]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
fe01d937d989b3b167c771cf6bf394433a2e26a5
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto-common.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46
47 /* -icount align implementation. */
48
49 typedef struct SyncClocks {
50 int64_t diff_clk;
51 int64_t last_cpu_icount;
52 int64_t realtime_clock;
53 } SyncClocks;
54
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57 * The difference between the 2 clocks could therefore
58 * oscillate around 0.
59 */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64
65 int64_t max_delay;
66 int64_t max_advance;
67
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70 int64_t cpu_icount;
71
72 if (!icount_align_option) {
73 return;
74 }
75
76 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78 sc->last_cpu_icount = cpu_icount;
79
80 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82 struct timespec sleep_delay, rem_delay;
83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87 } else {
88 sc->diff_clk = 0;
89 }
90 #else
91 Sleep(sc->diff_clk / SCALE_MS);
92 sc->diff_clk = 0;
93 #endif
94 }
95 }
96
97 static void print_delay(const SyncClocks *sc)
98 {
99 static float threshold_delay;
100 static int64_t last_realtime_clock;
101 static int nb_prints;
102
103 if (icount_align_option &&
104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105 nb_prints < MAX_NB_PRINTS) {
106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107 (-sc->diff_clk / (float)1000000000LL <
108 (threshold_delay - THRESHOLD_REDUCE))) {
109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111 threshold_delay - 1,
112 threshold_delay);
113 nb_prints++;
114 last_realtime_clock = sc->realtime_clock;
115 }
116 }
117 }
118
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121 if (!icount_align_option) {
122 return;
123 }
124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126 sc->last_cpu_icount
127 = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
128 if (sc->diff_clk < max_delay) {
129 max_delay = sc->diff_clk;
130 }
131 if (sc->diff_clk > max_advance) {
132 max_advance = sc->diff_clk;
133 }
134
135 /* Print every 2s max if the guest is late. We limit the number
136 of printed messages to NB_PRINT_MAX(currently 100) */
137 print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151 uint32_t cflags = cpu->tcg_cflags;
152
153 /*
154 * Record gdb single-step. We should be exiting the TB by raising
155 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156 *
157 * For singlestep and -d nochain, suppress goto_tb so that
158 * we can log -d cpu,exec after every TB.
159 */
160 if (unlikely(cpu->singlestep_enabled)) {
161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162 } else if (qatomic_read(&one_insn_per_tb)) {
163 cflags |= CF_NO_GOTO_TB | 1;
164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165 cflags |= CF_NO_GOTO_TB;
166 }
167
168 return cflags;
169 }
170
171 struct tb_desc {
172 vaddr pc;
173 uint64_t cs_base;
174 CPUArchState *env;
175 tb_page_addr_t page_addr0;
176 uint32_t flags;
177 uint32_t cflags;
178 };
179
180 static bool tb_lookup_cmp(const void *p, const void *d)
181 {
182 const TranslationBlock *tb = p;
183 const struct tb_desc *desc = d;
184
185 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
186 tb_page_addr0(tb) == desc->page_addr0 &&
187 tb->cs_base == desc->cs_base &&
188 tb->flags == desc->flags &&
189 tb_cflags(tb) == desc->cflags) {
190 /* check next page if needed */
191 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
192 if (tb_phys_page1 == -1) {
193 return true;
194 } else {
195 tb_page_addr_t phys_page1;
196 vaddr virt_page1;
197
198 /*
199 * We know that the first page matched, and an otherwise valid TB
200 * encountered an incomplete instruction at the end of that page,
201 * therefore we know that generating a new TB from the current PC
202 * must also require reading from the next page -- even if the
203 * second pages do not match, and therefore the resulting insn
204 * is different for the new TB. Therefore any exception raised
205 * here by the faulting lookup is not premature.
206 */
207 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
208 phys_page1 = get_page_addr_code(desc->env, virt_page1);
209 if (tb_phys_page1 == phys_page1) {
210 return true;
211 }
212 }
213 }
214 return false;
215 }
216
217 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
218 uint64_t cs_base, uint32_t flags,
219 uint32_t cflags)
220 {
221 tb_page_addr_t phys_pc;
222 struct tb_desc desc;
223 uint32_t h;
224
225 desc.env = cpu_env(cpu);
226 desc.cs_base = cs_base;
227 desc.flags = flags;
228 desc.cflags = cflags;
229 desc.pc = pc;
230 phys_pc = get_page_addr_code(desc.env, pc);
231 if (phys_pc == -1) {
232 return NULL;
233 }
234 desc.page_addr0 = phys_pc;
235 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
236 flags, cs_base, cflags);
237 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
238 }
239
240 /* Might cause an exception, so have a longjmp destination ready */
241 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
242 uint64_t cs_base, uint32_t flags,
243 uint32_t cflags)
244 {
245 TranslationBlock *tb;
246 CPUJumpCache *jc;
247 uint32_t hash;
248
249 /* we should never be trying to look up an INVALID tb */
250 tcg_debug_assert(!(cflags & CF_INVALID));
251
252 hash = tb_jmp_cache_hash_func(pc);
253 jc = cpu->tb_jmp_cache;
254
255 if (cflags & CF_PCREL) {
256 /* Use acquire to ensure current load of pc from jc. */
257 tb = qatomic_load_acquire(&jc->array[hash].tb);
258
259 if (likely(tb &&
260 jc->array[hash].pc == pc &&
261 tb->cs_base == cs_base &&
262 tb->flags == flags &&
263 tb_cflags(tb) == cflags)) {
264 return tb;
265 }
266 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
267 if (tb == NULL) {
268 return NULL;
269 }
270 jc->array[hash].pc = pc;
271 /* Ensure pc is written first. */
272 qatomic_store_release(&jc->array[hash].tb, tb);
273 } else {
274 /* Use rcu_read to ensure current load of pc from *tb. */
275 tb = qatomic_rcu_read(&jc->array[hash].tb);
276
277 if (likely(tb &&
278 tb->pc == pc &&
279 tb->cs_base == cs_base &&
280 tb->flags == flags &&
281 tb_cflags(tb) == cflags)) {
282 return tb;
283 }
284 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
285 if (tb == NULL) {
286 return NULL;
287 }
288 /* Use the pc value already stored in tb->pc. */
289 qatomic_set(&jc->array[hash].tb, tb);
290 }
291
292 return tb;
293 }
294
295 static void log_cpu_exec(vaddr pc, CPUState *cpu,
296 const TranslationBlock *tb)
297 {
298 if (qemu_log_in_addr_range(pc)) {
299 qemu_log_mask(CPU_LOG_EXEC,
300 "Trace %d: %p [%08" PRIx64
301 "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
302 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
303 tb->flags, tb->cflags, lookup_symbol(pc));
304
305 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
306 FILE *logfile = qemu_log_trylock();
307 if (logfile) {
308 int flags = 0;
309
310 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
311 flags |= CPU_DUMP_FPU;
312 }
313 #if defined(TARGET_I386)
314 flags |= CPU_DUMP_CCOP;
315 #endif
316 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
317 flags |= CPU_DUMP_VPU;
318 }
319 cpu_dump_state(cpu, logfile, flags);
320 qemu_log_unlock(logfile);
321 }
322 }
323 }
324 }
325
326 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
327 uint32_t *cflags)
328 {
329 CPUBreakpoint *bp;
330 bool match_page = false;
331
332 /*
333 * Singlestep overrides breakpoints.
334 * This requirement is visible in the record-replay tests, where
335 * we would fail to make forward progress in reverse-continue.
336 *
337 * TODO: gdb singlestep should only override gdb breakpoints,
338 * so that one could (gdb) singlestep into the guest kernel's
339 * architectural breakpoint handler.
340 */
341 if (cpu->singlestep_enabled) {
342 return false;
343 }
344
345 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
346 /*
347 * If we have an exact pc match, trigger the breakpoint.
348 * Otherwise, note matches within the page.
349 */
350 if (pc == bp->pc) {
351 bool match_bp = false;
352
353 if (bp->flags & BP_GDB) {
354 match_bp = true;
355 } else if (bp->flags & BP_CPU) {
356 #ifdef CONFIG_USER_ONLY
357 g_assert_not_reached();
358 #else
359 CPUClass *cc = CPU_GET_CLASS(cpu);
360 assert(cc->tcg_ops->debug_check_breakpoint);
361 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
362 #endif
363 }
364
365 if (match_bp) {
366 cpu->exception_index = EXCP_DEBUG;
367 return true;
368 }
369 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
370 match_page = true;
371 }
372 }
373
374 /*
375 * Within the same page as a breakpoint, single-step,
376 * returning to helper_lookup_tb_ptr after each insn looking
377 * for the actual breakpoint.
378 *
379 * TODO: Perhaps better to record all of the TBs associated
380 * with a given virtual page that contains a breakpoint, and
381 * then invalidate them when a new overlapping breakpoint is
382 * set on the page. Non-overlapping TBs would not be
383 * invalidated, nor would any TB need to be invalidated as
384 * breakpoints are removed.
385 */
386 if (match_page) {
387 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
388 }
389 return false;
390 }
391
392 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
393 uint32_t *cflags)
394 {
395 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
396 check_for_breakpoints_slow(cpu, pc, cflags);
397 }
398
399 /**
400 * helper_lookup_tb_ptr: quick check for next tb
401 * @env: current cpu state
402 *
403 * Look for an existing TB matching the current cpu state.
404 * If found, return the code pointer. If not found, return
405 * the tcg epilogue so that we return into cpu_tb_exec.
406 */
407 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
408 {
409 CPUState *cpu = env_cpu(env);
410 TranslationBlock *tb;
411 vaddr pc;
412 uint64_t cs_base;
413 uint32_t flags, cflags;
414
415 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
416
417 cflags = curr_cflags(cpu);
418 if (check_for_breakpoints(cpu, pc, &cflags)) {
419 cpu_loop_exit(cpu);
420 }
421
422 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
423 if (tb == NULL) {
424 return tcg_code_gen_epilogue;
425 }
426
427 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
428 log_cpu_exec(pc, cpu, tb);
429 }
430
431 return tb->tc.ptr;
432 }
433
434 /* Execute a TB, and fix up the CPU state afterwards if necessary */
435 /*
436 * Disable CFI checks.
437 * TCG creates binary blobs at runtime, with the transformed code.
438 * A TB is a blob of binary code, created at runtime and called with an
439 * indirect function call. Since such function did not exist at compile time,
440 * the CFI runtime has no way to verify its signature and would fail.
441 * TCG is not considered a security-sensitive part of QEMU so this does not
442 * affect the impact of CFI in environment with high security requirements
443 */
444 static inline TranslationBlock * QEMU_DISABLE_CFI
445 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
446 {
447 CPUArchState *env = cpu_env(cpu);
448 uintptr_t ret;
449 TranslationBlock *last_tb;
450 const void *tb_ptr = itb->tc.ptr;
451
452 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
453 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
454 }
455
456 qemu_thread_jit_execute();
457 ret = tcg_qemu_tb_exec(env, tb_ptr);
458 cpu->neg.can_do_io = true;
459 qemu_plugin_disable_mem_helpers(cpu);
460 /*
461 * TODO: Delay swapping back to the read-write region of the TB
462 * until we actually need to modify the TB. The read-only copy,
463 * coming from the rx region, shares the same host TLB entry as
464 * the code that executed the exit_tb opcode that arrived here.
465 * If we insist on touching both the RX and the RW pages, we
466 * double the host TLB pressure.
467 */
468 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
469 *tb_exit = ret & TB_EXIT_MASK;
470
471 trace_exec_tb_exit(last_tb, *tb_exit);
472
473 if (*tb_exit > TB_EXIT_IDX1) {
474 /* We didn't start executing this TB (eg because the instruction
475 * counter hit zero); we must restore the guest PC to the address
476 * of the start of the TB.
477 */
478 CPUClass *cc = CPU_GET_CLASS(cpu);
479
480 if (cc->tcg_ops->synchronize_from_tb) {
481 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
482 } else {
483 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
484 assert(cc->set_pc);
485 cc->set_pc(cpu, last_tb->pc);
486 }
487 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
488 vaddr pc = log_pc(cpu, last_tb);
489 if (qemu_log_in_addr_range(pc)) {
490 qemu_log("Stopped execution of TB chain before %p [%016"
491 VADDR_PRIx "] %s\n",
492 last_tb->tc.ptr, pc, lookup_symbol(pc));
493 }
494 }
495 }
496
497 /*
498 * If gdb single-step, and we haven't raised another exception,
499 * raise a debug exception. Single-step with another exception
500 * is handled in cpu_handle_exception.
501 */
502 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
503 cpu->exception_index = EXCP_DEBUG;
504 cpu_loop_exit(cpu);
505 }
506
507 return last_tb;
508 }
509
510
511 static void cpu_exec_enter(CPUState *cpu)
512 {
513 CPUClass *cc = CPU_GET_CLASS(cpu);
514
515 if (cc->tcg_ops->cpu_exec_enter) {
516 cc->tcg_ops->cpu_exec_enter(cpu);
517 }
518 }
519
520 static void cpu_exec_exit(CPUState *cpu)
521 {
522 CPUClass *cc = CPU_GET_CLASS(cpu);
523
524 if (cc->tcg_ops->cpu_exec_exit) {
525 cc->tcg_ops->cpu_exec_exit(cpu);
526 }
527 }
528
529 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
530 {
531 /* Non-buggy compilers preserve this; assert the correct value. */
532 g_assert(cpu == current_cpu);
533
534 #ifdef CONFIG_USER_ONLY
535 clear_helper_retaddr();
536 if (have_mmap_lock()) {
537 mmap_unlock();
538 }
539 #else
540 /*
541 * For softmmu, a tlb_fill fault during translation will land here,
542 * and we need to release any page locks held. In system mode we
543 * have one tcg_ctx per thread, so we know it was this cpu doing
544 * the translation.
545 *
546 * Alternative 1: Install a cleanup to be called via an exception
547 * handling safe longjmp. It seems plausible that all our hosts
548 * support such a thing. We'd have to properly register unwind info
549 * for the JIT for EH, rather that just for GDB.
550 *
551 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
552 * capture the cpu_loop_exit longjmp, perform the cleanup, and
553 * jump again to arrive here.
554 */
555 if (tcg_ctx->gen_tb) {
556 tb_unlock_pages(tcg_ctx->gen_tb);
557 tcg_ctx->gen_tb = NULL;
558 }
559 #endif
560 if (qemu_mutex_iothread_locked()) {
561 qemu_mutex_unlock_iothread();
562 }
563 assert_no_pages_locked();
564 }
565
566 void cpu_exec_step_atomic(CPUState *cpu)
567 {
568 CPUArchState *env = cpu_env(cpu);
569 TranslationBlock *tb;
570 vaddr pc;
571 uint64_t cs_base;
572 uint32_t flags, cflags;
573 int tb_exit;
574
575 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
576 start_exclusive();
577 g_assert(cpu == current_cpu);
578 g_assert(!cpu->running);
579 cpu->running = true;
580
581 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
582
583 cflags = curr_cflags(cpu);
584 /* Execute in a serial context. */
585 cflags &= ~CF_PARALLEL;
586 /* After 1 insn, return and release the exclusive lock. */
587 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
588 /*
589 * No need to check_for_breakpoints here.
590 * We only arrive in cpu_exec_step_atomic after beginning execution
591 * of an insn that includes an atomic operation we can't handle.
592 * Any breakpoint for this insn will have been recognized earlier.
593 */
594
595 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
596 if (tb == NULL) {
597 mmap_lock();
598 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
599 mmap_unlock();
600 }
601
602 cpu_exec_enter(cpu);
603 /* execute the generated code */
604 trace_exec_tb(tb, pc);
605 cpu_tb_exec(cpu, tb, &tb_exit);
606 cpu_exec_exit(cpu);
607 } else {
608 cpu_exec_longjmp_cleanup(cpu);
609 }
610
611 /*
612 * As we start the exclusive region before codegen we must still
613 * be in the region if we longjump out of either the codegen or
614 * the execution.
615 */
616 g_assert(cpu_in_exclusive_context(cpu));
617 cpu->running = false;
618 end_exclusive();
619 }
620
621 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
622 {
623 /*
624 * Get the rx view of the structure, from which we find the
625 * executable code address, and tb_target_set_jmp_target can
626 * produce a pc-relative displacement to jmp_target_addr[n].
627 */
628 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
629 uintptr_t offset = tb->jmp_insn_offset[n];
630 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
631 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
632
633 tb->jmp_target_addr[n] = addr;
634 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
635 }
636
637 static inline void tb_add_jump(TranslationBlock *tb, int n,
638 TranslationBlock *tb_next)
639 {
640 uintptr_t old;
641
642 qemu_thread_jit_write();
643 assert(n < ARRAY_SIZE(tb->jmp_list_next));
644 qemu_spin_lock(&tb_next->jmp_lock);
645
646 /* make sure the destination TB is valid */
647 if (tb_next->cflags & CF_INVALID) {
648 goto out_unlock_next;
649 }
650 /* Atomically claim the jump destination slot only if it was NULL */
651 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
652 (uintptr_t)tb_next);
653 if (old) {
654 goto out_unlock_next;
655 }
656
657 /* patch the native jump address */
658 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
659
660 /* add in TB jmp list */
661 tb->jmp_list_next[n] = tb_next->jmp_list_head;
662 tb_next->jmp_list_head = (uintptr_t)tb | n;
663
664 qemu_spin_unlock(&tb_next->jmp_lock);
665
666 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
667 tb->tc.ptr, n, tb_next->tc.ptr);
668 return;
669
670 out_unlock_next:
671 qemu_spin_unlock(&tb_next->jmp_lock);
672 return;
673 }
674
675 static inline bool cpu_handle_halt(CPUState *cpu)
676 {
677 #ifndef CONFIG_USER_ONLY
678 if (cpu->halted) {
679 #if defined(TARGET_I386)
680 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
681 X86CPU *x86_cpu = X86_CPU(cpu);
682 qemu_mutex_lock_iothread();
683 apic_poll_irq(x86_cpu->apic_state);
684 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
685 qemu_mutex_unlock_iothread();
686 }
687 #endif /* TARGET_I386 */
688 if (!cpu_has_work(cpu)) {
689 return true;
690 }
691
692 cpu->halted = 0;
693 }
694 #endif /* !CONFIG_USER_ONLY */
695
696 return false;
697 }
698
699 static inline void cpu_handle_debug_exception(CPUState *cpu)
700 {
701 CPUClass *cc = CPU_GET_CLASS(cpu);
702 CPUWatchpoint *wp;
703
704 if (!cpu->watchpoint_hit) {
705 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
706 wp->flags &= ~BP_WATCHPOINT_HIT;
707 }
708 }
709
710 if (cc->tcg_ops->debug_excp_handler) {
711 cc->tcg_ops->debug_excp_handler(cpu);
712 }
713 }
714
715 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
716 {
717 if (cpu->exception_index < 0) {
718 #ifndef CONFIG_USER_ONLY
719 if (replay_has_exception()
720 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
721 /* Execute just one insn to trigger exception pending in the log */
722 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
723 | CF_LAST_IO | CF_NOIRQ | 1;
724 }
725 #endif
726 return false;
727 }
728 if (cpu->exception_index >= EXCP_INTERRUPT) {
729 /* exit request from the cpu execution loop */
730 *ret = cpu->exception_index;
731 if (*ret == EXCP_DEBUG) {
732 cpu_handle_debug_exception(cpu);
733 }
734 cpu->exception_index = -1;
735 return true;
736 } else {
737 #if defined(CONFIG_USER_ONLY)
738 /* if user mode only, we simulate a fake exception
739 which will be handled outside the cpu execution
740 loop */
741 #if defined(TARGET_I386)
742 CPUClass *cc = CPU_GET_CLASS(cpu);
743 cc->tcg_ops->fake_user_interrupt(cpu);
744 #endif /* TARGET_I386 */
745 *ret = cpu->exception_index;
746 cpu->exception_index = -1;
747 return true;
748 #else
749 if (replay_exception()) {
750 CPUClass *cc = CPU_GET_CLASS(cpu);
751 qemu_mutex_lock_iothread();
752 cc->tcg_ops->do_interrupt(cpu);
753 qemu_mutex_unlock_iothread();
754 cpu->exception_index = -1;
755
756 if (unlikely(cpu->singlestep_enabled)) {
757 /*
758 * After processing the exception, ensure an EXCP_DEBUG is
759 * raised when single-stepping so that GDB doesn't miss the
760 * next instruction.
761 */
762 *ret = EXCP_DEBUG;
763 cpu_handle_debug_exception(cpu);
764 return true;
765 }
766 } else if (!replay_has_interrupt()) {
767 /* give a chance to iothread in replay mode */
768 *ret = EXCP_INTERRUPT;
769 return true;
770 }
771 #endif
772 }
773
774 return false;
775 }
776
777 #ifndef CONFIG_USER_ONLY
778 /*
779 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
780 * "real" interrupt event later. It does not need to be recorded for
781 * replay purposes.
782 */
783 static inline bool need_replay_interrupt(int interrupt_request)
784 {
785 #if defined(TARGET_I386)
786 return !(interrupt_request & CPU_INTERRUPT_POLL);
787 #else
788 return true;
789 #endif
790 }
791 #endif /* !CONFIG_USER_ONLY */
792
793 static inline bool cpu_handle_interrupt(CPUState *cpu,
794 TranslationBlock **last_tb)
795 {
796 /*
797 * If we have requested custom cflags with CF_NOIRQ we should
798 * skip checking here. Any pending interrupts will get picked up
799 * by the next TB we execute under normal cflags.
800 */
801 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
802 return false;
803 }
804
805 /* Clear the interrupt flag now since we're processing
806 * cpu->interrupt_request and cpu->exit_request.
807 * Ensure zeroing happens before reading cpu->exit_request or
808 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
809 */
810 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
811
812 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
813 int interrupt_request;
814 qemu_mutex_lock_iothread();
815 interrupt_request = cpu->interrupt_request;
816 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
817 /* Mask out external interrupts for this step. */
818 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
819 }
820 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
821 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
822 cpu->exception_index = EXCP_DEBUG;
823 qemu_mutex_unlock_iothread();
824 return true;
825 }
826 #if !defined(CONFIG_USER_ONLY)
827 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
828 /* Do nothing */
829 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
830 replay_interrupt();
831 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
832 cpu->halted = 1;
833 cpu->exception_index = EXCP_HLT;
834 qemu_mutex_unlock_iothread();
835 return true;
836 }
837 #if defined(TARGET_I386)
838 else if (interrupt_request & CPU_INTERRUPT_INIT) {
839 X86CPU *x86_cpu = X86_CPU(cpu);
840 CPUArchState *env = &x86_cpu->env;
841 replay_interrupt();
842 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
843 do_cpu_init(x86_cpu);
844 cpu->exception_index = EXCP_HALTED;
845 qemu_mutex_unlock_iothread();
846 return true;
847 }
848 #else
849 else if (interrupt_request & CPU_INTERRUPT_RESET) {
850 replay_interrupt();
851 cpu_reset(cpu);
852 qemu_mutex_unlock_iothread();
853 return true;
854 }
855 #endif /* !TARGET_I386 */
856 /* The target hook has 3 exit conditions:
857 False when the interrupt isn't processed,
858 True when it is, and we should restart on a new TB,
859 and via longjmp via cpu_loop_exit. */
860 else {
861 CPUClass *cc = CPU_GET_CLASS(cpu);
862
863 if (cc->tcg_ops->cpu_exec_interrupt &&
864 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
865 if (need_replay_interrupt(interrupt_request)) {
866 replay_interrupt();
867 }
868 /*
869 * After processing the interrupt, ensure an EXCP_DEBUG is
870 * raised when single-stepping so that GDB doesn't miss the
871 * next instruction.
872 */
873 if (unlikely(cpu->singlestep_enabled)) {
874 cpu->exception_index = EXCP_DEBUG;
875 qemu_mutex_unlock_iothread();
876 return true;
877 }
878 cpu->exception_index = -1;
879 *last_tb = NULL;
880 }
881 /* The target hook may have updated the 'cpu->interrupt_request';
882 * reload the 'interrupt_request' value */
883 interrupt_request = cpu->interrupt_request;
884 }
885 #endif /* !CONFIG_USER_ONLY */
886 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
887 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
888 /* ensure that no TB jump will be modified as
889 the program flow was changed */
890 *last_tb = NULL;
891 }
892
893 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
894 qemu_mutex_unlock_iothread();
895 }
896
897 /* Finally, check if we need to exit to the main loop. */
898 if (unlikely(qatomic_read(&cpu->exit_request))
899 || (icount_enabled()
900 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
901 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0)) {
902 qatomic_set(&cpu->exit_request, 0);
903 if (cpu->exception_index == -1) {
904 cpu->exception_index = EXCP_INTERRUPT;
905 }
906 return true;
907 }
908
909 return false;
910 }
911
912 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
913 vaddr pc, TranslationBlock **last_tb,
914 int *tb_exit)
915 {
916 int32_t insns_left;
917
918 trace_exec_tb(tb, pc);
919 tb = cpu_tb_exec(cpu, tb, tb_exit);
920 if (*tb_exit != TB_EXIT_REQUESTED) {
921 *last_tb = tb;
922 return;
923 }
924
925 *last_tb = NULL;
926 insns_left = qatomic_read(&cpu->neg.icount_decr.u32);
927 if (insns_left < 0) {
928 /* Something asked us to stop executing chained TBs; just
929 * continue round the main loop. Whatever requested the exit
930 * will also have set something else (eg exit_request or
931 * interrupt_request) which will be handled by
932 * cpu_handle_interrupt. cpu_handle_interrupt will also
933 * clear cpu->icount_decr.u16.high.
934 */
935 return;
936 }
937
938 /* Instruction counter expired. */
939 assert(icount_enabled());
940 #ifndef CONFIG_USER_ONLY
941 /* Ensure global icount has gone forward */
942 icount_update(cpu);
943 /* Refill decrementer and continue execution. */
944 insns_left = MIN(0xffff, cpu->icount_budget);
945 cpu->neg.icount_decr.u16.low = insns_left;
946 cpu->icount_extra = cpu->icount_budget - insns_left;
947
948 /*
949 * If the next tb has more instructions than we have left to
950 * execute we need to ensure we find/generate a TB with exactly
951 * insns_left instructions in it.
952 */
953 if (insns_left > 0 && insns_left < tb->icount) {
954 assert(insns_left <= CF_COUNT_MASK);
955 assert(cpu->icount_extra == 0);
956 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
957 }
958 #endif
959 }
960
961 /* main execution loop */
962
963 static int __attribute__((noinline))
964 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
965 {
966 int ret;
967
968 /* if an exception is pending, we execute it here */
969 while (!cpu_handle_exception(cpu, &ret)) {
970 TranslationBlock *last_tb = NULL;
971 int tb_exit = 0;
972
973 while (!cpu_handle_interrupt(cpu, &last_tb)) {
974 TranslationBlock *tb;
975 vaddr pc;
976 uint64_t cs_base;
977 uint32_t flags, cflags;
978
979 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
980
981 /*
982 * When requested, use an exact setting for cflags for the next
983 * execution. This is used for icount, precise smc, and stop-
984 * after-access watchpoints. Since this request should never
985 * have CF_INVALID set, -1 is a convenient invalid value that
986 * does not require tcg headers for cpu_common_reset.
987 */
988 cflags = cpu->cflags_next_tb;
989 if (cflags == -1) {
990 cflags = curr_cflags(cpu);
991 } else {
992 cpu->cflags_next_tb = -1;
993 }
994
995 if (check_for_breakpoints(cpu, pc, &cflags)) {
996 break;
997 }
998
999 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
1000 if (tb == NULL) {
1001 CPUJumpCache *jc;
1002 uint32_t h;
1003
1004 mmap_lock();
1005 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
1006 mmap_unlock();
1007
1008 /*
1009 * We add the TB in the virtual pc hash table
1010 * for the fast lookup
1011 */
1012 h = tb_jmp_cache_hash_func(pc);
1013 jc = cpu->tb_jmp_cache;
1014 if (cflags & CF_PCREL) {
1015 jc->array[h].pc = pc;
1016 /* Ensure pc is written first. */
1017 qatomic_store_release(&jc->array[h].tb, tb);
1018 } else {
1019 /* Use the pc value already stored in tb->pc. */
1020 qatomic_set(&jc->array[h].tb, tb);
1021 }
1022 }
1023
1024 #ifndef CONFIG_USER_ONLY
1025 /*
1026 * We don't take care of direct jumps when address mapping
1027 * changes in system emulation. So it's not safe to make a
1028 * direct jump to a TB spanning two pages because the mapping
1029 * for the second page can change.
1030 */
1031 if (tb_page_addr1(tb) != -1) {
1032 last_tb = NULL;
1033 }
1034 #endif
1035 /* See if we can patch the calling TB. */
1036 if (last_tb) {
1037 tb_add_jump(last_tb, tb_exit, tb);
1038 }
1039
1040 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1041
1042 /* Try to align the host and virtual clocks
1043 if the guest is in advance */
1044 align_clocks(sc, cpu);
1045 }
1046 }
1047 return ret;
1048 }
1049
1050 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1051 {
1052 /* Prepare setjmp context for exception handling. */
1053 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1054 cpu_exec_longjmp_cleanup(cpu);
1055 }
1056
1057 return cpu_exec_loop(cpu, sc);
1058 }
1059
1060 int cpu_exec(CPUState *cpu)
1061 {
1062 int ret;
1063 SyncClocks sc = { 0 };
1064
1065 /* replay_interrupt may need current_cpu */
1066 current_cpu = cpu;
1067
1068 if (cpu_handle_halt(cpu)) {
1069 return EXCP_HALTED;
1070 }
1071
1072 rcu_read_lock();
1073 cpu_exec_enter(cpu);
1074
1075 /*
1076 * Calculate difference between guest clock and host clock.
1077 * This delay includes the delay of the last cycle, so
1078 * what we have to do is sleep until it is 0. As for the
1079 * advance/delay we gain here, we try to fix it next time.
1080 */
1081 init_delay_params(&sc, cpu);
1082
1083 ret = cpu_exec_setjmp(cpu, &sc);
1084
1085 cpu_exec_exit(cpu);
1086 rcu_read_unlock();
1087
1088 return ret;
1089 }
1090
1091 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1092 {
1093 static bool tcg_target_initialized;
1094 CPUClass *cc = CPU_GET_CLASS(cpu);
1095
1096 if (!tcg_target_initialized) {
1097 cc->tcg_ops->initialize();
1098 tcg_target_initialized = true;
1099 }
1100
1101 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1102 tlb_init(cpu);
1103 #ifndef CONFIG_USER_ONLY
1104 tcg_iommu_init_notifier_list(cpu);
1105 #endif /* !CONFIG_USER_ONLY */
1106 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1107
1108 return true;
1109 }
1110
1111 /* undo the initializations in reverse order */
1112 void tcg_exec_unrealizefn(CPUState *cpu)
1113 {
1114 #ifndef CONFIG_USER_ONLY
1115 tcg_iommu_free_notifier_list(cpu);
1116 #endif /* !CONFIG_USER_ONLY */
1117
1118 tlb_destroy(cpu);
1119 g_free_rcu(cpu->tb_jmp_cache, rcu);
1120 }