVM */
125 int nr_as;
126 struct KVMAs {
127 KVMMemoryListener *ml;
128 AddressSpace *as;
129 } *as;
130 };
131
132 KVMState *kvm_state;
133 bool kvm_kernel_irqchip;
134 bool kvm_split_irqchip;
135 bool kvm_async_interrupts_allowed;
136 bool kvm_halt_in_kernel_allowed;
137 bool kvm_eventfds_allowed;
138 bool kvm_irqfds_allowed;
139 bool kvm_resamplefds_allowed;
140 bool kvm_msi_via_irqfd_allowed;
141 bool kvm_gsi_routing_allowed;
142 bool kvm_gsi_direct_mapping;
143 bool kvm_allowed;
144 bool kvm_readonly_mem_allowed;
145 bool kvm_vm_attributes_allowed;
146 bool kvm_direct_msi_allowed;
147 bool kvm_ioeventfd_any_length_allowed;
148 bool kvm_msi_use_devid;
149 static bool kvm_immediate_exit;
150 static hwaddr kvm_max_slot_size = ~0;
151
152 static const KVMCapabilityInfo kvm_required_capabilites[] = {
153 KVM_CAP_INFO(USER_MEMORY),
154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
156 KVM_CAP_LAST_INFO
157 };
158
159 static NotifierList kvm_irqchip_change_notifiers =
160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
161
162 struct KVMResampleFd {
163 int gsi;
164 EventNotifier *resample_event;
165 QLIST_ENTRY(KVMResampleFd) node;
166 };
167 typedef struct KVMResampleFd KVMResampleFd;
168
169 /*
170 * Only used with split irqchip where we need to do the resample fd
171 * kick for the kernel from userspace.
172 */
173 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
174 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
175
176 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
177 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
178
179 static inline void kvm_resample_fd_remove(int gsi)
180 {
181 KVMResampleFd *rfd;
182
183 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
184 if (rfd->gsi == gsi) {
185 QLIST_REMOVE(rfd, node);
186 g_free(rfd);
187 break;
188 }
189 }
190 }
191
192 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
193 {
194 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
195
196 rfd->gsi = gsi;
197 rfd->resample_event = event;
198
199 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
200 }
201
202 void kvm_resample_fd_notify(int gsi)
203 {
204 KVMResampleFd *rfd;
205
206 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
207 if (rfd->gsi == gsi) {
208 event_notifier_set(rfd->resample_event);
209 trace_kvm_resample_fd_notify(gsi);
210 return;
211 }
212 }
213 }
214
215 int kvm_get_max_memslots(void)
216 {
217 KVMState *s = KVM_STATE(current_accel());
218
219 return s->nr_slots;
220 }
221
222 bool kvm_memcrypt_enabled(void)
223 {
224 if (kvm_state && kvm_state->memcrypt_handle) {
225 return true;
226 }
227
228 return false;
229 }
230
231 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
232 {
233 if (kvm_state->memcrypt_handle &&
234 kvm_state->memcrypt_encrypt_data) {
235 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
236 ptr, len);
237 }
238
239 return 1;
240 }
241
242 /* Called with KVMMemoryListener.slots_lock held */
243 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
244 {
245 KVMState *s = kvm_state;
246 int i;
247
248 for (i = 0; i < s->nr_slots; i++) {
249 if (kml->slots[i].memory_size == 0) {
250 return &kml->slots[i];
251 }
252 }
253
254 return NULL;
255 }
256
257 bool kvm_has_free_slot(MachineState *ms)
258 {
259 KVMState *s = KVM_STATE(ms->accelerator);
260 bool result;
261 KVMMemoryListener *kml = &s->memory_listener;
262
263 kvm_slots_lock(kml);
264 result = !!kvm_get_free_slot(kml);
265 kvm_slots_unlock(kml);
266
267 return result;
268 }
269
270 /* Called with KVMMemoryListener.slots_lock held */
271 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
272 {
273 KVMSlot *slot = kvm_get_free_slot(kml);
274
275 if (slot) {
276 return slot;
277 }
278
279 fprintf(stderr, "%s: no free slot available\n", __func__);
280 abort();
281 }
282
283 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
284 hwaddr start_addr,
285 hwaddr size)
286 {
287 KVMState *s = kvm_state;
288 int i;
289
290 for (i = 0; i < s->nr_slots; i++) {
291 KVMSlot *mem = &kml->slots[i];
292
293 if (start_addr == mem->start_addr && size == mem->memory_size) {
294 return mem;
295 }
296 }
297
298 return NULL;
299 }
300
301 /*
302 * Calculate and align the start address and the size of the section.
303 * Return the size. If the size is 0, the aligned section is empty.
304 */
305 static hwaddr kvm_align_section(MemoryRegionSection *section,
306 hwaddr *start)
307 {
308 hwaddr size = int128_get64(section->size);
309 hwaddr delta, aligned;
310
311 /* kvm works in page size chunks, but the function may be called
312 with sub-page size and unaligned start address. Pad the start
313 address to next and truncate size to previous page boundary. */
314 aligned = ROUND_UP(section->offset_within_address_space,
315 qemu_real_host_page_size);
316 delta = aligned - section->offset_within_address_space;
317 *start = aligned;
318 if (delta > size) {
319 return 0;
320 }
321
322 return (size - delta) & qemu_real_host_page_mask;
323 }
324
325 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
326 hwaddr *phys_addr)
327 {
328 KVMMemoryListener *kml = &s->memory_listener;
329 int i, ret = 0;
330
331 kvm_slots_lock(kml);
332 for (i = 0; i < s->nr_slots; i++) {
333 KVMSlot *mem = &kml->slots[i];
334
335 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
336 *phys_addr = mem->start_addr + (ram - mem->ram);
337 ret = 1;
338 break;
339 }
340 }
341 kvm_slots_unlock(kml);
342
343 return ret;
344 }
345
346 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
347 {
348 KVMState *s = kvm_state;
349 struct kvm_userspace_memory_region mem;
350 int ret;
351
352 mem.slot = slot->slot | (kml->as_id << 16);
353 mem.guest_phys_addr = slot->start_addr;
354 mem.userspace_addr = (unsigned long)slot->ram;
355 mem.flags = slot->flags;
356
357 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
358 /* Set the slot size to 0 before setting the slot to the desired
359 * value. This is needed based on KVM commit 75d61fbc. */
360 mem.memory_size = 0;
361 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
362 if (ret < 0) {
363 goto err;
364 }
365 }
366 mem.memory_size = slot->memory_size;
367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
368 slot->old_flags = mem.flags;
369 err:
370 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
371 mem.memory_size, mem.userspace_addr, ret);
372 if (ret < 0) {
373 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
374 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
375 __func__, mem.slot, slot->start_addr,
376 (uint64_t)mem.memory_size, strerror(errno));
377 }
378 return ret;
379 }
380
381 int kvm_destroy_vcpu(CPUState *cpu)
382 {
383 KVMState *s = kvm_state;
384 long mmap_size;
385 struct KVMParkedVcpu *vcpu = NULL;
386 int ret = 0;
387
388 DPRINTF("kvm_destroy_vcpu\n");
389
390 ret = kvm_arch_destroy_vcpu(cpu);
391 if (ret < 0) {
392 goto err;
393 }
394
395 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
396 if (mmap_size < 0) {
397 ret = mmap_size;
398 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
399 goto err;
400 }
401
402 ret = munmap(cpu->kvm_run, mmap_size);
403 if (ret < 0) {
404 goto err;
405 }
406
407 vcpu = g_malloc0(sizeof(*vcpu));
408 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
409 vcpu->kvm_fd = cpu->kvm_fd;
410 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
411 err:
412 return ret;
413 }
414
415 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
416 {
417 struct KVMParkedVcpu *cpu;
418
419 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
420 if (cpu->vcpu_id == vcpu_id) {
421 int kvm_fd;
422
423 QLIST_REMOVE(cpu, node);
424 kvm_fd = cpu->kvm_fd;
425 g_free(cpu);
426 return kvm_fd;
427 }
428 }
429
430 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
431 }
432
433 int kvm_init_vcpu(CPUState *cpu)
434 {
435 KVMState *s = kvm_state;
436 long mmap_size;
437 int ret;
438
439 DPRINTF("kvm_init_vcpu\n");
440
441 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
442 if (ret < 0) {
443 DPRINTF("kvm_create_vcpu failed\n");
444 goto err;
445 }
446
447 cpu->kvm_fd = ret;
448 cpu->kvm_state = s;
449 cpu->vcpu_dirty = true;
450
451 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
452 if (mmap_size < 0) {
453 ret = mmap_size;
454 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
455 goto err;
456 }
457
458 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
459 cpu->kvm_fd, 0);
460 if (cpu->kvm_run == MAP_FAILED) {
461 ret = -errno;
462 DPRINTF("mmap'ing vcpu state failed\n");
463 goto err;
464 }
465
466 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
467 s->coalesced_mmio_ring =
468 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
469 }
470
471 ret = kvm_arch_init_vcpu(cpu);
472 err:
473 return ret;
474 }
475
476 /*
477 * dirty pages logging control
478 */
479
480 static int kvm_mem_flags(MemoryRegion *mr)
481 {
482 bool readonly = mr->readonly || memory_region_is_romd(mr);
483 int flags = 0;
484
485 if (memory_region_get_dirty_log_mask(mr) != 0) {
486 flags |= KVM_MEM_LOG_DIRTY_PAGES;
487 }
488 if (readonly && kvm_readonly_mem_allowed) {
489 flags |= KVM_MEM_READONLY;
490 }
491 return flags;
492 }
493
494 /* Called with KVMMemoryListener.slots_lock held */
495 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
496 MemoryRegion *mr)
497 {
498 mem->flags = kvm_mem_flags(mr);
499
500 /* If nothing changed effectively, no need to issue ioctl */
501 if (mem->flags == mem->old_flags) {
502 return 0;
503 }
504
505 return kvm_set_user_memory_region(kml, mem, false);
506 }
507
508 static int kvm_section_update_flags(KVMMemoryListener *kml,
509 MemoryRegionSection *section)
510 {
511 hwaddr start_addr, size, slot_size;
512 KVMSlot *mem;
513 int ret = 0;
514
515 size = kvm_align_section(section, &start_addr);
516 if (!size) {
517 return 0;
518 }
519
520 kvm_slots_lock(kml);
521
522 while (size && !ret) {
523 slot_size = MIN(kvm_max_slot_size, size);
524 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
525 if (!mem) {
526 /* We don't have a slot if we want to trap every access. */
527 goto out;
528 }
529
530 ret = kvm_slot_update_flags(kml, mem, section->mr);
531 start_addr += slot_size;
532 size -= slot_size;
533 }
534
535 out:
536 kvm_slots_unlock(kml);
537 return ret;
538 }
539
540 static void kvm_log_start(MemoryListener *listener,
541 MemoryRegionSection *section,
542 int old, int new)
543 {
544 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
545 int r;
546
547 if (old != 0) {
548 return;
549 }
550
551 r = kvm_section_update_flags(kml, section);
552 if (r < 0) {
553 abort();
554 }
555 }
556
557 static void kvm_log_stop(MemoryListener *listener,
558 MemoryRegionSection *section,
559 int old, int new)
560 {
561 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
562 int r;
563
564 if (new != 0) {
565 return;
566 }
567
568 r = kvm_section_update_flags(kml, section);
569 if (r < 0) {
570 abort();
571 }
572 }
573
574 /* get kvm's dirty pages bitmap and update qemu's */
575 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
576 unsigned long *bitmap)
577 {
578 ram_addr_t start = section->offset_within_region +
579 memory_region_get_ram_addr(section->mr);
580 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
581
582 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
583 return 0;
584 }
585
586 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
587
588 /* Allocate the dirty bitmap for a slot */
589 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
590 {
591 /*
592 * XXX bad kernel interface alert
593 * For dirty bitmap, kernel allocates array of size aligned to
594 * bits-per-long. But for case when the kernel is 64bits and
595 * the userspace is 32bits, userspace can't align to the same
596 * bits-per-long, since sizeof(long) is different between kernel
597 * and user space. This way, userspace will provide buffer which
598 * may be 4 bytes less than the kernel will use, resulting in
599 * userspace memory corruption (which is not detectable by valgrind
600 * too, in most cases).
601 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
602 * a hope that sizeof(long) won't become >8 any time soon.
603 */
604 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
605 /*HOST_LONG_BITS*/ 64) / 8;
606 mem->dirty_bmap = g_malloc0(bitmap_size);
607 }
608
609 /**
610 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
611 *
612 * This function will first try to fetch dirty bitmap from the kernel,
613 * and then updates qemu's dirty bitmap.
614 *
615 * NOTE: caller must be with kml->slots_lock held.
616 *
617 * @kml: the KVM memory listener object
618 * @section: the memory section to sync the dirty bitmap with
619 */
620 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
621 MemoryRegionSection *section)
622 {
623 KVMState *s = kvm_state;
624 struct kvm_dirty_log d = {};
625 KVMSlot *mem;
626 hwaddr start_addr, size;
627 hwaddr slot_size, slot_offset = 0;
628 int ret = 0;
629
630 size = kvm_align_section(section, &start_addr);
631 while (size) {
632 MemoryRegionSection subsection = *section;
633
634 slot_size = MIN(kvm_max_slot_size, size);
635 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
636 if (!mem) {
637 /* We don't have a slot if we want to trap every access. */
638 goto out;
639 }
640
641 if (!mem->dirty_bmap) {
642 /* Allocate on the first log_sync, once and for all */
643 kvm_memslot_init_dirty_bitmap(mem);
644 }
645
646 d.dirty_bitmap = mem->dirty_bmap;
647 d.slot = mem->slot | (kml->as_id << 16);
648 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
649 DPRINTF("ioctl failed %d\n", errno);
650 ret = -1;
651 goto out;
652 }
653
654 subsection.offset_within_region += slot_offset;
655 subsection.size = int128_make64(slot_size);
656 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
657
658 slot_offset += slot_size;
659 start_addr += slot_size;
660 size -= slot_size;
661 }
662 out:
663 return ret;
664 }
665
666 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
667 #define KVM_CLEAR_LOG_SHIFT 6
668 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
669 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
670
671 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
672 uint64_t size)
673 {
674 KVMState *s = kvm_state;
675 uint64_t end, bmap_start, start_delta, bmap_npages;
676 struct kvm_clear_dirty_log d;
677 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
678 int ret;
679
680 /*
681 * We need to extend either the start or the size or both to
682 * satisfy the KVM interface requirement. Firstly, do the start
683 * page alignment on 64 host pages
684 */
685 bmap_start = start & KVM_CLEAR_LOG_MASK;
686 start_delta = start - bmap_start;
687 bmap_start /= psize;
688
689 /*
690 * The kernel interface has restriction on the size too, that either:
691 *
692 * (1) the size is 64 host pages aligned (just like the start), or
693 * (2) the size fills up until the end of the KVM memslot.
694 */
695 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
696 << KVM_CLEAR_LOG_SHIFT;
697 end = mem->memory_size / psize;
698 if (bmap_npages > end - bmap_start) {
699 bmap_npages = end - bmap_start;
700 }
701 start_delta /= psize;
702
703 /*
704 * Prepare the bitmap to clear dirty bits. Here we must guarantee
705 * that we won't clear any unknown dirty bits otherwise we might
706 * accidentally clear some set bits which are not yet synced from
707 * the kernel into QEMU's bitmap, then we'll lose track of the
708 * guest modifications upon those pages (which can directly lead
709 * to guest data loss or panic after migration).
710 *
711 * Layout of the KVMSlot.dirty_bmap:
712 *
713 * |<-------- bmap_npages -----------..>|
714 * [1]
715 * start_delta size
716 * |----------------|-------------|------------------|------------|
717 * ^ ^ ^ ^
718 * | | | |
719 * start bmap_start (start) end
720 * of memslot of memslot
721 *
722 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
723 */
724
725 assert(bmap_start % BITS_PER_LONG == 0);
726 /* We should never do log_clear before log_sync */
727 assert(mem->dirty_bmap);
728 if (start_delta) {
729 /* Slow path - we need to manipulate a temp bitmap */
730 bmap_clear = bitmap_new(bmap_npages);
731 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
732 bmap_start, start_delta + size / psize);
733 /*
734 * We need to fill the holes at start because that was not
735 * specified by the caller and we extended the bitmap only for
736 * 64 pages alignment
737 */
738 bitmap_clear(bmap_clear, 0, start_delta);
739 d.dirty_bitmap = bmap_clear;
740 } else {
741 /* Fast path - start address aligns well with BITS_PER_LONG */
742 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
743 }
744
745 d.first_page = bmap_start;
746 /* It should never overflow. If it happens, say something */
747 assert(bmap_npages <= UINT32_MAX);
748 d.num_pages = bmap_npages;
749 d.slot = mem->slot | (as_id << 16);
750
751 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
752 ret = -errno;
753 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
754 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
755 __func__, d.slot, (uint64_t)d.first_page,
756 (uint32_t)d.num_pages, ret);
757 } else {
758 ret = 0;
759 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
760 }
761
762 /*
763 * After we have updated the remote dirty bitmap, we update the
764 * cached bitmap as well for the memslot, then if another user
765 * clears the same region we know we shouldn't clear it again on
766 * the remote otherwise it's data loss as well.
767 */
768 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
769 size / psize);
770 /* This handles the NULL case well */
771 g_free(bmap_clear);
772 return ret;
773 }
774
775
776 /**
777 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
778 *
779 * NOTE: this will be a no-op if we haven't enabled manual dirty log
780 * protection in the host kernel because in that case this operation
781 * will be done within log_sync().
782 *
783 * @kml: the kvm memory listener
784 * @section: the memory range to clear dirty bitmap
785 */
786 static int kvm_physical_log_clear(KVMMemoryListener *kml,
787 MemoryRegionSection *section)
788 {
789 KVMState *s = kvm_state;
790 uint64_t start, size, offset, count;
791 KVMSlot *mem;
792 int ret = 0, i;
793
794 if (!s->manual_dirty_log_protect) {
795 /* No need to do explicit clear */
796 return ret;
797 }
798
799 start = section->offset_within_address_space;
800 size = int128_get64(section->size);
801
802 if (!size) {
803 /* Nothing more we can do... */
804 return ret;
805 }
806
807 kvm_slots_lock(kml);
808
809 for (i = 0; i < s->nr_slots; i++) {
810 mem = &kml->slots[i];
811 /* Discard slots that are empty or do not overlap the section */
812 if (!mem->memory_size ||
813 mem->start_addr > start + size - 1 ||
814 start > mem->start_addr + mem->memory_size - 1) {
815 continue;
816 }
817
818 if (start >= mem->start_addr) {
819 /* The slot starts before section or is aligned to it. */
820 offset = start - mem->start_addr;
821 count = MIN(mem->memory_size - offset, size);
822 } else {
823 /* The slot starts after section. */
824 offset = 0;
825 count = MIN(mem->memory_size, size - (mem->start_addr - start));
826 }
827 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
828 if (ret < 0) {
829 break;
830 }
831 }
832
833 kvm_slots_unlock(kml);
834
835 return ret;
836 }
837
838 static void kvm_coalesce_mmio_region(MemoryListener *listener,
839 MemoryRegionSection *secion,
840 hwaddr start, hwaddr size)
841 {
842 KVMState *s = kvm_state;
843
844 if (s->coalesced_mmio) {
845 struct kvm_coalesced_mmio_zone zone;
846
847 zone.addr = start;
848 zone.size = size;
849 zone.pad = 0;
850
851 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
852 }
853 }
854
855 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
856 MemoryRegionSection *secion,
857 hwaddr start, hwaddr size)
858 {
859 KVMState *s = kvm_state;
860
861 if (s->coalesced_mmio) {
862 struct kvm_coalesced_mmio_zone zone;
863
864 zone.addr = start;
865 zone.size = size;
866 zone.pad = 0;
867
868 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
869 }
870 }
871
872 static void kvm_coalesce_pio_add(MemoryListener *listener,
873 MemoryRegionSection *section,
874 hwaddr start, hwaddr size)
875 {
876 KVMState *s = kvm_state;
877
878 if (s->coalesced_pio) {
879 struct kvm_coalesced_mmio_zone zone;
880
881 zone.addr = start;
882 zone.size = size;
883 zone.pio = 1;
884
885 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
886 }
887 }
888
889 static void kvm_coalesce_pio_del(MemoryListener *listener,
890 MemoryRegionSection *section,
891 hwaddr start, hwaddr size)
892 {
893 KVMState *s = kvm_state;
894
895 if (s->coalesced_pio) {
896 struct kvm_coalesced_mmio_zone zone;
897
898 zone.addr = start;
899 zone.size = size;
900 zone.pio = 1;
901
902 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
903 }
904 }
905
906 static MemoryListener kvm_coalesced_pio_listener = {
907 .coalesced_io_add = kvm_coalesce_pio_add,
908 .coalesced_io_del = kvm_coalesce_pio_del,
909 };
910
911 int kvm_check_extension(KVMState *s, unsigned int extension)
912 {
913 int ret;
914
915 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
916 if (ret < 0) {
917 ret = 0;
918 }
919
920 return ret;
921 }
922
923 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
924 {
925 int ret;
926
927 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
928 if (ret < 0) {
929 /* VM wide version not implemented, use global one instead */
930 ret = kvm_check_extension(s, extension);
931 }
932
933 return ret;
934 }
935
936 typedef struct HWPoisonPage {
937 ram_addr_t ram_addr;
938 QLIST_ENTRY(HWPoisonPage) list;
939 } HWPoisonPage;
940
941 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
942 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
943
944 static void kvm_unpoison_all(void *param)
945 {
946 HWPoisonPage *page, *next_page;
947
948 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
949 QLIST_REMOVE(page, list);
950 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
951 g_free(page);
952 }
953 }
954
955 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
956 {
957 HWPoisonPage *page;
958
959 QLIST_FOREACH(page, &hwpoison_page_list, list) {
960 if (page->ram_addr == ram_addr) {
961 return;
962 }
963 }
964 page = g_new(HWPoisonPage, 1);
965 page->ram_addr = ram_addr;
966 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
967 }
968
969 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
970 {
971 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
972 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
973 * endianness, but the memory core hands them in target endianness.
974 * For example, PPC is always treated as big-endian even if running
975 * on KVM and on PPC64LE. Correct here.
976 */
977 switch (size) {
978 case 2:
979 val = bswap16(val);
980 break;
981 case 4:
982 val = bswap32(val);
983 break;
984 }
985 #endif
986 return val;
987 }
988
989 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
990 bool assign, uint32_t size, bool datamatch)
991 {
992 int ret;
993 struct kvm_ioeventfd iofd = {
994 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
995 .addr = addr,
996 .len = size,
997 .flags = 0,
998 .fd = fd,
999 };
1000
1001 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1002 datamatch);
1003 if (!kvm_enabled()) {
1004 return -ENOSYS;
1005 }
1006
1007 if (datamatch) {
1008 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1009 }
1010 if (!assign) {
1011 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1012 }
1013
1014 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1015
1016 if (ret < 0) {
1017 return -errno;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1024 bool assign, uint32_t size, bool datamatch)
1025 {
1026 struct kvm_ioeventfd kick = {
1027 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1028 .addr = addr,
1029 .flags = KVM_IOEVENTFD_FLAG_PIO,
1030 .len = size,
1031 .fd = fd,
1032 };
1033 int r;
1034 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1035 if (!kvm_enabled()) {
1036 return -ENOSYS;
1037 }
1038 if (datamatch) {
1039 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1040 }
1041 if (!assign) {
1042 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1043 }
1044 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1045 if (r < 0) {
1046 return r;
1047 }
1048 return 0;
1049 }
1050
1051
1052 static int kvm_check_many_ioeventfds(void)
1053 {
1054 /* Userspace can use ioeventfd for io notification. This requires a host
1055 * that supports eventfd(2) and an I/O thread; since eventfd does not
1056 * support SIGIO it cannot interrupt the vcpu.
1057 *
1058 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1059 * can avoid creating too many ioeventfds.
1060 */
1061 #if defined(CONFIG_EVENTFD)
1062 int ioeventfds[7];
1063 int i, ret = 0;
1064 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1065 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1066 if (ioeventfds[i] < 0) {
1067 break;
1068 }
1069 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1070 if (ret < 0) {
1071 close(ioeventfds[i]);
1072 break;
1073 }
1074 }
1075
1076 /* Decide whether many devices are supported or not */
1077 ret = i == ARRAY_SIZE(ioeventfds);
1078
1079 while (i-- > 0) {
1080 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1081 close(ioeventfds[i]);
1082 }
1083 return ret;
1084 #else
1085 return 0;
1086 #endif
1087 }
1088
1089 static const KVMCapabilityInfo *
1090 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1091 {
1092 while (list->name) {
1093 if (!kvm_check_extension(s, list->value)) {
1094 return list;
1095 }
1096 list++;
1097 }
1098 return NULL;
1099 }
1100
1101 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1102 {
1103 g_assert(
1104 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1105 );
1106 kvm_max_slot_size = max_slot_size;
1107 }
1108
1109 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1110 MemoryRegionSection *section, bool add)
1111 {
1112 KVMSlot *mem;
1113 int err;
1114 MemoryRegion *mr = section->mr;
1115 bool writeable = !mr->readonly && !mr->rom_device;
1116 hwaddr start_addr, size, slot_size;
1117 void *ram;
1118
1119 if (!memory_region_is_ram(mr)) {
1120 if (writeable || !kvm_readonly_mem_allowed) {
1121 return;
1122 } else if (!mr->romd_mode) {
1123 /* If the memory device is not in romd_mode, then we actually want
1124 * to remove the kvm memory slot so all accesses will trap. */
1125 add = false;
1126 }
1127 }
1128
1129 size = kvm_align_section(section, &start_addr);
1130 if (!size) {
1131 return;
1132 }
1133
1134 /* use aligned delta to align the ram address */
1135 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1136 (start_addr - section->offset_within_address_space);
1137
1138 kvm_slots_lock(kml);
1139
1140 if (!add) {
1141 do {
1142 slot_size = MIN(kvm_max_slot_size, size);
1143 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1144 if (!mem) {
1145 goto out;
1146 }
1147 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1148 kvm_physical_sync_dirty_bitmap(kml, section);
1149 }
1150
1151 /* unregister the slot */
1152 g_free(mem->dirty_bmap);
1153 mem->dirty_bmap = NULL;
1154 mem->memory_size = 0;
1155 mem->flags = 0;
1156 err = kvm_set_user_memory_region(kml, mem, false);
1157 if (err) {
1158 fprintf(stderr, "%s: error unregistering slot: %s\n",
1159 __func__, strerror(-err));
1160 abort();
1161 }
1162 start_addr += slot_size;
1163 size -= slot_size;
1164 } while (size);
1165 goto out;
1166 }
1167
1168 /* register the new slot */
1169 do {
1170 slot_size = MIN(kvm_max_slot_size, size);
1171 mem = kvm_alloc_slot(kml);
1172 mem->memory_size = slot_size;
1173 mem->start_addr = start_addr;
1174 mem->ram = ram;
1175 mem->flags = kvm_mem_flags(mr);
1176
1177 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1178 /*
1179 * Reallocate the bmap; it means it doesn't disappear in
1180 * middle of a migrate.
1181 */
1182 kvm_memslot_init_dirty_bitmap(mem);
1183 }
1184 err = kvm_set_user_memory_region(kml, mem, true);
1185 if (err) {
1186 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1187 strerror(-err));
1188 abort();
1189 }
1190 start_addr += slot_size;
1191 ram += slot_size;
1192 size -= slot_size;
1193 } while (size);
1194
1195 out:
1196 kvm_slots_unlock(kml);
1197 }
1198
1199 static void kvm_region_add(MemoryListener *listener,
1200 MemoryRegionSection *section)
1201 {
1202 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1203
1204 memory_region_ref(section->mr);
1205 kvm_set_phys_mem(kml, section, true);
1206 }
1207
1208 static void kvm_region_del(MemoryListener *listener,
1209 MemoryRegionSection *section)
1210 {
1211 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1212
1213 kvm_set_phys_mem(kml, section, false);
1214 memory_region_unref(section->mr);
1215 }
1216
1217 static void kvm_log_sync(MemoryListener *listener,
1218 MemoryRegionSection *section)
1219 {
1220 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1221 int r;
1222
1223 kvm_slots_lock(kml);
1224 r = kvm_physical_sync_dirty_bitmap(kml, section);
1225 kvm_slots_unlock(kml);
1226 if (r < 0) {
1227 abort();
1228 }
1229 }
1230
1231 static void kvm_log_clear(MemoryListener *listener,
1232 MemoryRegionSection *section)
1233 {
1234 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1235 int r;
1236
1237 r = kvm_physical_log_clear(kml, section);
1238 if (r < 0) {
1239 error_report_once("%s: kvm log clear failed: mr=%s "
1240 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1241 section->mr->name, section->offset_within_region,
1242 int128_get64(section->size));
1243 abort();
1244 }
1245 }
1246
1247 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1248 MemoryRegionSection *section,
1249 bool match_data, uint64_t data,
1250 EventNotifier *e)
1251 {
1252 int fd = event_notifier_get_fd(e);
1253 int r;
1254
1255 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1256 data, true, int128_get64(section->size),
1257 match_data);
1258 if (r < 0) {
1259 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1260 __func__, strerror(-r), -r);
1261 abort();
1262 }
1263 }
1264
1265 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1266 MemoryRegionSection *section,
1267 bool match_data, uint64_t data,
1268 EventNotifier *e)
1269 {
1270 int fd = event_notifier_get_fd(e);
1271 int r;
1272
1273 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1274 data, false, int128_get64(section->size),
1275 match_data);
1276 if (r < 0) {
1277 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1278 __func__, strerror(-r), -r);
1279 abort();
1280 }
1281 }
1282
1283 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1284 MemoryRegionSection *section,
1285 bool match_data, uint64_t data,
1286 EventNotifier *e)
1287 {
1288 int fd = event_notifier_get_fd(e);
1289 int r;
1290
1291 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1292 data, true, int128_get64(section->size),
1293 match_data);
1294 if (r < 0) {
1295 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1296 __func__, strerror(-r), -r);
1297 abort();
1298 }
1299 }
1300
1301 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1302 MemoryRegionSection *section,
1303 bool match_data, uint64_t data,
1304 EventNotifier *e)
1305
1306 {
1307 int fd = event_notifier_get_fd(e);
1308 int r;
1309
1310 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1311 data, false, int128_get64(section->size),
1312 match_data);
1313 if (r < 0) {
1314 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1315 __func__, strerror(-r), -r);
1316 abort();
1317 }
1318 }
1319
1320 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1321 AddressSpace *as, int as_id)
1322 {
1323 int i;
1324
1325 qemu_mutex_init(&kml->slots_lock);
1326 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1327 kml->as_id = as_id;
1328
1329 for (i = 0; i < s->nr_slots; i++) {
1330 kml->slots[i].slot = i;
1331 }
1332
1333 kml->listener.region_add = kvm_region_add;
1334 kml->listener.region_del = kvm_region_del;
1335 kml->listener.log_start = kvm_log_start;
1336 kml->listener.log_stop = kvm_log_stop;
1337 kml->listener.log_sync = kvm_log_sync;
1338 kml->listener.log_clear = kvm_log_clear;
1339 kml->listener.priority = 10;
1340
1341 memory_listener_register(&kml->listener, as);
1342
1343 for (i = 0; i < s->nr_as; ++i) {
1344 if (!s->as[i].as) {
1345 s->as[i].as = as;
1346 s->as[i].ml = kml;
1347 break;
1348 }
1349 }
1350 }
1351
1352 static MemoryListener kvm_io_listener = {
1353 .eventfd_add = kvm_io_ioeventfd_add,
1354 .eventfd_del = kvm_io_ioeventfd_del,
1355 .priority = 10,
1356 };
1357
1358 int kvm_set_irq(KVMState *s, int irq, int level)
1359 {
1360 struct kvm_irq_level event;
1361 int ret;
1362
1363 assert(kvm_async_interrupts_enabled());
1364
1365 event.level = level;
1366 event.irq = irq;
1367 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1368 if (ret < 0) {
1369 perror("kvm_set_irq");
1370 abort();
1371 }
1372
1373 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1374 }
1375
1376 #ifdef KVM_CAP_IRQ_ROUTING
1377 typedef struct KVMMSIRoute {
1378 struct kvm_irq_routing_entry kroute;
1379 QTAILQ_ENTRY(KVMMSIRoute) entry;
1380 } KVMMSIRoute;
1381
1382 static void set_gsi(KVMState *s, unsigned int gsi)
1383 {
1384 set_bit(gsi, s->used_gsi_bitmap);
1385 }
1386
1387 static void clear_gsi(KVMState *s, unsigned int gsi)
1388 {
1389 clear_bit(gsi, s->used_gsi_bitmap);
1390 }
1391
1392 void kvm_init_irq_routing(KVMState *s)
1393 {
1394 int gsi_count, i;
1395
1396 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1397 if (gsi_count > 0) {
1398 /* Round up so we can search ints using ffs */
1399 s->used_gsi_bitmap = bitmap_new(gsi_count);
1400 s->gsi_count = gsi_count;
1401 }
1402
1403 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1404 s->nr_allocated_irq_routes = 0;
1405
1406 if (!kvm_direct_msi_allowed) {
1407 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1408 QTAILQ_INIT(&s->msi_hashtab[i]);
1409 }
1410 }
1411
1412 kvm_arch_init_irq_routing(s);
1413 }
1414
1415 void kvm_irqchip_commit_routes(KVMState *s)
1416 {
1417 int ret;
1418
1419 if (kvm_gsi_direct_mapping()) {
1420 return;
1421 }
1422
1423 if (!kvm_gsi_routing_enabled()) {
1424 return;
1425 }
1426
1427 s->irq_routes->flags = 0;
1428 trace_kvm_irqchip_commit_routes();
1429 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1430 assert(ret == 0);
1431 }
1432
1433 static void kvm_add_routing_entry(KVMState *s,
1434 struct kvm_irq_routing_entry *entry)
1435 {
1436 struct kvm_irq_routing_entry *new;
1437 int n, size;
1438
1439 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1440 n = s->nr_allocated_irq_routes * 2;
1441 if (n < 64) {
1442 n = 64;
1443 }
1444 size = sizeof(struct kvm_irq_routing);
1445 size += n * sizeof(*new);
1446 s->irq_routes = g_realloc(s->irq_routes, size);
1447 s->nr_allocated_irq_routes = n;
1448 }
1449 n = s->irq_routes->nr++;
1450 new = &s->irq_routes->entries[n];
1451
1452 *new = *entry;
1453
1454 set_gsi(s, entry->gsi);
1455 }
1456
1457 static int kvm_update_routing_entry(KVMState *s,
1458 struct kvm_irq_routing_entry *new_entry)
1459 {
1460 struct kvm_irq_routing_entry *entry;
1461 int n;
1462
1463 for (n = 0; n < s->irq_routes->nr; n++) {
1464 entry = &s->irq_routes->entries[n];
1465 if (entry->gsi != new_entry->gsi) {
1466 continue;
1467 }
1468
1469 if(!memcmp(entry, new_entry, sizeof *entry)) {
1470 return 0;
1471 }
1472
1473 *entry = *new_entry;
1474
1475 return 0;
1476 }
1477
1478 return -ESRCH;
1479 }
1480
1481 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1482 {
1483 struct kvm_irq_routing_entry e = {};
1484
1485 assert(pin < s->gsi_count);
1486
1487 e.gsi = irq;
1488 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1489 e.flags = 0;
1490 e.u.irqchip.irqchip = irqchip;
1491 e.u.irqchip.pin = pin;
1492 kvm_add_routing_entry(s, &e);
1493 }
1494
1495 void kvm_irqchip_release_virq(KVMState *s, int virq)
1496 {
1497 struct kvm_irq_routing_entry *e;
1498 int i;
1499
1500 if (kvm_gsi_direct_mapping()) {
1501 return;
1502 }
1503
1504 for (i = 0; i < s->irq_routes->nr; i++) {
1505 e = &s->irq_routes->entries[i];
1506 if (e->gsi == virq) {
1507 s->irq_routes->nr--;
1508 *e = s->irq_routes->entries[s->irq_routes->nr];
1509 }
1510 }
1511 clear_gsi(s, virq);
1512 kvm_arch_release_virq_post(virq);
1513 trace_kvm_irqchip_release_virq(virq);
1514 }
1515
1516 void kvm_irqchip_add_change_notifier(Notifier *n)
1517 {
1518 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1519 }
1520
1521 void kvm_irqchip_remove_change_notifier(Notifier *n)
1522 {
1523 notifier_remove(n);
1524 }
1525
1526 void kvm_irqchip_change_notify(void)
1527 {
1528 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1529 }
1530
1531 static unsigned int kvm_hash_msi(uint32_t data)
1532 {
1533 /* This is optimized for IA32 MSI layout. However, no other arch shall
1534 * repeat the mistake of not providing a direct MSI injection API. */
1535 return data & 0xff;
1536 }
1537
1538 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1539 {
1540 KVMMSIRoute *route, *next;
1541 unsigned int hash;
1542
1543 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1544 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1545 kvm_irqchip_release_virq(s, route->kroute.gsi);
1546 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1547 g_free(route);
1548 }
1549 }
1550 }
1551
1552 static int kvm_irqchip_get_virq(KVMState *s)
1553 {
1554 int next_virq;
1555
1556 /*
1557 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1558 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1559 * number can succeed even though a new route entry cannot be added.
1560 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1561 */
1562 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1563 kvm_flush_dynamic_msi_routes(s);
1564 }
1565
1566 /* Return the lowest unused GSI in the bitmap */
1567 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1568 if (next_virq >= s->gsi_count) {
1569 return -ENOSPC;
1570 } else {
1571 return next_virq;
1572 }
1573 }
1574
1575 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1576 {
1577 unsigned int hash = kvm_hash_msi(msg.data);
1578 KVMMSIRoute *route;
1579
1580 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1581 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1582 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1583 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1584 return route;
1585 }
1586 }
1587 return NULL;
1588 }
1589
1590 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1591 {
1592 struct kvm_msi msi;
1593 KVMMSIRoute *route;
1594
1595 if (kvm_direct_msi_allowed) {
1596 msi.address_lo = (uint32_t)msg.address;
1597 msi.address_hi = msg.address >> 32;
1598 msi.data = le32_to_cpu(msg.data);
1599 msi.flags = 0;
1600 memset(msi.pad, 0, sizeof(msi.pad));
1601
1602 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1603 }
1604
1605 route = kvm_lookup_msi_route(s, msg);
1606 if (!route) {
1607 int virq;
1608
1609 virq = kvm_irqchip_get_virq(s);
1610 if (virq < 0) {
1611 return virq;
1612 }
1613
1614 route = g_malloc0(sizeof(KVMMSIRoute));
1615 route->kroute.gsi = virq;
1616 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1617 route->kroute.flags = 0;
1618 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1619 route->kroute.u.msi.address_hi = msg.address >> 32;
1620 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1621
1622 kvm_add_routing_entry(s, &route->kroute);
1623 kvm_irqchip_commit_routes(s);
1624
1625 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1626 entry);
1627 }
1628
1629 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1630
1631 return kvm_set_irq(s, route->kroute.gsi, 1);
1632 }
1633
1634 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1635 {
1636 struct kvm_irq_routing_entry kroute = {};
1637 int virq;
1638 MSIMessage msg = {0, 0};
1639
1640 if (pci_available && dev) {
1641 msg = pci_get_msi_message(dev, vector);
1642 }
1643
1644 if (kvm_gsi_direct_mapping()) {
1645 return kvm_arch_msi_data_to_gsi(msg.data);
1646 }
1647
1648 if (!kvm_gsi_routing_enabled()) {
1649 return -ENOSYS;
1650 }
1651
1652 virq = kvm_irqchip_get_virq(s);
1653 if (virq < 0) {
1654 return virq;
1655 }
1656
1657 kroute.gsi = virq;
1658 kroute.type = KVM_IRQ_ROUTING_MSI;
1659 kroute.flags = 0;
1660 kroute.u.msi.address_lo = (uint32_t)msg.address;
1661 kroute.u.msi.address_hi = msg.address >> 32;
1662 kroute.u.msi.data = le32_to_cpu(msg.data);
1663 if (pci_available && kvm_msi_devid_required()) {
1664 kroute.flags = KVM_MSI_VALID_DEVID;
1665 kroute.u.msi.devid = pci_requester_id(dev);
1666 }
1667 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1668 kvm_irqchip_release_virq(s, virq);
1669 return -EINVAL;
1670 }
1671
1672 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1673 vector, virq);
1674
1675 kvm_add_routing_entry(s, &kroute);
1676 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1677 kvm_irqchip_commit_routes(s);
1678
1679 return virq;
1680 }
1681
1682 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1683 PCIDevice *dev)
1684 {
1685 struct kvm_irq_routing_entry kroute = {};
1686
1687 if (kvm_gsi_direct_mapping()) {
1688 return 0;
1689 }
1690
1691 if (!kvm_irqchip_in_kernel()) {
1692 return -ENOSYS;
1693 }
1694
1695 kroute.gsi = virq;
1696 kroute.type = KVM_IRQ_ROUTING_MSI;
1697 kroute.flags = 0;
1698 kroute.u.msi.address_lo = (uint32_t)msg.address;
1699 kroute.u.msi.address_hi = msg.address >> 32;
1700 kroute.u.msi.data = le32_to_cpu(msg.data);
1701 if (pci_available && kvm_msi_devid_required()) {
1702 kroute.flags = KVM_MSI_VALID_DEVID;
1703 kroute.u.msi.devid = pci_requester_id(dev);
1704 }
1705 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1706 return -EINVAL;
1707 }
1708
1709 trace_kvm_irqchip_update_msi_route(virq);
1710
1711 return kvm_update_routing_entry(s, &kroute);
1712 }
1713
1714 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1715 EventNotifier *resample, int virq,
1716 bool assign)
1717 {
1718 int fd = event_notifier_get_fd(event);
1719 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1720
1721 struct kvm_irqfd irqfd = {
1722 .fd = fd,
1723 .gsi = virq,
1724 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1725 };
1726
1727 if (rfd != -1) {
1728 assert(assign);
1729 if (kvm_irqchip_is_split()) {
1730 /*
1731 * When the slow irqchip (e.g. IOAPIC) is in the
1732 * userspace, KVM kernel resamplefd will not work because
1733 * the EOI of the interrupt will be delivered to userspace
1734 * instead, so the KVM kernel resamplefd kick will be
1735 * skipped. The userspace here mimics what the kernel
1736 * provides with resamplefd, remember the resamplefd and
1737 * kick it when we receive EOI of this IRQ.
1738 *
1739 * This is hackery because IOAPIC is mostly bypassed
1740 * (except EOI broadcasts) when irqfd is used. However
1741 * this can bring much performance back for split irqchip
1742 * with INTx IRQs (for VFIO, this gives 93% perf of the
1743 * full fast path, which is 46% perf boost comparing to
1744 * the INTx slow path).
1745 */
1746 kvm_resample_fd_insert(virq, resample);
1747 } else {
1748 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1749 irqfd.resamplefd = rfd;
1750 }
1751 } else if (!assign) {
1752 if (kvm_irqchip_is_split()) {
1753 kvm_resample_fd_remove(virq);
1754 }
1755 }
1756
1757 if (!kvm_irqfds_enabled()) {
1758 return -ENOSYS;
1759 }
1760
1761 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1762 }
1763
1764 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1765 {
1766 struct kvm_irq_routing_entry kroute = {};
1767 int virq;
1768
1769 if (!kvm_gsi_routing_enabled()) {
1770 return -ENOSYS;
1771 }
1772
1773 virq = kvm_irqchip_get_virq(s);
1774 if (virq < 0) {
1775 return virq;
1776 }
1777
1778 kroute.gsi = virq;
1779 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1780 kroute.flags = 0;
1781 kroute.u.adapter.summary_addr = adapter->summary_addr;
1782 kroute.u.adapter.ind_addr = adapter->ind_addr;
1783 kroute.u.adapter.summary_offset = adapter->summary_offset;
1784 kroute.u.adapter.ind_offset = adapter->ind_offset;
1785 kroute.u.adapter.adapter_id = adapter->adapter_id;
1786
1787 kvm_add_routing_entry(s, &kroute);
1788
1789 return virq;
1790 }
1791
1792 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1793 {
1794 struct kvm_irq_routing_entry kroute = {};
1795 int virq;
1796
1797 if (!kvm_gsi_routing_enabled()) {
1798 return -ENOSYS;
1799 }
1800 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1801 return -ENOSYS;
1802 }
1803 virq = kvm_irqchip_get_virq(s);
1804 if (virq < 0) {
1805 return virq;
1806 }
1807
1808 kroute.gsi = virq;
1809 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1810 kroute.flags = 0;
1811 kroute.u.hv_sint.vcpu = vcpu;
1812 kroute.u.hv_sint.sint = sint;
1813
1814 kvm_add_routing_entry(s, &kroute);
1815 kvm_irqchip_commit_routes(s);
1816
1817 return virq;
1818 }
1819
1820 #else /* !KVM_CAP_IRQ_ROUTING */
1821
1822 void kvm_init_irq_routing(KVMState *s)
1823 {
1824 }
1825
1826 void kvm_irqchip_release_virq(KVMState *s, int virq)
1827 {
1828 }
1829
1830 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1831 {
1832 abort();
1833 }
1834
1835 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1836 {
1837 return -ENOSYS;
1838 }
1839
1840 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1841 {
1842 return -ENOSYS;
1843 }
1844
1845 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1846 {
1847 return -ENOSYS;
1848 }
1849
1850 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1851 EventNotifier *resample, int virq,
1852 bool assign)
1853 {
1854 abort();
1855 }
1856
1857 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1858 {
1859 return -ENOSYS;
1860 }
1861 #endif /* !KVM_CAP_IRQ_ROUTING */
1862
1863 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1864 EventNotifier *rn, int virq)
1865 {
1866 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1867 }
1868
1869 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1870 int virq)
1871 {
1872 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1873 }
1874
1875 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1876 EventNotifier *rn, qemu_irq irq)
1877 {
1878 gpointer key, gsi;
1879 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1880
1881 if (!found) {
1882 return -ENXIO;
1883 }
1884 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1885 }
1886
1887 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1888 qemu_irq irq)
1889 {
1890 gpointer key, gsi;
1891 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1892
1893 if (!found) {
1894 return -ENXIO;
1895 }
1896 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1897 }
1898
1899 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1900 {
1901 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1902 }
1903
1904 static void kvm_irqchip_create(KVMState *s)
1905 {
1906 int ret;
1907
1908 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1909 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1910 ;
1911 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1912 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1913 if (ret < 0) {
1914 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1915 exit(1);
1916 }
1917 } else {
1918 return;
1919 }
1920
1921 /* First probe and see if there's a arch-specific hook to create the
1922 * in-kernel irqchip for us */
1923 ret = kvm_arch_irqchip_create(s);
1924 if (ret == 0) {
1925 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1926 perror("Split IRQ chip mode not supported.");
1927 exit(1);
1928 } else {
1929 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1930 }
1931 }
1932 if (ret < 0) {
1933 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1934 exit(1);
1935 }
1936
1937 kvm_kernel_irqchip = true;
1938 /* If we have an in-kernel IRQ chip then we must have asynchronous
1939 * interrupt delivery (though the reverse is not necessarily true)
1940 */
1941 kvm_async_interrupts_allowed = true;
1942 kvm_halt_in_kernel_allowed = true;
1943
1944 kvm_init_irq_routing(s);
1945
1946 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1947 }
1948
1949 /* Find number of supported CPUs using the recommended
1950 * procedure from the kernel API documentation to cope with
1951 * older kernels that may be missing capabilities.
1952 */
1953 static int kvm_recommended_vcpus(KVMState *s)
1954 {
1955 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1956 return (ret) ? ret : 4;
1957 }
1958
1959 static int kvm_max_vcpus(KVMState *s)
1960 {
1961 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1962 return (ret) ? ret : kvm_recommended_vcpus(s);
1963 }
1964
1965 static int kvm_max_vcpu_id(KVMState *s)
1966 {
1967 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1968 return (ret) ? ret : kvm_max_vcpus(s);
1969 }
1970
1971 bool kvm_vcpu_id_is_valid(int vcpu_id)
1972 {
1973 KVMState *s = KVM_STATE(current_accel());
1974 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1975 }
1976
1977 static int kvm_init(MachineState *ms)
1978 {
1979 MachineClass *mc = MACHINE_GET_CLASS(ms);
1980 static const char upgrade_note[] =
1981 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1982 "(see http://sourceforge.net/projects/kvm).\n";
1983 struct {
1984 const char *name;
1985 int num;
1986 } num_cpus[] = {
1987 { "SMP", ms->smp.cpus },
1988 { "hotpluggable", ms->smp.max_cpus },
1989 { NULL, }
1990 }, *nc = num_cpus;
1991 int soft_vcpus_limit, hard_vcpus_limit;
1992 KVMState *s;
1993 const KVMCapabilityInfo *missing_cap;
1994 int ret;
1995 int type = 0;
1996 const char *kvm_type;
1997 uint64_t dirty_log_manual_caps;
1998
1999 s = KVM_STATE(ms->accelerator);
2000
2001 /*
2002 * On systems where the kernel can support different base page
2003 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2004 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2005 * page size for the system though.
2006 */
2007 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2008
2009 s->sigmask_len = 8;
2010
2011 #ifdef KVM_CAP_SET_GUEST_DEBUG
2012 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2013 #endif
2014 QLIST_INIT(&s->kvm_parked_vcpus);
2015 s->vmfd = -1;
2016 s->fd = qemu_open("/dev/kvm", O_RDWR);
2017 if (s->fd == -1) {
2018 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2019 ret = -errno;
2020 goto err;
2021 }
2022
2023 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2024 if (ret < KVM_API_VERSION) {
2025 if (ret >= 0) {
2026 ret = -EINVAL;
2027 }
2028 fprintf(stderr, "kvm version too old\n");
2029 goto err;
2030 }
2031
2032 if (ret > KVM_API_VERSION) {
2033 ret = -EINVAL;
2034 fprintf(stderr, "kvm version not supported\n");
2035 goto err;
2036 }
2037
2038 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2039 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2040
2041 /* If unspecified, use the default value */
2042 if (!s->nr_slots) {
2043 s->nr_slots = 32;
2044 }
2045
2046 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2047 if (s->nr_as <= 1) {
2048 s->nr_as = 1;
2049 }
2050 s->as = g_new0(struct KVMAs, s->nr_as);
2051
2052 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
2053 if (mc->kvm_type) {
2054 type = mc->kvm_type(ms, kvm_type);
2055 } else if (kvm_type) {
2056 ret = -EINVAL;
2057 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
2058 goto err;
2059 }
2060
2061 do {
2062 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2063 } while (ret == -EINTR);
2064
2065 if (ret < 0) {
2066 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2067 strerror(-ret));
2068
2069 #ifdef TARGET_S390X
2070 if (ret == -EINVAL) {
2071 fprintf(stderr,
2072 "Host kernel setup problem detected. Please verify:\n");
2073 fprintf(stderr, "- for kernels supporting the switch_amode or"
2074 " user_mode parameters, whether\n");
2075 fprintf(stderr,
2076 " user space is running in primary address space\n");
2077 fprintf(stderr,
2078 "- for kernels supporting the vm.allocate_pgste sysctl, "
2079 "whether it is enabled\n");
2080 }
2081 #endif
2082 goto err;
2083 }
2084
2085 s->vmfd = ret;
2086
2087 /* check the vcpu limits */
2088 soft_vcpus_limit = kvm_recommended_vcpus(s);
2089 hard_vcpus_limit = kvm_max_vcpus(s);
2090
2091 while (nc->name) {
2092 if (nc->num > soft_vcpus_limit) {
2093 warn_report("Number of %s cpus requested (%d) exceeds "
2094 "the recommended cpus supported by KVM (%d)",
2095 nc->name, nc->num, soft_vcpus_limit);
2096
2097 if (nc->num > hard_vcpus_limit) {
2098 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2099 "the maximum cpus supported by KVM (%d)\n",
2100 nc->name, nc->num, hard_vcpus_limit);
2101 exit(1);
2102 }
2103 }
2104 nc++;
2105 }
2106
2107 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2108 if (!missing_cap) {
2109 missing_cap =
2110 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2111 }
2112 if (missing_cap) {
2113 ret = -EINVAL;
2114 fprintf(stderr, "kvm does not support %s\n%s",
2115 missing_cap->name, upgrade_note);
2116 goto err;
2117 }
2118
2119 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2120 s->coalesced_pio = s->coalesced_mmio &&
2121 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2122
2123 dirty_log_manual_caps =
2124 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2125 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2126 KVM_DIRTY_LOG_INITIALLY_SET);
2127 s->manual_dirty_log_protect = dirty_log_manual_caps;
2128 if (dirty_log_manual_caps) {
2129 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2130 dirty_log_manual_caps);
2131 if (ret) {
2132 warn_report("Trying to enable capability %"PRIu64" of "
2133 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2134 "Falling back to the legacy mode. ",
2135 dirty_log_manual_caps);
2136 s->manual_dirty_log_protect = 0;
2137 }
2138 }
2139
2140 #ifdef KVM_CAP_VCPU_EVENTS
2141 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2142 #endif
2143
2144 s->robust_singlestep =
2145 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2146
2147 #ifdef KVM_CAP_DEBUGREGS
2148 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2149 #endif
2150
2151 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2152
2153 #ifdef KVM_CAP_IRQ_ROUTING
2154 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2155 #endif
2156
2157 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2158
2159 s->irq_set_ioctl = KVM_IRQ_LINE;
2160 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2161 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2162 }
2163
2164 kvm_readonly_mem_allowed =
2165 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2166
2167 kvm_eventfds_allowed =
2168 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2169
2170 kvm_irqfds_allowed =
2171 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2172
2173 kvm_resamplefds_allowed =
2174 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2175
2176 kvm_vm_attributes_allowed =
2177 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2178
2179 kvm_ioeventfd_any_length_allowed =
2180 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2181
2182 kvm_state = s;
2183
2184 /*
2185 * if memory encryption object is specified then initialize the memory
2186 * encryption context.
2187 */
2188 if (ms->memory_encryption) {
2189 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2190 if (!kvm_state->memcrypt_handle) {
2191 ret = -1;
2192 goto err;
2193 }
2194
2195 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2196 }
2197
2198 ret = kvm_arch_init(ms, s);
2199 if (ret < 0) {
2200 goto err;
2201 }
2202
2203 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2204 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2205 }
2206
2207 qemu_register_reset(kvm_unpoison_all, NULL);
2208
2209 if (s->kernel_irqchip_allowed) {
2210 kvm_irqchip_create(s);
2211 }
2212
2213 if (kvm_eventfds_allowed) {
2214 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2215 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2216 }
2217 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2218 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2219
2220 kvm_memory_listener_register(s, &s->memory_listener,
2221 &address_space_memory, 0);
2222 memory_listener_register(&kvm_io_listener,
2223 &address_space_io);
2224 memory_listener_register(&kvm_coalesced_pio_listener,
2225 &address_space_io);
2226
2227 s->many_ioeventfds = kvm_check_many_ioeventfds();
2228
2229 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2230 if (!s->sync_mmu) {
2231 ret = ram_block_discard_disable(true);
2232 assert(!ret);
2233 }
2234
2235 return 0;
2236
2237 err:
2238 assert(ret < 0);
2239 if (s->vmfd >= 0) {
2240 close(s->vmfd);
2241 }
2242 if (s->fd != -1) {
2243 close(s->fd);
2244 }
2245 g_free(s->memory_listener.slots);
2246
2247 return ret;
2248 }
2249
2250 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2251 {
2252 s->sigmask_len = sigmask_len;
2253 }
2254
2255 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2256 int size, uint32_t count)
2257 {
2258 int i;
2259 uint8_t *ptr = data;
2260
2261 for (i = 0; i < count; i++) {
2262 address_space_rw(&address_space_io, port, attrs,
2263 ptr, size,
2264 direction == KVM_EXIT_IO_OUT);
2265 ptr += size;
2266 }
2267 }
2268
2269 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2270 {
2271 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2272 run->internal.suberror);
2273
2274 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2275 int i;
2276
2277 for (i = 0; i < run->internal.ndata; ++i) {
2278 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2279 i, (uint64_t)run->internal.data[i]);
2280 }
2281 }
2282 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2283 fprintf(stderr, "emulation failure\n");
2284 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2285 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2286 return EXCP_INTERRUPT;
2287 }
2288 }
2289 /* FIXME: Should trigger a qmp message to let management know
2290 * something went wrong.
2291 */
2292 return -1;
2293 }
2294
2295 void kvm_flush_coalesced_mmio_buffer(void)
2296 {
2297 KVMState *s = kvm_state;
2298
2299 if (s->coalesced_flush_in_progress) {
2300 return;
2301 }
2302
2303 s->coalesced_flush_in_progress = true;
2304
2305 if (s->coalesced_mmio_ring) {
2306 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2307 while (ring->first != ring->last) {
2308 struct kvm_coalesced_mmio *ent;
2309
2310 ent = &ring->coalesced_mmio[ring->first];
2311
2312 if (ent->pio == 1) {
2313 address_space_write(&address_space_io, ent->phys_addr,
2314 MEMTXATTRS_UNSPECIFIED, ent->data,
2315 ent->len);
2316 } else {
2317 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2318 }
2319 smp_wmb();
2320 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2321 }
2322 }
2323
2324 s->coalesced_flush_in_progress = false;
2325 }
2326
2327 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2328 {
2329 if (!cpu->vcpu_dirty) {
2330 kvm_arch_get_registers(cpu);
2331 cpu->vcpu_dirty = true;
2332 }
2333 }
2334
2335 void kvm_cpu_synchronize_state(CPUState *cpu)
2336 {
2337 if (!cpu->vcpu_dirty) {
2338 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2339 }
2340 }
2341
2342 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2343 {
2344 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2345 cpu->vcpu_dirty = false;
2346 }
2347
2348 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2349 {
2350 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2351 }
2352
2353 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2354 {
2355 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2356 cpu->vcpu_dirty = false;
2357 }
2358
2359 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2360 {
2361 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2362 }
2363
2364 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2365 {
2366 cpu->vcpu_dirty = true;
2367 }
2368
2369 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2370 {
2371 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2372 }
2373
2374 #ifdef KVM_HAVE_MCE_INJECTION
2375 static __thread void *pending_sigbus_addr;
2376 static __thread int pending_sigbus_code;
2377 static __thread bool have_sigbus_pending;
2378 #endif
2379
2380 static void kvm_cpu_kick(CPUState *cpu)
2381 {
2382 atomic_set(&cpu->kvm_run->immediate_exit, 1);
2383 }
2384
2385 static void kvm_cpu_kick_self(void)
2386 {
2387 if (kvm_immediate_exit) {
2388 kvm_cpu_kick(current_cpu);
2389 } else {
2390 qemu_cpu_kick_self();
2391 }
2392 }
2393
2394 static void kvm_eat_signals(CPUState *cpu)
2395 {
2396 struct timespec ts = { 0, 0 };
2397 siginfo_t siginfo;
2398 sigset_t waitset;
2399 sigset_t chkset;
2400 int r;
2401
2402 if (kvm_immediate_exit) {
2403 atomic_set(&cpu->kvm_run->immediate_exit, 0);
2404 /* Write kvm_run->immediate_exit before the cpu->exit_request
2405 * write in kvm_cpu_exec.
2406 */
2407 smp_wmb();
2408 return;
2409 }
2410
2411 sigemptyset(&waitset);
2412 sigaddset(&waitset, SIG_IPI);
2413
2414 do {
2415 r = sigtimedwait(&waitset, &siginfo, &ts);
2416 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2417 perror("sigtimedwait");
2418 exit(1);
2419 }
2420
2421 r = sigpending(&chkset);
2422 if (r == -1) {
2423 perror("sigpending");
2424 exit(1);
2425 }
2426 } while (sigismember(&chkset, SIG_IPI));
2427 }
2428
2429 int kvm_cpu_exec(CPUState *cpu)
2430 {
2431 struct kvm_run *run = cpu->kvm_run;
2432 int ret, run_ret;
2433
2434 DPRINTF("kvm_cpu_exec()\n");
2435
2436 if (kvm_arch_process_async_events(cpu)) {
2437 atomic_set(&cpu->exit_request, 0);
2438 return EXCP_HLT;
2439 }
2440
2441 qemu_mutex_unlock_iothread();
2442 cpu_exec_start(cpu);
2443
2444 do {
2445 MemTxAttrs attrs;
2446
2447 if (cpu->vcpu_dirty) {
2448 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2449 cpu->vcpu_dirty = false;
2450 }
2451
2452 kvm_arch_pre_run(cpu, run);
2453 if (atomic_read(&cpu->exit_request)) {
2454 DPRINTF("interrupt exit requested\n");
2455 /*
2456 * KVM requires us to reenter the kernel after IO exits to complete
2457 * instruction emulation. This self-signal will ensure that we
2458 * leave ASAP again.
2459 */
2460 kvm_cpu_kick_self();
2461 }
2462
2463 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2464 * Matching barrier in kvm_eat_signals.
2465 */
2466 smp_rmb();
2467
2468 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2469
2470 attrs = kvm_arch_post_run(cpu, run);
2471
2472 #ifdef KVM_HAVE_MCE_INJECTION
2473 if (unlikely(have_sigbus_pending)) {
2474 qemu_mutex_lock_iothread();
2475 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2476 pending_sigbus_addr);
2477 have_sigbus_pending = false;
2478 qemu_mutex_unlock_iothread();
2479 }
2480 #endif
2481
2482 if (run_ret < 0) {
2483 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2484 DPRINTF("io window exit\n");
2485 kvm_eat_signals(cpu);
2486 ret = EXCP_INTERRUPT;
2487 break;
2488 }
2489 fprintf(stderr, "error: kvm run failed %s\n",
2490 strerror(-run_ret));
2491 #ifdef TARGET_PPC
2492 if (run_ret == -EBUSY) {
2493 fprintf(stderr,
2494 "This is probably because your SMT is enabled.\n"
2495 "VCPU can only run on primary threads with all "
2496 "secondary threads offline.\n");
2497 }
2498 #endif
2499 ret = -1;
2500 break;
2501 }
2502
2503 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2504 switch (run->exit_reason) {
2505 case KVM_EXIT_IO:
2506 DPRINTF("handle_io\n");
2507 /* Called outside BQL */
2508 kvm_handle_io(run->io.port, attrs,
2509 (uint8_t *)run + run->io.data_offset,
2510 run->io.direction,
2511 run->io.size,
2512 run->io.count);
2513 ret = 0;
2514 break;
2515 case KVM_EXIT_MMIO:
2516 DPRINTF("handle_mmio\n");
2517 /* Called outside BQL */
2518 address_space_rw(&address_space_memory,
2519 run->mmio.phys_addr, attrs,
2520 run->mmio.data,
2521 run->mmio.len,
2522 run->mmio.is_write);
2523 ret = 0;
2524 break;
2525 case KVM_EXIT_IRQ_WINDOW_OPEN:
2526 DPRINTF("irq_window_open\n");
2527 ret = EXCP_INTERRUPT;
2528 break;
2529 case KVM_EXIT_SHUTDOWN:
2530 DPRINTF("shutdown\n");
2531 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2532 ret = EXCP_INTERRUPT;
2533 break;
2534 case KVM_EXIT_UNKNOWN:
2535 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2536 (uint64_t)run->hw.hardware_exit_reason);
2537 ret = -1;
2538 break;
2539 case KVM_EXIT_INTERNAL_ERROR:
2540 ret = kvm_handle_internal_error(cpu, run);
2541 break;
2542 case KVM_EXIT_SYSTEM_EVENT:
2543 switch (run->system_event.type) {
2544 case KVM_SYSTEM_EVENT_SHUTDOWN:
2545 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2546 ret = EXCP_INTERRUPT;
2547 break;
2548 case KVM_SYSTEM_EVENT_RESET:
2549 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2550 ret = EXCP_INTERRUPT;
2551 break;
2552 case KVM_SYSTEM_EVENT_CRASH:
2553 kvm_cpu_synchronize_state(cpu);
2554 qemu_mutex_lock_iothread();
2555 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2556 qemu_mutex_unlock_iothread();
2557 ret = 0;
2558 break;
2559 default:
2560 DPRINTF("kvm_arch_handle_exit\n");
2561 ret = kvm_arch_handle_exit(cpu, run);
2562 break;
2563 }
2564 break;
2565 default:
2566 DPRINTF("kvm_arch_handle_exit\n");
2567 ret = kvm_arch_handle_exit(cpu, run);
2568 break;
2569 }
2570 } while (ret == 0);
2571
2572 cpu_exec_end(cpu);
2573 qemu_mutex_lock_iothread();
2574
2575 if (ret < 0) {
2576 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2577 vm_stop(RUN_STATE_INTERNAL_ERROR);
2578 }
2579
2580 atomic_set(&cpu->exit_request, 0);
2581 return ret;
2582 }
2583
2584 int kvm_ioctl(KVMState *s, int type, ...)
2585 {
2586 int ret;
2587 void *arg;
2588 va_list ap;
2589
2590 va_start(ap, type);
2591 arg = va_arg(ap, void *);
2592 va_end(ap);
2593
2594 trace_kvm_ioctl(type, arg);
2595 ret = ioctl(s->fd, type, arg);
2596 if (ret == -1) {
2597 ret = -errno;
2598 }
2599 return ret;
2600 }
2601
2602 int kvm_vm_ioctl(KVMState *s, int type, ...)
2603 {
2604 int ret;
2605 void *arg;
2606 va_list ap;
2607
2608 va_start(ap, type);
2609 arg = va_arg(ap, void *);
2610 va_end(ap);
2611
2612 trace_kvm_vm_ioctl(type, arg);
2613 ret = ioctl(s->vmfd, type, arg);
2614 if (ret == -1) {
2615 ret = -errno;
2616 }
2617 return ret;
2618 }
2619
2620 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2621 {
2622 int ret;
2623 void *arg;
2624 va_list ap;
2625
2626 va_start(ap, type);
2627 arg = va_arg(ap, void *);
2628 va_end(ap);
2629
2630 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2631 ret = ioctl(cpu->kvm_fd, type, arg);
2632 if (ret == -1) {
2633 ret = -errno;
2634 }
2635 return ret;
2636 }
2637
2638 int kvm_device_ioctl(int fd, int type, ...)
2639 {
2640 int ret;
2641 void *arg;
2642 va_list ap;
2643
2644 va_start(ap, type);
2645 arg = va_arg(ap, void *);
2646 va_end(ap);
2647
2648 trace_kvm_device_ioctl(fd, type, arg);
2649 ret = ioctl(fd, type, arg);
2650 if (ret == -1) {
2651 ret = -errno;
2652 }
2653 return ret;
2654 }
2655
2656 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2657 {
2658 int ret;
2659 struct kvm_device_attr attribute = {
2660 .group = group,
2661 .attr = attr,
2662 };
2663
2664 if (!kvm_vm_attributes_allowed) {
2665 return 0;
2666 }
2667
2668 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2669 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2670 return ret ? 0 : 1;
2671 }
2672
2673 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2674 {
2675 struct kvm_device_attr attribute = {
2676 .group = group,
2677 .attr = attr,
2678 .flags = 0,
2679 };
2680
2681 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2682 }
2683
2684 int kvm_device_access(int fd, int group, uint64_t attr,
2685 void *val, bool write, Error **errp)
2686 {
2687 struct kvm_device_attr kvmattr;
2688 int err;
2689
2690 kvmattr.flags = 0;
2691 kvmattr.group = group;
2692 kvmattr.attr = attr;
2693 kvmattr.addr = (uintptr_t)val;
2694
2695 err = kvm_device_ioctl(fd,
2696 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2697 &kvmattr);
2698 if (err < 0) {
2699 error_setg_errno(errp, -err,
2700 "KVM_%s_DEVICE_ATTR failed: Group %d "
2701 "attr 0x%016" PRIx64,
2702 write ? "SET" : "GET", group, attr);
2703 }
2704 return err;
2705 }
2706
2707 bool kvm_has_sync_mmu(void)
2708 {
2709 return kvm_state->sync_mmu;
2710 }
2711
2712 int kvm_has_vcpu_events(void)
2713 {
2714 return kvm_state->vcpu_events;
2715 }
2716
2717 int kvm_has_robust_singlestep(void)
2718 {
2719 return kvm_state->robust_singlestep;
2720 }
2721
2722 int kvm_has_debugregs(void)
2723 {
2724 return kvm_state->debugregs;
2725 }
2726
2727 int kvm_max_nested_state_length(void)
2728 {
2729 return kvm_state->max_nested_state_len;
2730 }
2731
2732 int kvm_has_many_ioeventfds(void)
2733 {
2734 if (!kvm_enabled()) {
2735 return 0;
2736 }
2737 return kvm_state->many_ioeventfds;
2738 }
2739
2740 int kvm_has_gsi_routing(void)
2741 {
2742 #ifdef KVM_CAP_IRQ_ROUTING
2743 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2744 #else
2745 return false;
2746 #endif
2747 }
2748
2749 int kvm_has_intx_set_mask(void)
2750 {
2751 return kvm_state->intx_set_mask;
2752 }
2753
2754 bool kvm_arm_supports_user_irq(void)
2755 {
2756 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2757 }
2758
2759 #ifdef KVM_CAP_SET_GUEST_DEBUG
2760 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2761 target_ulong pc)
2762 {
2763 struct kvm_sw_breakpoint *bp;
2764
2765 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2766 if (bp->pc == pc) {
2767 return bp;
2768 }
2769 }
2770 return NULL;
2771 }
2772
2773 int kvm_sw_breakpoints_active(CPUState *cpu)
2774 {
2775 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2776 }
2777
2778 struct kvm_set_guest_debug_data {
2779 struct kvm_guest_debug dbg;
2780 int err;
2781 };
2782
2783 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2784 {
2785 struct kvm_set_guest_debug_data *dbg_data =
2786 (struct kvm_set_guest_debug_data *) data.host_ptr;
2787
2788 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2789 &dbg_data->dbg);
2790 }
2791
2792 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2793 {
2794 struct kvm_set_guest_debug_data data;
2795
2796 data.dbg.control = reinject_trap;
2797
2798 if (cpu->singlestep_enabled) {
2799 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2800 }
2801 kvm_arch_update_guest_debug(cpu, &data.dbg);
2802
2803 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2804 RUN_ON_CPU_HOST_PTR(&data));
2805 return data.err;
2806 }
2807
2808 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2809 target_ulong len, int type)
2810 {
2811 struct kvm_sw_breakpoint *bp;
2812 int err;
2813
2814 if (type == GDB_BREAKPOINT_SW) {
2815 bp = kvm_find_sw_breakpoint(cpu, addr);
2816 if (bp) {
2817 bp->use_count++;
2818 return 0;
2819 }
2820
2821 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2822 bp->pc = addr;
2823 bp->use_count = 1;
2824 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2825 if (err) {
2826 g_free(bp);
2827 return err;
2828 }
2829
2830 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2831 } else {
2832 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2833 if (err) {
2834 return err;
2835 }
2836 }
2837
2838 CPU_FOREACH(cpu) {
2839 err = kvm_update_guest_debug(cpu, 0);
2840 if (err) {
2841 return err;
2842 }
2843 }
2844 return 0;
2845 }
2846
2847 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2848 target_ulong len, int type)
2849 {
2850 struct kvm_sw_breakpoint *bp;
2851 int err;
2852
2853 if (type == GDB_BREAKPOINT_SW) {
2854 bp = kvm_find_sw_breakpoint(cpu, addr);
2855 if (!bp) {
2856 return -ENOENT;
2857 }
2858
2859 if (bp->use_count > 1) {
2860 bp->use_count--;
2861 return 0;
2862 }
2863
2864 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2865 if (err) {
2866 return err;
2867 }
2868
2869 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2870 g_free(bp);
2871 } else {
2872 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2873 if (err) {
2874 return err;
2875 }
2876 }
2877
2878 CPU_FOREACH(cpu) {
2879 err = kvm_update_guest_debug(cpu, 0);
2880 if (err) {
2881 return err;
2882 }
2883 }
2884 return 0;
2885 }
2886
2887 void kvm_remove_all_breakpoints(CPUState *cpu)
2888 {
2889 struct kvm_sw_breakpoint *bp, *next;
2890 KVMState *s = cpu->kvm_state;
2891 CPUState *tmpcpu;
2892
2893 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2894 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2895 /* Try harder to find a CPU that currently sees the breakpoint. */
2896 CPU_FOREACH(tmpcpu) {
2897 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2898 break;
2899 }
2900 }
2901 }
2902 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2903 g_free(bp);
2904 }
2905 kvm_arch_remove_all_hw_breakpoints();
2906
2907 CPU_FOREACH(cpu) {
2908 kvm_update_guest_debug(cpu, 0);
2909 }
2910 }
2911
2912 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2913
2914 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2915 {
2916 return -EINVAL;
2917 }
2918
2919 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2920 target_ulong len, int type)
2921 {
2922 return -EINVAL;
2923 }
2924
2925 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2926 target_ulong len, int type)
2927 {
2928 return -EINVAL;
2929 }
2930
2931 void kvm_remove_all_breakpoints(CPUState *cpu)
2932 {
2933 }
2934 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2935
2936 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2937 {
2938 KVMState *s = kvm_state;
2939 struct kvm_signal_mask *sigmask;
2940 int r;
2941
2942 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2943
2944 sigmask->len = s->sigmask_len;
2945 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2946 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2947 g_free(sigmask);
2948
2949 return r;
2950 }
2951
2952 static void kvm_ipi_signal(int sig)
2953 {
2954 if (current_cpu) {
2955 assert(kvm_immediate_exit);
2956 kvm_cpu_kick(current_cpu);
2957 }
2958 }
2959
2960 void kvm_init_cpu_signals(CPUState *cpu)
2961 {
2962 int r;
2963 sigset_t set;
2964 struct sigaction sigact;
2965
2966 memset(&sigact, 0, sizeof(sigact));
2967 sigact.sa_handler = kvm_ipi_signal;
2968 sigaction(SIG_IPI, &sigact, NULL);
2969
2970 pthread_sigmask(SIG_BLOCK, NULL, &set);
2971 #if defined KVM_HAVE_MCE_INJECTION
2972 sigdelset(&set, SIGBUS);
2973 pthread_sigmask(SIG_SETMASK, &set, NULL);
2974 #endif
2975 sigdelset(&set, SIG_IPI);
2976 if (kvm_immediate_exit) {
2977 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2978 } else {
2979 r = kvm_set_signal_mask(cpu, &set);
2980 }
2981 if (r) {
2982 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2983 exit(1);
2984 }
2985 }
2986
2987 /* Called asynchronously in VCPU thread. */
2988 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2989 {
2990 #ifdef KVM_HAVE_MCE_INJECTION
2991 if (have_sigbus_pending) {
2992 return 1;
2993 }
2994 have_sigbus_pending = true;
2995 pending_sigbus_addr = addr;
2996 pending_sigbus_code = code;
2997 atomic_set(&cpu->exit_request, 1);
2998 return 0;
2999 #else
3000 return 1;
3001 #endif
3002 }
3003
3004 /* Called synchronously (via signalfd) in main thread. */
3005 int kvm_on_sigbus(int code, void *addr)
3006 {
3007 #ifdef KVM_HAVE_MCE_INJECTION
3008 /* Action required MCE kills the process if SIGBUS is blocked. Because
3009 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3010 * we can only get action optional here.
3011 */
3012 assert(code != BUS_MCEERR_AR);
3013 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3014 return 0;
3015 #else
3016 return 1;
3017 #endif
3018 }
3019
3020 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3021 {
3022 int ret;
3023 struct kvm_create_device create_dev;
3024
3025 create_dev.type = type;
3026 create_dev.fd = -1;
3027 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3028
3029 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3030 return -ENOTSUP;
3031 }
3032
3033 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3034 if (ret) {
3035 return ret;
3036 }
3037
3038 return test ? 0 : create_dev.fd;
3039 }
3040
3041 bool kvm_device_supported(int vmfd, uint64_t type)
3042 {
3043 struct kvm_create_device create_dev = {
3044 .type = type,
3045 .fd = -1,
3046 .flags = KVM_CREATE_DEVICE_TEST,
3047 };
3048
3049 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3050 return false;
3051 }
3052
3053 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3054 }
3055
3056 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3057 {
3058 struct kvm_one_reg reg;
3059 int r;
3060
3061 reg.id = id;
3062 reg.addr = (uintptr_t) source;
3063 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3064 if (r) {
3065 trace_kvm_failed_reg_set(id, strerror(-r));
3066 }
3067 return r;
3068 }
3069
3070 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3071 {
3072 struct kvm_one_reg reg;
3073 int r;
3074
3075 reg.id = id;
3076 reg.addr = (uintptr_t) target;
3077 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3078 if (r) {
3079 trace_kvm_failed_reg_get(id, strerror(-r));
3080 }
3081 return r;
3082 }
3083
3084 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3085 hwaddr start_addr, hwaddr size)
3086 {
3087 KVMState *kvm = KVM_STATE(ms->accelerator);
3088 int i;
3089
3090 for (i = 0; i < kvm->nr_as; ++i) {
3091 if (kvm->as[i].as == as && kvm->as[i].ml) {
3092 size = MIN(kvm_max_slot_size, size);
3093 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3094 start_addr, size);
3095 }
3096 }
3097
3098 return false;
3099 }
3100
3101 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3102 const char *name, void *opaque,
3103 Error **errp)
3104 {
3105 KVMState *s = KVM_STATE(obj);
3106 int64_t value = s->kvm_shadow_mem;
3107
3108 visit_type_int(v, name, &value, errp);
3109 }
3110
3111 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3112 const char *name, void *opaque,
3113 Error **errp)
3114 {
3115 KVMState *s = KVM_STATE(obj);
3116 int64_t value;
3117
3118 if (!visit_type_int(v, name, &value, errp)) {
3119 return;
3120 }
3121
3122 s->kvm_shadow_mem = value;
3123 }
3124
3125 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3126 const char *name, void *opaque,
3127 Error **errp)
3128 {
3129 KVMState *s = KVM_STATE(obj);
3130 OnOffSplit mode;
3131
3132 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3133 return;
3134 }
3135 switch (mode) {
3136 case ON_OFF_SPLIT_ON:
3137 s->kernel_irqchip_allowed = true;
3138 s->kernel_irqchip_required = true;
3139 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3140 break;
3141 case ON_OFF_SPLIT_OFF:
3142 s->kernel_irqchip_allowed = false;
3143 s->kernel_irqchip_required = false;
3144 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3145 break;
3146 case ON_OFF_SPLIT_SPLIT:
3147 s->kernel_irqchip_allowed = true;
3148 s->kernel_irqchip_required = true;
3149 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3150 break;
3151 default:
3152 /* The value was checked in visit_type_OnOffSplit() above. If
3153 * we get here, then something is wrong in QEMU.
3154 */
3155 abort();
3156 }
3157 }
3158
3159 bool kvm_kernel_irqchip_allowed(void)
3160 {
3161 return kvm_state->kernel_irqchip_allowed;
3162 }
3163
3164 bool kvm_kernel_irqchip_required(void)
3165 {
3166 return kvm_state->kernel_irqchip_required;
3167 }
3168
3169 bool kvm_kernel_irqchip_split(void)
3170 {
3171 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3172 }
3173
3174 static void kvm_accel_instance_init(Object *obj)
3175 {
3176 KVMState *s = KVM_STATE(obj);
3177
3178 s->kvm_shadow_mem = -1;
3179 s->kernel_irqchip_allowed = true;
3180 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3181 }
3182
3183 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3184 {
3185 AccelClass *ac = ACCEL_CLASS(oc);
3186 ac->name = "KVM";
3187 ac->init_machine = kvm_init;
3188 ac->has_memory = kvm_accel_has_memory;
3189 ac->allowed = &kvm_allowed;
3190
3191 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3192 NULL, kvm_set_kernel_irqchip,
3193 NULL, NULL);
3194 object_class_property_set_description(oc, "kernel-irqchip",
3195 "Configure KVM in-kernel irqchip");
3196
3197 object_class_property_add(oc, "kvm-shadow-mem", "int",
3198 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3199 NULL, NULL);
3200 object_class_property_set_description(oc, "kvm-shadow-mem",
3201 "KVM shadow MMU size");
3202 }
3203
3204 static const TypeInfo kvm_accel_type = {
3205 .name = TYPE_KVM_ACCEL,
3206 .parent = TYPE_ACCEL,
3207 .instance_init = kvm_accel_instance_init,
3208 .class_init = kvm_accel_class_init,
3209 .instance_size = sizeof(KVMState),
3210 };
3211
3212 static void kvm_type_init(void)
3213 {
3214 type_register_static(&kvm_accel_type);
3215 }
3216
3217 type_init(kvm_type_init);