]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
accel/tcg: Replace `TARGET_TB_PCREL` with `CF_PCREL`
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46
47 /* -icount align implementation. */
48
49 typedef struct SyncClocks {
50 int64_t diff_clk;
51 int64_t last_cpu_icount;
52 int64_t realtime_clock;
53 } SyncClocks;
54
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57 * The difference between the 2 clocks could therefore
58 * oscillate around 0.
59 */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64
65 int64_t max_delay;
66 int64_t max_advance;
67
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70 int64_t cpu_icount;
71
72 if (!icount_align_option) {
73 return;
74 }
75
76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78 sc->last_cpu_icount = cpu_icount;
79
80 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82 struct timespec sleep_delay, rem_delay;
83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87 } else {
88 sc->diff_clk = 0;
89 }
90 #else
91 Sleep(sc->diff_clk / SCALE_MS);
92 sc->diff_clk = 0;
93 #endif
94 }
95 }
96
97 static void print_delay(const SyncClocks *sc)
98 {
99 static float threshold_delay;
100 static int64_t last_realtime_clock;
101 static int nb_prints;
102
103 if (icount_align_option &&
104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105 nb_prints < MAX_NB_PRINTS) {
106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107 (-sc->diff_clk / (float)1000000000LL <
108 (threshold_delay - THRESHOLD_REDUCE))) {
109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111 threshold_delay - 1,
112 threshold_delay);
113 nb_prints++;
114 last_realtime_clock = sc->realtime_clock;
115 }
116 }
117 }
118
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121 if (!icount_align_option) {
122 return;
123 }
124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126 sc->last_cpu_icount
127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128 if (sc->diff_clk < max_delay) {
129 max_delay = sc->diff_clk;
130 }
131 if (sc->diff_clk > max_advance) {
132 max_advance = sc->diff_clk;
133 }
134
135 /* Print every 2s max if the guest is late. We limit the number
136 of printed messages to NB_PRINT_MAX(currently 100) */
137 print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151 uint32_t cflags = cpu->tcg_cflags;
152
153 /*
154 * Record gdb single-step. We should be exiting the TB by raising
155 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156 *
157 * For singlestep and -d nochain, suppress goto_tb so that
158 * we can log -d cpu,exec after every TB.
159 */
160 if (unlikely(cpu->singlestep_enabled)) {
161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162 } else if (singlestep) {
163 cflags |= CF_NO_GOTO_TB | 1;
164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165 cflags |= CF_NO_GOTO_TB;
166 }
167
168 return cflags;
169 }
170
171 struct tb_desc {
172 target_ulong pc;
173 target_ulong cs_base;
174 CPUArchState *env;
175 tb_page_addr_t page_addr0;
176 uint32_t flags;
177 uint32_t cflags;
178 uint32_t trace_vcpu_dstate;
179 };
180
181 static bool tb_lookup_cmp(const void *p, const void *d)
182 {
183 const TranslationBlock *tb = p;
184 const struct tb_desc *desc = d;
185
186 if ((tb_cflags(tb) & CF_PCREL || tb_pc(tb) == desc->pc) &&
187 tb_page_addr0(tb) == desc->page_addr0 &&
188 tb->cs_base == desc->cs_base &&
189 tb->flags == desc->flags &&
190 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
191 tb_cflags(tb) == desc->cflags) {
192 /* check next page if needed */
193 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
194 if (tb_phys_page1 == -1) {
195 return true;
196 } else {
197 tb_page_addr_t phys_page1;
198 target_ulong virt_page1;
199
200 /*
201 * We know that the first page matched, and an otherwise valid TB
202 * encountered an incomplete instruction at the end of that page,
203 * therefore we know that generating a new TB from the current PC
204 * must also require reading from the next page -- even if the
205 * second pages do not match, and therefore the resulting insn
206 * is different for the new TB. Therefore any exception raised
207 * here by the faulting lookup is not premature.
208 */
209 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
210 phys_page1 = get_page_addr_code(desc->env, virt_page1);
211 if (tb_phys_page1 == phys_page1) {
212 return true;
213 }
214 }
215 }
216 return false;
217 }
218
219 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
220 target_ulong cs_base, uint32_t flags,
221 uint32_t cflags)
222 {
223 tb_page_addr_t phys_pc;
224 struct tb_desc desc;
225 uint32_t h;
226
227 desc.env = cpu->env_ptr;
228 desc.cs_base = cs_base;
229 desc.flags = flags;
230 desc.cflags = cflags;
231 desc.trace_vcpu_dstate = *cpu->trace_dstate;
232 desc.pc = pc;
233 phys_pc = get_page_addr_code(desc.env, pc);
234 if (phys_pc == -1) {
235 return NULL;
236 }
237 desc.page_addr0 = phys_pc;
238 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
239 flags, cflags, *cpu->trace_dstate);
240 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
241 }
242
243 /* Might cause an exception, so have a longjmp destination ready */
244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
245 target_ulong cs_base,
246 uint32_t flags, uint32_t cflags)
247 {
248 TranslationBlock *tb;
249 CPUJumpCache *jc;
250 uint32_t hash;
251
252 /* we should never be trying to look up an INVALID tb */
253 tcg_debug_assert(!(cflags & CF_INVALID));
254
255 hash = tb_jmp_cache_hash_func(pc);
256 jc = cpu->tb_jmp_cache;
257 tb = tb_jmp_cache_get_tb(jc, cflags, hash);
258
259 if (likely(tb &&
260 tb_jmp_cache_get_pc(jc, hash, tb) == pc &&
261 tb->cs_base == cs_base &&
262 tb->flags == flags &&
263 tb->trace_vcpu_dstate == *cpu->trace_dstate &&
264 tb_cflags(tb) == cflags)) {
265 return tb;
266 }
267 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
268 if (tb == NULL) {
269 return NULL;
270 }
271 tb_jmp_cache_set(jc, hash, tb, pc);
272 return tb;
273 }
274
275 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
276 const TranslationBlock *tb)
277 {
278 if (qemu_log_in_addr_range(pc)) {
279 qemu_log_mask(CPU_LOG_EXEC,
280 "Trace %d: %p [" TARGET_FMT_lx
281 "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
282 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
283 tb->flags, tb->cflags, lookup_symbol(pc));
284
285 #if defined(DEBUG_DISAS)
286 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
287 FILE *logfile = qemu_log_trylock();
288 if (logfile) {
289 int flags = 0;
290
291 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
292 flags |= CPU_DUMP_FPU;
293 }
294 #if defined(TARGET_I386)
295 flags |= CPU_DUMP_CCOP;
296 #endif
297 cpu_dump_state(cpu, logfile, flags);
298 qemu_log_unlock(logfile);
299 }
300 }
301 #endif /* DEBUG_DISAS */
302 }
303 }
304
305 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
306 uint32_t *cflags)
307 {
308 CPUBreakpoint *bp;
309 bool match_page = false;
310
311 /*
312 * Singlestep overrides breakpoints.
313 * This requirement is visible in the record-replay tests, where
314 * we would fail to make forward progress in reverse-continue.
315 *
316 * TODO: gdb singlestep should only override gdb breakpoints,
317 * so that one could (gdb) singlestep into the guest kernel's
318 * architectural breakpoint handler.
319 */
320 if (cpu->singlestep_enabled) {
321 return false;
322 }
323
324 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
325 /*
326 * If we have an exact pc match, trigger the breakpoint.
327 * Otherwise, note matches within the page.
328 */
329 if (pc == bp->pc) {
330 bool match_bp = false;
331
332 if (bp->flags & BP_GDB) {
333 match_bp = true;
334 } else if (bp->flags & BP_CPU) {
335 #ifdef CONFIG_USER_ONLY
336 g_assert_not_reached();
337 #else
338 CPUClass *cc = CPU_GET_CLASS(cpu);
339 assert(cc->tcg_ops->debug_check_breakpoint);
340 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
341 #endif
342 }
343
344 if (match_bp) {
345 cpu->exception_index = EXCP_DEBUG;
346 return true;
347 }
348 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
349 match_page = true;
350 }
351 }
352
353 /*
354 * Within the same page as a breakpoint, single-step,
355 * returning to helper_lookup_tb_ptr after each insn looking
356 * for the actual breakpoint.
357 *
358 * TODO: Perhaps better to record all of the TBs associated
359 * with a given virtual page that contains a breakpoint, and
360 * then invalidate them when a new overlapping breakpoint is
361 * set on the page. Non-overlapping TBs would not be
362 * invalidated, nor would any TB need to be invalidated as
363 * breakpoints are removed.
364 */
365 if (match_page) {
366 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
367 }
368 return false;
369 }
370
371 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
372 uint32_t *cflags)
373 {
374 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
375 check_for_breakpoints_slow(cpu, pc, cflags);
376 }
377
378 /**
379 * helper_lookup_tb_ptr: quick check for next tb
380 * @env: current cpu state
381 *
382 * Look for an existing TB matching the current cpu state.
383 * If found, return the code pointer. If not found, return
384 * the tcg epilogue so that we return into cpu_tb_exec.
385 */
386 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
387 {
388 CPUState *cpu = env_cpu(env);
389 TranslationBlock *tb;
390 target_ulong cs_base, pc;
391 uint32_t flags, cflags;
392
393 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
394
395 cflags = curr_cflags(cpu);
396 if (check_for_breakpoints(cpu, pc, &cflags)) {
397 cpu_loop_exit(cpu);
398 }
399
400 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
401 if (tb == NULL) {
402 return tcg_code_gen_epilogue;
403 }
404
405 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
406 log_cpu_exec(pc, cpu, tb);
407 }
408
409 return tb->tc.ptr;
410 }
411
412 /* Execute a TB, and fix up the CPU state afterwards if necessary */
413 /*
414 * Disable CFI checks.
415 * TCG creates binary blobs at runtime, with the transformed code.
416 * A TB is a blob of binary code, created at runtime and called with an
417 * indirect function call. Since such function did not exist at compile time,
418 * the CFI runtime has no way to verify its signature and would fail.
419 * TCG is not considered a security-sensitive part of QEMU so this does not
420 * affect the impact of CFI in environment with high security requirements
421 */
422 static inline TranslationBlock * QEMU_DISABLE_CFI
423 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
424 {
425 CPUArchState *env = cpu->env_ptr;
426 uintptr_t ret;
427 TranslationBlock *last_tb;
428 const void *tb_ptr = itb->tc.ptr;
429
430 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
431 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
432 }
433
434 qemu_thread_jit_execute();
435 ret = tcg_qemu_tb_exec(env, tb_ptr);
436 cpu->can_do_io = 1;
437 /*
438 * TODO: Delay swapping back to the read-write region of the TB
439 * until we actually need to modify the TB. The read-only copy,
440 * coming from the rx region, shares the same host TLB entry as
441 * the code that executed the exit_tb opcode that arrived here.
442 * If we insist on touching both the RX and the RW pages, we
443 * double the host TLB pressure.
444 */
445 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
446 *tb_exit = ret & TB_EXIT_MASK;
447
448 trace_exec_tb_exit(last_tb, *tb_exit);
449
450 if (*tb_exit > TB_EXIT_IDX1) {
451 /* We didn't start executing this TB (eg because the instruction
452 * counter hit zero); we must restore the guest PC to the address
453 * of the start of the TB.
454 */
455 CPUClass *cc = CPU_GET_CLASS(cpu);
456
457 if (cc->tcg_ops->synchronize_from_tb) {
458 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
459 } else {
460 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
461 assert(cc->set_pc);
462 cc->set_pc(cpu, tb_pc(last_tb));
463 }
464 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
465 target_ulong pc = log_pc(cpu, last_tb);
466 if (qemu_log_in_addr_range(pc)) {
467 qemu_log("Stopped execution of TB chain before %p ["
468 TARGET_FMT_lx "] %s\n",
469 last_tb->tc.ptr, pc, lookup_symbol(pc));
470 }
471 }
472 }
473
474 /*
475 * If gdb single-step, and we haven't raised another exception,
476 * raise a debug exception. Single-step with another exception
477 * is handled in cpu_handle_exception.
478 */
479 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
480 cpu->exception_index = EXCP_DEBUG;
481 cpu_loop_exit(cpu);
482 }
483
484 return last_tb;
485 }
486
487
488 static void cpu_exec_enter(CPUState *cpu)
489 {
490 CPUClass *cc = CPU_GET_CLASS(cpu);
491
492 if (cc->tcg_ops->cpu_exec_enter) {
493 cc->tcg_ops->cpu_exec_enter(cpu);
494 }
495 }
496
497 static void cpu_exec_exit(CPUState *cpu)
498 {
499 CPUClass *cc = CPU_GET_CLASS(cpu);
500
501 if (cc->tcg_ops->cpu_exec_exit) {
502 cc->tcg_ops->cpu_exec_exit(cpu);
503 }
504 QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
505 }
506
507 void cpu_exec_step_atomic(CPUState *cpu)
508 {
509 CPUArchState *env = cpu->env_ptr;
510 TranslationBlock *tb;
511 target_ulong cs_base, pc;
512 uint32_t flags, cflags;
513 int tb_exit;
514
515 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
516 start_exclusive();
517 g_assert(cpu == current_cpu);
518 g_assert(!cpu->running);
519 cpu->running = true;
520
521 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
522
523 cflags = curr_cflags(cpu);
524 /* Execute in a serial context. */
525 cflags &= ~CF_PARALLEL;
526 /* After 1 insn, return and release the exclusive lock. */
527 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
528 /*
529 * No need to check_for_breakpoints here.
530 * We only arrive in cpu_exec_step_atomic after beginning execution
531 * of an insn that includes an atomic operation we can't handle.
532 * Any breakpoint for this insn will have been recognized earlier.
533 */
534
535 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
536 if (tb == NULL) {
537 mmap_lock();
538 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
539 mmap_unlock();
540 }
541
542 cpu_exec_enter(cpu);
543 /* execute the generated code */
544 trace_exec_tb(tb, pc);
545 cpu_tb_exec(cpu, tb, &tb_exit);
546 cpu_exec_exit(cpu);
547 } else {
548 #ifndef CONFIG_SOFTMMU
549 clear_helper_retaddr();
550 if (have_mmap_lock()) {
551 mmap_unlock();
552 }
553 #endif
554 if (qemu_mutex_iothread_locked()) {
555 qemu_mutex_unlock_iothread();
556 }
557 assert_no_pages_locked();
558 qemu_plugin_disable_mem_helpers(cpu);
559 }
560
561 /*
562 * As we start the exclusive region before codegen we must still
563 * be in the region if we longjump out of either the codegen or
564 * the execution.
565 */
566 g_assert(cpu_in_exclusive_context(cpu));
567 cpu->running = false;
568 end_exclusive();
569 }
570
571 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
572 {
573 /*
574 * Get the rx view of the structure, from which we find the
575 * executable code address, and tb_target_set_jmp_target can
576 * produce a pc-relative displacement to jmp_target_addr[n].
577 */
578 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
579 uintptr_t offset = tb->jmp_insn_offset[n];
580 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
581 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
582
583 tb->jmp_target_addr[n] = addr;
584 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
585 }
586
587 static inline void tb_add_jump(TranslationBlock *tb, int n,
588 TranslationBlock *tb_next)
589 {
590 uintptr_t old;
591
592 qemu_thread_jit_write();
593 assert(n < ARRAY_SIZE(tb->jmp_list_next));
594 qemu_spin_lock(&tb_next->jmp_lock);
595
596 /* make sure the destination TB is valid */
597 if (tb_next->cflags & CF_INVALID) {
598 goto out_unlock_next;
599 }
600 /* Atomically claim the jump destination slot only if it was NULL */
601 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
602 (uintptr_t)tb_next);
603 if (old) {
604 goto out_unlock_next;
605 }
606
607 /* patch the native jump address */
608 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
609
610 /* add in TB jmp list */
611 tb->jmp_list_next[n] = tb_next->jmp_list_head;
612 tb_next->jmp_list_head = (uintptr_t)tb | n;
613
614 qemu_spin_unlock(&tb_next->jmp_lock);
615
616 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
617 tb->tc.ptr, n, tb_next->tc.ptr);
618 return;
619
620 out_unlock_next:
621 qemu_spin_unlock(&tb_next->jmp_lock);
622 return;
623 }
624
625 static inline bool cpu_handle_halt(CPUState *cpu)
626 {
627 #ifndef CONFIG_USER_ONLY
628 if (cpu->halted) {
629 #if defined(TARGET_I386)
630 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
631 X86CPU *x86_cpu = X86_CPU(cpu);
632 qemu_mutex_lock_iothread();
633 apic_poll_irq(x86_cpu->apic_state);
634 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
635 qemu_mutex_unlock_iothread();
636 }
637 #endif /* TARGET_I386 */
638 if (!cpu_has_work(cpu)) {
639 return true;
640 }
641
642 cpu->halted = 0;
643 }
644 #endif /* !CONFIG_USER_ONLY */
645
646 return false;
647 }
648
649 static inline void cpu_handle_debug_exception(CPUState *cpu)
650 {
651 CPUClass *cc = CPU_GET_CLASS(cpu);
652 CPUWatchpoint *wp;
653
654 if (!cpu->watchpoint_hit) {
655 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
656 wp->flags &= ~BP_WATCHPOINT_HIT;
657 }
658 }
659
660 if (cc->tcg_ops->debug_excp_handler) {
661 cc->tcg_ops->debug_excp_handler(cpu);
662 }
663 }
664
665 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
666 {
667 if (cpu->exception_index < 0) {
668 #ifndef CONFIG_USER_ONLY
669 if (replay_has_exception()
670 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
671 /* Execute just one insn to trigger exception pending in the log */
672 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
673 | CF_NOIRQ | 1;
674 }
675 #endif
676 return false;
677 }
678 if (cpu->exception_index >= EXCP_INTERRUPT) {
679 /* exit request from the cpu execution loop */
680 *ret = cpu->exception_index;
681 if (*ret == EXCP_DEBUG) {
682 cpu_handle_debug_exception(cpu);
683 }
684 cpu->exception_index = -1;
685 return true;
686 } else {
687 #if defined(CONFIG_USER_ONLY)
688 /* if user mode only, we simulate a fake exception
689 which will be handled outside the cpu execution
690 loop */
691 #if defined(TARGET_I386)
692 CPUClass *cc = CPU_GET_CLASS(cpu);
693 cc->tcg_ops->fake_user_interrupt(cpu);
694 #endif /* TARGET_I386 */
695 *ret = cpu->exception_index;
696 cpu->exception_index = -1;
697 return true;
698 #else
699 if (replay_exception()) {
700 CPUClass *cc = CPU_GET_CLASS(cpu);
701 qemu_mutex_lock_iothread();
702 cc->tcg_ops->do_interrupt(cpu);
703 qemu_mutex_unlock_iothread();
704 cpu->exception_index = -1;
705
706 if (unlikely(cpu->singlestep_enabled)) {
707 /*
708 * After processing the exception, ensure an EXCP_DEBUG is
709 * raised when single-stepping so that GDB doesn't miss the
710 * next instruction.
711 */
712 *ret = EXCP_DEBUG;
713 cpu_handle_debug_exception(cpu);
714 return true;
715 }
716 } else if (!replay_has_interrupt()) {
717 /* give a chance to iothread in replay mode */
718 *ret = EXCP_INTERRUPT;
719 return true;
720 }
721 #endif
722 }
723
724 return false;
725 }
726
727 #ifndef CONFIG_USER_ONLY
728 /*
729 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
730 * "real" interrupt event later. It does not need to be recorded for
731 * replay purposes.
732 */
733 static inline bool need_replay_interrupt(int interrupt_request)
734 {
735 #if defined(TARGET_I386)
736 return !(interrupt_request & CPU_INTERRUPT_POLL);
737 #else
738 return true;
739 #endif
740 }
741 #endif /* !CONFIG_USER_ONLY */
742
743 static inline bool cpu_handle_interrupt(CPUState *cpu,
744 TranslationBlock **last_tb)
745 {
746 /*
747 * If we have requested custom cflags with CF_NOIRQ we should
748 * skip checking here. Any pending interrupts will get picked up
749 * by the next TB we execute under normal cflags.
750 */
751 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
752 return false;
753 }
754
755 /* Clear the interrupt flag now since we're processing
756 * cpu->interrupt_request and cpu->exit_request.
757 * Ensure zeroing happens before reading cpu->exit_request or
758 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
759 */
760 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
761
762 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
763 int interrupt_request;
764 qemu_mutex_lock_iothread();
765 interrupt_request = cpu->interrupt_request;
766 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
767 /* Mask out external interrupts for this step. */
768 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
769 }
770 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
771 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
772 cpu->exception_index = EXCP_DEBUG;
773 qemu_mutex_unlock_iothread();
774 return true;
775 }
776 #if !defined(CONFIG_USER_ONLY)
777 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
778 /* Do nothing */
779 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
780 replay_interrupt();
781 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
782 cpu->halted = 1;
783 cpu->exception_index = EXCP_HLT;
784 qemu_mutex_unlock_iothread();
785 return true;
786 }
787 #if defined(TARGET_I386)
788 else if (interrupt_request & CPU_INTERRUPT_INIT) {
789 X86CPU *x86_cpu = X86_CPU(cpu);
790 CPUArchState *env = &x86_cpu->env;
791 replay_interrupt();
792 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
793 do_cpu_init(x86_cpu);
794 cpu->exception_index = EXCP_HALTED;
795 qemu_mutex_unlock_iothread();
796 return true;
797 }
798 #else
799 else if (interrupt_request & CPU_INTERRUPT_RESET) {
800 replay_interrupt();
801 cpu_reset(cpu);
802 qemu_mutex_unlock_iothread();
803 return true;
804 }
805 #endif /* !TARGET_I386 */
806 /* The target hook has 3 exit conditions:
807 False when the interrupt isn't processed,
808 True when it is, and we should restart on a new TB,
809 and via longjmp via cpu_loop_exit. */
810 else {
811 CPUClass *cc = CPU_GET_CLASS(cpu);
812
813 if (cc->tcg_ops->cpu_exec_interrupt &&
814 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
815 if (need_replay_interrupt(interrupt_request)) {
816 replay_interrupt();
817 }
818 /*
819 * After processing the interrupt, ensure an EXCP_DEBUG is
820 * raised when single-stepping so that GDB doesn't miss the
821 * next instruction.
822 */
823 if (unlikely(cpu->singlestep_enabled)) {
824 cpu->exception_index = EXCP_DEBUG;
825 qemu_mutex_unlock_iothread();
826 return true;
827 }
828 cpu->exception_index = -1;
829 *last_tb = NULL;
830 }
831 /* The target hook may have updated the 'cpu->interrupt_request';
832 * reload the 'interrupt_request' value */
833 interrupt_request = cpu->interrupt_request;
834 }
835 #endif /* !CONFIG_USER_ONLY */
836 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
837 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
838 /* ensure that no TB jump will be modified as
839 the program flow was changed */
840 *last_tb = NULL;
841 }
842
843 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
844 qemu_mutex_unlock_iothread();
845 }
846
847 /* Finally, check if we need to exit to the main loop. */
848 if (unlikely(qatomic_read(&cpu->exit_request))
849 || (icount_enabled()
850 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
851 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
852 qatomic_set(&cpu->exit_request, 0);
853 if (cpu->exception_index == -1) {
854 cpu->exception_index = EXCP_INTERRUPT;
855 }
856 return true;
857 }
858
859 return false;
860 }
861
862 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
863 target_ulong pc,
864 TranslationBlock **last_tb, int *tb_exit)
865 {
866 int32_t insns_left;
867
868 trace_exec_tb(tb, pc);
869 tb = cpu_tb_exec(cpu, tb, tb_exit);
870 if (*tb_exit != TB_EXIT_REQUESTED) {
871 *last_tb = tb;
872 return;
873 }
874
875 *last_tb = NULL;
876 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
877 if (insns_left < 0) {
878 /* Something asked us to stop executing chained TBs; just
879 * continue round the main loop. Whatever requested the exit
880 * will also have set something else (eg exit_request or
881 * interrupt_request) which will be handled by
882 * cpu_handle_interrupt. cpu_handle_interrupt will also
883 * clear cpu->icount_decr.u16.high.
884 */
885 return;
886 }
887
888 /* Instruction counter expired. */
889 assert(icount_enabled());
890 #ifndef CONFIG_USER_ONLY
891 /* Ensure global icount has gone forward */
892 icount_update(cpu);
893 /* Refill decrementer and continue execution. */
894 insns_left = MIN(0xffff, cpu->icount_budget);
895 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
896 cpu->icount_extra = cpu->icount_budget - insns_left;
897
898 /*
899 * If the next tb has more instructions than we have left to
900 * execute we need to ensure we find/generate a TB with exactly
901 * insns_left instructions in it.
902 */
903 if (insns_left > 0 && insns_left < tb->icount) {
904 assert(insns_left <= CF_COUNT_MASK);
905 assert(cpu->icount_extra == 0);
906 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
907 }
908 #endif
909 }
910
911 /* main execution loop */
912
913 static int __attribute__((noinline))
914 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
915 {
916 int ret;
917
918 /* if an exception is pending, we execute it here */
919 while (!cpu_handle_exception(cpu, &ret)) {
920 TranslationBlock *last_tb = NULL;
921 int tb_exit = 0;
922
923 while (!cpu_handle_interrupt(cpu, &last_tb)) {
924 TranslationBlock *tb;
925 target_ulong cs_base, pc;
926 uint32_t flags, cflags;
927
928 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
929
930 /*
931 * When requested, use an exact setting for cflags for the next
932 * execution. This is used for icount, precise smc, and stop-
933 * after-access watchpoints. Since this request should never
934 * have CF_INVALID set, -1 is a convenient invalid value that
935 * does not require tcg headers for cpu_common_reset.
936 */
937 cflags = cpu->cflags_next_tb;
938 if (cflags == -1) {
939 cflags = curr_cflags(cpu);
940 } else {
941 cpu->cflags_next_tb = -1;
942 }
943
944 if (check_for_breakpoints(cpu, pc, &cflags)) {
945 break;
946 }
947
948 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
949 if (tb == NULL) {
950 uint32_t h;
951
952 mmap_lock();
953 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
954 mmap_unlock();
955 /*
956 * We add the TB in the virtual pc hash table
957 * for the fast lookup
958 */
959 h = tb_jmp_cache_hash_func(pc);
960 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc);
961 }
962
963 #ifndef CONFIG_USER_ONLY
964 /*
965 * We don't take care of direct jumps when address mapping
966 * changes in system emulation. So it's not safe to make a
967 * direct jump to a TB spanning two pages because the mapping
968 * for the second page can change.
969 */
970 if (tb_page_addr1(tb) != -1) {
971 last_tb = NULL;
972 }
973 #endif
974 /* See if we can patch the calling TB. */
975 if (last_tb) {
976 tb_add_jump(last_tb, tb_exit, tb);
977 }
978
979 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
980
981 QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
982 /* Try to align the host and virtual clocks
983 if the guest is in advance */
984 align_clocks(sc, cpu);
985 }
986 }
987 return ret;
988 }
989
990 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
991 {
992 /* Prepare setjmp context for exception handling. */
993 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
994 /* Non-buggy compilers preserve this; assert the correct value. */
995 g_assert(cpu == current_cpu);
996
997 #ifndef CONFIG_SOFTMMU
998 clear_helper_retaddr();
999 if (have_mmap_lock()) {
1000 mmap_unlock();
1001 }
1002 #endif
1003 if (qemu_mutex_iothread_locked()) {
1004 qemu_mutex_unlock_iothread();
1005 }
1006 qemu_plugin_disable_mem_helpers(cpu);
1007
1008 assert_no_pages_locked();
1009 }
1010
1011 return cpu_exec_loop(cpu, sc);
1012 }
1013
1014 int cpu_exec(CPUState *cpu)
1015 {
1016 int ret;
1017 SyncClocks sc = { 0 };
1018
1019 /* replay_interrupt may need current_cpu */
1020 current_cpu = cpu;
1021
1022 if (cpu_handle_halt(cpu)) {
1023 return EXCP_HALTED;
1024 }
1025
1026 rcu_read_lock();
1027 cpu_exec_enter(cpu);
1028
1029 /*
1030 * Calculate difference between guest clock and host clock.
1031 * This delay includes the delay of the last cycle, so
1032 * what we have to do is sleep until it is 0. As for the
1033 * advance/delay we gain here, we try to fix it next time.
1034 */
1035 init_delay_params(&sc, cpu);
1036
1037 ret = cpu_exec_setjmp(cpu, &sc);
1038
1039 cpu_exec_exit(cpu);
1040 rcu_read_unlock();
1041
1042 return ret;
1043 }
1044
1045 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1046 {
1047 static bool tcg_target_initialized;
1048 CPUClass *cc = CPU_GET_CLASS(cpu);
1049
1050 if (!tcg_target_initialized) {
1051 cc->tcg_ops->initialize();
1052 tcg_target_initialized = true;
1053 }
1054
1055 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1056 tlb_init(cpu);
1057 #ifndef CONFIG_USER_ONLY
1058 tcg_iommu_init_notifier_list(cpu);
1059 #endif /* !CONFIG_USER_ONLY */
1060 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1061 }
1062
1063 /* undo the initializations in reverse order */
1064 void tcg_exec_unrealizefn(CPUState *cpu)
1065 {
1066 #ifndef CONFIG_USER_ONLY
1067 tcg_iommu_free_notifier_list(cpu);
1068 #endif /* !CONFIG_USER_ONLY */
1069
1070 tlb_destroy(cpu);
1071 g_free_rcu(cpu->tb_jmp_cache, rcu);
1072 }