]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
target/i386: spelling: occured=>occurred, mininum=>minimum
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48
49 #include "hw/boards.h"
50
51 /* This check must be after config-host.h is included */
52 #ifdef CONFIG_EVENTFD
53 #include <sys/eventfd.h>
54 #endif
55
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
58 */
59 #ifdef PAGE_SIZE
60 #undef PAGE_SIZE
61 #endif
62 #define PAGE_SIZE qemu_real_host_page_size
63
64 //#define DEBUG_KVM
65
66 #ifdef DEBUG_KVM
67 #define DPRINTF(fmt, ...) \
68 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
69 #else
70 #define DPRINTF(fmt, ...) \
71 do { } while (0)
72 #endif
73
74 #define KVM_MSI_HASHTAB_SIZE 256
75
76 struct KVMParkedVcpu {
77 unsigned long vcpu_id;
78 int kvm_fd;
79 QLIST_ENTRY(KVMParkedVcpu) node;
80 };
81
82 enum KVMDirtyRingReaperState {
83 KVM_DIRTY_RING_REAPER_NONE = 0,
84 /* The reaper is sleeping */
85 KVM_DIRTY_RING_REAPER_WAIT,
86 /* The reaper is reaping for dirty pages */
87 KVM_DIRTY_RING_REAPER_REAPING,
88 };
89
90 /*
91 * KVM reaper instance, responsible for collecting the KVM dirty bits
92 * via the dirty ring.
93 */
94 struct KVMDirtyRingReaper {
95 /* The reaper thread */
96 QemuThread reaper_thr;
97 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
98 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
99 };
100
101 struct KVMState
102 {
103 AccelState parent_obj;
104
105 int nr_slots;
106 int fd;
107 int vmfd;
108 int coalesced_mmio;
109 int coalesced_pio;
110 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
111 bool coalesced_flush_in_progress;
112 int vcpu_events;
113 int robust_singlestep;
114 int debugregs;
115 #ifdef KVM_CAP_SET_GUEST_DEBUG
116 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
117 #endif
118 int max_nested_state_len;
119 int many_ioeventfds;
120 int intx_set_mask;
121 int kvm_shadow_mem;
122 bool kernel_irqchip_allowed;
123 bool kernel_irqchip_required;
124 OnOffAuto kernel_irqchip_split;
125 bool sync_mmu;
126 uint64_t manual_dirty_log_protect;
127 /* The man page (and posix) say ioctl numbers are signed int, but
128 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
129 * unsigned, and treating them as signed here can break things */
130 unsigned irq_set_ioctl;
131 unsigned int sigmask_len;
132 GHashTable *gsimap;
133 #ifdef KVM_CAP_IRQ_ROUTING
134 struct kvm_irq_routing *irq_routes;
135 int nr_allocated_irq_routes;
136 unsigned long *used_gsi_bitmap;
137 unsigned int gsi_count;
138 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
139 #endif
140 KVMMemoryListener memory_listener;
141 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
142
143 /* For "info mtree -f" to tell if an MR is registered in KVM */
144 int nr_as;
145 struct KVMAs {
146 KVMMemoryListener *ml;
147 AddressSpace *as;
148 } *as;
149 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */
150 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */
151 struct KVMDirtyRingReaper reaper;
152 };
153
154 KVMState *kvm_state;
155 bool kvm_kernel_irqchip;
156 bool kvm_split_irqchip;
157 bool kvm_async_interrupts_allowed;
158 bool kvm_halt_in_kernel_allowed;
159 bool kvm_eventfds_allowed;
160 bool kvm_irqfds_allowed;
161 bool kvm_resamplefds_allowed;
162 bool kvm_msi_via_irqfd_allowed;
163 bool kvm_gsi_routing_allowed;
164 bool kvm_gsi_direct_mapping;
165 bool kvm_allowed;
166 bool kvm_readonly_mem_allowed;
167 bool kvm_vm_attributes_allowed;
168 bool kvm_direct_msi_allowed;
169 bool kvm_ioeventfd_any_length_allowed;
170 bool kvm_msi_use_devid;
171 static bool kvm_immediate_exit;
172 static hwaddr kvm_max_slot_size = ~0;
173
174 static const KVMCapabilityInfo kvm_required_capabilites[] = {
175 KVM_CAP_INFO(USER_MEMORY),
176 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
177 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
178 KVM_CAP_LAST_INFO
179 };
180
181 static NotifierList kvm_irqchip_change_notifiers =
182 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
183
184 struct KVMResampleFd {
185 int gsi;
186 EventNotifier *resample_event;
187 QLIST_ENTRY(KVMResampleFd) node;
188 };
189 typedef struct KVMResampleFd KVMResampleFd;
190
191 /*
192 * Only used with split irqchip where we need to do the resample fd
193 * kick for the kernel from userspace.
194 */
195 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
196 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
197
198 static QemuMutex kml_slots_lock;
199
200 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
201 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
202
203 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
204
205 static inline void kvm_resample_fd_remove(int gsi)
206 {
207 KVMResampleFd *rfd;
208
209 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
210 if (rfd->gsi == gsi) {
211 QLIST_REMOVE(rfd, node);
212 g_free(rfd);
213 break;
214 }
215 }
216 }
217
218 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
219 {
220 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
221
222 rfd->gsi = gsi;
223 rfd->resample_event = event;
224
225 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
226 }
227
228 void kvm_resample_fd_notify(int gsi)
229 {
230 KVMResampleFd *rfd;
231
232 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
233 if (rfd->gsi == gsi) {
234 event_notifier_set(rfd->resample_event);
235 trace_kvm_resample_fd_notify(gsi);
236 return;
237 }
238 }
239 }
240
241 int kvm_get_max_memslots(void)
242 {
243 KVMState *s = KVM_STATE(current_accel());
244
245 return s->nr_slots;
246 }
247
248 /* Called with KVMMemoryListener.slots_lock held */
249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
250 {
251 KVMState *s = kvm_state;
252 int i;
253
254 for (i = 0; i < s->nr_slots; i++) {
255 if (kml->slots[i].memory_size == 0) {
256 return &kml->slots[i];
257 }
258 }
259
260 return NULL;
261 }
262
263 bool kvm_has_free_slot(MachineState *ms)
264 {
265 KVMState *s = KVM_STATE(ms->accelerator);
266 bool result;
267 KVMMemoryListener *kml = &s->memory_listener;
268
269 kvm_slots_lock();
270 result = !!kvm_get_free_slot(kml);
271 kvm_slots_unlock();
272
273 return result;
274 }
275
276 /* Called with KVMMemoryListener.slots_lock held */
277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
278 {
279 KVMSlot *slot = kvm_get_free_slot(kml);
280
281 if (slot) {
282 return slot;
283 }
284
285 fprintf(stderr, "%s: no free slot available\n", __func__);
286 abort();
287 }
288
289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
290 hwaddr start_addr,
291 hwaddr size)
292 {
293 KVMState *s = kvm_state;
294 int i;
295
296 for (i = 0; i < s->nr_slots; i++) {
297 KVMSlot *mem = &kml->slots[i];
298
299 if (start_addr == mem->start_addr && size == mem->memory_size) {
300 return mem;
301 }
302 }
303
304 return NULL;
305 }
306
307 /*
308 * Calculate and align the start address and the size of the section.
309 * Return the size. If the size is 0, the aligned section is empty.
310 */
311 static hwaddr kvm_align_section(MemoryRegionSection *section,
312 hwaddr *start)
313 {
314 hwaddr size = int128_get64(section->size);
315 hwaddr delta, aligned;
316
317 /* kvm works in page size chunks, but the function may be called
318 with sub-page size and unaligned start address. Pad the start
319 address to next and truncate size to previous page boundary. */
320 aligned = ROUND_UP(section->offset_within_address_space,
321 qemu_real_host_page_size);
322 delta = aligned - section->offset_within_address_space;
323 *start = aligned;
324 if (delta > size) {
325 return 0;
326 }
327
328 return (size - delta) & qemu_real_host_page_mask;
329 }
330
331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
332 hwaddr *phys_addr)
333 {
334 KVMMemoryListener *kml = &s->memory_listener;
335 int i, ret = 0;
336
337 kvm_slots_lock();
338 for (i = 0; i < s->nr_slots; i++) {
339 KVMSlot *mem = &kml->slots[i];
340
341 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
342 *phys_addr = mem->start_addr + (ram - mem->ram);
343 ret = 1;
344 break;
345 }
346 }
347 kvm_slots_unlock();
348
349 return ret;
350 }
351
352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
353 {
354 KVMState *s = kvm_state;
355 struct kvm_userspace_memory_region mem;
356 int ret;
357
358 mem.slot = slot->slot | (kml->as_id << 16);
359 mem.guest_phys_addr = slot->start_addr;
360 mem.userspace_addr = (unsigned long)slot->ram;
361 mem.flags = slot->flags;
362
363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
364 /* Set the slot size to 0 before setting the slot to the desired
365 * value. This is needed based on KVM commit 75d61fbc. */
366 mem.memory_size = 0;
367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
368 if (ret < 0) {
369 goto err;
370 }
371 }
372 mem.memory_size = slot->memory_size;
373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
374 slot->old_flags = mem.flags;
375 err:
376 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
377 mem.memory_size, mem.userspace_addr, ret);
378 if (ret < 0) {
379 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
380 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
381 __func__, mem.slot, slot->start_addr,
382 (uint64_t)mem.memory_size, strerror(errno));
383 }
384 return ret;
385 }
386
387 static int do_kvm_destroy_vcpu(CPUState *cpu)
388 {
389 KVMState *s = kvm_state;
390 long mmap_size;
391 struct KVMParkedVcpu *vcpu = NULL;
392 int ret = 0;
393
394 DPRINTF("kvm_destroy_vcpu\n");
395
396 ret = kvm_arch_destroy_vcpu(cpu);
397 if (ret < 0) {
398 goto err;
399 }
400
401 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
402 if (mmap_size < 0) {
403 ret = mmap_size;
404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
405 goto err;
406 }
407
408 ret = munmap(cpu->kvm_run, mmap_size);
409 if (ret < 0) {
410 goto err;
411 }
412
413 if (cpu->kvm_dirty_gfns) {
414 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
415 if (ret < 0) {
416 goto err;
417 }
418 }
419
420 vcpu = g_malloc0(sizeof(*vcpu));
421 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
422 vcpu->kvm_fd = cpu->kvm_fd;
423 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
424 err:
425 return ret;
426 }
427
428 void kvm_destroy_vcpu(CPUState *cpu)
429 {
430 if (do_kvm_destroy_vcpu(cpu) < 0) {
431 error_report("kvm_destroy_vcpu failed");
432 exit(EXIT_FAILURE);
433 }
434 }
435
436 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
437 {
438 struct KVMParkedVcpu *cpu;
439
440 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
441 if (cpu->vcpu_id == vcpu_id) {
442 int kvm_fd;
443
444 QLIST_REMOVE(cpu, node);
445 kvm_fd = cpu->kvm_fd;
446 g_free(cpu);
447 return kvm_fd;
448 }
449 }
450
451 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
452 }
453
454 int kvm_init_vcpu(CPUState *cpu, Error **errp)
455 {
456 KVMState *s = kvm_state;
457 long mmap_size;
458 int ret;
459
460 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
461
462 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
463 if (ret < 0) {
464 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
465 kvm_arch_vcpu_id(cpu));
466 goto err;
467 }
468
469 cpu->kvm_fd = ret;
470 cpu->kvm_state = s;
471 cpu->vcpu_dirty = true;
472
473 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
474 if (mmap_size < 0) {
475 ret = mmap_size;
476 error_setg_errno(errp, -mmap_size,
477 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
478 goto err;
479 }
480
481 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
482 cpu->kvm_fd, 0);
483 if (cpu->kvm_run == MAP_FAILED) {
484 ret = -errno;
485 error_setg_errno(errp, ret,
486 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
487 kvm_arch_vcpu_id(cpu));
488 goto err;
489 }
490
491 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
492 s->coalesced_mmio_ring =
493 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
494 }
495
496 if (s->kvm_dirty_ring_size) {
497 /* Use MAP_SHARED to share pages with the kernel */
498 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
499 PROT_READ | PROT_WRITE, MAP_SHARED,
500 cpu->kvm_fd,
501 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
502 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
503 ret = -errno;
504 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
505 goto err;
506 }
507 }
508
509 ret = kvm_arch_init_vcpu(cpu);
510 if (ret < 0) {
511 error_setg_errno(errp, -ret,
512 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
513 kvm_arch_vcpu_id(cpu));
514 }
515 err:
516 return ret;
517 }
518
519 /*
520 * dirty pages logging control
521 */
522
523 static int kvm_mem_flags(MemoryRegion *mr)
524 {
525 bool readonly = mr->readonly || memory_region_is_romd(mr);
526 int flags = 0;
527
528 if (memory_region_get_dirty_log_mask(mr) != 0) {
529 flags |= KVM_MEM_LOG_DIRTY_PAGES;
530 }
531 if (readonly && kvm_readonly_mem_allowed) {
532 flags |= KVM_MEM_READONLY;
533 }
534 return flags;
535 }
536
537 /* Called with KVMMemoryListener.slots_lock held */
538 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
539 MemoryRegion *mr)
540 {
541 mem->flags = kvm_mem_flags(mr);
542
543 /* If nothing changed effectively, no need to issue ioctl */
544 if (mem->flags == mem->old_flags) {
545 return 0;
546 }
547
548 kvm_slot_init_dirty_bitmap(mem);
549 return kvm_set_user_memory_region(kml, mem, false);
550 }
551
552 static int kvm_section_update_flags(KVMMemoryListener *kml,
553 MemoryRegionSection *section)
554 {
555 hwaddr start_addr, size, slot_size;
556 KVMSlot *mem;
557 int ret = 0;
558
559 size = kvm_align_section(section, &start_addr);
560 if (!size) {
561 return 0;
562 }
563
564 kvm_slots_lock();
565
566 while (size && !ret) {
567 slot_size = MIN(kvm_max_slot_size, size);
568 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
569 if (!mem) {
570 /* We don't have a slot if we want to trap every access. */
571 goto out;
572 }
573
574 ret = kvm_slot_update_flags(kml, mem, section->mr);
575 start_addr += slot_size;
576 size -= slot_size;
577 }
578
579 out:
580 kvm_slots_unlock();
581 return ret;
582 }
583
584 static void kvm_log_start(MemoryListener *listener,
585 MemoryRegionSection *section,
586 int old, int new)
587 {
588 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
589 int r;
590
591 if (old != 0) {
592 return;
593 }
594
595 r = kvm_section_update_flags(kml, section);
596 if (r < 0) {
597 abort();
598 }
599 }
600
601 static void kvm_log_stop(MemoryListener *listener,
602 MemoryRegionSection *section,
603 int old, int new)
604 {
605 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
606 int r;
607
608 if (new != 0) {
609 return;
610 }
611
612 r = kvm_section_update_flags(kml, section);
613 if (r < 0) {
614 abort();
615 }
616 }
617
618 /* get kvm's dirty pages bitmap and update qemu's */
619 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
620 {
621 ram_addr_t start = slot->ram_start_offset;
622 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
623
624 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
625 }
626
627 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
628 {
629 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
630 }
631
632 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
633
634 /* Allocate the dirty bitmap for a slot */
635 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
636 {
637 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
638 return;
639 }
640
641 /*
642 * XXX bad kernel interface alert
643 * For dirty bitmap, kernel allocates array of size aligned to
644 * bits-per-long. But for case when the kernel is 64bits and
645 * the userspace is 32bits, userspace can't align to the same
646 * bits-per-long, since sizeof(long) is different between kernel
647 * and user space. This way, userspace will provide buffer which
648 * may be 4 bytes less than the kernel will use, resulting in
649 * userspace memory corruption (which is not detectable by valgrind
650 * too, in most cases).
651 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
652 * a hope that sizeof(long) won't become >8 any time soon.
653 *
654 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
655 * And mem->memory_size is aligned to it (otherwise this mem can't
656 * be registered to KVM).
657 */
658 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
659 /*HOST_LONG_BITS*/ 64) / 8;
660 mem->dirty_bmap = g_malloc0(bitmap_size);
661 mem->dirty_bmap_size = bitmap_size;
662 }
663
664 /*
665 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
666 * succeeded, false otherwise
667 */
668 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
669 {
670 struct kvm_dirty_log d = {};
671 int ret;
672
673 d.dirty_bitmap = slot->dirty_bmap;
674 d.slot = slot->slot | (slot->as_id << 16);
675 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
676
677 if (ret == -ENOENT) {
678 /* kernel does not have dirty bitmap in this slot */
679 ret = 0;
680 }
681 if (ret) {
682 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
683 __func__, ret);
684 }
685 return ret == 0;
686 }
687
688 /* Should be with all slots_lock held for the address spaces. */
689 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
690 uint32_t slot_id, uint64_t offset)
691 {
692 KVMMemoryListener *kml;
693 KVMSlot *mem;
694
695 if (as_id >= s->nr_as) {
696 return;
697 }
698
699 kml = s->as[as_id].ml;
700 mem = &kml->slots[slot_id];
701
702 if (!mem->memory_size || offset >=
703 (mem->memory_size / qemu_real_host_page_size)) {
704 return;
705 }
706
707 set_bit(offset, mem->dirty_bmap);
708 }
709
710 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
711 {
712 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
713 }
714
715 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
716 {
717 gfn->flags = KVM_DIRTY_GFN_F_RESET;
718 }
719
720 /*
721 * Should be with all slots_lock held for the address spaces. It returns the
722 * dirty page we've collected on this dirty ring.
723 */
724 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
725 {
726 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
727 uint32_t ring_size = s->kvm_dirty_ring_size;
728 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
729
730 assert(dirty_gfns && ring_size);
731 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
732
733 while (true) {
734 cur = &dirty_gfns[fetch % ring_size];
735 if (!dirty_gfn_is_dirtied(cur)) {
736 break;
737 }
738 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
739 cur->offset);
740 dirty_gfn_set_collected(cur);
741 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
742 fetch++;
743 count++;
744 }
745 cpu->kvm_fetch_index = fetch;
746
747 return count;
748 }
749
750 /* Must be with slots_lock held */
751 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
752 {
753 int ret;
754 CPUState *cpu;
755 uint64_t total = 0;
756 int64_t stamp;
757
758 stamp = get_clock();
759
760 CPU_FOREACH(cpu) {
761 total += kvm_dirty_ring_reap_one(s, cpu);
762 }
763
764 if (total) {
765 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
766 assert(ret == total);
767 }
768
769 stamp = get_clock() - stamp;
770
771 if (total) {
772 trace_kvm_dirty_ring_reap(total, stamp / 1000);
773 }
774
775 return total;
776 }
777
778 /*
779 * Currently for simplicity, we must hold BQL before calling this. We can
780 * consider to drop the BQL if we're clear with all the race conditions.
781 */
782 static uint64_t kvm_dirty_ring_reap(KVMState *s)
783 {
784 uint64_t total;
785
786 /*
787 * We need to lock all kvm slots for all address spaces here,
788 * because:
789 *
790 * (1) We need to mark dirty for dirty bitmaps in multiple slots
791 * and for tons of pages, so it's better to take the lock here
792 * once rather than once per page. And more importantly,
793 *
794 * (2) We must _NOT_ publish dirty bits to the other threads
795 * (e.g., the migration thread) via the kvm memory slot dirty
796 * bitmaps before correctly re-protect those dirtied pages.
797 * Otherwise we can have potential risk of data corruption if
798 * the page data is read in the other thread before we do
799 * reset below.
800 */
801 kvm_slots_lock();
802 total = kvm_dirty_ring_reap_locked(s);
803 kvm_slots_unlock();
804
805 return total;
806 }
807
808 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
809 {
810 /* No need to do anything */
811 }
812
813 /*
814 * Kick all vcpus out in a synchronized way. When returned, we
815 * guarantee that every vcpu has been kicked and at least returned to
816 * userspace once.
817 */
818 static void kvm_cpu_synchronize_kick_all(void)
819 {
820 CPUState *cpu;
821
822 CPU_FOREACH(cpu) {
823 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
824 }
825 }
826
827 /*
828 * Flush all the existing dirty pages to the KVM slot buffers. When
829 * this call returns, we guarantee that all the touched dirty pages
830 * before calling this function have been put into the per-kvmslot
831 * dirty bitmap.
832 *
833 * This function must be called with BQL held.
834 */
835 static void kvm_dirty_ring_flush(void)
836 {
837 trace_kvm_dirty_ring_flush(0);
838 /*
839 * The function needs to be serialized. Since this function
840 * should always be with BQL held, serialization is guaranteed.
841 * However, let's be sure of it.
842 */
843 assert(qemu_mutex_iothread_locked());
844 /*
845 * First make sure to flush the hardware buffers by kicking all
846 * vcpus out in a synchronous way.
847 */
848 kvm_cpu_synchronize_kick_all();
849 kvm_dirty_ring_reap(kvm_state);
850 trace_kvm_dirty_ring_flush(1);
851 }
852
853 /**
854 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
855 *
856 * This function will first try to fetch dirty bitmap from the kernel,
857 * and then updates qemu's dirty bitmap.
858 *
859 * NOTE: caller must be with kml->slots_lock held.
860 *
861 * @kml: the KVM memory listener object
862 * @section: the memory section to sync the dirty bitmap with
863 */
864 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
865 MemoryRegionSection *section)
866 {
867 KVMState *s = kvm_state;
868 KVMSlot *mem;
869 hwaddr start_addr, size;
870 hwaddr slot_size;
871
872 size = kvm_align_section(section, &start_addr);
873 while (size) {
874 slot_size = MIN(kvm_max_slot_size, size);
875 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
876 if (!mem) {
877 /* We don't have a slot if we want to trap every access. */
878 return;
879 }
880 if (kvm_slot_get_dirty_log(s, mem)) {
881 kvm_slot_sync_dirty_pages(mem);
882 }
883 start_addr += slot_size;
884 size -= slot_size;
885 }
886 }
887
888 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
889 #define KVM_CLEAR_LOG_SHIFT 6
890 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
891 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
892
893 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
894 uint64_t size)
895 {
896 KVMState *s = kvm_state;
897 uint64_t end, bmap_start, start_delta, bmap_npages;
898 struct kvm_clear_dirty_log d;
899 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
900 int ret;
901
902 /*
903 * We need to extend either the start or the size or both to
904 * satisfy the KVM interface requirement. Firstly, do the start
905 * page alignment on 64 host pages
906 */
907 bmap_start = start & KVM_CLEAR_LOG_MASK;
908 start_delta = start - bmap_start;
909 bmap_start /= psize;
910
911 /*
912 * The kernel interface has restriction on the size too, that either:
913 *
914 * (1) the size is 64 host pages aligned (just like the start), or
915 * (2) the size fills up until the end of the KVM memslot.
916 */
917 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
918 << KVM_CLEAR_LOG_SHIFT;
919 end = mem->memory_size / psize;
920 if (bmap_npages > end - bmap_start) {
921 bmap_npages = end - bmap_start;
922 }
923 start_delta /= psize;
924
925 /*
926 * Prepare the bitmap to clear dirty bits. Here we must guarantee
927 * that we won't clear any unknown dirty bits otherwise we might
928 * accidentally clear some set bits which are not yet synced from
929 * the kernel into QEMU's bitmap, then we'll lose track of the
930 * guest modifications upon those pages (which can directly lead
931 * to guest data loss or panic after migration).
932 *
933 * Layout of the KVMSlot.dirty_bmap:
934 *
935 * |<-------- bmap_npages -----------..>|
936 * [1]
937 * start_delta size
938 * |----------------|-------------|------------------|------------|
939 * ^ ^ ^ ^
940 * | | | |
941 * start bmap_start (start) end
942 * of memslot of memslot
943 *
944 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
945 */
946
947 assert(bmap_start % BITS_PER_LONG == 0);
948 /* We should never do log_clear before log_sync */
949 assert(mem->dirty_bmap);
950 if (start_delta || bmap_npages - size / psize) {
951 /* Slow path - we need to manipulate a temp bitmap */
952 bmap_clear = bitmap_new(bmap_npages);
953 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
954 bmap_start, start_delta + size / psize);
955 /*
956 * We need to fill the holes at start because that was not
957 * specified by the caller and we extended the bitmap only for
958 * 64 pages alignment
959 */
960 bitmap_clear(bmap_clear, 0, start_delta);
961 d.dirty_bitmap = bmap_clear;
962 } else {
963 /*
964 * Fast path - both start and size align well with BITS_PER_LONG
965 * (or the end of memory slot)
966 */
967 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
968 }
969
970 d.first_page = bmap_start;
971 /* It should never overflow. If it happens, say something */
972 assert(bmap_npages <= UINT32_MAX);
973 d.num_pages = bmap_npages;
974 d.slot = mem->slot | (as_id << 16);
975
976 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
977 if (ret < 0 && ret != -ENOENT) {
978 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
979 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
980 __func__, d.slot, (uint64_t)d.first_page,
981 (uint32_t)d.num_pages, ret);
982 } else {
983 ret = 0;
984 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
985 }
986
987 /*
988 * After we have updated the remote dirty bitmap, we update the
989 * cached bitmap as well for the memslot, then if another user
990 * clears the same region we know we shouldn't clear it again on
991 * the remote otherwise it's data loss as well.
992 */
993 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
994 size / psize);
995 /* This handles the NULL case well */
996 g_free(bmap_clear);
997 return ret;
998 }
999
1000
1001 /**
1002 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1003 *
1004 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1005 * protection in the host kernel because in that case this operation
1006 * will be done within log_sync().
1007 *
1008 * @kml: the kvm memory listener
1009 * @section: the memory range to clear dirty bitmap
1010 */
1011 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1012 MemoryRegionSection *section)
1013 {
1014 KVMState *s = kvm_state;
1015 uint64_t start, size, offset, count;
1016 KVMSlot *mem;
1017 int ret = 0, i;
1018
1019 if (!s->manual_dirty_log_protect) {
1020 /* No need to do explicit clear */
1021 return ret;
1022 }
1023
1024 start = section->offset_within_address_space;
1025 size = int128_get64(section->size);
1026
1027 if (!size) {
1028 /* Nothing more we can do... */
1029 return ret;
1030 }
1031
1032 kvm_slots_lock();
1033
1034 for (i = 0; i < s->nr_slots; i++) {
1035 mem = &kml->slots[i];
1036 /* Discard slots that are empty or do not overlap the section */
1037 if (!mem->memory_size ||
1038 mem->start_addr > start + size - 1 ||
1039 start > mem->start_addr + mem->memory_size - 1) {
1040 continue;
1041 }
1042
1043 if (start >= mem->start_addr) {
1044 /* The slot starts before section or is aligned to it. */
1045 offset = start - mem->start_addr;
1046 count = MIN(mem->memory_size - offset, size);
1047 } else {
1048 /* The slot starts after section. */
1049 offset = 0;
1050 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1051 }
1052 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1053 if (ret < 0) {
1054 break;
1055 }
1056 }
1057
1058 kvm_slots_unlock();
1059
1060 return ret;
1061 }
1062
1063 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1064 MemoryRegionSection *secion,
1065 hwaddr start, hwaddr size)
1066 {
1067 KVMState *s = kvm_state;
1068
1069 if (s->coalesced_mmio) {
1070 struct kvm_coalesced_mmio_zone zone;
1071
1072 zone.addr = start;
1073 zone.size = size;
1074 zone.pad = 0;
1075
1076 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1077 }
1078 }
1079
1080 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1081 MemoryRegionSection *secion,
1082 hwaddr start, hwaddr size)
1083 {
1084 KVMState *s = kvm_state;
1085
1086 if (s->coalesced_mmio) {
1087 struct kvm_coalesced_mmio_zone zone;
1088
1089 zone.addr = start;
1090 zone.size = size;
1091 zone.pad = 0;
1092
1093 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1094 }
1095 }
1096
1097 static void kvm_coalesce_pio_add(MemoryListener *listener,
1098 MemoryRegionSection *section,
1099 hwaddr start, hwaddr size)
1100 {
1101 KVMState *s = kvm_state;
1102
1103 if (s->coalesced_pio) {
1104 struct kvm_coalesced_mmio_zone zone;
1105
1106 zone.addr = start;
1107 zone.size = size;
1108 zone.pio = 1;
1109
1110 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1111 }
1112 }
1113
1114 static void kvm_coalesce_pio_del(MemoryListener *listener,
1115 MemoryRegionSection *section,
1116 hwaddr start, hwaddr size)
1117 {
1118 KVMState *s = kvm_state;
1119
1120 if (s->coalesced_pio) {
1121 struct kvm_coalesced_mmio_zone zone;
1122
1123 zone.addr = start;
1124 zone.size = size;
1125 zone.pio = 1;
1126
1127 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1128 }
1129 }
1130
1131 static MemoryListener kvm_coalesced_pio_listener = {
1132 .coalesced_io_add = kvm_coalesce_pio_add,
1133 .coalesced_io_del = kvm_coalesce_pio_del,
1134 };
1135
1136 int kvm_check_extension(KVMState *s, unsigned int extension)
1137 {
1138 int ret;
1139
1140 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1141 if (ret < 0) {
1142 ret = 0;
1143 }
1144
1145 return ret;
1146 }
1147
1148 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1149 {
1150 int ret;
1151
1152 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1153 if (ret < 0) {
1154 /* VM wide version not implemented, use global one instead */
1155 ret = kvm_check_extension(s, extension);
1156 }
1157
1158 return ret;
1159 }
1160
1161 typedef struct HWPoisonPage {
1162 ram_addr_t ram_addr;
1163 QLIST_ENTRY(HWPoisonPage) list;
1164 } HWPoisonPage;
1165
1166 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1167 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1168
1169 static void kvm_unpoison_all(void *param)
1170 {
1171 HWPoisonPage *page, *next_page;
1172
1173 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1174 QLIST_REMOVE(page, list);
1175 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1176 g_free(page);
1177 }
1178 }
1179
1180 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1181 {
1182 HWPoisonPage *page;
1183
1184 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1185 if (page->ram_addr == ram_addr) {
1186 return;
1187 }
1188 }
1189 page = g_new(HWPoisonPage, 1);
1190 page->ram_addr = ram_addr;
1191 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1192 }
1193
1194 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1195 {
1196 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
1197 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
1198 * endianness, but the memory core hands them in target endianness.
1199 * For example, PPC is always treated as big-endian even if running
1200 * on KVM and on PPC64LE. Correct here.
1201 */
1202 switch (size) {
1203 case 2:
1204 val = bswap16(val);
1205 break;
1206 case 4:
1207 val = bswap32(val);
1208 break;
1209 }
1210 #endif
1211 return val;
1212 }
1213
1214 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1215 bool assign, uint32_t size, bool datamatch)
1216 {
1217 int ret;
1218 struct kvm_ioeventfd iofd = {
1219 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1220 .addr = addr,
1221 .len = size,
1222 .flags = 0,
1223 .fd = fd,
1224 };
1225
1226 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1227 datamatch);
1228 if (!kvm_enabled()) {
1229 return -ENOSYS;
1230 }
1231
1232 if (datamatch) {
1233 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1234 }
1235 if (!assign) {
1236 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1237 }
1238
1239 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1240
1241 if (ret < 0) {
1242 return -errno;
1243 }
1244
1245 return 0;
1246 }
1247
1248 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1249 bool assign, uint32_t size, bool datamatch)
1250 {
1251 struct kvm_ioeventfd kick = {
1252 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1253 .addr = addr,
1254 .flags = KVM_IOEVENTFD_FLAG_PIO,
1255 .len = size,
1256 .fd = fd,
1257 };
1258 int r;
1259 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1260 if (!kvm_enabled()) {
1261 return -ENOSYS;
1262 }
1263 if (datamatch) {
1264 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1265 }
1266 if (!assign) {
1267 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1268 }
1269 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1270 if (r < 0) {
1271 return r;
1272 }
1273 return 0;
1274 }
1275
1276
1277 static int kvm_check_many_ioeventfds(void)
1278 {
1279 /* Userspace can use ioeventfd for io notification. This requires a host
1280 * that supports eventfd(2) and an I/O thread; since eventfd does not
1281 * support SIGIO it cannot interrupt the vcpu.
1282 *
1283 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1284 * can avoid creating too many ioeventfds.
1285 */
1286 #if defined(CONFIG_EVENTFD)
1287 int ioeventfds[7];
1288 int i, ret = 0;
1289 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1290 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1291 if (ioeventfds[i] < 0) {
1292 break;
1293 }
1294 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1295 if (ret < 0) {
1296 close(ioeventfds[i]);
1297 break;
1298 }
1299 }
1300
1301 /* Decide whether many devices are supported or not */
1302 ret = i == ARRAY_SIZE(ioeventfds);
1303
1304 while (i-- > 0) {
1305 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1306 close(ioeventfds[i]);
1307 }
1308 return ret;
1309 #else
1310 return 0;
1311 #endif
1312 }
1313
1314 static const KVMCapabilityInfo *
1315 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1316 {
1317 while (list->name) {
1318 if (!kvm_check_extension(s, list->value)) {
1319 return list;
1320 }
1321 list++;
1322 }
1323 return NULL;
1324 }
1325
1326 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1327 {
1328 g_assert(
1329 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1330 );
1331 kvm_max_slot_size = max_slot_size;
1332 }
1333
1334 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1335 MemoryRegionSection *section, bool add)
1336 {
1337 KVMSlot *mem;
1338 int err;
1339 MemoryRegion *mr = section->mr;
1340 bool writeable = !mr->readonly && !mr->rom_device;
1341 hwaddr start_addr, size, slot_size, mr_offset;
1342 ram_addr_t ram_start_offset;
1343 void *ram;
1344
1345 if (!memory_region_is_ram(mr)) {
1346 if (writeable || !kvm_readonly_mem_allowed) {
1347 return;
1348 } else if (!mr->romd_mode) {
1349 /* If the memory device is not in romd_mode, then we actually want
1350 * to remove the kvm memory slot so all accesses will trap. */
1351 add = false;
1352 }
1353 }
1354
1355 size = kvm_align_section(section, &start_addr);
1356 if (!size) {
1357 return;
1358 }
1359
1360 /* The offset of the kvmslot within the memory region */
1361 mr_offset = section->offset_within_region + start_addr -
1362 section->offset_within_address_space;
1363
1364 /* use aligned delta to align the ram address and offset */
1365 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1366 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1367
1368 kvm_slots_lock();
1369
1370 if (!add) {
1371 do {
1372 slot_size = MIN(kvm_max_slot_size, size);
1373 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1374 if (!mem) {
1375 goto out;
1376 }
1377 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1378 /*
1379 * NOTE: We should be aware of the fact that here we're only
1380 * doing a best effort to sync dirty bits. No matter whether
1381 * we're using dirty log or dirty ring, we ignored two facts:
1382 *
1383 * (1) dirty bits can reside in hardware buffers (PML)
1384 *
1385 * (2) after we collected dirty bits here, pages can be dirtied
1386 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1387 * remove the slot.
1388 *
1389 * Not easy. Let's cross the fingers until it's fixed.
1390 */
1391 if (kvm_state->kvm_dirty_ring_size) {
1392 kvm_dirty_ring_reap_locked(kvm_state);
1393 } else {
1394 kvm_slot_get_dirty_log(kvm_state, mem);
1395 }
1396 kvm_slot_sync_dirty_pages(mem);
1397 }
1398
1399 /* unregister the slot */
1400 g_free(mem->dirty_bmap);
1401 mem->dirty_bmap = NULL;
1402 mem->memory_size = 0;
1403 mem->flags = 0;
1404 err = kvm_set_user_memory_region(kml, mem, false);
1405 if (err) {
1406 fprintf(stderr, "%s: error unregistering slot: %s\n",
1407 __func__, strerror(-err));
1408 abort();
1409 }
1410 start_addr += slot_size;
1411 size -= slot_size;
1412 } while (size);
1413 goto out;
1414 }
1415
1416 /* register the new slot */
1417 do {
1418 slot_size = MIN(kvm_max_slot_size, size);
1419 mem = kvm_alloc_slot(kml);
1420 mem->as_id = kml->as_id;
1421 mem->memory_size = slot_size;
1422 mem->start_addr = start_addr;
1423 mem->ram_start_offset = ram_start_offset;
1424 mem->ram = ram;
1425 mem->flags = kvm_mem_flags(mr);
1426 kvm_slot_init_dirty_bitmap(mem);
1427 err = kvm_set_user_memory_region(kml, mem, true);
1428 if (err) {
1429 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1430 strerror(-err));
1431 abort();
1432 }
1433 start_addr += slot_size;
1434 ram_start_offset += slot_size;
1435 ram += slot_size;
1436 size -= slot_size;
1437 } while (size);
1438
1439 out:
1440 kvm_slots_unlock();
1441 }
1442
1443 static void *kvm_dirty_ring_reaper_thread(void *data)
1444 {
1445 KVMState *s = data;
1446 struct KVMDirtyRingReaper *r = &s->reaper;
1447
1448 rcu_register_thread();
1449
1450 trace_kvm_dirty_ring_reaper("init");
1451
1452 while (true) {
1453 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1454 trace_kvm_dirty_ring_reaper("wait");
1455 /*
1456 * TODO: provide a smarter timeout rather than a constant?
1457 */
1458 sleep(1);
1459
1460 trace_kvm_dirty_ring_reaper("wakeup");
1461 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1462
1463 qemu_mutex_lock_iothread();
1464 kvm_dirty_ring_reap(s);
1465 qemu_mutex_unlock_iothread();
1466
1467 r->reaper_iteration++;
1468 }
1469
1470 trace_kvm_dirty_ring_reaper("exit");
1471
1472 rcu_unregister_thread();
1473
1474 return NULL;
1475 }
1476
1477 static int kvm_dirty_ring_reaper_init(KVMState *s)
1478 {
1479 struct KVMDirtyRingReaper *r = &s->reaper;
1480
1481 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1482 kvm_dirty_ring_reaper_thread,
1483 s, QEMU_THREAD_JOINABLE);
1484
1485 return 0;
1486 }
1487
1488 static void kvm_region_add(MemoryListener *listener,
1489 MemoryRegionSection *section)
1490 {
1491 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1492
1493 memory_region_ref(section->mr);
1494 kvm_set_phys_mem(kml, section, true);
1495 }
1496
1497 static void kvm_region_del(MemoryListener *listener,
1498 MemoryRegionSection *section)
1499 {
1500 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1501
1502 kvm_set_phys_mem(kml, section, false);
1503 memory_region_unref(section->mr);
1504 }
1505
1506 static void kvm_log_sync(MemoryListener *listener,
1507 MemoryRegionSection *section)
1508 {
1509 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1510
1511 kvm_slots_lock();
1512 kvm_physical_sync_dirty_bitmap(kml, section);
1513 kvm_slots_unlock();
1514 }
1515
1516 static void kvm_log_sync_global(MemoryListener *l)
1517 {
1518 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1519 KVMState *s = kvm_state;
1520 KVMSlot *mem;
1521 int i;
1522
1523 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1524 kvm_dirty_ring_flush();
1525
1526 /*
1527 * TODO: make this faster when nr_slots is big while there are
1528 * only a few used slots (small VMs).
1529 */
1530 kvm_slots_lock();
1531 for (i = 0; i < s->nr_slots; i++) {
1532 mem = &kml->slots[i];
1533 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1534 kvm_slot_sync_dirty_pages(mem);
1535 /*
1536 * This is not needed by KVM_GET_DIRTY_LOG because the
1537 * ioctl will unconditionally overwrite the whole region.
1538 * However kvm dirty ring has no such side effect.
1539 */
1540 kvm_slot_reset_dirty_pages(mem);
1541 }
1542 }
1543 kvm_slots_unlock();
1544 }
1545
1546 static void kvm_log_clear(MemoryListener *listener,
1547 MemoryRegionSection *section)
1548 {
1549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1550 int r;
1551
1552 r = kvm_physical_log_clear(kml, section);
1553 if (r < 0) {
1554 error_report_once("%s: kvm log clear failed: mr=%s "
1555 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1556 section->mr->name, section->offset_within_region,
1557 int128_get64(section->size));
1558 abort();
1559 }
1560 }
1561
1562 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1563 MemoryRegionSection *section,
1564 bool match_data, uint64_t data,
1565 EventNotifier *e)
1566 {
1567 int fd = event_notifier_get_fd(e);
1568 int r;
1569
1570 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1571 data, true, int128_get64(section->size),
1572 match_data);
1573 if (r < 0) {
1574 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1575 __func__, strerror(-r), -r);
1576 abort();
1577 }
1578 }
1579
1580 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1581 MemoryRegionSection *section,
1582 bool match_data, uint64_t data,
1583 EventNotifier *e)
1584 {
1585 int fd = event_notifier_get_fd(e);
1586 int r;
1587
1588 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1589 data, false, int128_get64(section->size),
1590 match_data);
1591 if (r < 0) {
1592 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1593 __func__, strerror(-r), -r);
1594 abort();
1595 }
1596 }
1597
1598 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1599 MemoryRegionSection *section,
1600 bool match_data, uint64_t data,
1601 EventNotifier *e)
1602 {
1603 int fd = event_notifier_get_fd(e);
1604 int r;
1605
1606 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1607 data, true, int128_get64(section->size),
1608 match_data);
1609 if (r < 0) {
1610 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1611 __func__, strerror(-r), -r);
1612 abort();
1613 }
1614 }
1615
1616 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1617 MemoryRegionSection *section,
1618 bool match_data, uint64_t data,
1619 EventNotifier *e)
1620
1621 {
1622 int fd = event_notifier_get_fd(e);
1623 int r;
1624
1625 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1626 data, false, int128_get64(section->size),
1627 match_data);
1628 if (r < 0) {
1629 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1630 __func__, strerror(-r), -r);
1631 abort();
1632 }
1633 }
1634
1635 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1636 AddressSpace *as, int as_id)
1637 {
1638 int i;
1639
1640 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1641 kml->as_id = as_id;
1642
1643 for (i = 0; i < s->nr_slots; i++) {
1644 kml->slots[i].slot = i;
1645 }
1646
1647 kml->listener.region_add = kvm_region_add;
1648 kml->listener.region_del = kvm_region_del;
1649 kml->listener.log_start = kvm_log_start;
1650 kml->listener.log_stop = kvm_log_stop;
1651 kml->listener.priority = 10;
1652
1653 if (s->kvm_dirty_ring_size) {
1654 kml->listener.log_sync_global = kvm_log_sync_global;
1655 } else {
1656 kml->listener.log_sync = kvm_log_sync;
1657 kml->listener.log_clear = kvm_log_clear;
1658 }
1659
1660 memory_listener_register(&kml->listener, as);
1661
1662 for (i = 0; i < s->nr_as; ++i) {
1663 if (!s->as[i].as) {
1664 s->as[i].as = as;
1665 s->as[i].ml = kml;
1666 break;
1667 }
1668 }
1669 }
1670
1671 static MemoryListener kvm_io_listener = {
1672 .eventfd_add = kvm_io_ioeventfd_add,
1673 .eventfd_del = kvm_io_ioeventfd_del,
1674 .priority = 10,
1675 };
1676
1677 int kvm_set_irq(KVMState *s, int irq, int level)
1678 {
1679 struct kvm_irq_level event;
1680 int ret;
1681
1682 assert(kvm_async_interrupts_enabled());
1683
1684 event.level = level;
1685 event.irq = irq;
1686 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1687 if (ret < 0) {
1688 perror("kvm_set_irq");
1689 abort();
1690 }
1691
1692 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1693 }
1694
1695 #ifdef KVM_CAP_IRQ_ROUTING
1696 typedef struct KVMMSIRoute {
1697 struct kvm_irq_routing_entry kroute;
1698 QTAILQ_ENTRY(KVMMSIRoute) entry;
1699 } KVMMSIRoute;
1700
1701 static void set_gsi(KVMState *s, unsigned int gsi)
1702 {
1703 set_bit(gsi, s->used_gsi_bitmap);
1704 }
1705
1706 static void clear_gsi(KVMState *s, unsigned int gsi)
1707 {
1708 clear_bit(gsi, s->used_gsi_bitmap);
1709 }
1710
1711 void kvm_init_irq_routing(KVMState *s)
1712 {
1713 int gsi_count, i;
1714
1715 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1716 if (gsi_count > 0) {
1717 /* Round up so we can search ints using ffs */
1718 s->used_gsi_bitmap = bitmap_new(gsi_count);
1719 s->gsi_count = gsi_count;
1720 }
1721
1722 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1723 s->nr_allocated_irq_routes = 0;
1724
1725 if (!kvm_direct_msi_allowed) {
1726 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1727 QTAILQ_INIT(&s->msi_hashtab[i]);
1728 }
1729 }
1730
1731 kvm_arch_init_irq_routing(s);
1732 }
1733
1734 void kvm_irqchip_commit_routes(KVMState *s)
1735 {
1736 int ret;
1737
1738 if (kvm_gsi_direct_mapping()) {
1739 return;
1740 }
1741
1742 if (!kvm_gsi_routing_enabled()) {
1743 return;
1744 }
1745
1746 s->irq_routes->flags = 0;
1747 trace_kvm_irqchip_commit_routes();
1748 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1749 assert(ret == 0);
1750 }
1751
1752 static void kvm_add_routing_entry(KVMState *s,
1753 struct kvm_irq_routing_entry *entry)
1754 {
1755 struct kvm_irq_routing_entry *new;
1756 int n, size;
1757
1758 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1759 n = s->nr_allocated_irq_routes * 2;
1760 if (n < 64) {
1761 n = 64;
1762 }
1763 size = sizeof(struct kvm_irq_routing);
1764 size += n * sizeof(*new);
1765 s->irq_routes = g_realloc(s->irq_routes, size);
1766 s->nr_allocated_irq_routes = n;
1767 }
1768 n = s->irq_routes->nr++;
1769 new = &s->irq_routes->entries[n];
1770
1771 *new = *entry;
1772
1773 set_gsi(s, entry->gsi);
1774 }
1775
1776 static int kvm_update_routing_entry(KVMState *s,
1777 struct kvm_irq_routing_entry *new_entry)
1778 {
1779 struct kvm_irq_routing_entry *entry;
1780 int n;
1781
1782 for (n = 0; n < s->irq_routes->nr; n++) {
1783 entry = &s->irq_routes->entries[n];
1784 if (entry->gsi != new_entry->gsi) {
1785 continue;
1786 }
1787
1788 if(!memcmp(entry, new_entry, sizeof *entry)) {
1789 return 0;
1790 }
1791
1792 *entry = *new_entry;
1793
1794 return 0;
1795 }
1796
1797 return -ESRCH;
1798 }
1799
1800 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1801 {
1802 struct kvm_irq_routing_entry e = {};
1803
1804 assert(pin < s->gsi_count);
1805
1806 e.gsi = irq;
1807 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1808 e.flags = 0;
1809 e.u.irqchip.irqchip = irqchip;
1810 e.u.irqchip.pin = pin;
1811 kvm_add_routing_entry(s, &e);
1812 }
1813
1814 void kvm_irqchip_release_virq(KVMState *s, int virq)
1815 {
1816 struct kvm_irq_routing_entry *e;
1817 int i;
1818
1819 if (kvm_gsi_direct_mapping()) {
1820 return;
1821 }
1822
1823 for (i = 0; i < s->irq_routes->nr; i++) {
1824 e = &s->irq_routes->entries[i];
1825 if (e->gsi == virq) {
1826 s->irq_routes->nr--;
1827 *e = s->irq_routes->entries[s->irq_routes->nr];
1828 }
1829 }
1830 clear_gsi(s, virq);
1831 kvm_arch_release_virq_post(virq);
1832 trace_kvm_irqchip_release_virq(virq);
1833 }
1834
1835 void kvm_irqchip_add_change_notifier(Notifier *n)
1836 {
1837 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1838 }
1839
1840 void kvm_irqchip_remove_change_notifier(Notifier *n)
1841 {
1842 notifier_remove(n);
1843 }
1844
1845 void kvm_irqchip_change_notify(void)
1846 {
1847 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1848 }
1849
1850 static unsigned int kvm_hash_msi(uint32_t data)
1851 {
1852 /* This is optimized for IA32 MSI layout. However, no other arch shall
1853 * repeat the mistake of not providing a direct MSI injection API. */
1854 return data & 0xff;
1855 }
1856
1857 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1858 {
1859 KVMMSIRoute *route, *next;
1860 unsigned int hash;
1861
1862 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1863 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1864 kvm_irqchip_release_virq(s, route->kroute.gsi);
1865 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1866 g_free(route);
1867 }
1868 }
1869 }
1870
1871 static int kvm_irqchip_get_virq(KVMState *s)
1872 {
1873 int next_virq;
1874
1875 /*
1876 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1877 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1878 * number can succeed even though a new route entry cannot be added.
1879 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1880 */
1881 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1882 kvm_flush_dynamic_msi_routes(s);
1883 }
1884
1885 /* Return the lowest unused GSI in the bitmap */
1886 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1887 if (next_virq >= s->gsi_count) {
1888 return -ENOSPC;
1889 } else {
1890 return next_virq;
1891 }
1892 }
1893
1894 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1895 {
1896 unsigned int hash = kvm_hash_msi(msg.data);
1897 KVMMSIRoute *route;
1898
1899 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1900 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1901 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1902 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1903 return route;
1904 }
1905 }
1906 return NULL;
1907 }
1908
1909 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1910 {
1911 struct kvm_msi msi;
1912 KVMMSIRoute *route;
1913
1914 if (kvm_direct_msi_allowed) {
1915 msi.address_lo = (uint32_t)msg.address;
1916 msi.address_hi = msg.address >> 32;
1917 msi.data = le32_to_cpu(msg.data);
1918 msi.flags = 0;
1919 memset(msi.pad, 0, sizeof(msi.pad));
1920
1921 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1922 }
1923
1924 route = kvm_lookup_msi_route(s, msg);
1925 if (!route) {
1926 int virq;
1927
1928 virq = kvm_irqchip_get_virq(s);
1929 if (virq < 0) {
1930 return virq;
1931 }
1932
1933 route = g_malloc0(sizeof(KVMMSIRoute));
1934 route->kroute.gsi = virq;
1935 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1936 route->kroute.flags = 0;
1937 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1938 route->kroute.u.msi.address_hi = msg.address >> 32;
1939 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1940
1941 kvm_add_routing_entry(s, &route->kroute);
1942 kvm_irqchip_commit_routes(s);
1943
1944 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1945 entry);
1946 }
1947
1948 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1949
1950 return kvm_set_irq(s, route->kroute.gsi, 1);
1951 }
1952
1953 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1954 {
1955 struct kvm_irq_routing_entry kroute = {};
1956 int virq;
1957 MSIMessage msg = {0, 0};
1958
1959 if (pci_available && dev) {
1960 msg = pci_get_msi_message(dev, vector);
1961 }
1962
1963 if (kvm_gsi_direct_mapping()) {
1964 return kvm_arch_msi_data_to_gsi(msg.data);
1965 }
1966
1967 if (!kvm_gsi_routing_enabled()) {
1968 return -ENOSYS;
1969 }
1970
1971 virq = kvm_irqchip_get_virq(s);
1972 if (virq < 0) {
1973 return virq;
1974 }
1975
1976 kroute.gsi = virq;
1977 kroute.type = KVM_IRQ_ROUTING_MSI;
1978 kroute.flags = 0;
1979 kroute.u.msi.address_lo = (uint32_t)msg.address;
1980 kroute.u.msi.address_hi = msg.address >> 32;
1981 kroute.u.msi.data = le32_to_cpu(msg.data);
1982 if (pci_available && kvm_msi_devid_required()) {
1983 kroute.flags = KVM_MSI_VALID_DEVID;
1984 kroute.u.msi.devid = pci_requester_id(dev);
1985 }
1986 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1987 kvm_irqchip_release_virq(s, virq);
1988 return -EINVAL;
1989 }
1990
1991 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1992 vector, virq);
1993
1994 kvm_add_routing_entry(s, &kroute);
1995 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1996 kvm_irqchip_commit_routes(s);
1997
1998 return virq;
1999 }
2000
2001 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2002 PCIDevice *dev)
2003 {
2004 struct kvm_irq_routing_entry kroute = {};
2005
2006 if (kvm_gsi_direct_mapping()) {
2007 return 0;
2008 }
2009
2010 if (!kvm_irqchip_in_kernel()) {
2011 return -ENOSYS;
2012 }
2013
2014 kroute.gsi = virq;
2015 kroute.type = KVM_IRQ_ROUTING_MSI;
2016 kroute.flags = 0;
2017 kroute.u.msi.address_lo = (uint32_t)msg.address;
2018 kroute.u.msi.address_hi = msg.address >> 32;
2019 kroute.u.msi.data = le32_to_cpu(msg.data);
2020 if (pci_available && kvm_msi_devid_required()) {
2021 kroute.flags = KVM_MSI_VALID_DEVID;
2022 kroute.u.msi.devid = pci_requester_id(dev);
2023 }
2024 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2025 return -EINVAL;
2026 }
2027
2028 trace_kvm_irqchip_update_msi_route(virq);
2029
2030 return kvm_update_routing_entry(s, &kroute);
2031 }
2032
2033 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2034 EventNotifier *resample, int virq,
2035 bool assign)
2036 {
2037 int fd = event_notifier_get_fd(event);
2038 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2039
2040 struct kvm_irqfd irqfd = {
2041 .fd = fd,
2042 .gsi = virq,
2043 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2044 };
2045
2046 if (rfd != -1) {
2047 assert(assign);
2048 if (kvm_irqchip_is_split()) {
2049 /*
2050 * When the slow irqchip (e.g. IOAPIC) is in the
2051 * userspace, KVM kernel resamplefd will not work because
2052 * the EOI of the interrupt will be delivered to userspace
2053 * instead, so the KVM kernel resamplefd kick will be
2054 * skipped. The userspace here mimics what the kernel
2055 * provides with resamplefd, remember the resamplefd and
2056 * kick it when we receive EOI of this IRQ.
2057 *
2058 * This is hackery because IOAPIC is mostly bypassed
2059 * (except EOI broadcasts) when irqfd is used. However
2060 * this can bring much performance back for split irqchip
2061 * with INTx IRQs (for VFIO, this gives 93% perf of the
2062 * full fast path, which is 46% perf boost comparing to
2063 * the INTx slow path).
2064 */
2065 kvm_resample_fd_insert(virq, resample);
2066 } else {
2067 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2068 irqfd.resamplefd = rfd;
2069 }
2070 } else if (!assign) {
2071 if (kvm_irqchip_is_split()) {
2072 kvm_resample_fd_remove(virq);
2073 }
2074 }
2075
2076 if (!kvm_irqfds_enabled()) {
2077 return -ENOSYS;
2078 }
2079
2080 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2081 }
2082
2083 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2084 {
2085 struct kvm_irq_routing_entry kroute = {};
2086 int virq;
2087
2088 if (!kvm_gsi_routing_enabled()) {
2089 return -ENOSYS;
2090 }
2091
2092 virq = kvm_irqchip_get_virq(s);
2093 if (virq < 0) {
2094 return virq;
2095 }
2096
2097 kroute.gsi = virq;
2098 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2099 kroute.flags = 0;
2100 kroute.u.adapter.summary_addr = adapter->summary_addr;
2101 kroute.u.adapter.ind_addr = adapter->ind_addr;
2102 kroute.u.adapter.summary_offset = adapter->summary_offset;
2103 kroute.u.adapter.ind_offset = adapter->ind_offset;
2104 kroute.u.adapter.adapter_id = adapter->adapter_id;
2105
2106 kvm_add_routing_entry(s, &kroute);
2107
2108 return virq;
2109 }
2110
2111 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2112 {
2113 struct kvm_irq_routing_entry kroute = {};
2114 int virq;
2115
2116 if (!kvm_gsi_routing_enabled()) {
2117 return -ENOSYS;
2118 }
2119 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2120 return -ENOSYS;
2121 }
2122 virq = kvm_irqchip_get_virq(s);
2123 if (virq < 0) {
2124 return virq;
2125 }
2126
2127 kroute.gsi = virq;
2128 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2129 kroute.flags = 0;
2130 kroute.u.hv_sint.vcpu = vcpu;
2131 kroute.u.hv_sint.sint = sint;
2132
2133 kvm_add_routing_entry(s, &kroute);
2134 kvm_irqchip_commit_routes(s);
2135
2136 return virq;
2137 }
2138
2139 #else /* !KVM_CAP_IRQ_ROUTING */
2140
2141 void kvm_init_irq_routing(KVMState *s)
2142 {
2143 }
2144
2145 void kvm_irqchip_release_virq(KVMState *s, int virq)
2146 {
2147 }
2148
2149 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2150 {
2151 abort();
2152 }
2153
2154 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
2155 {
2156 return -ENOSYS;
2157 }
2158
2159 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2160 {
2161 return -ENOSYS;
2162 }
2163
2164 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2165 {
2166 return -ENOSYS;
2167 }
2168
2169 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2170 EventNotifier *resample, int virq,
2171 bool assign)
2172 {
2173 abort();
2174 }
2175
2176 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2177 {
2178 return -ENOSYS;
2179 }
2180 #endif /* !KVM_CAP_IRQ_ROUTING */
2181
2182 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2183 EventNotifier *rn, int virq)
2184 {
2185 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2186 }
2187
2188 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2189 int virq)
2190 {
2191 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2192 }
2193
2194 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2195 EventNotifier *rn, qemu_irq irq)
2196 {
2197 gpointer key, gsi;
2198 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2199
2200 if (!found) {
2201 return -ENXIO;
2202 }
2203 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2204 }
2205
2206 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2207 qemu_irq irq)
2208 {
2209 gpointer key, gsi;
2210 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2211
2212 if (!found) {
2213 return -ENXIO;
2214 }
2215 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2216 }
2217
2218 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2219 {
2220 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2221 }
2222
2223 static void kvm_irqchip_create(KVMState *s)
2224 {
2225 int ret;
2226
2227 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2228 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2229 ;
2230 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2231 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2232 if (ret < 0) {
2233 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2234 exit(1);
2235 }
2236 } else {
2237 return;
2238 }
2239
2240 /* First probe and see if there's a arch-specific hook to create the
2241 * in-kernel irqchip for us */
2242 ret = kvm_arch_irqchip_create(s);
2243 if (ret == 0) {
2244 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2245 perror("Split IRQ chip mode not supported.");
2246 exit(1);
2247 } else {
2248 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2249 }
2250 }
2251 if (ret < 0) {
2252 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2253 exit(1);
2254 }
2255
2256 kvm_kernel_irqchip = true;
2257 /* If we have an in-kernel IRQ chip then we must have asynchronous
2258 * interrupt delivery (though the reverse is not necessarily true)
2259 */
2260 kvm_async_interrupts_allowed = true;
2261 kvm_halt_in_kernel_allowed = true;
2262
2263 kvm_init_irq_routing(s);
2264
2265 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2266 }
2267
2268 /* Find number of supported CPUs using the recommended
2269 * procedure from the kernel API documentation to cope with
2270 * older kernels that may be missing capabilities.
2271 */
2272 static int kvm_recommended_vcpus(KVMState *s)
2273 {
2274 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2275 return (ret) ? ret : 4;
2276 }
2277
2278 static int kvm_max_vcpus(KVMState *s)
2279 {
2280 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2281 return (ret) ? ret : kvm_recommended_vcpus(s);
2282 }
2283
2284 static int kvm_max_vcpu_id(KVMState *s)
2285 {
2286 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2287 return (ret) ? ret : kvm_max_vcpus(s);
2288 }
2289
2290 bool kvm_vcpu_id_is_valid(int vcpu_id)
2291 {
2292 KVMState *s = KVM_STATE(current_accel());
2293 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2294 }
2295
2296 static int kvm_init(MachineState *ms)
2297 {
2298 MachineClass *mc = MACHINE_GET_CLASS(ms);
2299 static const char upgrade_note[] =
2300 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2301 "(see http://sourceforge.net/projects/kvm).\n";
2302 struct {
2303 const char *name;
2304 int num;
2305 } num_cpus[] = {
2306 { "SMP", ms->smp.cpus },
2307 { "hotpluggable", ms->smp.max_cpus },
2308 { NULL, }
2309 }, *nc = num_cpus;
2310 int soft_vcpus_limit, hard_vcpus_limit;
2311 KVMState *s;
2312 const KVMCapabilityInfo *missing_cap;
2313 int ret;
2314 int type = 0;
2315 uint64_t dirty_log_manual_caps;
2316
2317 qemu_mutex_init(&kml_slots_lock);
2318
2319 s = KVM_STATE(ms->accelerator);
2320
2321 /*
2322 * On systems where the kernel can support different base page
2323 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2324 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2325 * page size for the system though.
2326 */
2327 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2328
2329 s->sigmask_len = 8;
2330
2331 #ifdef KVM_CAP_SET_GUEST_DEBUG
2332 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2333 #endif
2334 QLIST_INIT(&s->kvm_parked_vcpus);
2335 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2336 if (s->fd == -1) {
2337 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2338 ret = -errno;
2339 goto err;
2340 }
2341
2342 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2343 if (ret < KVM_API_VERSION) {
2344 if (ret >= 0) {
2345 ret = -EINVAL;
2346 }
2347 fprintf(stderr, "kvm version too old\n");
2348 goto err;
2349 }
2350
2351 if (ret > KVM_API_VERSION) {
2352 ret = -EINVAL;
2353 fprintf(stderr, "kvm version not supported\n");
2354 goto err;
2355 }
2356
2357 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2358 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2359
2360 /* If unspecified, use the default value */
2361 if (!s->nr_slots) {
2362 s->nr_slots = 32;
2363 }
2364
2365 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2366 if (s->nr_as <= 1) {
2367 s->nr_as = 1;
2368 }
2369 s->as = g_new0(struct KVMAs, s->nr_as);
2370
2371 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2372 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2373 "kvm-type",
2374 &error_abort);
2375 type = mc->kvm_type(ms, kvm_type);
2376 } else if (mc->kvm_type) {
2377 type = mc->kvm_type(ms, NULL);
2378 }
2379
2380 do {
2381 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2382 } while (ret == -EINTR);
2383
2384 if (ret < 0) {
2385 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2386 strerror(-ret));
2387
2388 #ifdef TARGET_S390X
2389 if (ret == -EINVAL) {
2390 fprintf(stderr,
2391 "Host kernel setup problem detected. Please verify:\n");
2392 fprintf(stderr, "- for kernels supporting the switch_amode or"
2393 " user_mode parameters, whether\n");
2394 fprintf(stderr,
2395 " user space is running in primary address space\n");
2396 fprintf(stderr,
2397 "- for kernels supporting the vm.allocate_pgste sysctl, "
2398 "whether it is enabled\n");
2399 }
2400 #elif defined(TARGET_PPC)
2401 if (ret == -EINVAL) {
2402 fprintf(stderr,
2403 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2404 (type == 2) ? "pr" : "hv");
2405 }
2406 #endif
2407 goto err;
2408 }
2409
2410 s->vmfd = ret;
2411
2412 /* check the vcpu limits */
2413 soft_vcpus_limit = kvm_recommended_vcpus(s);
2414 hard_vcpus_limit = kvm_max_vcpus(s);
2415
2416 while (nc->name) {
2417 if (nc->num > soft_vcpus_limit) {
2418 warn_report("Number of %s cpus requested (%d) exceeds "
2419 "the recommended cpus supported by KVM (%d)",
2420 nc->name, nc->num, soft_vcpus_limit);
2421
2422 if (nc->num > hard_vcpus_limit) {
2423 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2424 "the maximum cpus supported by KVM (%d)\n",
2425 nc->name, nc->num, hard_vcpus_limit);
2426 exit(1);
2427 }
2428 }
2429 nc++;
2430 }
2431
2432 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2433 if (!missing_cap) {
2434 missing_cap =
2435 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2436 }
2437 if (missing_cap) {
2438 ret = -EINVAL;
2439 fprintf(stderr, "kvm does not support %s\n%s",
2440 missing_cap->name, upgrade_note);
2441 goto err;
2442 }
2443
2444 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2445 s->coalesced_pio = s->coalesced_mmio &&
2446 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2447
2448 /*
2449 * Enable KVM dirty ring if supported, otherwise fall back to
2450 * dirty logging mode
2451 */
2452 if (s->kvm_dirty_ring_size > 0) {
2453 uint64_t ring_bytes;
2454
2455 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2456
2457 /* Read the max supported pages */
2458 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2459 if (ret > 0) {
2460 if (ring_bytes > ret) {
2461 error_report("KVM dirty ring size %" PRIu32 " too big "
2462 "(maximum is %ld). Please use a smaller value.",
2463 s->kvm_dirty_ring_size,
2464 (long)ret / sizeof(struct kvm_dirty_gfn));
2465 ret = -EINVAL;
2466 goto err;
2467 }
2468
2469 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2470 if (ret) {
2471 error_report("Enabling of KVM dirty ring failed: %s. "
2472 "Suggested minimum value is 1024.", strerror(-ret));
2473 goto err;
2474 }
2475
2476 s->kvm_dirty_ring_bytes = ring_bytes;
2477 } else {
2478 warn_report("KVM dirty ring not available, using bitmap method");
2479 s->kvm_dirty_ring_size = 0;
2480 }
2481 }
2482
2483 /*
2484 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2485 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2486 * page is wr-protected initially, which is against how kvm dirty ring is
2487 * usage - kvm dirty ring requires all pages are wr-protected at the very
2488 * beginning. Enabling this feature for dirty ring causes data corruption.
2489 *
2490 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2491 * we may expect a higher stall time when starting the migration. In the
2492 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2493 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2494 * guest pages.
2495 */
2496 if (!s->kvm_dirty_ring_size) {
2497 dirty_log_manual_caps =
2498 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2499 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2500 KVM_DIRTY_LOG_INITIALLY_SET);
2501 s->manual_dirty_log_protect = dirty_log_manual_caps;
2502 if (dirty_log_manual_caps) {
2503 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2504 dirty_log_manual_caps);
2505 if (ret) {
2506 warn_report("Trying to enable capability %"PRIu64" of "
2507 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2508 "Falling back to the legacy mode. ",
2509 dirty_log_manual_caps);
2510 s->manual_dirty_log_protect = 0;
2511 }
2512 }
2513 }
2514
2515 #ifdef KVM_CAP_VCPU_EVENTS
2516 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2517 #endif
2518
2519 s->robust_singlestep =
2520 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2521
2522 #ifdef KVM_CAP_DEBUGREGS
2523 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2524 #endif
2525
2526 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2527
2528 #ifdef KVM_CAP_IRQ_ROUTING
2529 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2530 #endif
2531
2532 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2533
2534 s->irq_set_ioctl = KVM_IRQ_LINE;
2535 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2536 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2537 }
2538
2539 kvm_readonly_mem_allowed =
2540 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2541
2542 kvm_eventfds_allowed =
2543 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2544
2545 kvm_irqfds_allowed =
2546 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2547
2548 kvm_resamplefds_allowed =
2549 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2550
2551 kvm_vm_attributes_allowed =
2552 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2553
2554 kvm_ioeventfd_any_length_allowed =
2555 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2556
2557 kvm_state = s;
2558
2559 ret = kvm_arch_init(ms, s);
2560 if (ret < 0) {
2561 goto err;
2562 }
2563
2564 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2565 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2566 }
2567
2568 qemu_register_reset(kvm_unpoison_all, NULL);
2569
2570 if (s->kernel_irqchip_allowed) {
2571 kvm_irqchip_create(s);
2572 }
2573
2574 if (kvm_eventfds_allowed) {
2575 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2576 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2577 }
2578 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2579 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2580
2581 kvm_memory_listener_register(s, &s->memory_listener,
2582 &address_space_memory, 0);
2583 if (kvm_eventfds_allowed) {
2584 memory_listener_register(&kvm_io_listener,
2585 &address_space_io);
2586 }
2587 memory_listener_register(&kvm_coalesced_pio_listener,
2588 &address_space_io);
2589
2590 s->many_ioeventfds = kvm_check_many_ioeventfds();
2591
2592 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2593 if (!s->sync_mmu) {
2594 ret = ram_block_discard_disable(true);
2595 assert(!ret);
2596 }
2597
2598 if (s->kvm_dirty_ring_size) {
2599 ret = kvm_dirty_ring_reaper_init(s);
2600 if (ret) {
2601 goto err;
2602 }
2603 }
2604
2605 return 0;
2606
2607 err:
2608 assert(ret < 0);
2609 if (s->vmfd >= 0) {
2610 close(s->vmfd);
2611 }
2612 if (s->fd != -1) {
2613 close(s->fd);
2614 }
2615 g_free(s->memory_listener.slots);
2616
2617 return ret;
2618 }
2619
2620 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2621 {
2622 s->sigmask_len = sigmask_len;
2623 }
2624
2625 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2626 int size, uint32_t count)
2627 {
2628 int i;
2629 uint8_t *ptr = data;
2630
2631 for (i = 0; i < count; i++) {
2632 address_space_rw(&address_space_io, port, attrs,
2633 ptr, size,
2634 direction == KVM_EXIT_IO_OUT);
2635 ptr += size;
2636 }
2637 }
2638
2639 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2640 {
2641 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2642 run->internal.suberror);
2643
2644 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2645 int i;
2646
2647 for (i = 0; i < run->internal.ndata; ++i) {
2648 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2649 i, (uint64_t)run->internal.data[i]);
2650 }
2651 }
2652 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2653 fprintf(stderr, "emulation failure\n");
2654 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2655 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2656 return EXCP_INTERRUPT;
2657 }
2658 }
2659 /* FIXME: Should trigger a qmp message to let management know
2660 * something went wrong.
2661 */
2662 return -1;
2663 }
2664
2665 void kvm_flush_coalesced_mmio_buffer(void)
2666 {
2667 KVMState *s = kvm_state;
2668
2669 if (s->coalesced_flush_in_progress) {
2670 return;
2671 }
2672
2673 s->coalesced_flush_in_progress = true;
2674
2675 if (s->coalesced_mmio_ring) {
2676 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2677 while (ring->first != ring->last) {
2678 struct kvm_coalesced_mmio *ent;
2679
2680 ent = &ring->coalesced_mmio[ring->first];
2681
2682 if (ent->pio == 1) {
2683 address_space_write(&address_space_io, ent->phys_addr,
2684 MEMTXATTRS_UNSPECIFIED, ent->data,
2685 ent->len);
2686 } else {
2687 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2688 }
2689 smp_wmb();
2690 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2691 }
2692 }
2693
2694 s->coalesced_flush_in_progress = false;
2695 }
2696
2697 bool kvm_cpu_check_are_resettable(void)
2698 {
2699 return kvm_arch_cpu_check_are_resettable();
2700 }
2701
2702 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2703 {
2704 if (!cpu->vcpu_dirty) {
2705 kvm_arch_get_registers(cpu);
2706 cpu->vcpu_dirty = true;
2707 }
2708 }
2709
2710 void kvm_cpu_synchronize_state(CPUState *cpu)
2711 {
2712 if (!cpu->vcpu_dirty) {
2713 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2714 }
2715 }
2716
2717 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2718 {
2719 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2720 cpu->vcpu_dirty = false;
2721 }
2722
2723 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2724 {
2725 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2726 }
2727
2728 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2729 {
2730 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2731 cpu->vcpu_dirty = false;
2732 }
2733
2734 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2735 {
2736 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2737 }
2738
2739 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2740 {
2741 cpu->vcpu_dirty = true;
2742 }
2743
2744 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2745 {
2746 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2747 }
2748
2749 #ifdef KVM_HAVE_MCE_INJECTION
2750 static __thread void *pending_sigbus_addr;
2751 static __thread int pending_sigbus_code;
2752 static __thread bool have_sigbus_pending;
2753 #endif
2754
2755 static void kvm_cpu_kick(CPUState *cpu)
2756 {
2757 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2758 }
2759
2760 static void kvm_cpu_kick_self(void)
2761 {
2762 if (kvm_immediate_exit) {
2763 kvm_cpu_kick(current_cpu);
2764 } else {
2765 qemu_cpu_kick_self();
2766 }
2767 }
2768
2769 static void kvm_eat_signals(CPUState *cpu)
2770 {
2771 struct timespec ts = { 0, 0 };
2772 siginfo_t siginfo;
2773 sigset_t waitset;
2774 sigset_t chkset;
2775 int r;
2776
2777 if (kvm_immediate_exit) {
2778 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2779 /* Write kvm_run->immediate_exit before the cpu->exit_request
2780 * write in kvm_cpu_exec.
2781 */
2782 smp_wmb();
2783 return;
2784 }
2785
2786 sigemptyset(&waitset);
2787 sigaddset(&waitset, SIG_IPI);
2788
2789 do {
2790 r = sigtimedwait(&waitset, &siginfo, &ts);
2791 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2792 perror("sigtimedwait");
2793 exit(1);
2794 }
2795
2796 r = sigpending(&chkset);
2797 if (r == -1) {
2798 perror("sigpending");
2799 exit(1);
2800 }
2801 } while (sigismember(&chkset, SIG_IPI));
2802 }
2803
2804 int kvm_cpu_exec(CPUState *cpu)
2805 {
2806 struct kvm_run *run = cpu->kvm_run;
2807 int ret, run_ret;
2808
2809 DPRINTF("kvm_cpu_exec()\n");
2810
2811 if (kvm_arch_process_async_events(cpu)) {
2812 qatomic_set(&cpu->exit_request, 0);
2813 return EXCP_HLT;
2814 }
2815
2816 qemu_mutex_unlock_iothread();
2817 cpu_exec_start(cpu);
2818
2819 do {
2820 MemTxAttrs attrs;
2821
2822 if (cpu->vcpu_dirty) {
2823 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2824 cpu->vcpu_dirty = false;
2825 }
2826
2827 kvm_arch_pre_run(cpu, run);
2828 if (qatomic_read(&cpu->exit_request)) {
2829 DPRINTF("interrupt exit requested\n");
2830 /*
2831 * KVM requires us to reenter the kernel after IO exits to complete
2832 * instruction emulation. This self-signal will ensure that we
2833 * leave ASAP again.
2834 */
2835 kvm_cpu_kick_self();
2836 }
2837
2838 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2839 * Matching barrier in kvm_eat_signals.
2840 */
2841 smp_rmb();
2842
2843 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2844
2845 attrs = kvm_arch_post_run(cpu, run);
2846
2847 #ifdef KVM_HAVE_MCE_INJECTION
2848 if (unlikely(have_sigbus_pending)) {
2849 qemu_mutex_lock_iothread();
2850 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2851 pending_sigbus_addr);
2852 have_sigbus_pending = false;
2853 qemu_mutex_unlock_iothread();
2854 }
2855 #endif
2856
2857 if (run_ret < 0) {
2858 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2859 DPRINTF("io window exit\n");
2860 kvm_eat_signals(cpu);
2861 ret = EXCP_INTERRUPT;
2862 break;
2863 }
2864 fprintf(stderr, "error: kvm run failed %s\n",
2865 strerror(-run_ret));
2866 #ifdef TARGET_PPC
2867 if (run_ret == -EBUSY) {
2868 fprintf(stderr,
2869 "This is probably because your SMT is enabled.\n"
2870 "VCPU can only run on primary threads with all "
2871 "secondary threads offline.\n");
2872 }
2873 #endif
2874 ret = -1;
2875 break;
2876 }
2877
2878 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2879 switch (run->exit_reason) {
2880 case KVM_EXIT_IO:
2881 DPRINTF("handle_io\n");
2882 /* Called outside BQL */
2883 kvm_handle_io(run->io.port, attrs,
2884 (uint8_t *)run + run->io.data_offset,
2885 run->io.direction,
2886 run->io.size,
2887 run->io.count);
2888 ret = 0;
2889 break;
2890 case KVM_EXIT_MMIO:
2891 DPRINTF("handle_mmio\n");
2892 /* Called outside BQL */
2893 address_space_rw(&address_space_memory,
2894 run->mmio.phys_addr, attrs,
2895 run->mmio.data,
2896 run->mmio.len,
2897 run->mmio.is_write);
2898 ret = 0;
2899 break;
2900 case KVM_EXIT_IRQ_WINDOW_OPEN:
2901 DPRINTF("irq_window_open\n");
2902 ret = EXCP_INTERRUPT;
2903 break;
2904 case KVM_EXIT_SHUTDOWN:
2905 DPRINTF("shutdown\n");
2906 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2907 ret = EXCP_INTERRUPT;
2908 break;
2909 case KVM_EXIT_UNKNOWN:
2910 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2911 (uint64_t)run->hw.hardware_exit_reason);
2912 ret = -1;
2913 break;
2914 case KVM_EXIT_INTERNAL_ERROR:
2915 ret = kvm_handle_internal_error(cpu, run);
2916 break;
2917 case KVM_EXIT_DIRTY_RING_FULL:
2918 /*
2919 * We shouldn't continue if the dirty ring of this vcpu is
2920 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2921 */
2922 trace_kvm_dirty_ring_full(cpu->cpu_index);
2923 qemu_mutex_lock_iothread();
2924 kvm_dirty_ring_reap(kvm_state);
2925 qemu_mutex_unlock_iothread();
2926 ret = 0;
2927 break;
2928 case KVM_EXIT_SYSTEM_EVENT:
2929 switch (run->system_event.type) {
2930 case KVM_SYSTEM_EVENT_SHUTDOWN:
2931 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2932 ret = EXCP_INTERRUPT;
2933 break;
2934 case KVM_SYSTEM_EVENT_RESET:
2935 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2936 ret = EXCP_INTERRUPT;
2937 break;
2938 case KVM_SYSTEM_EVENT_CRASH:
2939 kvm_cpu_synchronize_state(cpu);
2940 qemu_mutex_lock_iothread();
2941 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2942 qemu_mutex_unlock_iothread();
2943 ret = 0;
2944 break;
2945 default:
2946 DPRINTF("kvm_arch_handle_exit\n");
2947 ret = kvm_arch_handle_exit(cpu, run);
2948 break;
2949 }
2950 break;
2951 default:
2952 DPRINTF("kvm_arch_handle_exit\n");
2953 ret = kvm_arch_handle_exit(cpu, run);
2954 break;
2955 }
2956 } while (ret == 0);
2957
2958 cpu_exec_end(cpu);
2959 qemu_mutex_lock_iothread();
2960
2961 if (ret < 0) {
2962 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2963 vm_stop(RUN_STATE_INTERNAL_ERROR);
2964 }
2965
2966 qatomic_set(&cpu->exit_request, 0);
2967 return ret;
2968 }
2969
2970 int kvm_ioctl(KVMState *s, int type, ...)
2971 {
2972 int ret;
2973 void *arg;
2974 va_list ap;
2975
2976 va_start(ap, type);
2977 arg = va_arg(ap, void *);
2978 va_end(ap);
2979
2980 trace_kvm_ioctl(type, arg);
2981 ret = ioctl(s->fd, type, arg);
2982 if (ret == -1) {
2983 ret = -errno;
2984 }
2985 return ret;
2986 }
2987
2988 int kvm_vm_ioctl(KVMState *s, int type, ...)
2989 {
2990 int ret;
2991 void *arg;
2992 va_list ap;
2993
2994 va_start(ap, type);
2995 arg = va_arg(ap, void *);
2996 va_end(ap);
2997
2998 trace_kvm_vm_ioctl(type, arg);
2999 ret = ioctl(s->vmfd, type, arg);
3000 if (ret == -1) {
3001 ret = -errno;
3002 }
3003 return ret;
3004 }
3005
3006 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3007 {
3008 int ret;
3009 void *arg;
3010 va_list ap;
3011
3012 va_start(ap, type);
3013 arg = va_arg(ap, void *);
3014 va_end(ap);
3015
3016 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3017 ret = ioctl(cpu->kvm_fd, type, arg);
3018 if (ret == -1) {
3019 ret = -errno;
3020 }
3021 return ret;
3022 }
3023
3024 int kvm_device_ioctl(int fd, int type, ...)
3025 {
3026 int ret;
3027 void *arg;
3028 va_list ap;
3029
3030 va_start(ap, type);
3031 arg = va_arg(ap, void *);
3032 va_end(ap);
3033
3034 trace_kvm_device_ioctl(fd, type, arg);
3035 ret = ioctl(fd, type, arg);
3036 if (ret == -1) {
3037 ret = -errno;
3038 }
3039 return ret;
3040 }
3041
3042 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3043 {
3044 int ret;
3045 struct kvm_device_attr attribute = {
3046 .group = group,
3047 .attr = attr,
3048 };
3049
3050 if (!kvm_vm_attributes_allowed) {
3051 return 0;
3052 }
3053
3054 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3055 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3056 return ret ? 0 : 1;
3057 }
3058
3059 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3060 {
3061 struct kvm_device_attr attribute = {
3062 .group = group,
3063 .attr = attr,
3064 .flags = 0,
3065 };
3066
3067 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3068 }
3069
3070 int kvm_device_access(int fd, int group, uint64_t attr,
3071 void *val, bool write, Error **errp)
3072 {
3073 struct kvm_device_attr kvmattr;
3074 int err;
3075
3076 kvmattr.flags = 0;
3077 kvmattr.group = group;
3078 kvmattr.attr = attr;
3079 kvmattr.addr = (uintptr_t)val;
3080
3081 err = kvm_device_ioctl(fd,
3082 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3083 &kvmattr);
3084 if (err < 0) {
3085 error_setg_errno(errp, -err,
3086 "KVM_%s_DEVICE_ATTR failed: Group %d "
3087 "attr 0x%016" PRIx64,
3088 write ? "SET" : "GET", group, attr);
3089 }
3090 return err;
3091 }
3092
3093 bool kvm_has_sync_mmu(void)
3094 {
3095 return kvm_state->sync_mmu;
3096 }
3097
3098 int kvm_has_vcpu_events(void)
3099 {
3100 return kvm_state->vcpu_events;
3101 }
3102
3103 int kvm_has_robust_singlestep(void)
3104 {
3105 return kvm_state->robust_singlestep;
3106 }
3107
3108 int kvm_has_debugregs(void)
3109 {
3110 return kvm_state->debugregs;
3111 }
3112
3113 int kvm_max_nested_state_length(void)
3114 {
3115 return kvm_state->max_nested_state_len;
3116 }
3117
3118 int kvm_has_many_ioeventfds(void)
3119 {
3120 if (!kvm_enabled()) {
3121 return 0;
3122 }
3123 return kvm_state->many_ioeventfds;
3124 }
3125
3126 int kvm_has_gsi_routing(void)
3127 {
3128 #ifdef KVM_CAP_IRQ_ROUTING
3129 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3130 #else
3131 return false;
3132 #endif
3133 }
3134
3135 int kvm_has_intx_set_mask(void)
3136 {
3137 return kvm_state->intx_set_mask;
3138 }
3139
3140 bool kvm_arm_supports_user_irq(void)
3141 {
3142 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3143 }
3144
3145 #ifdef KVM_CAP_SET_GUEST_DEBUG
3146 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3147 target_ulong pc)
3148 {
3149 struct kvm_sw_breakpoint *bp;
3150
3151 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3152 if (bp->pc == pc) {
3153 return bp;
3154 }
3155 }
3156 return NULL;
3157 }
3158
3159 int kvm_sw_breakpoints_active(CPUState *cpu)
3160 {
3161 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3162 }
3163
3164 struct kvm_set_guest_debug_data {
3165 struct kvm_guest_debug dbg;
3166 int err;
3167 };
3168
3169 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3170 {
3171 struct kvm_set_guest_debug_data *dbg_data =
3172 (struct kvm_set_guest_debug_data *) data.host_ptr;
3173
3174 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3175 &dbg_data->dbg);
3176 }
3177
3178 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3179 {
3180 struct kvm_set_guest_debug_data data;
3181
3182 data.dbg.control = reinject_trap;
3183
3184 if (cpu->singlestep_enabled) {
3185 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3186 }
3187 kvm_arch_update_guest_debug(cpu, &data.dbg);
3188
3189 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3190 RUN_ON_CPU_HOST_PTR(&data));
3191 return data.err;
3192 }
3193
3194 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3195 target_ulong len, int type)
3196 {
3197 struct kvm_sw_breakpoint *bp;
3198 int err;
3199
3200 if (type == GDB_BREAKPOINT_SW) {
3201 bp = kvm_find_sw_breakpoint(cpu, addr);
3202 if (bp) {
3203 bp->use_count++;
3204 return 0;
3205 }
3206
3207 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
3208 bp->pc = addr;
3209 bp->use_count = 1;
3210 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3211 if (err) {
3212 g_free(bp);
3213 return err;
3214 }
3215
3216 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3217 } else {
3218 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3219 if (err) {
3220 return err;
3221 }
3222 }
3223
3224 CPU_FOREACH(cpu) {
3225 err = kvm_update_guest_debug(cpu, 0);
3226 if (err) {
3227 return err;
3228 }
3229 }
3230 return 0;
3231 }
3232
3233 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3234 target_ulong len, int type)
3235 {
3236 struct kvm_sw_breakpoint *bp;
3237 int err;
3238
3239 if (type == GDB_BREAKPOINT_SW) {
3240 bp = kvm_find_sw_breakpoint(cpu, addr);
3241 if (!bp) {
3242 return -ENOENT;
3243 }
3244
3245 if (bp->use_count > 1) {
3246 bp->use_count--;
3247 return 0;
3248 }
3249
3250 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3251 if (err) {
3252 return err;
3253 }
3254
3255 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3256 g_free(bp);
3257 } else {
3258 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3259 if (err) {
3260 return err;
3261 }
3262 }
3263
3264 CPU_FOREACH(cpu) {
3265 err = kvm_update_guest_debug(cpu, 0);
3266 if (err) {
3267 return err;
3268 }
3269 }
3270 return 0;
3271 }
3272
3273 void kvm_remove_all_breakpoints(CPUState *cpu)
3274 {
3275 struct kvm_sw_breakpoint *bp, *next;
3276 KVMState *s = cpu->kvm_state;
3277 CPUState *tmpcpu;
3278
3279 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3280 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3281 /* Try harder to find a CPU that currently sees the breakpoint. */
3282 CPU_FOREACH(tmpcpu) {
3283 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3284 break;
3285 }
3286 }
3287 }
3288 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3289 g_free(bp);
3290 }
3291 kvm_arch_remove_all_hw_breakpoints();
3292
3293 CPU_FOREACH(cpu) {
3294 kvm_update_guest_debug(cpu, 0);
3295 }
3296 }
3297
3298 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3299
3300 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3301 {
3302 return -EINVAL;
3303 }
3304
3305 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3306 target_ulong len, int type)
3307 {
3308 return -EINVAL;
3309 }
3310
3311 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3312 target_ulong len, int type)
3313 {
3314 return -EINVAL;
3315 }
3316
3317 void kvm_remove_all_breakpoints(CPUState *cpu)
3318 {
3319 }
3320 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3321
3322 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3323 {
3324 KVMState *s = kvm_state;
3325 struct kvm_signal_mask *sigmask;
3326 int r;
3327
3328 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3329
3330 sigmask->len = s->sigmask_len;
3331 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3332 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3333 g_free(sigmask);
3334
3335 return r;
3336 }
3337
3338 static void kvm_ipi_signal(int sig)
3339 {
3340 if (current_cpu) {
3341 assert(kvm_immediate_exit);
3342 kvm_cpu_kick(current_cpu);
3343 }
3344 }
3345
3346 void kvm_init_cpu_signals(CPUState *cpu)
3347 {
3348 int r;
3349 sigset_t set;
3350 struct sigaction sigact;
3351
3352 memset(&sigact, 0, sizeof(sigact));
3353 sigact.sa_handler = kvm_ipi_signal;
3354 sigaction(SIG_IPI, &sigact, NULL);
3355
3356 pthread_sigmask(SIG_BLOCK, NULL, &set);
3357 #if defined KVM_HAVE_MCE_INJECTION
3358 sigdelset(&set, SIGBUS);
3359 pthread_sigmask(SIG_SETMASK, &set, NULL);
3360 #endif
3361 sigdelset(&set, SIG_IPI);
3362 if (kvm_immediate_exit) {
3363 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3364 } else {
3365 r = kvm_set_signal_mask(cpu, &set);
3366 }
3367 if (r) {
3368 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3369 exit(1);
3370 }
3371 }
3372
3373 /* Called asynchronously in VCPU thread. */
3374 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3375 {
3376 #ifdef KVM_HAVE_MCE_INJECTION
3377 if (have_sigbus_pending) {
3378 return 1;
3379 }
3380 have_sigbus_pending = true;
3381 pending_sigbus_addr = addr;
3382 pending_sigbus_code = code;
3383 qatomic_set(&cpu->exit_request, 1);
3384 return 0;
3385 #else
3386 return 1;
3387 #endif
3388 }
3389
3390 /* Called synchronously (via signalfd) in main thread. */
3391 int kvm_on_sigbus(int code, void *addr)
3392 {
3393 #ifdef KVM_HAVE_MCE_INJECTION
3394 /* Action required MCE kills the process if SIGBUS is blocked. Because
3395 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3396 * we can only get action optional here.
3397 */
3398 assert(code != BUS_MCEERR_AR);
3399 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3400 return 0;
3401 #else
3402 return 1;
3403 #endif
3404 }
3405
3406 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3407 {
3408 int ret;
3409 struct kvm_create_device create_dev;
3410
3411 create_dev.type = type;
3412 create_dev.fd = -1;
3413 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3414
3415 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3416 return -ENOTSUP;
3417 }
3418
3419 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3420 if (ret) {
3421 return ret;
3422 }
3423
3424 return test ? 0 : create_dev.fd;
3425 }
3426
3427 bool kvm_device_supported(int vmfd, uint64_t type)
3428 {
3429 struct kvm_create_device create_dev = {
3430 .type = type,
3431 .fd = -1,
3432 .flags = KVM_CREATE_DEVICE_TEST,
3433 };
3434
3435 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3436 return false;
3437 }
3438
3439 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3440 }
3441
3442 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3443 {
3444 struct kvm_one_reg reg;
3445 int r;
3446
3447 reg.id = id;
3448 reg.addr = (uintptr_t) source;
3449 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3450 if (r) {
3451 trace_kvm_failed_reg_set(id, strerror(-r));
3452 }
3453 return r;
3454 }
3455
3456 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3457 {
3458 struct kvm_one_reg reg;
3459 int r;
3460
3461 reg.id = id;
3462 reg.addr = (uintptr_t) target;
3463 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3464 if (r) {
3465 trace_kvm_failed_reg_get(id, strerror(-r));
3466 }
3467 return r;
3468 }
3469
3470 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3471 hwaddr start_addr, hwaddr size)
3472 {
3473 KVMState *kvm = KVM_STATE(ms->accelerator);
3474 int i;
3475
3476 for (i = 0; i < kvm->nr_as; ++i) {
3477 if (kvm->as[i].as == as && kvm->as[i].ml) {
3478 size = MIN(kvm_max_slot_size, size);
3479 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3480 start_addr, size);
3481 }
3482 }
3483
3484 return false;
3485 }
3486
3487 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3488 const char *name, void *opaque,
3489 Error **errp)
3490 {
3491 KVMState *s = KVM_STATE(obj);
3492 int64_t value = s->kvm_shadow_mem;
3493
3494 visit_type_int(v, name, &value, errp);
3495 }
3496
3497 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3498 const char *name, void *opaque,
3499 Error **errp)
3500 {
3501 KVMState *s = KVM_STATE(obj);
3502 int64_t value;
3503
3504 if (s->fd != -1) {
3505 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3506 return;
3507 }
3508
3509 if (!visit_type_int(v, name, &value, errp)) {
3510 return;
3511 }
3512
3513 s->kvm_shadow_mem = value;
3514 }
3515
3516 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3517 const char *name, void *opaque,
3518 Error **errp)
3519 {
3520 KVMState *s = KVM_STATE(obj);
3521 OnOffSplit mode;
3522
3523 if (s->fd != -1) {
3524 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3525 return;
3526 }
3527
3528 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3529 return;
3530 }
3531 switch (mode) {
3532 case ON_OFF_SPLIT_ON:
3533 s->kernel_irqchip_allowed = true;
3534 s->kernel_irqchip_required = true;
3535 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3536 break;
3537 case ON_OFF_SPLIT_OFF:
3538 s->kernel_irqchip_allowed = false;
3539 s->kernel_irqchip_required = false;
3540 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3541 break;
3542 case ON_OFF_SPLIT_SPLIT:
3543 s->kernel_irqchip_allowed = true;
3544 s->kernel_irqchip_required = true;
3545 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3546 break;
3547 default:
3548 /* The value was checked in visit_type_OnOffSplit() above. If
3549 * we get here, then something is wrong in QEMU.
3550 */
3551 abort();
3552 }
3553 }
3554
3555 bool kvm_kernel_irqchip_allowed(void)
3556 {
3557 return kvm_state->kernel_irqchip_allowed;
3558 }
3559
3560 bool kvm_kernel_irqchip_required(void)
3561 {
3562 return kvm_state->kernel_irqchip_required;
3563 }
3564
3565 bool kvm_kernel_irqchip_split(void)
3566 {
3567 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3568 }
3569
3570 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3571 const char *name, void *opaque,
3572 Error **errp)
3573 {
3574 KVMState *s = KVM_STATE(obj);
3575 uint32_t value = s->kvm_dirty_ring_size;
3576
3577 visit_type_uint32(v, name, &value, errp);
3578 }
3579
3580 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3581 const char *name, void *opaque,
3582 Error **errp)
3583 {
3584 KVMState *s = KVM_STATE(obj);
3585 Error *error = NULL;
3586 uint32_t value;
3587
3588 if (s->fd != -1) {
3589 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3590 return;
3591 }
3592
3593 visit_type_uint32(v, name, &value, &error);
3594 if (error) {
3595 error_propagate(errp, error);
3596 return;
3597 }
3598 if (value & (value - 1)) {
3599 error_setg(errp, "dirty-ring-size must be a power of two.");
3600 return;
3601 }
3602
3603 s->kvm_dirty_ring_size = value;
3604 }
3605
3606 static void kvm_accel_instance_init(Object *obj)
3607 {
3608 KVMState *s = KVM_STATE(obj);
3609
3610 s->fd = -1;
3611 s->vmfd = -1;
3612 s->kvm_shadow_mem = -1;
3613 s->kernel_irqchip_allowed = true;
3614 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3615 /* KVM dirty ring is by default off */
3616 s->kvm_dirty_ring_size = 0;
3617 }
3618
3619 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3620 {
3621 AccelClass *ac = ACCEL_CLASS(oc);
3622 ac->name = "KVM";
3623 ac->init_machine = kvm_init;
3624 ac->has_memory = kvm_accel_has_memory;
3625 ac->allowed = &kvm_allowed;
3626
3627 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3628 NULL, kvm_set_kernel_irqchip,
3629 NULL, NULL);
3630 object_class_property_set_description(oc, "kernel-irqchip",
3631 "Configure KVM in-kernel irqchip");
3632
3633 object_class_property_add(oc, "kvm-shadow-mem", "int",
3634 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3635 NULL, NULL);
3636 object_class_property_set_description(oc, "kvm-shadow-mem",
3637 "KVM shadow MMU size");
3638
3639 object_class_property_add(oc, "dirty-ring-size", "uint32",
3640 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3641 NULL, NULL);
3642 object_class_property_set_description(oc, "dirty-ring-size",
3643 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3644 }
3645
3646 static const TypeInfo kvm_accel_type = {
3647 .name = TYPE_KVM_ACCEL,
3648 .parent = TYPE_ACCEL,
3649 .instance_init = kvm_accel_instance_init,
3650 .class_init = kvm_accel_class_init,
3651 .instance_size = sizeof(KVMState),
3652 };
3653
3654 static void kvm_type_init(void)
3655 {
3656 type_register_static(&kvm_accel_type);
3657 }
3658
3659 type_init(kvm_type_init);