]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
migration.json: Don't use space before colon
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto-common.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46
47 /* -icount align implementation. */
48
49 typedef struct SyncClocks {
50 int64_t diff_clk;
51 int64_t last_cpu_icount;
52 int64_t realtime_clock;
53 } SyncClocks;
54
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57 * The difference between the 2 clocks could therefore
58 * oscillate around 0.
59 */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64
65 int64_t max_delay;
66 int64_t max_advance;
67
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70 int64_t cpu_icount;
71
72 if (!icount_align_option) {
73 return;
74 }
75
76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78 sc->last_cpu_icount = cpu_icount;
79
80 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82 struct timespec sleep_delay, rem_delay;
83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87 } else {
88 sc->diff_clk = 0;
89 }
90 #else
91 Sleep(sc->diff_clk / SCALE_MS);
92 sc->diff_clk = 0;
93 #endif
94 }
95 }
96
97 static void print_delay(const SyncClocks *sc)
98 {
99 static float threshold_delay;
100 static int64_t last_realtime_clock;
101 static int nb_prints;
102
103 if (icount_align_option &&
104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105 nb_prints < MAX_NB_PRINTS) {
106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107 (-sc->diff_clk / (float)1000000000LL <
108 (threshold_delay - THRESHOLD_REDUCE))) {
109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111 threshold_delay - 1,
112 threshold_delay);
113 nb_prints++;
114 last_realtime_clock = sc->realtime_clock;
115 }
116 }
117 }
118
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121 if (!icount_align_option) {
122 return;
123 }
124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126 sc->last_cpu_icount
127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128 if (sc->diff_clk < max_delay) {
129 max_delay = sc->diff_clk;
130 }
131 if (sc->diff_clk > max_advance) {
132 max_advance = sc->diff_clk;
133 }
134
135 /* Print every 2s max if the guest is late. We limit the number
136 of printed messages to NB_PRINT_MAX(currently 100) */
137 print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151 uint32_t cflags = cpu->tcg_cflags;
152
153 /*
154 * Record gdb single-step. We should be exiting the TB by raising
155 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156 *
157 * For singlestep and -d nochain, suppress goto_tb so that
158 * we can log -d cpu,exec after every TB.
159 */
160 if (unlikely(cpu->singlestep_enabled)) {
161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162 } else if (qatomic_read(&one_insn_per_tb)) {
163 cflags |= CF_NO_GOTO_TB | 1;
164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165 cflags |= CF_NO_GOTO_TB;
166 }
167
168 return cflags;
169 }
170
171 struct tb_desc {
172 vaddr pc;
173 uint64_t cs_base;
174 CPUArchState *env;
175 tb_page_addr_t page_addr0;
176 uint32_t flags;
177 uint32_t cflags;
178 };
179
180 static bool tb_lookup_cmp(const void *p, const void *d)
181 {
182 const TranslationBlock *tb = p;
183 const struct tb_desc *desc = d;
184
185 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
186 tb_page_addr0(tb) == desc->page_addr0 &&
187 tb->cs_base == desc->cs_base &&
188 tb->flags == desc->flags &&
189 tb_cflags(tb) == desc->cflags) {
190 /* check next page if needed */
191 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
192 if (tb_phys_page1 == -1) {
193 return true;
194 } else {
195 tb_page_addr_t phys_page1;
196 vaddr virt_page1;
197
198 /*
199 * We know that the first page matched, and an otherwise valid TB
200 * encountered an incomplete instruction at the end of that page,
201 * therefore we know that generating a new TB from the current PC
202 * must also require reading from the next page -- even if the
203 * second pages do not match, and therefore the resulting insn
204 * is different for the new TB. Therefore any exception raised
205 * here by the faulting lookup is not premature.
206 */
207 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
208 phys_page1 = get_page_addr_code(desc->env, virt_page1);
209 if (tb_phys_page1 == phys_page1) {
210 return true;
211 }
212 }
213 }
214 return false;
215 }
216
217 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
218 uint64_t cs_base, uint32_t flags,
219 uint32_t cflags)
220 {
221 tb_page_addr_t phys_pc;
222 struct tb_desc desc;
223 uint32_t h;
224
225 desc.env = cpu->env_ptr;
226 desc.cs_base = cs_base;
227 desc.flags = flags;
228 desc.cflags = cflags;
229 desc.pc = pc;
230 phys_pc = get_page_addr_code(desc.env, pc);
231 if (phys_pc == -1) {
232 return NULL;
233 }
234 desc.page_addr0 = phys_pc;
235 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
236 flags, cs_base, cflags);
237 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
238 }
239
240 /* Might cause an exception, so have a longjmp destination ready */
241 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
242 uint64_t cs_base, uint32_t flags,
243 uint32_t cflags)
244 {
245 TranslationBlock *tb;
246 CPUJumpCache *jc;
247 uint32_t hash;
248
249 /* we should never be trying to look up an INVALID tb */
250 tcg_debug_assert(!(cflags & CF_INVALID));
251
252 hash = tb_jmp_cache_hash_func(pc);
253 jc = cpu->tb_jmp_cache;
254
255 if (cflags & CF_PCREL) {
256 /* Use acquire to ensure current load of pc from jc. */
257 tb = qatomic_load_acquire(&jc->array[hash].tb);
258
259 if (likely(tb &&
260 jc->array[hash].pc == pc &&
261 tb->cs_base == cs_base &&
262 tb->flags == flags &&
263 tb_cflags(tb) == cflags)) {
264 return tb;
265 }
266 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
267 if (tb == NULL) {
268 return NULL;
269 }
270 jc->array[hash].pc = pc;
271 /* Ensure pc is written first. */
272 qatomic_store_release(&jc->array[hash].tb, tb);
273 } else {
274 /* Use rcu_read to ensure current load of pc from *tb. */
275 tb = qatomic_rcu_read(&jc->array[hash].tb);
276
277 if (likely(tb &&
278 tb->pc == pc &&
279 tb->cs_base == cs_base &&
280 tb->flags == flags &&
281 tb_cflags(tb) == cflags)) {
282 return tb;
283 }
284 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
285 if (tb == NULL) {
286 return NULL;
287 }
288 /* Use the pc value already stored in tb->pc. */
289 qatomic_set(&jc->array[hash].tb, tb);
290 }
291
292 return tb;
293 }
294
295 static void log_cpu_exec(vaddr pc, CPUState *cpu,
296 const TranslationBlock *tb)
297 {
298 if (qemu_log_in_addr_range(pc)) {
299 qemu_log_mask(CPU_LOG_EXEC,
300 "Trace %d: %p [%08" PRIx64
301 "/%" VADDR_PRIx "/%08x/%08x] %s\n",
302 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
303 tb->flags, tb->cflags, lookup_symbol(pc));
304
305 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
306 FILE *logfile = qemu_log_trylock();
307 if (logfile) {
308 int flags = 0;
309
310 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
311 flags |= CPU_DUMP_FPU;
312 }
313 #if defined(TARGET_I386)
314 flags |= CPU_DUMP_CCOP;
315 #endif
316 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
317 flags |= CPU_DUMP_VPU;
318 }
319 cpu_dump_state(cpu, logfile, flags);
320 qemu_log_unlock(logfile);
321 }
322 }
323 }
324 }
325
326 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
327 uint32_t *cflags)
328 {
329 CPUBreakpoint *bp;
330 bool match_page = false;
331
332 /*
333 * Singlestep overrides breakpoints.
334 * This requirement is visible in the record-replay tests, where
335 * we would fail to make forward progress in reverse-continue.
336 *
337 * TODO: gdb singlestep should only override gdb breakpoints,
338 * so that one could (gdb) singlestep into the guest kernel's
339 * architectural breakpoint handler.
340 */
341 if (cpu->singlestep_enabled) {
342 return false;
343 }
344
345 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
346 /*
347 * If we have an exact pc match, trigger the breakpoint.
348 * Otherwise, note matches within the page.
349 */
350 if (pc == bp->pc) {
351 bool match_bp = false;
352
353 if (bp->flags & BP_GDB) {
354 match_bp = true;
355 } else if (bp->flags & BP_CPU) {
356 #ifdef CONFIG_USER_ONLY
357 g_assert_not_reached();
358 #else
359 CPUClass *cc = CPU_GET_CLASS(cpu);
360 assert(cc->tcg_ops->debug_check_breakpoint);
361 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
362 #endif
363 }
364
365 if (match_bp) {
366 cpu->exception_index = EXCP_DEBUG;
367 return true;
368 }
369 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
370 match_page = true;
371 }
372 }
373
374 /*
375 * Within the same page as a breakpoint, single-step,
376 * returning to helper_lookup_tb_ptr after each insn looking
377 * for the actual breakpoint.
378 *
379 * TODO: Perhaps better to record all of the TBs associated
380 * with a given virtual page that contains a breakpoint, and
381 * then invalidate them when a new overlapping breakpoint is
382 * set on the page. Non-overlapping TBs would not be
383 * invalidated, nor would any TB need to be invalidated as
384 * breakpoints are removed.
385 */
386 if (match_page) {
387 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
388 }
389 return false;
390 }
391
392 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
393 uint32_t *cflags)
394 {
395 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
396 check_for_breakpoints_slow(cpu, pc, cflags);
397 }
398
399 /**
400 * helper_lookup_tb_ptr: quick check for next tb
401 * @env: current cpu state
402 *
403 * Look for an existing TB matching the current cpu state.
404 * If found, return the code pointer. If not found, return
405 * the tcg epilogue so that we return into cpu_tb_exec.
406 */
407 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
408 {
409 CPUState *cpu = env_cpu(env);
410 TranslationBlock *tb;
411 vaddr pc;
412 uint64_t cs_base;
413 uint32_t flags, cflags;
414
415 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
416
417 cflags = curr_cflags(cpu);
418 if (check_for_breakpoints(cpu, pc, &cflags)) {
419 cpu_loop_exit(cpu);
420 }
421
422 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
423 if (tb == NULL) {
424 return tcg_code_gen_epilogue;
425 }
426
427 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
428 log_cpu_exec(pc, cpu, tb);
429 }
430
431 return tb->tc.ptr;
432 }
433
434 /* Execute a TB, and fix up the CPU state afterwards if necessary */
435 /*
436 * Disable CFI checks.
437 * TCG creates binary blobs at runtime, with the transformed code.
438 * A TB is a blob of binary code, created at runtime and called with an
439 * indirect function call. Since such function did not exist at compile time,
440 * the CFI runtime has no way to verify its signature and would fail.
441 * TCG is not considered a security-sensitive part of QEMU so this does not
442 * affect the impact of CFI in environment with high security requirements
443 */
444 static inline TranslationBlock * QEMU_DISABLE_CFI
445 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
446 {
447 CPUArchState *env = cpu->env_ptr;
448 uintptr_t ret;
449 TranslationBlock *last_tb;
450 const void *tb_ptr = itb->tc.ptr;
451
452 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
453 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
454 }
455
456 qemu_thread_jit_execute();
457 ret = tcg_qemu_tb_exec(env, tb_ptr);
458 cpu->can_do_io = 1;
459 qemu_plugin_disable_mem_helpers(cpu);
460 /*
461 * TODO: Delay swapping back to the read-write region of the TB
462 * until we actually need to modify the TB. The read-only copy,
463 * coming from the rx region, shares the same host TLB entry as
464 * the code that executed the exit_tb opcode that arrived here.
465 * If we insist on touching both the RX and the RW pages, we
466 * double the host TLB pressure.
467 */
468 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
469 *tb_exit = ret & TB_EXIT_MASK;
470
471 trace_exec_tb_exit(last_tb, *tb_exit);
472
473 if (*tb_exit > TB_EXIT_IDX1) {
474 /* We didn't start executing this TB (eg because the instruction
475 * counter hit zero); we must restore the guest PC to the address
476 * of the start of the TB.
477 */
478 CPUClass *cc = CPU_GET_CLASS(cpu);
479
480 if (cc->tcg_ops->synchronize_from_tb) {
481 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
482 } else {
483 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
484 assert(cc->set_pc);
485 cc->set_pc(cpu, last_tb->pc);
486 }
487 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
488 vaddr pc = log_pc(cpu, last_tb);
489 if (qemu_log_in_addr_range(pc)) {
490 qemu_log("Stopped execution of TB chain before %p [%"
491 VADDR_PRIx "] %s\n",
492 last_tb->tc.ptr, pc, lookup_symbol(pc));
493 }
494 }
495 }
496
497 /*
498 * If gdb single-step, and we haven't raised another exception,
499 * raise a debug exception. Single-step with another exception
500 * is handled in cpu_handle_exception.
501 */
502 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
503 cpu->exception_index = EXCP_DEBUG;
504 cpu_loop_exit(cpu);
505 }
506
507 return last_tb;
508 }
509
510
511 static void cpu_exec_enter(CPUState *cpu)
512 {
513 CPUClass *cc = CPU_GET_CLASS(cpu);
514
515 if (cc->tcg_ops->cpu_exec_enter) {
516 cc->tcg_ops->cpu_exec_enter(cpu);
517 }
518 }
519
520 static void cpu_exec_exit(CPUState *cpu)
521 {
522 CPUClass *cc = CPU_GET_CLASS(cpu);
523
524 if (cc->tcg_ops->cpu_exec_exit) {
525 cc->tcg_ops->cpu_exec_exit(cpu);
526 }
527 }
528
529 void cpu_exec_step_atomic(CPUState *cpu)
530 {
531 CPUArchState *env = cpu->env_ptr;
532 TranslationBlock *tb;
533 vaddr pc;
534 uint64_t cs_base;
535 uint32_t flags, cflags;
536 int tb_exit;
537
538 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
539 start_exclusive();
540 g_assert(cpu == current_cpu);
541 g_assert(!cpu->running);
542 cpu->running = true;
543
544 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
545
546 cflags = curr_cflags(cpu);
547 /* Execute in a serial context. */
548 cflags &= ~CF_PARALLEL;
549 /* After 1 insn, return and release the exclusive lock. */
550 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
551 /*
552 * No need to check_for_breakpoints here.
553 * We only arrive in cpu_exec_step_atomic after beginning execution
554 * of an insn that includes an atomic operation we can't handle.
555 * Any breakpoint for this insn will have been recognized earlier.
556 */
557
558 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
559 if (tb == NULL) {
560 mmap_lock();
561 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
562 mmap_unlock();
563 }
564
565 cpu_exec_enter(cpu);
566 /* execute the generated code */
567 trace_exec_tb(tb, pc);
568 cpu_tb_exec(cpu, tb, &tb_exit);
569 cpu_exec_exit(cpu);
570 } else {
571 #ifdef CONFIG_USER_ONLY
572 clear_helper_retaddr();
573 if (have_mmap_lock()) {
574 mmap_unlock();
575 }
576 #endif
577 if (qemu_mutex_iothread_locked()) {
578 qemu_mutex_unlock_iothread();
579 }
580 assert_no_pages_locked();
581 }
582
583 /*
584 * As we start the exclusive region before codegen we must still
585 * be in the region if we longjump out of either the codegen or
586 * the execution.
587 */
588 g_assert(cpu_in_exclusive_context(cpu));
589 cpu->running = false;
590 end_exclusive();
591 }
592
593 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
594 {
595 /*
596 * Get the rx view of the structure, from which we find the
597 * executable code address, and tb_target_set_jmp_target can
598 * produce a pc-relative displacement to jmp_target_addr[n].
599 */
600 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
601 uintptr_t offset = tb->jmp_insn_offset[n];
602 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
603 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
604
605 tb->jmp_target_addr[n] = addr;
606 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
607 }
608
609 static inline void tb_add_jump(TranslationBlock *tb, int n,
610 TranslationBlock *tb_next)
611 {
612 uintptr_t old;
613
614 qemu_thread_jit_write();
615 assert(n < ARRAY_SIZE(tb->jmp_list_next));
616 qemu_spin_lock(&tb_next->jmp_lock);
617
618 /* make sure the destination TB is valid */
619 if (tb_next->cflags & CF_INVALID) {
620 goto out_unlock_next;
621 }
622 /* Atomically claim the jump destination slot only if it was NULL */
623 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
624 (uintptr_t)tb_next);
625 if (old) {
626 goto out_unlock_next;
627 }
628
629 /* patch the native jump address */
630 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
631
632 /* add in TB jmp list */
633 tb->jmp_list_next[n] = tb_next->jmp_list_head;
634 tb_next->jmp_list_head = (uintptr_t)tb | n;
635
636 qemu_spin_unlock(&tb_next->jmp_lock);
637
638 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
639 tb->tc.ptr, n, tb_next->tc.ptr);
640 return;
641
642 out_unlock_next:
643 qemu_spin_unlock(&tb_next->jmp_lock);
644 return;
645 }
646
647 static inline bool cpu_handle_halt(CPUState *cpu)
648 {
649 #ifndef CONFIG_USER_ONLY
650 if (cpu->halted) {
651 #if defined(TARGET_I386)
652 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
653 X86CPU *x86_cpu = X86_CPU(cpu);
654 qemu_mutex_lock_iothread();
655 apic_poll_irq(x86_cpu->apic_state);
656 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
657 qemu_mutex_unlock_iothread();
658 }
659 #endif /* TARGET_I386 */
660 if (!cpu_has_work(cpu)) {
661 return true;
662 }
663
664 cpu->halted = 0;
665 }
666 #endif /* !CONFIG_USER_ONLY */
667
668 return false;
669 }
670
671 static inline void cpu_handle_debug_exception(CPUState *cpu)
672 {
673 CPUClass *cc = CPU_GET_CLASS(cpu);
674 CPUWatchpoint *wp;
675
676 if (!cpu->watchpoint_hit) {
677 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
678 wp->flags &= ~BP_WATCHPOINT_HIT;
679 }
680 }
681
682 if (cc->tcg_ops->debug_excp_handler) {
683 cc->tcg_ops->debug_excp_handler(cpu);
684 }
685 }
686
687 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
688 {
689 if (cpu->exception_index < 0) {
690 #ifndef CONFIG_USER_ONLY
691 if (replay_has_exception()
692 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
693 /* Execute just one insn to trigger exception pending in the log */
694 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
695 | CF_NOIRQ | 1;
696 }
697 #endif
698 return false;
699 }
700 if (cpu->exception_index >= EXCP_INTERRUPT) {
701 /* exit request from the cpu execution loop */
702 *ret = cpu->exception_index;
703 if (*ret == EXCP_DEBUG) {
704 cpu_handle_debug_exception(cpu);
705 }
706 cpu->exception_index = -1;
707 return true;
708 } else {
709 #if defined(CONFIG_USER_ONLY)
710 /* if user mode only, we simulate a fake exception
711 which will be handled outside the cpu execution
712 loop */
713 #if defined(TARGET_I386)
714 CPUClass *cc = CPU_GET_CLASS(cpu);
715 cc->tcg_ops->fake_user_interrupt(cpu);
716 #endif /* TARGET_I386 */
717 *ret = cpu->exception_index;
718 cpu->exception_index = -1;
719 return true;
720 #else
721 if (replay_exception()) {
722 CPUClass *cc = CPU_GET_CLASS(cpu);
723 qemu_mutex_lock_iothread();
724 cc->tcg_ops->do_interrupt(cpu);
725 qemu_mutex_unlock_iothread();
726 cpu->exception_index = -1;
727
728 if (unlikely(cpu->singlestep_enabled)) {
729 /*
730 * After processing the exception, ensure an EXCP_DEBUG is
731 * raised when single-stepping so that GDB doesn't miss the
732 * next instruction.
733 */
734 *ret = EXCP_DEBUG;
735 cpu_handle_debug_exception(cpu);
736 return true;
737 }
738 } else if (!replay_has_interrupt()) {
739 /* give a chance to iothread in replay mode */
740 *ret = EXCP_INTERRUPT;
741 return true;
742 }
743 #endif
744 }
745
746 return false;
747 }
748
749 #ifndef CONFIG_USER_ONLY
750 /*
751 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
752 * "real" interrupt event later. It does not need to be recorded for
753 * replay purposes.
754 */
755 static inline bool need_replay_interrupt(int interrupt_request)
756 {
757 #if defined(TARGET_I386)
758 return !(interrupt_request & CPU_INTERRUPT_POLL);
759 #else
760 return true;
761 #endif
762 }
763 #endif /* !CONFIG_USER_ONLY */
764
765 static inline bool cpu_handle_interrupt(CPUState *cpu,
766 TranslationBlock **last_tb)
767 {
768 /*
769 * If we have requested custom cflags with CF_NOIRQ we should
770 * skip checking here. Any pending interrupts will get picked up
771 * by the next TB we execute under normal cflags.
772 */
773 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
774 return false;
775 }
776
777 /* Clear the interrupt flag now since we're processing
778 * cpu->interrupt_request and cpu->exit_request.
779 * Ensure zeroing happens before reading cpu->exit_request or
780 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
781 */
782 qatomic_set_mb(&cpu_neg(cpu)->icount_decr.u16.high, 0);
783
784 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
785 int interrupt_request;
786 qemu_mutex_lock_iothread();
787 interrupt_request = cpu->interrupt_request;
788 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
789 /* Mask out external interrupts for this step. */
790 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
791 }
792 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
793 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
794 cpu->exception_index = EXCP_DEBUG;
795 qemu_mutex_unlock_iothread();
796 return true;
797 }
798 #if !defined(CONFIG_USER_ONLY)
799 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
800 /* Do nothing */
801 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
802 replay_interrupt();
803 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
804 cpu->halted = 1;
805 cpu->exception_index = EXCP_HLT;
806 qemu_mutex_unlock_iothread();
807 return true;
808 }
809 #if defined(TARGET_I386)
810 else if (interrupt_request & CPU_INTERRUPT_INIT) {
811 X86CPU *x86_cpu = X86_CPU(cpu);
812 CPUArchState *env = &x86_cpu->env;
813 replay_interrupt();
814 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
815 do_cpu_init(x86_cpu);
816 cpu->exception_index = EXCP_HALTED;
817 qemu_mutex_unlock_iothread();
818 return true;
819 }
820 #else
821 else if (interrupt_request & CPU_INTERRUPT_RESET) {
822 replay_interrupt();
823 cpu_reset(cpu);
824 qemu_mutex_unlock_iothread();
825 return true;
826 }
827 #endif /* !TARGET_I386 */
828 /* The target hook has 3 exit conditions:
829 False when the interrupt isn't processed,
830 True when it is, and we should restart on a new TB,
831 and via longjmp via cpu_loop_exit. */
832 else {
833 CPUClass *cc = CPU_GET_CLASS(cpu);
834
835 if (cc->tcg_ops->cpu_exec_interrupt &&
836 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
837 if (need_replay_interrupt(interrupt_request)) {
838 replay_interrupt();
839 }
840 /*
841 * After processing the interrupt, ensure an EXCP_DEBUG is
842 * raised when single-stepping so that GDB doesn't miss the
843 * next instruction.
844 */
845 if (unlikely(cpu->singlestep_enabled)) {
846 cpu->exception_index = EXCP_DEBUG;
847 qemu_mutex_unlock_iothread();
848 return true;
849 }
850 cpu->exception_index = -1;
851 *last_tb = NULL;
852 }
853 /* The target hook may have updated the 'cpu->interrupt_request';
854 * reload the 'interrupt_request' value */
855 interrupt_request = cpu->interrupt_request;
856 }
857 #endif /* !CONFIG_USER_ONLY */
858 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
859 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
860 /* ensure that no TB jump will be modified as
861 the program flow was changed */
862 *last_tb = NULL;
863 }
864
865 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
866 qemu_mutex_unlock_iothread();
867 }
868
869 /* Finally, check if we need to exit to the main loop. */
870 if (unlikely(qatomic_read(&cpu->exit_request))
871 || (icount_enabled()
872 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
873 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
874 qatomic_set(&cpu->exit_request, 0);
875 if (cpu->exception_index == -1) {
876 cpu->exception_index = EXCP_INTERRUPT;
877 }
878 return true;
879 }
880
881 return false;
882 }
883
884 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
885 vaddr pc, TranslationBlock **last_tb,
886 int *tb_exit)
887 {
888 int32_t insns_left;
889
890 trace_exec_tb(tb, pc);
891 tb = cpu_tb_exec(cpu, tb, tb_exit);
892 if (*tb_exit != TB_EXIT_REQUESTED) {
893 *last_tb = tb;
894 return;
895 }
896
897 *last_tb = NULL;
898 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
899 if (insns_left < 0) {
900 /* Something asked us to stop executing chained TBs; just
901 * continue round the main loop. Whatever requested the exit
902 * will also have set something else (eg exit_request or
903 * interrupt_request) which will be handled by
904 * cpu_handle_interrupt. cpu_handle_interrupt will also
905 * clear cpu->icount_decr.u16.high.
906 */
907 return;
908 }
909
910 /* Instruction counter expired. */
911 assert(icount_enabled());
912 #ifndef CONFIG_USER_ONLY
913 /* Ensure global icount has gone forward */
914 icount_update(cpu);
915 /* Refill decrementer and continue execution. */
916 insns_left = MIN(0xffff, cpu->icount_budget);
917 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
918 cpu->icount_extra = cpu->icount_budget - insns_left;
919
920 /*
921 * If the next tb has more instructions than we have left to
922 * execute we need to ensure we find/generate a TB with exactly
923 * insns_left instructions in it.
924 */
925 if (insns_left > 0 && insns_left < tb->icount) {
926 assert(insns_left <= CF_COUNT_MASK);
927 assert(cpu->icount_extra == 0);
928 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
929 }
930 #endif
931 }
932
933 /* main execution loop */
934
935 static int __attribute__((noinline))
936 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
937 {
938 int ret;
939
940 /* if an exception is pending, we execute it here */
941 while (!cpu_handle_exception(cpu, &ret)) {
942 TranslationBlock *last_tb = NULL;
943 int tb_exit = 0;
944
945 while (!cpu_handle_interrupt(cpu, &last_tb)) {
946 TranslationBlock *tb;
947 vaddr pc;
948 uint64_t cs_base;
949 uint32_t flags, cflags;
950
951 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
952
953 /*
954 * When requested, use an exact setting for cflags for the next
955 * execution. This is used for icount, precise smc, and stop-
956 * after-access watchpoints. Since this request should never
957 * have CF_INVALID set, -1 is a convenient invalid value that
958 * does not require tcg headers for cpu_common_reset.
959 */
960 cflags = cpu->cflags_next_tb;
961 if (cflags == -1) {
962 cflags = curr_cflags(cpu);
963 } else {
964 cpu->cflags_next_tb = -1;
965 }
966
967 if (check_for_breakpoints(cpu, pc, &cflags)) {
968 break;
969 }
970
971 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
972 if (tb == NULL) {
973 CPUJumpCache *jc;
974 uint32_t h;
975
976 mmap_lock();
977 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
978 mmap_unlock();
979
980 /*
981 * We add the TB in the virtual pc hash table
982 * for the fast lookup
983 */
984 h = tb_jmp_cache_hash_func(pc);
985 jc = cpu->tb_jmp_cache;
986 if (cflags & CF_PCREL) {
987 jc->array[h].pc = pc;
988 /* Ensure pc is written first. */
989 qatomic_store_release(&jc->array[h].tb, tb);
990 } else {
991 /* Use the pc value already stored in tb->pc. */
992 qatomic_set(&jc->array[h].tb, tb);
993 }
994 }
995
996 #ifndef CONFIG_USER_ONLY
997 /*
998 * We don't take care of direct jumps when address mapping
999 * changes in system emulation. So it's not safe to make a
1000 * direct jump to a TB spanning two pages because the mapping
1001 * for the second page can change.
1002 */
1003 if (tb_page_addr1(tb) != -1) {
1004 last_tb = NULL;
1005 }
1006 #endif
1007 /* See if we can patch the calling TB. */
1008 if (last_tb) {
1009 tb_add_jump(last_tb, tb_exit, tb);
1010 }
1011
1012 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1013
1014 /* Try to align the host and virtual clocks
1015 if the guest is in advance */
1016 align_clocks(sc, cpu);
1017 }
1018 }
1019 return ret;
1020 }
1021
1022 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1023 {
1024 /* Prepare setjmp context for exception handling. */
1025 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1026 /* Non-buggy compilers preserve this; assert the correct value. */
1027 g_assert(cpu == current_cpu);
1028
1029 #ifdef CONFIG_USER_ONLY
1030 clear_helper_retaddr();
1031 if (have_mmap_lock()) {
1032 mmap_unlock();
1033 }
1034 #endif
1035 if (qemu_mutex_iothread_locked()) {
1036 qemu_mutex_unlock_iothread();
1037 }
1038
1039 assert_no_pages_locked();
1040 }
1041
1042 return cpu_exec_loop(cpu, sc);
1043 }
1044
1045 int cpu_exec(CPUState *cpu)
1046 {
1047 int ret;
1048 SyncClocks sc = { 0 };
1049
1050 /* replay_interrupt may need current_cpu */
1051 current_cpu = cpu;
1052
1053 if (cpu_handle_halt(cpu)) {
1054 return EXCP_HALTED;
1055 }
1056
1057 rcu_read_lock();
1058 cpu_exec_enter(cpu);
1059
1060 /*
1061 * Calculate difference between guest clock and host clock.
1062 * This delay includes the delay of the last cycle, so
1063 * what we have to do is sleep until it is 0. As for the
1064 * advance/delay we gain here, we try to fix it next time.
1065 */
1066 init_delay_params(&sc, cpu);
1067
1068 ret = cpu_exec_setjmp(cpu, &sc);
1069
1070 cpu_exec_exit(cpu);
1071 rcu_read_unlock();
1072
1073 return ret;
1074 }
1075
1076 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1077 {
1078 static bool tcg_target_initialized;
1079 CPUClass *cc = CPU_GET_CLASS(cpu);
1080
1081 if (!tcg_target_initialized) {
1082 cc->tcg_ops->initialize();
1083 tcg_target_initialized = true;
1084 }
1085
1086 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1087 tlb_init(cpu);
1088 #ifndef CONFIG_USER_ONLY
1089 tcg_iommu_init_notifier_list(cpu);
1090 #endif /* !CONFIG_USER_ONLY */
1091 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1092 }
1093
1094 /* undo the initializations in reverse order */
1095 void tcg_exec_unrealizefn(CPUState *cpu)
1096 {
1097 #ifndef CONFIG_USER_ONLY
1098 tcg_iommu_free_notifier_list(cpu);
1099 #endif /* !CONFIG_USER_ONLY */
1100
1101 tlb_destroy(cpu);
1102 g_free_rcu(cpu->tb_jmp_cache, rcu);
1103 }