]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
Merge remote-tracking branch 'remotes/dg-gitlab/tags/ppc-for-6.1-20210504' into staging
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "qemu/event_notifier.h"
37 #include "qemu/main-loop.h"
38 #include "trace.h"
39 #include "hw/irq.h"
40 #include "qapi/visitor.h"
41 #include "qapi/qapi-types-common.h"
42 #include "qapi/qapi-visit-common.h"
43 #include "sysemu/reset.h"
44 #include "qemu/guest-random.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm-cpus.h"
47
48 #include "hw/boards.h"
49
50 /* This check must be after config-host.h is included */
51 #ifdef CONFIG_EVENTFD
52 #include <sys/eventfd.h>
53 #endif
54
55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
56 * need to use the real host PAGE_SIZE, as that's what KVM will use.
57 */
58 #ifdef PAGE_SIZE
59 #undef PAGE_SIZE
60 #endif
61 #define PAGE_SIZE qemu_real_host_page_size
62
63 //#define DEBUG_KVM
64
65 #ifdef DEBUG_KVM
66 #define DPRINTF(fmt, ...) \
67 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
68 #else
69 #define DPRINTF(fmt, ...) \
70 do { } while (0)
71 #endif
72
73 #define KVM_MSI_HASHTAB_SIZE 256
74
75 struct KVMParkedVcpu {
76 unsigned long vcpu_id;
77 int kvm_fd;
78 QLIST_ENTRY(KVMParkedVcpu) node;
79 };
80
81 struct KVMState
82 {
83 AccelState parent_obj;
84
85 int nr_slots;
86 int fd;
87 int vmfd;
88 int coalesced_mmio;
89 int coalesced_pio;
90 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
91 bool coalesced_flush_in_progress;
92 int vcpu_events;
93 int robust_singlestep;
94 int debugregs;
95 #ifdef KVM_CAP_SET_GUEST_DEBUG
96 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
97 #endif
98 int max_nested_state_len;
99 int many_ioeventfds;
100 int intx_set_mask;
101 int kvm_shadow_mem;
102 bool kernel_irqchip_allowed;
103 bool kernel_irqchip_required;
104 OnOffAuto kernel_irqchip_split;
105 bool sync_mmu;
106 uint64_t manual_dirty_log_protect;
107 /* The man page (and posix) say ioctl numbers are signed int, but
108 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
109 * unsigned, and treating them as signed here can break things */
110 unsigned irq_set_ioctl;
111 unsigned int sigmask_len;
112 GHashTable *gsimap;
113 #ifdef KVM_CAP_IRQ_ROUTING
114 struct kvm_irq_routing *irq_routes;
115 int nr_allocated_irq_routes;
116 unsigned long *used_gsi_bitmap;
117 unsigned int gsi_count;
118 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
119 #endif
120 KVMMemoryListener memory_listener;
121 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
122
123 /* For "info mtree -f" to tell if an MR is registered in KVM */
124 int nr_as;
125 struct KVMAs {
126 KVMMemoryListener *ml;
127 AddressSpace *as;
128 } *as;
129 };
130
131 KVMState *kvm_state;
132 bool kvm_kernel_irqchip;
133 bool kvm_split_irqchip;
134 bool kvm_async_interrupts_allowed;
135 bool kvm_halt_in_kernel_allowed;
136 bool kvm_eventfds_allowed;
137 bool kvm_irqfds_allowed;
138 bool kvm_resamplefds_allowed;
139 bool kvm_msi_via_irqfd_allowed;
140 bool kvm_gsi_routing_allowed;
141 bool kvm_gsi_direct_mapping;
142 bool kvm_allowed;
143 bool kvm_readonly_mem_allowed;
144 bool kvm_vm_attributes_allowed;
145 bool kvm_direct_msi_allowed;
146 bool kvm_ioeventfd_any_length_allowed;
147 bool kvm_msi_use_devid;
148 static bool kvm_immediate_exit;
149 static hwaddr kvm_max_slot_size = ~0;
150
151 static const KVMCapabilityInfo kvm_required_capabilites[] = {
152 KVM_CAP_INFO(USER_MEMORY),
153 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
154 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
155 KVM_CAP_LAST_INFO
156 };
157
158 static NotifierList kvm_irqchip_change_notifiers =
159 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
160
161 struct KVMResampleFd {
162 int gsi;
163 EventNotifier *resample_event;
164 QLIST_ENTRY(KVMResampleFd) node;
165 };
166 typedef struct KVMResampleFd KVMResampleFd;
167
168 /*
169 * Only used with split irqchip where we need to do the resample fd
170 * kick for the kernel from userspace.
171 */
172 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
173 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
174
175 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
176 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
177
178 static inline void kvm_resample_fd_remove(int gsi)
179 {
180 KVMResampleFd *rfd;
181
182 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
183 if (rfd->gsi == gsi) {
184 QLIST_REMOVE(rfd, node);
185 g_free(rfd);
186 break;
187 }
188 }
189 }
190
191 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
192 {
193 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
194
195 rfd->gsi = gsi;
196 rfd->resample_event = event;
197
198 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
199 }
200
201 void kvm_resample_fd_notify(int gsi)
202 {
203 KVMResampleFd *rfd;
204
205 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
206 if (rfd->gsi == gsi) {
207 event_notifier_set(rfd->resample_event);
208 trace_kvm_resample_fd_notify(gsi);
209 return;
210 }
211 }
212 }
213
214 int kvm_get_max_memslots(void)
215 {
216 KVMState *s = KVM_STATE(current_accel());
217
218 return s->nr_slots;
219 }
220
221 /* Called with KVMMemoryListener.slots_lock held */
222 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
223 {
224 KVMState *s = kvm_state;
225 int i;
226
227 for (i = 0; i < s->nr_slots; i++) {
228 if (kml->slots[i].memory_size == 0) {
229 return &kml->slots[i];
230 }
231 }
232
233 return NULL;
234 }
235
236 bool kvm_has_free_slot(MachineState *ms)
237 {
238 KVMState *s = KVM_STATE(ms->accelerator);
239 bool result;
240 KVMMemoryListener *kml = &s->memory_listener;
241
242 kvm_slots_lock(kml);
243 result = !!kvm_get_free_slot(kml);
244 kvm_slots_unlock(kml);
245
246 return result;
247 }
248
249 /* Called with KVMMemoryListener.slots_lock held */
250 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
251 {
252 KVMSlot *slot = kvm_get_free_slot(kml);
253
254 if (slot) {
255 return slot;
256 }
257
258 fprintf(stderr, "%s: no free slot available\n", __func__);
259 abort();
260 }
261
262 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
263 hwaddr start_addr,
264 hwaddr size)
265 {
266 KVMState *s = kvm_state;
267 int i;
268
269 for (i = 0; i < s->nr_slots; i++) {
270 KVMSlot *mem = &kml->slots[i];
271
272 if (start_addr == mem->start_addr && size == mem->memory_size) {
273 return mem;
274 }
275 }
276
277 return NULL;
278 }
279
280 /*
281 * Calculate and align the start address and the size of the section.
282 * Return the size. If the size is 0, the aligned section is empty.
283 */
284 static hwaddr kvm_align_section(MemoryRegionSection *section,
285 hwaddr *start)
286 {
287 hwaddr size = int128_get64(section->size);
288 hwaddr delta, aligned;
289
290 /* kvm works in page size chunks, but the function may be called
291 with sub-page size and unaligned start address. Pad the start
292 address to next and truncate size to previous page boundary. */
293 aligned = ROUND_UP(section->offset_within_address_space,
294 qemu_real_host_page_size);
295 delta = aligned - section->offset_within_address_space;
296 *start = aligned;
297 if (delta > size) {
298 return 0;
299 }
300
301 return (size - delta) & qemu_real_host_page_mask;
302 }
303
304 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
305 hwaddr *phys_addr)
306 {
307 KVMMemoryListener *kml = &s->memory_listener;
308 int i, ret = 0;
309
310 kvm_slots_lock(kml);
311 for (i = 0; i < s->nr_slots; i++) {
312 KVMSlot *mem = &kml->slots[i];
313
314 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
315 *phys_addr = mem->start_addr + (ram - mem->ram);
316 ret = 1;
317 break;
318 }
319 }
320 kvm_slots_unlock(kml);
321
322 return ret;
323 }
324
325 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
326 {
327 KVMState *s = kvm_state;
328 struct kvm_userspace_memory_region mem;
329 int ret;
330
331 mem.slot = slot->slot | (kml->as_id << 16);
332 mem.guest_phys_addr = slot->start_addr;
333 mem.userspace_addr = (unsigned long)slot->ram;
334 mem.flags = slot->flags;
335
336 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
337 /* Set the slot size to 0 before setting the slot to the desired
338 * value. This is needed based on KVM commit 75d61fbc. */
339 mem.memory_size = 0;
340 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
341 if (ret < 0) {
342 goto err;
343 }
344 }
345 mem.memory_size = slot->memory_size;
346 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
347 slot->old_flags = mem.flags;
348 err:
349 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
350 mem.memory_size, mem.userspace_addr, ret);
351 if (ret < 0) {
352 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
353 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
354 __func__, mem.slot, slot->start_addr,
355 (uint64_t)mem.memory_size, strerror(errno));
356 }
357 return ret;
358 }
359
360 static int do_kvm_destroy_vcpu(CPUState *cpu)
361 {
362 KVMState *s = kvm_state;
363 long mmap_size;
364 struct KVMParkedVcpu *vcpu = NULL;
365 int ret = 0;
366
367 DPRINTF("kvm_destroy_vcpu\n");
368
369 ret = kvm_arch_destroy_vcpu(cpu);
370 if (ret < 0) {
371 goto err;
372 }
373
374 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
375 if (mmap_size < 0) {
376 ret = mmap_size;
377 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
378 goto err;
379 }
380
381 ret = munmap(cpu->kvm_run, mmap_size);
382 if (ret < 0) {
383 goto err;
384 }
385
386 vcpu = g_malloc0(sizeof(*vcpu));
387 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
388 vcpu->kvm_fd = cpu->kvm_fd;
389 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
390 err:
391 return ret;
392 }
393
394 void kvm_destroy_vcpu(CPUState *cpu)
395 {
396 if (do_kvm_destroy_vcpu(cpu) < 0) {
397 error_report("kvm_destroy_vcpu failed");
398 exit(EXIT_FAILURE);
399 }
400 }
401
402 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
403 {
404 struct KVMParkedVcpu *cpu;
405
406 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
407 if (cpu->vcpu_id == vcpu_id) {
408 int kvm_fd;
409
410 QLIST_REMOVE(cpu, node);
411 kvm_fd = cpu->kvm_fd;
412 g_free(cpu);
413 return kvm_fd;
414 }
415 }
416
417 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
418 }
419
420 int kvm_init_vcpu(CPUState *cpu, Error **errp)
421 {
422 KVMState *s = kvm_state;
423 long mmap_size;
424 int ret;
425
426 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
427
428 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
429 if (ret < 0) {
430 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
431 kvm_arch_vcpu_id(cpu));
432 goto err;
433 }
434
435 cpu->kvm_fd = ret;
436 cpu->kvm_state = s;
437 cpu->vcpu_dirty = true;
438
439 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
440 if (mmap_size < 0) {
441 ret = mmap_size;
442 error_setg_errno(errp, -mmap_size,
443 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
444 goto err;
445 }
446
447 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
448 cpu->kvm_fd, 0);
449 if (cpu->kvm_run == MAP_FAILED) {
450 ret = -errno;
451 error_setg_errno(errp, ret,
452 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
453 kvm_arch_vcpu_id(cpu));
454 goto err;
455 }
456
457 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
458 s->coalesced_mmio_ring =
459 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
460 }
461
462 ret = kvm_arch_init_vcpu(cpu);
463 if (ret < 0) {
464 error_setg_errno(errp, -ret,
465 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
466 kvm_arch_vcpu_id(cpu));
467 }
468 err:
469 return ret;
470 }
471
472 /*
473 * dirty pages logging control
474 */
475
476 static int kvm_mem_flags(MemoryRegion *mr)
477 {
478 bool readonly = mr->readonly || memory_region_is_romd(mr);
479 int flags = 0;
480
481 if (memory_region_get_dirty_log_mask(mr) != 0) {
482 flags |= KVM_MEM_LOG_DIRTY_PAGES;
483 }
484 if (readonly && kvm_readonly_mem_allowed) {
485 flags |= KVM_MEM_READONLY;
486 }
487 return flags;
488 }
489
490 /* Called with KVMMemoryListener.slots_lock held */
491 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
492 MemoryRegion *mr)
493 {
494 mem->flags = kvm_mem_flags(mr);
495
496 /* If nothing changed effectively, no need to issue ioctl */
497 if (mem->flags == mem->old_flags) {
498 return 0;
499 }
500
501 return kvm_set_user_memory_region(kml, mem, false);
502 }
503
504 static int kvm_section_update_flags(KVMMemoryListener *kml,
505 MemoryRegionSection *section)
506 {
507 hwaddr start_addr, size, slot_size;
508 KVMSlot *mem;
509 int ret = 0;
510
511 size = kvm_align_section(section, &start_addr);
512 if (!size) {
513 return 0;
514 }
515
516 kvm_slots_lock(kml);
517
518 while (size && !ret) {
519 slot_size = MIN(kvm_max_slot_size, size);
520 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
521 if (!mem) {
522 /* We don't have a slot if we want to trap every access. */
523 goto out;
524 }
525
526 ret = kvm_slot_update_flags(kml, mem, section->mr);
527 start_addr += slot_size;
528 size -= slot_size;
529 }
530
531 out:
532 kvm_slots_unlock(kml);
533 return ret;
534 }
535
536 static void kvm_log_start(MemoryListener *listener,
537 MemoryRegionSection *section,
538 int old, int new)
539 {
540 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
541 int r;
542
543 if (old != 0) {
544 return;
545 }
546
547 r = kvm_section_update_flags(kml, section);
548 if (r < 0) {
549 abort();
550 }
551 }
552
553 static void kvm_log_stop(MemoryListener *listener,
554 MemoryRegionSection *section,
555 int old, int new)
556 {
557 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
558 int r;
559
560 if (new != 0) {
561 return;
562 }
563
564 r = kvm_section_update_flags(kml, section);
565 if (r < 0) {
566 abort();
567 }
568 }
569
570 /* get kvm's dirty pages bitmap and update qemu's */
571 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
572 unsigned long *bitmap)
573 {
574 ram_addr_t start = section->offset_within_region +
575 memory_region_get_ram_addr(section->mr);
576 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
577
578 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
579 return 0;
580 }
581
582 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
583
584 /* Allocate the dirty bitmap for a slot */
585 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
586 {
587 /*
588 * XXX bad kernel interface alert
589 * For dirty bitmap, kernel allocates array of size aligned to
590 * bits-per-long. But for case when the kernel is 64bits and
591 * the userspace is 32bits, userspace can't align to the same
592 * bits-per-long, since sizeof(long) is different between kernel
593 * and user space. This way, userspace will provide buffer which
594 * may be 4 bytes less than the kernel will use, resulting in
595 * userspace memory corruption (which is not detectable by valgrind
596 * too, in most cases).
597 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
598 * a hope that sizeof(long) won't become >8 any time soon.
599 *
600 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
601 * And mem->memory_size is aligned to it (otherwise this mem can't
602 * be registered to KVM).
603 */
604 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
605 /*HOST_LONG_BITS*/ 64) / 8;
606 mem->dirty_bmap = g_malloc0(bitmap_size);
607 }
608
609 /**
610 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
611 *
612 * This function will first try to fetch dirty bitmap from the kernel,
613 * and then updates qemu's dirty bitmap.
614 *
615 * NOTE: caller must be with kml->slots_lock held.
616 *
617 * @kml: the KVM memory listener object
618 * @section: the memory section to sync the dirty bitmap with
619 */
620 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
621 MemoryRegionSection *section)
622 {
623 KVMState *s = kvm_state;
624 struct kvm_dirty_log d = {};
625 KVMSlot *mem;
626 hwaddr start_addr, size;
627 hwaddr slot_size, slot_offset = 0;
628 int ret = 0;
629
630 size = kvm_align_section(section, &start_addr);
631 while (size) {
632 MemoryRegionSection subsection = *section;
633
634 slot_size = MIN(kvm_max_slot_size, size);
635 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
636 if (!mem) {
637 /* We don't have a slot if we want to trap every access. */
638 goto out;
639 }
640
641 if (!mem->dirty_bmap) {
642 /* Allocate on the first log_sync, once and for all */
643 kvm_memslot_init_dirty_bitmap(mem);
644 }
645
646 d.dirty_bitmap = mem->dirty_bmap;
647 d.slot = mem->slot | (kml->as_id << 16);
648 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
649 if (ret == -ENOENT) {
650 /* kernel does not have dirty bitmap in this slot */
651 ret = 0;
652 } else if (ret < 0) {
653 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
654 goto out;
655 } else {
656 subsection.offset_within_region += slot_offset;
657 subsection.size = int128_make64(slot_size);
658 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
659 }
660
661 slot_offset += slot_size;
662 start_addr += slot_size;
663 size -= slot_size;
664 }
665 out:
666 return ret;
667 }
668
669 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
670 #define KVM_CLEAR_LOG_SHIFT 6
671 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
672 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
673
674 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
675 uint64_t size)
676 {
677 KVMState *s = kvm_state;
678 uint64_t end, bmap_start, start_delta, bmap_npages;
679 struct kvm_clear_dirty_log d;
680 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
681 int ret;
682
683 /*
684 * We need to extend either the start or the size or both to
685 * satisfy the KVM interface requirement. Firstly, do the start
686 * page alignment on 64 host pages
687 */
688 bmap_start = start & KVM_CLEAR_LOG_MASK;
689 start_delta = start - bmap_start;
690 bmap_start /= psize;
691
692 /*
693 * The kernel interface has restriction on the size too, that either:
694 *
695 * (1) the size is 64 host pages aligned (just like the start), or
696 * (2) the size fills up until the end of the KVM memslot.
697 */
698 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
699 << KVM_CLEAR_LOG_SHIFT;
700 end = mem->memory_size / psize;
701 if (bmap_npages > end - bmap_start) {
702 bmap_npages = end - bmap_start;
703 }
704 start_delta /= psize;
705
706 /*
707 * Prepare the bitmap to clear dirty bits. Here we must guarantee
708 * that we won't clear any unknown dirty bits otherwise we might
709 * accidentally clear some set bits which are not yet synced from
710 * the kernel into QEMU's bitmap, then we'll lose track of the
711 * guest modifications upon those pages (which can directly lead
712 * to guest data loss or panic after migration).
713 *
714 * Layout of the KVMSlot.dirty_bmap:
715 *
716 * |<-------- bmap_npages -----------..>|
717 * [1]
718 * start_delta size
719 * |----------------|-------------|------------------|------------|
720 * ^ ^ ^ ^
721 * | | | |
722 * start bmap_start (start) end
723 * of memslot of memslot
724 *
725 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
726 */
727
728 assert(bmap_start % BITS_PER_LONG == 0);
729 /* We should never do log_clear before log_sync */
730 assert(mem->dirty_bmap);
731 if (start_delta || bmap_npages - size / psize) {
732 /* Slow path - we need to manipulate a temp bitmap */
733 bmap_clear = bitmap_new(bmap_npages);
734 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
735 bmap_start, start_delta + size / psize);
736 /*
737 * We need to fill the holes at start because that was not
738 * specified by the caller and we extended the bitmap only for
739 * 64 pages alignment
740 */
741 bitmap_clear(bmap_clear, 0, start_delta);
742 d.dirty_bitmap = bmap_clear;
743 } else {
744 /*
745 * Fast path - both start and size align well with BITS_PER_LONG
746 * (or the end of memory slot)
747 */
748 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
749 }
750
751 d.first_page = bmap_start;
752 /* It should never overflow. If it happens, say something */
753 assert(bmap_npages <= UINT32_MAX);
754 d.num_pages = bmap_npages;
755 d.slot = mem->slot | (as_id << 16);
756
757 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
758 if (ret < 0 && ret != -ENOENT) {
759 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
760 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
761 __func__, d.slot, (uint64_t)d.first_page,
762 (uint32_t)d.num_pages, ret);
763 } else {
764 ret = 0;
765 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
766 }
767
768 /*
769 * After we have updated the remote dirty bitmap, we update the
770 * cached bitmap as well for the memslot, then if another user
771 * clears the same region we know we shouldn't clear it again on
772 * the remote otherwise it's data loss as well.
773 */
774 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
775 size / psize);
776 /* This handles the NULL case well */
777 g_free(bmap_clear);
778 return ret;
779 }
780
781
782 /**
783 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
784 *
785 * NOTE: this will be a no-op if we haven't enabled manual dirty log
786 * protection in the host kernel because in that case this operation
787 * will be done within log_sync().
788 *
789 * @kml: the kvm memory listener
790 * @section: the memory range to clear dirty bitmap
791 */
792 static int kvm_physical_log_clear(KVMMemoryListener *kml,
793 MemoryRegionSection *section)
794 {
795 KVMState *s = kvm_state;
796 uint64_t start, size, offset, count;
797 KVMSlot *mem;
798 int ret = 0, i;
799
800 if (!s->manual_dirty_log_protect) {
801 /* No need to do explicit clear */
802 return ret;
803 }
804
805 start = section->offset_within_address_space;
806 size = int128_get64(section->size);
807
808 if (!size) {
809 /* Nothing more we can do... */
810 return ret;
811 }
812
813 kvm_slots_lock(kml);
814
815 for (i = 0; i < s->nr_slots; i++) {
816 mem = &kml->slots[i];
817 /* Discard slots that are empty or do not overlap the section */
818 if (!mem->memory_size ||
819 mem->start_addr > start + size - 1 ||
820 start > mem->start_addr + mem->memory_size - 1) {
821 continue;
822 }
823
824 if (start >= mem->start_addr) {
825 /* The slot starts before section or is aligned to it. */
826 offset = start - mem->start_addr;
827 count = MIN(mem->memory_size - offset, size);
828 } else {
829 /* The slot starts after section. */
830 offset = 0;
831 count = MIN(mem->memory_size, size - (mem->start_addr - start));
832 }
833 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
834 if (ret < 0) {
835 break;
836 }
837 }
838
839 kvm_slots_unlock(kml);
840
841 return ret;
842 }
843
844 static void kvm_coalesce_mmio_region(MemoryListener *listener,
845 MemoryRegionSection *secion,
846 hwaddr start, hwaddr size)
847 {
848 KVMState *s = kvm_state;
849
850 if (s->coalesced_mmio) {
851 struct kvm_coalesced_mmio_zone zone;
852
853 zone.addr = start;
854 zone.size = size;
855 zone.pad = 0;
856
857 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
858 }
859 }
860
861 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
862 MemoryRegionSection *secion,
863 hwaddr start, hwaddr size)
864 {
865 KVMState *s = kvm_state;
866
867 if (s->coalesced_mmio) {
868 struct kvm_coalesced_mmio_zone zone;
869
870 zone.addr = start;
871 zone.size = size;
872 zone.pad = 0;
873
874 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
875 }
876 }
877
878 static void kvm_coalesce_pio_add(MemoryListener *listener,
879 MemoryRegionSection *section,
880 hwaddr start, hwaddr size)
881 {
882 KVMState *s = kvm_state;
883
884 if (s->coalesced_pio) {
885 struct kvm_coalesced_mmio_zone zone;
886
887 zone.addr = start;
888 zone.size = size;
889 zone.pio = 1;
890
891 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
892 }
893 }
894
895 static void kvm_coalesce_pio_del(MemoryListener *listener,
896 MemoryRegionSection *section,
897 hwaddr start, hwaddr size)
898 {
899 KVMState *s = kvm_state;
900
901 if (s->coalesced_pio) {
902 struct kvm_coalesced_mmio_zone zone;
903
904 zone.addr = start;
905 zone.size = size;
906 zone.pio = 1;
907
908 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
909 }
910 }
911
912 static MemoryListener kvm_coalesced_pio_listener = {
913 .coalesced_io_add = kvm_coalesce_pio_add,
914 .coalesced_io_del = kvm_coalesce_pio_del,
915 };
916
917 int kvm_check_extension(KVMState *s, unsigned int extension)
918 {
919 int ret;
920
921 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
922 if (ret < 0) {
923 ret = 0;
924 }
925
926 return ret;
927 }
928
929 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
930 {
931 int ret;
932
933 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
934 if (ret < 0) {
935 /* VM wide version not implemented, use global one instead */
936 ret = kvm_check_extension(s, extension);
937 }
938
939 return ret;
940 }
941
942 typedef struct HWPoisonPage {
943 ram_addr_t ram_addr;
944 QLIST_ENTRY(HWPoisonPage) list;
945 } HWPoisonPage;
946
947 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
948 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
949
950 static void kvm_unpoison_all(void *param)
951 {
952 HWPoisonPage *page, *next_page;
953
954 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
955 QLIST_REMOVE(page, list);
956 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
957 g_free(page);
958 }
959 }
960
961 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
962 {
963 HWPoisonPage *page;
964
965 QLIST_FOREACH(page, &hwpoison_page_list, list) {
966 if (page->ram_addr == ram_addr) {
967 return;
968 }
969 }
970 page = g_new(HWPoisonPage, 1);
971 page->ram_addr = ram_addr;
972 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
973 }
974
975 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
976 {
977 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
978 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
979 * endianness, but the memory core hands them in target endianness.
980 * For example, PPC is always treated as big-endian even if running
981 * on KVM and on PPC64LE. Correct here.
982 */
983 switch (size) {
984 case 2:
985 val = bswap16(val);
986 break;
987 case 4:
988 val = bswap32(val);
989 break;
990 }
991 #endif
992 return val;
993 }
994
995 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
996 bool assign, uint32_t size, bool datamatch)
997 {
998 int ret;
999 struct kvm_ioeventfd iofd = {
1000 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1001 .addr = addr,
1002 .len = size,
1003 .flags = 0,
1004 .fd = fd,
1005 };
1006
1007 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1008 datamatch);
1009 if (!kvm_enabled()) {
1010 return -ENOSYS;
1011 }
1012
1013 if (datamatch) {
1014 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1015 }
1016 if (!assign) {
1017 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1018 }
1019
1020 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1021
1022 if (ret < 0) {
1023 return -errno;
1024 }
1025
1026 return 0;
1027 }
1028
1029 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1030 bool assign, uint32_t size, bool datamatch)
1031 {
1032 struct kvm_ioeventfd kick = {
1033 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1034 .addr = addr,
1035 .flags = KVM_IOEVENTFD_FLAG_PIO,
1036 .len = size,
1037 .fd = fd,
1038 };
1039 int r;
1040 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1041 if (!kvm_enabled()) {
1042 return -ENOSYS;
1043 }
1044 if (datamatch) {
1045 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1046 }
1047 if (!assign) {
1048 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1049 }
1050 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1051 if (r < 0) {
1052 return r;
1053 }
1054 return 0;
1055 }
1056
1057
1058 static int kvm_check_many_ioeventfds(void)
1059 {
1060 /* Userspace can use ioeventfd for io notification. This requires a host
1061 * that supports eventfd(2) and an I/O thread; since eventfd does not
1062 * support SIGIO it cannot interrupt the vcpu.
1063 *
1064 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1065 * can avoid creating too many ioeventfds.
1066 */
1067 #if defined(CONFIG_EVENTFD)
1068 int ioeventfds[7];
1069 int i, ret = 0;
1070 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1071 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1072 if (ioeventfds[i] < 0) {
1073 break;
1074 }
1075 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1076 if (ret < 0) {
1077 close(ioeventfds[i]);
1078 break;
1079 }
1080 }
1081
1082 /* Decide whether many devices are supported or not */
1083 ret = i == ARRAY_SIZE(ioeventfds);
1084
1085 while (i-- > 0) {
1086 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1087 close(ioeventfds[i]);
1088 }
1089 return ret;
1090 #else
1091 return 0;
1092 #endif
1093 }
1094
1095 static const KVMCapabilityInfo *
1096 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1097 {
1098 while (list->name) {
1099 if (!kvm_check_extension(s, list->value)) {
1100 return list;
1101 }
1102 list++;
1103 }
1104 return NULL;
1105 }
1106
1107 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1108 {
1109 g_assert(
1110 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1111 );
1112 kvm_max_slot_size = max_slot_size;
1113 }
1114
1115 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1116 MemoryRegionSection *section, bool add)
1117 {
1118 KVMSlot *mem;
1119 int err;
1120 MemoryRegion *mr = section->mr;
1121 bool writeable = !mr->readonly && !mr->rom_device;
1122 hwaddr start_addr, size, slot_size;
1123 void *ram;
1124
1125 if (!memory_region_is_ram(mr)) {
1126 if (writeable || !kvm_readonly_mem_allowed) {
1127 return;
1128 } else if (!mr->romd_mode) {
1129 /* If the memory device is not in romd_mode, then we actually want
1130 * to remove the kvm memory slot so all accesses will trap. */
1131 add = false;
1132 }
1133 }
1134
1135 size = kvm_align_section(section, &start_addr);
1136 if (!size) {
1137 return;
1138 }
1139
1140 /* use aligned delta to align the ram address */
1141 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1142 (start_addr - section->offset_within_address_space);
1143
1144 kvm_slots_lock(kml);
1145
1146 if (!add) {
1147 do {
1148 slot_size = MIN(kvm_max_slot_size, size);
1149 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1150 if (!mem) {
1151 goto out;
1152 }
1153 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1154 kvm_physical_sync_dirty_bitmap(kml, section);
1155 }
1156
1157 /* unregister the slot */
1158 g_free(mem->dirty_bmap);
1159 mem->dirty_bmap = NULL;
1160 mem->memory_size = 0;
1161 mem->flags = 0;
1162 err = kvm_set_user_memory_region(kml, mem, false);
1163 if (err) {
1164 fprintf(stderr, "%s: error unregistering slot: %s\n",
1165 __func__, strerror(-err));
1166 abort();
1167 }
1168 start_addr += slot_size;
1169 size -= slot_size;
1170 } while (size);
1171 goto out;
1172 }
1173
1174 /* register the new slot */
1175 do {
1176 slot_size = MIN(kvm_max_slot_size, size);
1177 mem = kvm_alloc_slot(kml);
1178 mem->memory_size = slot_size;
1179 mem->start_addr = start_addr;
1180 mem->ram = ram;
1181 mem->flags = kvm_mem_flags(mr);
1182
1183 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1184 /*
1185 * Reallocate the bmap; it means it doesn't disappear in
1186 * middle of a migrate.
1187 */
1188 kvm_memslot_init_dirty_bitmap(mem);
1189 }
1190 err = kvm_set_user_memory_region(kml, mem, true);
1191 if (err) {
1192 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1193 strerror(-err));
1194 abort();
1195 }
1196 start_addr += slot_size;
1197 ram += slot_size;
1198 size -= slot_size;
1199 } while (size);
1200
1201 out:
1202 kvm_slots_unlock(kml);
1203 }
1204
1205 static void kvm_region_add(MemoryListener *listener,
1206 MemoryRegionSection *section)
1207 {
1208 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1209
1210 memory_region_ref(section->mr);
1211 kvm_set_phys_mem(kml, section, true);
1212 }
1213
1214 static void kvm_region_del(MemoryListener *listener,
1215 MemoryRegionSection *section)
1216 {
1217 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1218
1219 kvm_set_phys_mem(kml, section, false);
1220 memory_region_unref(section->mr);
1221 }
1222
1223 static void kvm_log_sync(MemoryListener *listener,
1224 MemoryRegionSection *section)
1225 {
1226 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1227 int r;
1228
1229 kvm_slots_lock(kml);
1230 r = kvm_physical_sync_dirty_bitmap(kml, section);
1231 kvm_slots_unlock(kml);
1232 if (r < 0) {
1233 abort();
1234 }
1235 }
1236
1237 static void kvm_log_clear(MemoryListener *listener,
1238 MemoryRegionSection *section)
1239 {
1240 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1241 int r;
1242
1243 r = kvm_physical_log_clear(kml, section);
1244 if (r < 0) {
1245 error_report_once("%s: kvm log clear failed: mr=%s "
1246 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1247 section->mr->name, section->offset_within_region,
1248 int128_get64(section->size));
1249 abort();
1250 }
1251 }
1252
1253 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1254 MemoryRegionSection *section,
1255 bool match_data, uint64_t data,
1256 EventNotifier *e)
1257 {
1258 int fd = event_notifier_get_fd(e);
1259 int r;
1260
1261 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1262 data, true, int128_get64(section->size),
1263 match_data);
1264 if (r < 0) {
1265 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1266 __func__, strerror(-r), -r);
1267 abort();
1268 }
1269 }
1270
1271 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1272 MemoryRegionSection *section,
1273 bool match_data, uint64_t data,
1274 EventNotifier *e)
1275 {
1276 int fd = event_notifier_get_fd(e);
1277 int r;
1278
1279 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1280 data, false, int128_get64(section->size),
1281 match_data);
1282 if (r < 0) {
1283 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1284 __func__, strerror(-r), -r);
1285 abort();
1286 }
1287 }
1288
1289 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1290 MemoryRegionSection *section,
1291 bool match_data, uint64_t data,
1292 EventNotifier *e)
1293 {
1294 int fd = event_notifier_get_fd(e);
1295 int r;
1296
1297 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1298 data, true, int128_get64(section->size),
1299 match_data);
1300 if (r < 0) {
1301 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1302 __func__, strerror(-r), -r);
1303 abort();
1304 }
1305 }
1306
1307 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1308 MemoryRegionSection *section,
1309 bool match_data, uint64_t data,
1310 EventNotifier *e)
1311
1312 {
1313 int fd = event_notifier_get_fd(e);
1314 int r;
1315
1316 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1317 data, false, int128_get64(section->size),
1318 match_data);
1319 if (r < 0) {
1320 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1321 __func__, strerror(-r), -r);
1322 abort();
1323 }
1324 }
1325
1326 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1327 AddressSpace *as, int as_id)
1328 {
1329 int i;
1330
1331 qemu_mutex_init(&kml->slots_lock);
1332 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1333 kml->as_id = as_id;
1334
1335 for (i = 0; i < s->nr_slots; i++) {
1336 kml->slots[i].slot = i;
1337 }
1338
1339 kml->listener.region_add = kvm_region_add;
1340 kml->listener.region_del = kvm_region_del;
1341 kml->listener.log_start = kvm_log_start;
1342 kml->listener.log_stop = kvm_log_stop;
1343 kml->listener.log_sync = kvm_log_sync;
1344 kml->listener.log_clear = kvm_log_clear;
1345 kml->listener.priority = 10;
1346
1347 memory_listener_register(&kml->listener, as);
1348
1349 for (i = 0; i < s->nr_as; ++i) {
1350 if (!s->as[i].as) {
1351 s->as[i].as = as;
1352 s->as[i].ml = kml;
1353 break;
1354 }
1355 }
1356 }
1357
1358 static MemoryListener kvm_io_listener = {
1359 .eventfd_add = kvm_io_ioeventfd_add,
1360 .eventfd_del = kvm_io_ioeventfd_del,
1361 .priority = 10,
1362 };
1363
1364 int kvm_set_irq(KVMState *s, int irq, int level)
1365 {
1366 struct kvm_irq_level event;
1367 int ret;
1368
1369 assert(kvm_async_interrupts_enabled());
1370
1371 event.level = level;
1372 event.irq = irq;
1373 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1374 if (ret < 0) {
1375 perror("kvm_set_irq");
1376 abort();
1377 }
1378
1379 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1380 }
1381
1382 #ifdef KVM_CAP_IRQ_ROUTING
1383 typedef struct KVMMSIRoute {
1384 struct kvm_irq_routing_entry kroute;
1385 QTAILQ_ENTRY(KVMMSIRoute) entry;
1386 } KVMMSIRoute;
1387
1388 static void set_gsi(KVMState *s, unsigned int gsi)
1389 {
1390 set_bit(gsi, s->used_gsi_bitmap);
1391 }
1392
1393 static void clear_gsi(KVMState *s, unsigned int gsi)
1394 {
1395 clear_bit(gsi, s->used_gsi_bitmap);
1396 }
1397
1398 void kvm_init_irq_routing(KVMState *s)
1399 {
1400 int gsi_count, i;
1401
1402 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1403 if (gsi_count > 0) {
1404 /* Round up so we can search ints using ffs */
1405 s->used_gsi_bitmap = bitmap_new(gsi_count);
1406 s->gsi_count = gsi_count;
1407 }
1408
1409 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1410 s->nr_allocated_irq_routes = 0;
1411
1412 if (!kvm_direct_msi_allowed) {
1413 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1414 QTAILQ_INIT(&s->msi_hashtab[i]);
1415 }
1416 }
1417
1418 kvm_arch_init_irq_routing(s);
1419 }
1420
1421 void kvm_irqchip_commit_routes(KVMState *s)
1422 {
1423 int ret;
1424
1425 if (kvm_gsi_direct_mapping()) {
1426 return;
1427 }
1428
1429 if (!kvm_gsi_routing_enabled()) {
1430 return;
1431 }
1432
1433 s->irq_routes->flags = 0;
1434 trace_kvm_irqchip_commit_routes();
1435 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1436 assert(ret == 0);
1437 }
1438
1439 static void kvm_add_routing_entry(KVMState *s,
1440 struct kvm_irq_routing_entry *entry)
1441 {
1442 struct kvm_irq_routing_entry *new;
1443 int n, size;
1444
1445 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1446 n = s->nr_allocated_irq_routes * 2;
1447 if (n < 64) {
1448 n = 64;
1449 }
1450 size = sizeof(struct kvm_irq_routing);
1451 size += n * sizeof(*new);
1452 s->irq_routes = g_realloc(s->irq_routes, size);
1453 s->nr_allocated_irq_routes = n;
1454 }
1455 n = s->irq_routes->nr++;
1456 new = &s->irq_routes->entries[n];
1457
1458 *new = *entry;
1459
1460 set_gsi(s, entry->gsi);
1461 }
1462
1463 static int kvm_update_routing_entry(KVMState *s,
1464 struct kvm_irq_routing_entry *new_entry)
1465 {
1466 struct kvm_irq_routing_entry *entry;
1467 int n;
1468
1469 for (n = 0; n < s->irq_routes->nr; n++) {
1470 entry = &s->irq_routes->entries[n];
1471 if (entry->gsi != new_entry->gsi) {
1472 continue;
1473 }
1474
1475 if(!memcmp(entry, new_entry, sizeof *entry)) {
1476 return 0;
1477 }
1478
1479 *entry = *new_entry;
1480
1481 return 0;
1482 }
1483
1484 return -ESRCH;
1485 }
1486
1487 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1488 {
1489 struct kvm_irq_routing_entry e = {};
1490
1491 assert(pin < s->gsi_count);
1492
1493 e.gsi = irq;
1494 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1495 e.flags = 0;
1496 e.u.irqchip.irqchip = irqchip;
1497 e.u.irqchip.pin = pin;
1498 kvm_add_routing_entry(s, &e);
1499 }
1500
1501 void kvm_irqchip_release_virq(KVMState *s, int virq)
1502 {
1503 struct kvm_irq_routing_entry *e;
1504 int i;
1505
1506 if (kvm_gsi_direct_mapping()) {
1507 return;
1508 }
1509
1510 for (i = 0; i < s->irq_routes->nr; i++) {
1511 e = &s->irq_routes->entries[i];
1512 if (e->gsi == virq) {
1513 s->irq_routes->nr--;
1514 *e = s->irq_routes->entries[s->irq_routes->nr];
1515 }
1516 }
1517 clear_gsi(s, virq);
1518 kvm_arch_release_virq_post(virq);
1519 trace_kvm_irqchip_release_virq(virq);
1520 }
1521
1522 void kvm_irqchip_add_change_notifier(Notifier *n)
1523 {
1524 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1525 }
1526
1527 void kvm_irqchip_remove_change_notifier(Notifier *n)
1528 {
1529 notifier_remove(n);
1530 }
1531
1532 void kvm_irqchip_change_notify(void)
1533 {
1534 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1535 }
1536
1537 static unsigned int kvm_hash_msi(uint32_t data)
1538 {
1539 /* This is optimized for IA32 MSI layout. However, no other arch shall
1540 * repeat the mistake of not providing a direct MSI injection API. */
1541 return data & 0xff;
1542 }
1543
1544 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1545 {
1546 KVMMSIRoute *route, *next;
1547 unsigned int hash;
1548
1549 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1550 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1551 kvm_irqchip_release_virq(s, route->kroute.gsi);
1552 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1553 g_free(route);
1554 }
1555 }
1556 }
1557
1558 static int kvm_irqchip_get_virq(KVMState *s)
1559 {
1560 int next_virq;
1561
1562 /*
1563 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1564 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1565 * number can succeed even though a new route entry cannot be added.
1566 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1567 */
1568 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1569 kvm_flush_dynamic_msi_routes(s);
1570 }
1571
1572 /* Return the lowest unused GSI in the bitmap */
1573 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1574 if (next_virq >= s->gsi_count) {
1575 return -ENOSPC;
1576 } else {
1577 return next_virq;
1578 }
1579 }
1580
1581 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1582 {
1583 unsigned int hash = kvm_hash_msi(msg.data);
1584 KVMMSIRoute *route;
1585
1586 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1587 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1588 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1589 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1590 return route;
1591 }
1592 }
1593 return NULL;
1594 }
1595
1596 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1597 {
1598 struct kvm_msi msi;
1599 KVMMSIRoute *route;
1600
1601 if (kvm_direct_msi_allowed) {
1602 msi.address_lo = (uint32_t)msg.address;
1603 msi.address_hi = msg.address >> 32;
1604 msi.data = le32_to_cpu(msg.data);
1605 msi.flags = 0;
1606 memset(msi.pad, 0, sizeof(msi.pad));
1607
1608 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1609 }
1610
1611 route = kvm_lookup_msi_route(s, msg);
1612 if (!route) {
1613 int virq;
1614
1615 virq = kvm_irqchip_get_virq(s);
1616 if (virq < 0) {
1617 return virq;
1618 }
1619
1620 route = g_malloc0(sizeof(KVMMSIRoute));
1621 route->kroute.gsi = virq;
1622 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1623 route->kroute.flags = 0;
1624 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1625 route->kroute.u.msi.address_hi = msg.address >> 32;
1626 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1627
1628 kvm_add_routing_entry(s, &route->kroute);
1629 kvm_irqchip_commit_routes(s);
1630
1631 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1632 entry);
1633 }
1634
1635 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1636
1637 return kvm_set_irq(s, route->kroute.gsi, 1);
1638 }
1639
1640 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1641 {
1642 struct kvm_irq_routing_entry kroute = {};
1643 int virq;
1644 MSIMessage msg = {0, 0};
1645
1646 if (pci_available && dev) {
1647 msg = pci_get_msi_message(dev, vector);
1648 }
1649
1650 if (kvm_gsi_direct_mapping()) {
1651 return kvm_arch_msi_data_to_gsi(msg.data);
1652 }
1653
1654 if (!kvm_gsi_routing_enabled()) {
1655 return -ENOSYS;
1656 }
1657
1658 virq = kvm_irqchip_get_virq(s);
1659 if (virq < 0) {
1660 return virq;
1661 }
1662
1663 kroute.gsi = virq;
1664 kroute.type = KVM_IRQ_ROUTING_MSI;
1665 kroute.flags = 0;
1666 kroute.u.msi.address_lo = (uint32_t)msg.address;
1667 kroute.u.msi.address_hi = msg.address >> 32;
1668 kroute.u.msi.data = le32_to_cpu(msg.data);
1669 if (pci_available && kvm_msi_devid_required()) {
1670 kroute.flags = KVM_MSI_VALID_DEVID;
1671 kroute.u.msi.devid = pci_requester_id(dev);
1672 }
1673 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1674 kvm_irqchip_release_virq(s, virq);
1675 return -EINVAL;
1676 }
1677
1678 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1679 vector, virq);
1680
1681 kvm_add_routing_entry(s, &kroute);
1682 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1683 kvm_irqchip_commit_routes(s);
1684
1685 return virq;
1686 }
1687
1688 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1689 PCIDevice *dev)
1690 {
1691 struct kvm_irq_routing_entry kroute = {};
1692
1693 if (kvm_gsi_direct_mapping()) {
1694 return 0;
1695 }
1696
1697 if (!kvm_irqchip_in_kernel()) {
1698 return -ENOSYS;
1699 }
1700
1701 kroute.gsi = virq;
1702 kroute.type = KVM_IRQ_ROUTING_MSI;
1703 kroute.flags = 0;
1704 kroute.u.msi.address_lo = (uint32_t)msg.address;
1705 kroute.u.msi.address_hi = msg.address >> 32;
1706 kroute.u.msi.data = le32_to_cpu(msg.data);
1707 if (pci_available && kvm_msi_devid_required()) {
1708 kroute.flags = KVM_MSI_VALID_DEVID;
1709 kroute.u.msi.devid = pci_requester_id(dev);
1710 }
1711 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1712 return -EINVAL;
1713 }
1714
1715 trace_kvm_irqchip_update_msi_route(virq);
1716
1717 return kvm_update_routing_entry(s, &kroute);
1718 }
1719
1720 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1721 EventNotifier *resample, int virq,
1722 bool assign)
1723 {
1724 int fd = event_notifier_get_fd(event);
1725 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1726
1727 struct kvm_irqfd irqfd = {
1728 .fd = fd,
1729 .gsi = virq,
1730 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1731 };
1732
1733 if (rfd != -1) {
1734 assert(assign);
1735 if (kvm_irqchip_is_split()) {
1736 /*
1737 * When the slow irqchip (e.g. IOAPIC) is in the
1738 * userspace, KVM kernel resamplefd will not work because
1739 * the EOI of the interrupt will be delivered to userspace
1740 * instead, so the KVM kernel resamplefd kick will be
1741 * skipped. The userspace here mimics what the kernel
1742 * provides with resamplefd, remember the resamplefd and
1743 * kick it when we receive EOI of this IRQ.
1744 *
1745 * This is hackery because IOAPIC is mostly bypassed
1746 * (except EOI broadcasts) when irqfd is used. However
1747 * this can bring much performance back for split irqchip
1748 * with INTx IRQs (for VFIO, this gives 93% perf of the
1749 * full fast path, which is 46% perf boost comparing to
1750 * the INTx slow path).
1751 */
1752 kvm_resample_fd_insert(virq, resample);
1753 } else {
1754 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1755 irqfd.resamplefd = rfd;
1756 }
1757 } else if (!assign) {
1758 if (kvm_irqchip_is_split()) {
1759 kvm_resample_fd_remove(virq);
1760 }
1761 }
1762
1763 if (!kvm_irqfds_enabled()) {
1764 return -ENOSYS;
1765 }
1766
1767 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1768 }
1769
1770 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1771 {
1772 struct kvm_irq_routing_entry kroute = {};
1773 int virq;
1774
1775 if (!kvm_gsi_routing_enabled()) {
1776 return -ENOSYS;
1777 }
1778
1779 virq = kvm_irqchip_get_virq(s);
1780 if (virq < 0) {
1781 return virq;
1782 }
1783
1784 kroute.gsi = virq;
1785 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1786 kroute.flags = 0;
1787 kroute.u.adapter.summary_addr = adapter->summary_addr;
1788 kroute.u.adapter.ind_addr = adapter->ind_addr;
1789 kroute.u.adapter.summary_offset = adapter->summary_offset;
1790 kroute.u.adapter.ind_offset = adapter->ind_offset;
1791 kroute.u.adapter.adapter_id = adapter->adapter_id;
1792
1793 kvm_add_routing_entry(s, &kroute);
1794
1795 return virq;
1796 }
1797
1798 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1799 {
1800 struct kvm_irq_routing_entry kroute = {};
1801 int virq;
1802
1803 if (!kvm_gsi_routing_enabled()) {
1804 return -ENOSYS;
1805 }
1806 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1807 return -ENOSYS;
1808 }
1809 virq = kvm_irqchip_get_virq(s);
1810 if (virq < 0) {
1811 return virq;
1812 }
1813
1814 kroute.gsi = virq;
1815 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1816 kroute.flags = 0;
1817 kroute.u.hv_sint.vcpu = vcpu;
1818 kroute.u.hv_sint.sint = sint;
1819
1820 kvm_add_routing_entry(s, &kroute);
1821 kvm_irqchip_commit_routes(s);
1822
1823 return virq;
1824 }
1825
1826 #else /* !KVM_CAP_IRQ_ROUTING */
1827
1828 void kvm_init_irq_routing(KVMState *s)
1829 {
1830 }
1831
1832 void kvm_irqchip_release_virq(KVMState *s, int virq)
1833 {
1834 }
1835
1836 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1837 {
1838 abort();
1839 }
1840
1841 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1842 {
1843 return -ENOSYS;
1844 }
1845
1846 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1847 {
1848 return -ENOSYS;
1849 }
1850
1851 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1852 {
1853 return -ENOSYS;
1854 }
1855
1856 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1857 EventNotifier *resample, int virq,
1858 bool assign)
1859 {
1860 abort();
1861 }
1862
1863 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1864 {
1865 return -ENOSYS;
1866 }
1867 #endif /* !KVM_CAP_IRQ_ROUTING */
1868
1869 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1870 EventNotifier *rn, int virq)
1871 {
1872 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1873 }
1874
1875 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1876 int virq)
1877 {
1878 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1879 }
1880
1881 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1882 EventNotifier *rn, qemu_irq irq)
1883 {
1884 gpointer key, gsi;
1885 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1886
1887 if (!found) {
1888 return -ENXIO;
1889 }
1890 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1891 }
1892
1893 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1894 qemu_irq irq)
1895 {
1896 gpointer key, gsi;
1897 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1898
1899 if (!found) {
1900 return -ENXIO;
1901 }
1902 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1903 }
1904
1905 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1906 {
1907 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1908 }
1909
1910 static void kvm_irqchip_create(KVMState *s)
1911 {
1912 int ret;
1913
1914 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1915 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1916 ;
1917 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1918 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1919 if (ret < 0) {
1920 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1921 exit(1);
1922 }
1923 } else {
1924 return;
1925 }
1926
1927 /* First probe and see if there's a arch-specific hook to create the
1928 * in-kernel irqchip for us */
1929 ret = kvm_arch_irqchip_create(s);
1930 if (ret == 0) {
1931 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1932 perror("Split IRQ chip mode not supported.");
1933 exit(1);
1934 } else {
1935 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1936 }
1937 }
1938 if (ret < 0) {
1939 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1940 exit(1);
1941 }
1942
1943 kvm_kernel_irqchip = true;
1944 /* If we have an in-kernel IRQ chip then we must have asynchronous
1945 * interrupt delivery (though the reverse is not necessarily true)
1946 */
1947 kvm_async_interrupts_allowed = true;
1948 kvm_halt_in_kernel_allowed = true;
1949
1950 kvm_init_irq_routing(s);
1951
1952 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1953 }
1954
1955 /* Find number of supported CPUs using the recommended
1956 * procedure from the kernel API documentation to cope with
1957 * older kernels that may be missing capabilities.
1958 */
1959 static int kvm_recommended_vcpus(KVMState *s)
1960 {
1961 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1962 return (ret) ? ret : 4;
1963 }
1964
1965 static int kvm_max_vcpus(KVMState *s)
1966 {
1967 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1968 return (ret) ? ret : kvm_recommended_vcpus(s);
1969 }
1970
1971 static int kvm_max_vcpu_id(KVMState *s)
1972 {
1973 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1974 return (ret) ? ret : kvm_max_vcpus(s);
1975 }
1976
1977 bool kvm_vcpu_id_is_valid(int vcpu_id)
1978 {
1979 KVMState *s = KVM_STATE(current_accel());
1980 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1981 }
1982
1983 static int kvm_init(MachineState *ms)
1984 {
1985 MachineClass *mc = MACHINE_GET_CLASS(ms);
1986 static const char upgrade_note[] =
1987 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1988 "(see http://sourceforge.net/projects/kvm).\n";
1989 struct {
1990 const char *name;
1991 int num;
1992 } num_cpus[] = {
1993 { "SMP", ms->smp.cpus },
1994 { "hotpluggable", ms->smp.max_cpus },
1995 { NULL, }
1996 }, *nc = num_cpus;
1997 int soft_vcpus_limit, hard_vcpus_limit;
1998 KVMState *s;
1999 const KVMCapabilityInfo *missing_cap;
2000 int ret;
2001 int type = 0;
2002 uint64_t dirty_log_manual_caps;
2003
2004 s = KVM_STATE(ms->accelerator);
2005
2006 /*
2007 * On systems where the kernel can support different base page
2008 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2009 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2010 * page size for the system though.
2011 */
2012 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2013
2014 s->sigmask_len = 8;
2015
2016 #ifdef KVM_CAP_SET_GUEST_DEBUG
2017 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2018 #endif
2019 QLIST_INIT(&s->kvm_parked_vcpus);
2020 s->vmfd = -1;
2021 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2022 if (s->fd == -1) {
2023 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2024 ret = -errno;
2025 goto err;
2026 }
2027
2028 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2029 if (ret < KVM_API_VERSION) {
2030 if (ret >= 0) {
2031 ret = -EINVAL;
2032 }
2033 fprintf(stderr, "kvm version too old\n");
2034 goto err;
2035 }
2036
2037 if (ret > KVM_API_VERSION) {
2038 ret = -EINVAL;
2039 fprintf(stderr, "kvm version not supported\n");
2040 goto err;
2041 }
2042
2043 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2044 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2045
2046 /* If unspecified, use the default value */
2047 if (!s->nr_slots) {
2048 s->nr_slots = 32;
2049 }
2050
2051 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2052 if (s->nr_as <= 1) {
2053 s->nr_as = 1;
2054 }
2055 s->as = g_new0(struct KVMAs, s->nr_as);
2056
2057 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2058 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2059 "kvm-type",
2060 &error_abort);
2061 type = mc->kvm_type(ms, kvm_type);
2062 } else if (mc->kvm_type) {
2063 type = mc->kvm_type(ms, NULL);
2064 }
2065
2066 do {
2067 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2068 } while (ret == -EINTR);
2069
2070 if (ret < 0) {
2071 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2072 strerror(-ret));
2073
2074 #ifdef TARGET_S390X
2075 if (ret == -EINVAL) {
2076 fprintf(stderr,
2077 "Host kernel setup problem detected. Please verify:\n");
2078 fprintf(stderr, "- for kernels supporting the switch_amode or"
2079 " user_mode parameters, whether\n");
2080 fprintf(stderr,
2081 " user space is running in primary address space\n");
2082 fprintf(stderr,
2083 "- for kernels supporting the vm.allocate_pgste sysctl, "
2084 "whether it is enabled\n");
2085 }
2086 #endif
2087 goto err;
2088 }
2089
2090 s->vmfd = ret;
2091
2092 /* check the vcpu limits */
2093 soft_vcpus_limit = kvm_recommended_vcpus(s);
2094 hard_vcpus_limit = kvm_max_vcpus(s);
2095
2096 while (nc->name) {
2097 if (nc->num > soft_vcpus_limit) {
2098 warn_report("Number of %s cpus requested (%d) exceeds "
2099 "the recommended cpus supported by KVM (%d)",
2100 nc->name, nc->num, soft_vcpus_limit);
2101
2102 if (nc->num > hard_vcpus_limit) {
2103 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2104 "the maximum cpus supported by KVM (%d)\n",
2105 nc->name, nc->num, hard_vcpus_limit);
2106 exit(1);
2107 }
2108 }
2109 nc++;
2110 }
2111
2112 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2113 if (!missing_cap) {
2114 missing_cap =
2115 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2116 }
2117 if (missing_cap) {
2118 ret = -EINVAL;
2119 fprintf(stderr, "kvm does not support %s\n%s",
2120 missing_cap->name, upgrade_note);
2121 goto err;
2122 }
2123
2124 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2125 s->coalesced_pio = s->coalesced_mmio &&
2126 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2127
2128 dirty_log_manual_caps =
2129 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2130 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2131 KVM_DIRTY_LOG_INITIALLY_SET);
2132 s->manual_dirty_log_protect = dirty_log_manual_caps;
2133 if (dirty_log_manual_caps) {
2134 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2135 dirty_log_manual_caps);
2136 if (ret) {
2137 warn_report("Trying to enable capability %"PRIu64" of "
2138 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2139 "Falling back to the legacy mode. ",
2140 dirty_log_manual_caps);
2141 s->manual_dirty_log_protect = 0;
2142 }
2143 }
2144
2145 #ifdef KVM_CAP_VCPU_EVENTS
2146 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2147 #endif
2148
2149 s->robust_singlestep =
2150 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2151
2152 #ifdef KVM_CAP_DEBUGREGS
2153 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2154 #endif
2155
2156 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2157
2158 #ifdef KVM_CAP_IRQ_ROUTING
2159 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2160 #endif
2161
2162 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2163
2164 s->irq_set_ioctl = KVM_IRQ_LINE;
2165 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2166 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2167 }
2168
2169 kvm_readonly_mem_allowed =
2170 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2171
2172 kvm_eventfds_allowed =
2173 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2174
2175 kvm_irqfds_allowed =
2176 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2177
2178 kvm_resamplefds_allowed =
2179 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2180
2181 kvm_vm_attributes_allowed =
2182 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2183
2184 kvm_ioeventfd_any_length_allowed =
2185 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2186
2187 kvm_state = s;
2188
2189 ret = kvm_arch_init(ms, s);
2190 if (ret < 0) {
2191 goto err;
2192 }
2193
2194 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2195 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2196 }
2197
2198 qemu_register_reset(kvm_unpoison_all, NULL);
2199
2200 if (s->kernel_irqchip_allowed) {
2201 kvm_irqchip_create(s);
2202 }
2203
2204 if (kvm_eventfds_allowed) {
2205 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2206 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2207 }
2208 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2209 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2210
2211 kvm_memory_listener_register(s, &s->memory_listener,
2212 &address_space_memory, 0);
2213 if (kvm_eventfds_allowed) {
2214 memory_listener_register(&kvm_io_listener,
2215 &address_space_io);
2216 }
2217 memory_listener_register(&kvm_coalesced_pio_listener,
2218 &address_space_io);
2219
2220 s->many_ioeventfds = kvm_check_many_ioeventfds();
2221
2222 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2223 if (!s->sync_mmu) {
2224 ret = ram_block_discard_disable(true);
2225 assert(!ret);
2226 }
2227 return 0;
2228
2229 err:
2230 assert(ret < 0);
2231 if (s->vmfd >= 0) {
2232 close(s->vmfd);
2233 }
2234 if (s->fd != -1) {
2235 close(s->fd);
2236 }
2237 g_free(s->memory_listener.slots);
2238
2239 return ret;
2240 }
2241
2242 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2243 {
2244 s->sigmask_len = sigmask_len;
2245 }
2246
2247 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2248 int size, uint32_t count)
2249 {
2250 int i;
2251 uint8_t *ptr = data;
2252
2253 for (i = 0; i < count; i++) {
2254 address_space_rw(&address_space_io, port, attrs,
2255 ptr, size,
2256 direction == KVM_EXIT_IO_OUT);
2257 ptr += size;
2258 }
2259 }
2260
2261 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2262 {
2263 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2264 run->internal.suberror);
2265
2266 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2267 int i;
2268
2269 for (i = 0; i < run->internal.ndata; ++i) {
2270 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2271 i, (uint64_t)run->internal.data[i]);
2272 }
2273 }
2274 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2275 fprintf(stderr, "emulation failure\n");
2276 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2277 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2278 return EXCP_INTERRUPT;
2279 }
2280 }
2281 /* FIXME: Should trigger a qmp message to let management know
2282 * something went wrong.
2283 */
2284 return -1;
2285 }
2286
2287 void kvm_flush_coalesced_mmio_buffer(void)
2288 {
2289 KVMState *s = kvm_state;
2290
2291 if (s->coalesced_flush_in_progress) {
2292 return;
2293 }
2294
2295 s->coalesced_flush_in_progress = true;
2296
2297 if (s->coalesced_mmio_ring) {
2298 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2299 while (ring->first != ring->last) {
2300 struct kvm_coalesced_mmio *ent;
2301
2302 ent = &ring->coalesced_mmio[ring->first];
2303
2304 if (ent->pio == 1) {
2305 address_space_write(&address_space_io, ent->phys_addr,
2306 MEMTXATTRS_UNSPECIFIED, ent->data,
2307 ent->len);
2308 } else {
2309 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2310 }
2311 smp_wmb();
2312 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2313 }
2314 }
2315
2316 s->coalesced_flush_in_progress = false;
2317 }
2318
2319 bool kvm_cpu_check_are_resettable(void)
2320 {
2321 return kvm_arch_cpu_check_are_resettable();
2322 }
2323
2324 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2325 {
2326 if (!cpu->vcpu_dirty) {
2327 kvm_arch_get_registers(cpu);
2328 cpu->vcpu_dirty = true;
2329 }
2330 }
2331
2332 void kvm_cpu_synchronize_state(CPUState *cpu)
2333 {
2334 if (!cpu->vcpu_dirty) {
2335 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2336 }
2337 }
2338
2339 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2340 {
2341 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2342 cpu->vcpu_dirty = false;
2343 }
2344
2345 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2346 {
2347 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2348 }
2349
2350 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2351 {
2352 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2353 cpu->vcpu_dirty = false;
2354 }
2355
2356 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2357 {
2358 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2359 }
2360
2361 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2362 {
2363 cpu->vcpu_dirty = true;
2364 }
2365
2366 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2367 {
2368 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2369 }
2370
2371 #ifdef KVM_HAVE_MCE_INJECTION
2372 static __thread void *pending_sigbus_addr;
2373 static __thread int pending_sigbus_code;
2374 static __thread bool have_sigbus_pending;
2375 #endif
2376
2377 static void kvm_cpu_kick(CPUState *cpu)
2378 {
2379 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2380 }
2381
2382 static void kvm_cpu_kick_self(void)
2383 {
2384 if (kvm_immediate_exit) {
2385 kvm_cpu_kick(current_cpu);
2386 } else {
2387 qemu_cpu_kick_self();
2388 }
2389 }
2390
2391 static void kvm_eat_signals(CPUState *cpu)
2392 {
2393 struct timespec ts = { 0, 0 };
2394 siginfo_t siginfo;
2395 sigset_t waitset;
2396 sigset_t chkset;
2397 int r;
2398
2399 if (kvm_immediate_exit) {
2400 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2401 /* Write kvm_run->immediate_exit before the cpu->exit_request
2402 * write in kvm_cpu_exec.
2403 */
2404 smp_wmb();
2405 return;
2406 }
2407
2408 sigemptyset(&waitset);
2409 sigaddset(&waitset, SIG_IPI);
2410
2411 do {
2412 r = sigtimedwait(&waitset, &siginfo, &ts);
2413 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2414 perror("sigtimedwait");
2415 exit(1);
2416 }
2417
2418 r = sigpending(&chkset);
2419 if (r == -1) {
2420 perror("sigpending");
2421 exit(1);
2422 }
2423 } while (sigismember(&chkset, SIG_IPI));
2424 }
2425
2426 int kvm_cpu_exec(CPUState *cpu)
2427 {
2428 struct kvm_run *run = cpu->kvm_run;
2429 int ret, run_ret;
2430
2431 DPRINTF("kvm_cpu_exec()\n");
2432
2433 if (kvm_arch_process_async_events(cpu)) {
2434 qatomic_set(&cpu->exit_request, 0);
2435 return EXCP_HLT;
2436 }
2437
2438 qemu_mutex_unlock_iothread();
2439 cpu_exec_start(cpu);
2440
2441 do {
2442 MemTxAttrs attrs;
2443
2444 if (cpu->vcpu_dirty) {
2445 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2446 cpu->vcpu_dirty = false;
2447 }
2448
2449 kvm_arch_pre_run(cpu, run);
2450 if (qatomic_read(&cpu->exit_request)) {
2451 DPRINTF("interrupt exit requested\n");
2452 /*
2453 * KVM requires us to reenter the kernel after IO exits to complete
2454 * instruction emulation. This self-signal will ensure that we
2455 * leave ASAP again.
2456 */
2457 kvm_cpu_kick_self();
2458 }
2459
2460 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2461 * Matching barrier in kvm_eat_signals.
2462 */
2463 smp_rmb();
2464
2465 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2466
2467 attrs = kvm_arch_post_run(cpu, run);
2468
2469 #ifdef KVM_HAVE_MCE_INJECTION
2470 if (unlikely(have_sigbus_pending)) {
2471 qemu_mutex_lock_iothread();
2472 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2473 pending_sigbus_addr);
2474 have_sigbus_pending = false;
2475 qemu_mutex_unlock_iothread();
2476 }
2477 #endif
2478
2479 if (run_ret < 0) {
2480 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2481 DPRINTF("io window exit\n");
2482 kvm_eat_signals(cpu);
2483 ret = EXCP_INTERRUPT;
2484 break;
2485 }
2486 fprintf(stderr, "error: kvm run failed %s\n",
2487 strerror(-run_ret));
2488 #ifdef TARGET_PPC
2489 if (run_ret == -EBUSY) {
2490 fprintf(stderr,
2491 "This is probably because your SMT is enabled.\n"
2492 "VCPU can only run on primary threads with all "
2493 "secondary threads offline.\n");
2494 }
2495 #endif
2496 ret = -1;
2497 break;
2498 }
2499
2500 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2501 switch (run->exit_reason) {
2502 case KVM_EXIT_IO:
2503 DPRINTF("handle_io\n");
2504 /* Called outside BQL */
2505 kvm_handle_io(run->io.port, attrs,
2506 (uint8_t *)run + run->io.data_offset,
2507 run->io.direction,
2508 run->io.size,
2509 run->io.count);
2510 ret = 0;
2511 break;
2512 case KVM_EXIT_MMIO:
2513 DPRINTF("handle_mmio\n");
2514 /* Called outside BQL */
2515 address_space_rw(&address_space_memory,
2516 run->mmio.phys_addr, attrs,
2517 run->mmio.data,
2518 run->mmio.len,
2519 run->mmio.is_write);
2520 ret = 0;
2521 break;
2522 case KVM_EXIT_IRQ_WINDOW_OPEN:
2523 DPRINTF("irq_window_open\n");
2524 ret = EXCP_INTERRUPT;
2525 break;
2526 case KVM_EXIT_SHUTDOWN:
2527 DPRINTF("shutdown\n");
2528 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2529 ret = EXCP_INTERRUPT;
2530 break;
2531 case KVM_EXIT_UNKNOWN:
2532 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2533 (uint64_t)run->hw.hardware_exit_reason);
2534 ret = -1;
2535 break;
2536 case KVM_EXIT_INTERNAL_ERROR:
2537 ret = kvm_handle_internal_error(cpu, run);
2538 break;
2539 case KVM_EXIT_SYSTEM_EVENT:
2540 switch (run->system_event.type) {
2541 case KVM_SYSTEM_EVENT_SHUTDOWN:
2542 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2543 ret = EXCP_INTERRUPT;
2544 break;
2545 case KVM_SYSTEM_EVENT_RESET:
2546 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2547 ret = EXCP_INTERRUPT;
2548 break;
2549 case KVM_SYSTEM_EVENT_CRASH:
2550 kvm_cpu_synchronize_state(cpu);
2551 qemu_mutex_lock_iothread();
2552 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2553 qemu_mutex_unlock_iothread();
2554 ret = 0;
2555 break;
2556 default:
2557 DPRINTF("kvm_arch_handle_exit\n");
2558 ret = kvm_arch_handle_exit(cpu, run);
2559 break;
2560 }
2561 break;
2562 default:
2563 DPRINTF("kvm_arch_handle_exit\n");
2564 ret = kvm_arch_handle_exit(cpu, run);
2565 break;
2566 }
2567 } while (ret == 0);
2568
2569 cpu_exec_end(cpu);
2570 qemu_mutex_lock_iothread();
2571
2572 if (ret < 0) {
2573 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2574 vm_stop(RUN_STATE_INTERNAL_ERROR);
2575 }
2576
2577 qatomic_set(&cpu->exit_request, 0);
2578 return ret;
2579 }
2580
2581 int kvm_ioctl(KVMState *s, int type, ...)
2582 {
2583 int ret;
2584 void *arg;
2585 va_list ap;
2586
2587 va_start(ap, type);
2588 arg = va_arg(ap, void *);
2589 va_end(ap);
2590
2591 trace_kvm_ioctl(type, arg);
2592 ret = ioctl(s->fd, type, arg);
2593 if (ret == -1) {
2594 ret = -errno;
2595 }
2596 return ret;
2597 }
2598
2599 int kvm_vm_ioctl(KVMState *s, int type, ...)
2600 {
2601 int ret;
2602 void *arg;
2603 va_list ap;
2604
2605 va_start(ap, type);
2606 arg = va_arg(ap, void *);
2607 va_end(ap);
2608
2609 trace_kvm_vm_ioctl(type, arg);
2610 ret = ioctl(s->vmfd, type, arg);
2611 if (ret == -1) {
2612 ret = -errno;
2613 }
2614 return ret;
2615 }
2616
2617 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2618 {
2619 int ret;
2620 void *arg;
2621 va_list ap;
2622
2623 va_start(ap, type);
2624 arg = va_arg(ap, void *);
2625 va_end(ap);
2626
2627 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2628 ret = ioctl(cpu->kvm_fd, type, arg);
2629 if (ret == -1) {
2630 ret = -errno;
2631 }
2632 return ret;
2633 }
2634
2635 int kvm_device_ioctl(int fd, int type, ...)
2636 {
2637 int ret;
2638 void *arg;
2639 va_list ap;
2640
2641 va_start(ap, type);
2642 arg = va_arg(ap, void *);
2643 va_end(ap);
2644
2645 trace_kvm_device_ioctl(fd, type, arg);
2646 ret = ioctl(fd, type, arg);
2647 if (ret == -1) {
2648 ret = -errno;
2649 }
2650 return ret;
2651 }
2652
2653 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2654 {
2655 int ret;
2656 struct kvm_device_attr attribute = {
2657 .group = group,
2658 .attr = attr,
2659 };
2660
2661 if (!kvm_vm_attributes_allowed) {
2662 return 0;
2663 }
2664
2665 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2666 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2667 return ret ? 0 : 1;
2668 }
2669
2670 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2671 {
2672 struct kvm_device_attr attribute = {
2673 .group = group,
2674 .attr = attr,
2675 .flags = 0,
2676 };
2677
2678 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2679 }
2680
2681 int kvm_device_access(int fd, int group, uint64_t attr,
2682 void *val, bool write, Error **errp)
2683 {
2684 struct kvm_device_attr kvmattr;
2685 int err;
2686
2687 kvmattr.flags = 0;
2688 kvmattr.group = group;
2689 kvmattr.attr = attr;
2690 kvmattr.addr = (uintptr_t)val;
2691
2692 err = kvm_device_ioctl(fd,
2693 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2694 &kvmattr);
2695 if (err < 0) {
2696 error_setg_errno(errp, -err,
2697 "KVM_%s_DEVICE_ATTR failed: Group %d "
2698 "attr 0x%016" PRIx64,
2699 write ? "SET" : "GET", group, attr);
2700 }
2701 return err;
2702 }
2703
2704 bool kvm_has_sync_mmu(void)
2705 {
2706 return kvm_state->sync_mmu;
2707 }
2708
2709 int kvm_has_vcpu_events(void)
2710 {
2711 return kvm_state->vcpu_events;
2712 }
2713
2714 int kvm_has_robust_singlestep(void)
2715 {
2716 return kvm_state->robust_singlestep;
2717 }
2718
2719 int kvm_has_debugregs(void)
2720 {
2721 return kvm_state->debugregs;
2722 }
2723
2724 int kvm_max_nested_state_length(void)
2725 {
2726 return kvm_state->max_nested_state_len;
2727 }
2728
2729 int kvm_has_many_ioeventfds(void)
2730 {
2731 if (!kvm_enabled()) {
2732 return 0;
2733 }
2734 return kvm_state->many_ioeventfds;
2735 }
2736
2737 int kvm_has_gsi_routing(void)
2738 {
2739 #ifdef KVM_CAP_IRQ_ROUTING
2740 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2741 #else
2742 return false;
2743 #endif
2744 }
2745
2746 int kvm_has_intx_set_mask(void)
2747 {
2748 return kvm_state->intx_set_mask;
2749 }
2750
2751 bool kvm_arm_supports_user_irq(void)
2752 {
2753 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2754 }
2755
2756 #ifdef KVM_CAP_SET_GUEST_DEBUG
2757 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2758 target_ulong pc)
2759 {
2760 struct kvm_sw_breakpoint *bp;
2761
2762 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2763 if (bp->pc == pc) {
2764 return bp;
2765 }
2766 }
2767 return NULL;
2768 }
2769
2770 int kvm_sw_breakpoints_active(CPUState *cpu)
2771 {
2772 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2773 }
2774
2775 struct kvm_set_guest_debug_data {
2776 struct kvm_guest_debug dbg;
2777 int err;
2778 };
2779
2780 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2781 {
2782 struct kvm_set_guest_debug_data *dbg_data =
2783 (struct kvm_set_guest_debug_data *) data.host_ptr;
2784
2785 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2786 &dbg_data->dbg);
2787 }
2788
2789 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2790 {
2791 struct kvm_set_guest_debug_data data;
2792
2793 data.dbg.control = reinject_trap;
2794
2795 if (cpu->singlestep_enabled) {
2796 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2797 }
2798 kvm_arch_update_guest_debug(cpu, &data.dbg);
2799
2800 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2801 RUN_ON_CPU_HOST_PTR(&data));
2802 return data.err;
2803 }
2804
2805 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2806 target_ulong len, int type)
2807 {
2808 struct kvm_sw_breakpoint *bp;
2809 int err;
2810
2811 if (type == GDB_BREAKPOINT_SW) {
2812 bp = kvm_find_sw_breakpoint(cpu, addr);
2813 if (bp) {
2814 bp->use_count++;
2815 return 0;
2816 }
2817
2818 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2819 bp->pc = addr;
2820 bp->use_count = 1;
2821 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2822 if (err) {
2823 g_free(bp);
2824 return err;
2825 }
2826
2827 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2828 } else {
2829 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2830 if (err) {
2831 return err;
2832 }
2833 }
2834
2835 CPU_FOREACH(cpu) {
2836 err = kvm_update_guest_debug(cpu, 0);
2837 if (err) {
2838 return err;
2839 }
2840 }
2841 return 0;
2842 }
2843
2844 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2845 target_ulong len, int type)
2846 {
2847 struct kvm_sw_breakpoint *bp;
2848 int err;
2849
2850 if (type == GDB_BREAKPOINT_SW) {
2851 bp = kvm_find_sw_breakpoint(cpu, addr);
2852 if (!bp) {
2853 return -ENOENT;
2854 }
2855
2856 if (bp->use_count > 1) {
2857 bp->use_count--;
2858 return 0;
2859 }
2860
2861 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2862 if (err) {
2863 return err;
2864 }
2865
2866 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2867 g_free(bp);
2868 } else {
2869 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2870 if (err) {
2871 return err;
2872 }
2873 }
2874
2875 CPU_FOREACH(cpu) {
2876 err = kvm_update_guest_debug(cpu, 0);
2877 if (err) {
2878 return err;
2879 }
2880 }
2881 return 0;
2882 }
2883
2884 void kvm_remove_all_breakpoints(CPUState *cpu)
2885 {
2886 struct kvm_sw_breakpoint *bp, *next;
2887 KVMState *s = cpu->kvm_state;
2888 CPUState *tmpcpu;
2889
2890 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2891 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2892 /* Try harder to find a CPU that currently sees the breakpoint. */
2893 CPU_FOREACH(tmpcpu) {
2894 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2895 break;
2896 }
2897 }
2898 }
2899 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2900 g_free(bp);
2901 }
2902 kvm_arch_remove_all_hw_breakpoints();
2903
2904 CPU_FOREACH(cpu) {
2905 kvm_update_guest_debug(cpu, 0);
2906 }
2907 }
2908
2909 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2910
2911 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2912 {
2913 return -EINVAL;
2914 }
2915
2916 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2917 target_ulong len, int type)
2918 {
2919 return -EINVAL;
2920 }
2921
2922 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2923 target_ulong len, int type)
2924 {
2925 return -EINVAL;
2926 }
2927
2928 void kvm_remove_all_breakpoints(CPUState *cpu)
2929 {
2930 }
2931 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2932
2933 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2934 {
2935 KVMState *s = kvm_state;
2936 struct kvm_signal_mask *sigmask;
2937 int r;
2938
2939 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2940
2941 sigmask->len = s->sigmask_len;
2942 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2943 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2944 g_free(sigmask);
2945
2946 return r;
2947 }
2948
2949 static void kvm_ipi_signal(int sig)
2950 {
2951 if (current_cpu) {
2952 assert(kvm_immediate_exit);
2953 kvm_cpu_kick(current_cpu);
2954 }
2955 }
2956
2957 void kvm_init_cpu_signals(CPUState *cpu)
2958 {
2959 int r;
2960 sigset_t set;
2961 struct sigaction sigact;
2962
2963 memset(&sigact, 0, sizeof(sigact));
2964 sigact.sa_handler = kvm_ipi_signal;
2965 sigaction(SIG_IPI, &sigact, NULL);
2966
2967 pthread_sigmask(SIG_BLOCK, NULL, &set);
2968 #if defined KVM_HAVE_MCE_INJECTION
2969 sigdelset(&set, SIGBUS);
2970 pthread_sigmask(SIG_SETMASK, &set, NULL);
2971 #endif
2972 sigdelset(&set, SIG_IPI);
2973 if (kvm_immediate_exit) {
2974 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2975 } else {
2976 r = kvm_set_signal_mask(cpu, &set);
2977 }
2978 if (r) {
2979 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2980 exit(1);
2981 }
2982 }
2983
2984 /* Called asynchronously in VCPU thread. */
2985 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2986 {
2987 #ifdef KVM_HAVE_MCE_INJECTION
2988 if (have_sigbus_pending) {
2989 return 1;
2990 }
2991 have_sigbus_pending = true;
2992 pending_sigbus_addr = addr;
2993 pending_sigbus_code = code;
2994 qatomic_set(&cpu->exit_request, 1);
2995 return 0;
2996 #else
2997 return 1;
2998 #endif
2999 }
3000
3001 /* Called synchronously (via signalfd) in main thread. */
3002 int kvm_on_sigbus(int code, void *addr)
3003 {
3004 #ifdef KVM_HAVE_MCE_INJECTION
3005 /* Action required MCE kills the process if SIGBUS is blocked. Because
3006 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3007 * we can only get action optional here.
3008 */
3009 assert(code != BUS_MCEERR_AR);
3010 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3011 return 0;
3012 #else
3013 return 1;
3014 #endif
3015 }
3016
3017 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3018 {
3019 int ret;
3020 struct kvm_create_device create_dev;
3021
3022 create_dev.type = type;
3023 create_dev.fd = -1;
3024 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3025
3026 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3027 return -ENOTSUP;
3028 }
3029
3030 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3031 if (ret) {
3032 return ret;
3033 }
3034
3035 return test ? 0 : create_dev.fd;
3036 }
3037
3038 bool kvm_device_supported(int vmfd, uint64_t type)
3039 {
3040 struct kvm_create_device create_dev = {
3041 .type = type,
3042 .fd = -1,
3043 .flags = KVM_CREATE_DEVICE_TEST,
3044 };
3045
3046 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3047 return false;
3048 }
3049
3050 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3051 }
3052
3053 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3054 {
3055 struct kvm_one_reg reg;
3056 int r;
3057
3058 reg.id = id;
3059 reg.addr = (uintptr_t) source;
3060 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3061 if (r) {
3062 trace_kvm_failed_reg_set(id, strerror(-r));
3063 }
3064 return r;
3065 }
3066
3067 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3068 {
3069 struct kvm_one_reg reg;
3070 int r;
3071
3072 reg.id = id;
3073 reg.addr = (uintptr_t) target;
3074 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3075 if (r) {
3076 trace_kvm_failed_reg_get(id, strerror(-r));
3077 }
3078 return r;
3079 }
3080
3081 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3082 hwaddr start_addr, hwaddr size)
3083 {
3084 KVMState *kvm = KVM_STATE(ms->accelerator);
3085 int i;
3086
3087 for (i = 0; i < kvm->nr_as; ++i) {
3088 if (kvm->as[i].as == as && kvm->as[i].ml) {
3089 size = MIN(kvm_max_slot_size, size);
3090 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3091 start_addr, size);
3092 }
3093 }
3094
3095 return false;
3096 }
3097
3098 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3099 const char *name, void *opaque,
3100 Error **errp)
3101 {
3102 KVMState *s = KVM_STATE(obj);
3103 int64_t value = s->kvm_shadow_mem;
3104
3105 visit_type_int(v, name, &value, errp);
3106 }
3107
3108 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3109 const char *name, void *opaque,
3110 Error **errp)
3111 {
3112 KVMState *s = KVM_STATE(obj);
3113 int64_t value;
3114
3115 if (!visit_type_int(v, name, &value, errp)) {
3116 return;
3117 }
3118
3119 s->kvm_shadow_mem = value;
3120 }
3121
3122 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3123 const char *name, void *opaque,
3124 Error **errp)
3125 {
3126 KVMState *s = KVM_STATE(obj);
3127 OnOffSplit mode;
3128
3129 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3130 return;
3131 }
3132 switch (mode) {
3133 case ON_OFF_SPLIT_ON:
3134 s->kernel_irqchip_allowed = true;
3135 s->kernel_irqchip_required = true;
3136 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3137 break;
3138 case ON_OFF_SPLIT_OFF:
3139 s->kernel_irqchip_allowed = false;
3140 s->kernel_irqchip_required = false;
3141 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3142 break;
3143 case ON_OFF_SPLIT_SPLIT:
3144 s->kernel_irqchip_allowed = true;
3145 s->kernel_irqchip_required = true;
3146 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3147 break;
3148 default:
3149 /* The value was checked in visit_type_OnOffSplit() above. If
3150 * we get here, then something is wrong in QEMU.
3151 */
3152 abort();
3153 }
3154 }
3155
3156 bool kvm_kernel_irqchip_allowed(void)
3157 {
3158 return kvm_state->kernel_irqchip_allowed;
3159 }
3160
3161 bool kvm_kernel_irqchip_required(void)
3162 {
3163 return kvm_state->kernel_irqchip_required;
3164 }
3165
3166 bool kvm_kernel_irqchip_split(void)
3167 {
3168 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3169 }
3170
3171 static void kvm_accel_instance_init(Object *obj)
3172 {
3173 KVMState *s = KVM_STATE(obj);
3174
3175 s->kvm_shadow_mem = -1;
3176 s->kernel_irqchip_allowed = true;
3177 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3178 }
3179
3180 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3181 {
3182 AccelClass *ac = ACCEL_CLASS(oc);
3183 ac->name = "KVM";
3184 ac->init_machine = kvm_init;
3185 ac->has_memory = kvm_accel_has_memory;
3186 ac->allowed = &kvm_allowed;
3187
3188 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3189 NULL, kvm_set_kernel_irqchip,
3190 NULL, NULL);
3191 object_class_property_set_description(oc, "kernel-irqchip",
3192 "Configure KVM in-kernel irqchip");
3193
3194 object_class_property_add(oc, "kvm-shadow-mem", "int",
3195 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3196 NULL, NULL);
3197 object_class_property_set_description(oc, "kvm-shadow-mem",
3198 "KVM shadow MMU size");
3199 }
3200
3201 static const TypeInfo kvm_accel_type = {
3202 .name = TYPE_KVM_ACCEL,
3203 .parent = TYPE_ACCEL,
3204 .instance_init = kvm_accel_instance_init,
3205 .class_init = kvm_accel_class_init,
3206 .instance_size = sizeof(KVMState),
3207 };
3208
3209 static void kvm_type_init(void)
3210 {
3211 type_register_static(&kvm_accel_type);
3212 }
3213
3214 type_init(kvm_type_init);