]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
accel/tcg: Make tb_htable_lookup static
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/qapi-commands-machine.h"
24 #include "qapi/type-helpers.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "qemu/atomic.h"
31 #include "qemu/compiler.h"
32 #include "qemu/timer.h"
33 #include "qemu/rcu.h"
34 #include "exec/log.h"
35 #include "qemu/main-loop.h"
36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
37 #include "hw/i386/apic.h"
38 #endif
39 #include "sysemu/cpus.h"
40 #include "exec/cpu-all.h"
41 #include "sysemu/cpu-timers.h"
42 #include "sysemu/replay.h"
43 #include "sysemu/tcg.h"
44 #include "exec/helper-proto.h"
45 #include "tb-hash.h"
46 #include "tb-context.h"
47 #include "internal.h"
48
49 /* -icount align implementation. */
50
51 typedef struct SyncClocks {
52 int64_t diff_clk;
53 int64_t last_cpu_icount;
54 int64_t realtime_clock;
55 } SyncClocks;
56
57 #if !defined(CONFIG_USER_ONLY)
58 /* Allow the guest to have a max 3ms advance.
59 * The difference between the 2 clocks could therefore
60 * oscillate around 0.
61 */
62 #define VM_CLOCK_ADVANCE 3000000
63 #define THRESHOLD_REDUCE 1.5
64 #define MAX_DELAY_PRINT_RATE 2000000000LL
65 #define MAX_NB_PRINTS 100
66
67 static int64_t max_delay;
68 static int64_t max_advance;
69
70 static void align_clocks(SyncClocks *sc, CPUState *cpu)
71 {
72 int64_t cpu_icount;
73
74 if (!icount_align_option) {
75 return;
76 }
77
78 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
80 sc->last_cpu_icount = cpu_icount;
81
82 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
83 #ifndef _WIN32
84 struct timespec sleep_delay, rem_delay;
85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
87 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
89 } else {
90 sc->diff_clk = 0;
91 }
92 #else
93 Sleep(sc->diff_clk / SCALE_MS);
94 sc->diff_clk = 0;
95 #endif
96 }
97 }
98
99 static void print_delay(const SyncClocks *sc)
100 {
101 static float threshold_delay;
102 static int64_t last_realtime_clock;
103 static int nb_prints;
104
105 if (icount_align_option &&
106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
107 nb_prints < MAX_NB_PRINTS) {
108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
109 (-sc->diff_clk / (float)1000000000LL <
110 (threshold_delay - THRESHOLD_REDUCE))) {
111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
113 threshold_delay - 1,
114 threshold_delay);
115 nb_prints++;
116 last_realtime_clock = sc->realtime_clock;
117 }
118 }
119 }
120
121 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
122 {
123 if (!icount_align_option) {
124 return;
125 }
126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
128 sc->last_cpu_icount
129 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
130 if (sc->diff_clk < max_delay) {
131 max_delay = sc->diff_clk;
132 }
133 if (sc->diff_clk > max_advance) {
134 max_advance = sc->diff_clk;
135 }
136
137 /* Print every 2s max if the guest is late. We limit the number
138 of printed messages to NB_PRINT_MAX(currently 100) */
139 print_delay(sc);
140 }
141 #else
142 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
143 {
144 }
145
146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
147 {
148 }
149 #endif /* CONFIG USER ONLY */
150
151 uint32_t curr_cflags(CPUState *cpu)
152 {
153 uint32_t cflags = cpu->tcg_cflags;
154
155 /*
156 * Record gdb single-step. We should be exiting the TB by raising
157 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
158 *
159 * For singlestep and -d nochain, suppress goto_tb so that
160 * we can log -d cpu,exec after every TB.
161 */
162 if (unlikely(cpu->singlestep_enabled)) {
163 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
164 } else if (singlestep) {
165 cflags |= CF_NO_GOTO_TB | 1;
166 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
167 cflags |= CF_NO_GOTO_TB;
168 }
169
170 return cflags;
171 }
172
173 struct tb_desc {
174 target_ulong pc;
175 target_ulong cs_base;
176 CPUArchState *env;
177 tb_page_addr_t phys_page1;
178 uint32_t flags;
179 uint32_t cflags;
180 uint32_t trace_vcpu_dstate;
181 };
182
183 static bool tb_lookup_cmp(const void *p, const void *d)
184 {
185 const TranslationBlock *tb = p;
186 const struct tb_desc *desc = d;
187
188 if (tb->pc == desc->pc &&
189 tb->page_addr[0] == desc->phys_page1 &&
190 tb->cs_base == desc->cs_base &&
191 tb->flags == desc->flags &&
192 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
193 tb_cflags(tb) == desc->cflags) {
194 /* check next page if needed */
195 if (tb->page_addr[1] == -1) {
196 return true;
197 } else {
198 tb_page_addr_t phys_page2;
199 target_ulong virt_page2;
200
201 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
202 phys_page2 = get_page_addr_code(desc->env, virt_page2);
203 if (tb->page_addr[1] == phys_page2) {
204 return true;
205 }
206 }
207 }
208 return false;
209 }
210
211 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
212 target_ulong cs_base, uint32_t flags,
213 uint32_t cflags)
214 {
215 tb_page_addr_t phys_pc;
216 struct tb_desc desc;
217 uint32_t h;
218
219 desc.env = cpu->env_ptr;
220 desc.cs_base = cs_base;
221 desc.flags = flags;
222 desc.cflags = cflags;
223 desc.trace_vcpu_dstate = *cpu->trace_dstate;
224 desc.pc = pc;
225 phys_pc = get_page_addr_code(desc.env, pc);
226 if (phys_pc == -1) {
227 return NULL;
228 }
229 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
230 h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
231 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
232 }
233
234 /* Might cause an exception, so have a longjmp destination ready */
235 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
236 target_ulong cs_base,
237 uint32_t flags, uint32_t cflags)
238 {
239 TranslationBlock *tb;
240 uint32_t hash;
241
242 /* we should never be trying to look up an INVALID tb */
243 tcg_debug_assert(!(cflags & CF_INVALID));
244
245 hash = tb_jmp_cache_hash_func(pc);
246 tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
247
248 if (likely(tb &&
249 tb->pc == pc &&
250 tb->cs_base == cs_base &&
251 tb->flags == flags &&
252 tb->trace_vcpu_dstate == *cpu->trace_dstate &&
253 tb_cflags(tb) == cflags)) {
254 return tb;
255 }
256 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
257 if (tb == NULL) {
258 return NULL;
259 }
260 qatomic_set(&cpu->tb_jmp_cache[hash], tb);
261 return tb;
262 }
263
264 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
265 const TranslationBlock *tb)
266 {
267 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
268 && qemu_log_in_addr_range(pc)) {
269
270 qemu_log_mask(CPU_LOG_EXEC,
271 "Trace %d: %p [" TARGET_FMT_lx
272 "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
273 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
274 tb->flags, tb->cflags, lookup_symbol(pc));
275
276 #if defined(DEBUG_DISAS)
277 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
278 FILE *logfile = qemu_log_trylock();
279 if (logfile) {
280 int flags = 0;
281
282 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
283 flags |= CPU_DUMP_FPU;
284 }
285 #if defined(TARGET_I386)
286 flags |= CPU_DUMP_CCOP;
287 #endif
288 cpu_dump_state(cpu, logfile, flags);
289 qemu_log_unlock(logfile);
290 }
291 }
292 #endif /* DEBUG_DISAS */
293 }
294 }
295
296 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
297 uint32_t *cflags)
298 {
299 CPUBreakpoint *bp;
300 bool match_page = false;
301
302 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
303 return false;
304 }
305
306 /*
307 * Singlestep overrides breakpoints.
308 * This requirement is visible in the record-replay tests, where
309 * we would fail to make forward progress in reverse-continue.
310 *
311 * TODO: gdb singlestep should only override gdb breakpoints,
312 * so that one could (gdb) singlestep into the guest kernel's
313 * architectural breakpoint handler.
314 */
315 if (cpu->singlestep_enabled) {
316 return false;
317 }
318
319 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
320 /*
321 * If we have an exact pc match, trigger the breakpoint.
322 * Otherwise, note matches within the page.
323 */
324 if (pc == bp->pc) {
325 bool match_bp = false;
326
327 if (bp->flags & BP_GDB) {
328 match_bp = true;
329 } else if (bp->flags & BP_CPU) {
330 #ifdef CONFIG_USER_ONLY
331 g_assert_not_reached();
332 #else
333 CPUClass *cc = CPU_GET_CLASS(cpu);
334 assert(cc->tcg_ops->debug_check_breakpoint);
335 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
336 #endif
337 }
338
339 if (match_bp) {
340 cpu->exception_index = EXCP_DEBUG;
341 return true;
342 }
343 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
344 match_page = true;
345 }
346 }
347
348 /*
349 * Within the same page as a breakpoint, single-step,
350 * returning to helper_lookup_tb_ptr after each insn looking
351 * for the actual breakpoint.
352 *
353 * TODO: Perhaps better to record all of the TBs associated
354 * with a given virtual page that contains a breakpoint, and
355 * then invalidate them when a new overlapping breakpoint is
356 * set on the page. Non-overlapping TBs would not be
357 * invalidated, nor would any TB need to be invalidated as
358 * breakpoints are removed.
359 */
360 if (match_page) {
361 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
362 }
363 return false;
364 }
365
366 /**
367 * helper_lookup_tb_ptr: quick check for next tb
368 * @env: current cpu state
369 *
370 * Look for an existing TB matching the current cpu state.
371 * If found, return the code pointer. If not found, return
372 * the tcg epilogue so that we return into cpu_tb_exec.
373 */
374 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
375 {
376 CPUState *cpu = env_cpu(env);
377 TranslationBlock *tb;
378 target_ulong cs_base, pc;
379 uint32_t flags, cflags;
380
381 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
382
383 cflags = curr_cflags(cpu);
384 if (check_for_breakpoints(cpu, pc, &cflags)) {
385 cpu_loop_exit(cpu);
386 }
387
388 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
389 if (tb == NULL) {
390 return tcg_code_gen_epilogue;
391 }
392
393 log_cpu_exec(pc, cpu, tb);
394
395 return tb->tc.ptr;
396 }
397
398 /* Execute a TB, and fix up the CPU state afterwards if necessary */
399 /*
400 * Disable CFI checks.
401 * TCG creates binary blobs at runtime, with the transformed code.
402 * A TB is a blob of binary code, created at runtime and called with an
403 * indirect function call. Since such function did not exist at compile time,
404 * the CFI runtime has no way to verify its signature and would fail.
405 * TCG is not considered a security-sensitive part of QEMU so this does not
406 * affect the impact of CFI in environment with high security requirements
407 */
408 static inline TranslationBlock * QEMU_DISABLE_CFI
409 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
410 {
411 CPUArchState *env = cpu->env_ptr;
412 uintptr_t ret;
413 TranslationBlock *last_tb;
414 const void *tb_ptr = itb->tc.ptr;
415
416 log_cpu_exec(itb->pc, cpu, itb);
417
418 qemu_thread_jit_execute();
419 ret = tcg_qemu_tb_exec(env, tb_ptr);
420 cpu->can_do_io = 1;
421 /*
422 * TODO: Delay swapping back to the read-write region of the TB
423 * until we actually need to modify the TB. The read-only copy,
424 * coming from the rx region, shares the same host TLB entry as
425 * the code that executed the exit_tb opcode that arrived here.
426 * If we insist on touching both the RX and the RW pages, we
427 * double the host TLB pressure.
428 */
429 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
430 *tb_exit = ret & TB_EXIT_MASK;
431
432 trace_exec_tb_exit(last_tb, *tb_exit);
433
434 if (*tb_exit > TB_EXIT_IDX1) {
435 /* We didn't start executing this TB (eg because the instruction
436 * counter hit zero); we must restore the guest PC to the address
437 * of the start of the TB.
438 */
439 CPUClass *cc = CPU_GET_CLASS(cpu);
440 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
441 "Stopped execution of TB chain before %p ["
442 TARGET_FMT_lx "] %s\n",
443 last_tb->tc.ptr, last_tb->pc,
444 lookup_symbol(last_tb->pc));
445 if (cc->tcg_ops->synchronize_from_tb) {
446 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
447 } else {
448 assert(cc->set_pc);
449 cc->set_pc(cpu, last_tb->pc);
450 }
451 }
452
453 /*
454 * If gdb single-step, and we haven't raised another exception,
455 * raise a debug exception. Single-step with another exception
456 * is handled in cpu_handle_exception.
457 */
458 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
459 cpu->exception_index = EXCP_DEBUG;
460 cpu_loop_exit(cpu);
461 }
462
463 return last_tb;
464 }
465
466
467 static void cpu_exec_enter(CPUState *cpu)
468 {
469 CPUClass *cc = CPU_GET_CLASS(cpu);
470
471 if (cc->tcg_ops->cpu_exec_enter) {
472 cc->tcg_ops->cpu_exec_enter(cpu);
473 }
474 }
475
476 static void cpu_exec_exit(CPUState *cpu)
477 {
478 CPUClass *cc = CPU_GET_CLASS(cpu);
479
480 if (cc->tcg_ops->cpu_exec_exit) {
481 cc->tcg_ops->cpu_exec_exit(cpu);
482 }
483 }
484
485 void cpu_exec_step_atomic(CPUState *cpu)
486 {
487 CPUArchState *env = cpu->env_ptr;
488 TranslationBlock *tb;
489 target_ulong cs_base, pc;
490 uint32_t flags, cflags;
491 int tb_exit;
492
493 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
494 start_exclusive();
495 g_assert(cpu == current_cpu);
496 g_assert(!cpu->running);
497 cpu->running = true;
498
499 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
500
501 cflags = curr_cflags(cpu);
502 /* Execute in a serial context. */
503 cflags &= ~CF_PARALLEL;
504 /* After 1 insn, return and release the exclusive lock. */
505 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
506 /*
507 * No need to check_for_breakpoints here.
508 * We only arrive in cpu_exec_step_atomic after beginning execution
509 * of an insn that includes an atomic operation we can't handle.
510 * Any breakpoint for this insn will have been recognized earlier.
511 */
512
513 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
514 if (tb == NULL) {
515 mmap_lock();
516 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
517 mmap_unlock();
518 }
519
520 cpu_exec_enter(cpu);
521 /* execute the generated code */
522 trace_exec_tb(tb, pc);
523 cpu_tb_exec(cpu, tb, &tb_exit);
524 cpu_exec_exit(cpu);
525 } else {
526 #ifndef CONFIG_SOFTMMU
527 clear_helper_retaddr();
528 if (have_mmap_lock()) {
529 mmap_unlock();
530 }
531 #endif
532 if (qemu_mutex_iothread_locked()) {
533 qemu_mutex_unlock_iothread();
534 }
535 assert_no_pages_locked();
536 qemu_plugin_disable_mem_helpers(cpu);
537 }
538
539 /*
540 * As we start the exclusive region before codegen we must still
541 * be in the region if we longjump out of either the codegen or
542 * the execution.
543 */
544 g_assert(cpu_in_exclusive_context(cpu));
545 cpu->running = false;
546 end_exclusive();
547 }
548
549 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
550 {
551 if (TCG_TARGET_HAS_direct_jump) {
552 uintptr_t offset = tb->jmp_target_arg[n];
553 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
554 uintptr_t jmp_rx = tc_ptr + offset;
555 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
556 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
557 } else {
558 tb->jmp_target_arg[n] = addr;
559 }
560 }
561
562 static inline void tb_add_jump(TranslationBlock *tb, int n,
563 TranslationBlock *tb_next)
564 {
565 uintptr_t old;
566
567 qemu_thread_jit_write();
568 assert(n < ARRAY_SIZE(tb->jmp_list_next));
569 qemu_spin_lock(&tb_next->jmp_lock);
570
571 /* make sure the destination TB is valid */
572 if (tb_next->cflags & CF_INVALID) {
573 goto out_unlock_next;
574 }
575 /* Atomically claim the jump destination slot only if it was NULL */
576 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
577 (uintptr_t)tb_next);
578 if (old) {
579 goto out_unlock_next;
580 }
581
582 /* patch the native jump address */
583 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
584
585 /* add in TB jmp list */
586 tb->jmp_list_next[n] = tb_next->jmp_list_head;
587 tb_next->jmp_list_head = (uintptr_t)tb | n;
588
589 qemu_spin_unlock(&tb_next->jmp_lock);
590
591 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
592 "Linking TBs %p [" TARGET_FMT_lx
593 "] index %d -> %p [" TARGET_FMT_lx "]\n",
594 tb->tc.ptr, tb->pc, n,
595 tb_next->tc.ptr, tb_next->pc);
596 return;
597
598 out_unlock_next:
599 qemu_spin_unlock(&tb_next->jmp_lock);
600 return;
601 }
602
603 static inline bool cpu_handle_halt(CPUState *cpu)
604 {
605 #ifndef CONFIG_USER_ONLY
606 if (cpu->halted) {
607 #if defined(TARGET_I386)
608 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
609 X86CPU *x86_cpu = X86_CPU(cpu);
610 qemu_mutex_lock_iothread();
611 apic_poll_irq(x86_cpu->apic_state);
612 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
613 qemu_mutex_unlock_iothread();
614 }
615 #endif /* TARGET_I386 */
616 if (!cpu_has_work(cpu)) {
617 return true;
618 }
619
620 cpu->halted = 0;
621 }
622 #endif /* !CONFIG_USER_ONLY */
623
624 return false;
625 }
626
627 static inline void cpu_handle_debug_exception(CPUState *cpu)
628 {
629 CPUClass *cc = CPU_GET_CLASS(cpu);
630 CPUWatchpoint *wp;
631
632 if (!cpu->watchpoint_hit) {
633 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
634 wp->flags &= ~BP_WATCHPOINT_HIT;
635 }
636 }
637
638 if (cc->tcg_ops->debug_excp_handler) {
639 cc->tcg_ops->debug_excp_handler(cpu);
640 }
641 }
642
643 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
644 {
645 if (cpu->exception_index < 0) {
646 #ifndef CONFIG_USER_ONLY
647 if (replay_has_exception()
648 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
649 /* Execute just one insn to trigger exception pending in the log */
650 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
651 | CF_NOIRQ | 1;
652 }
653 #endif
654 return false;
655 }
656 if (cpu->exception_index >= EXCP_INTERRUPT) {
657 /* exit request from the cpu execution loop */
658 *ret = cpu->exception_index;
659 if (*ret == EXCP_DEBUG) {
660 cpu_handle_debug_exception(cpu);
661 }
662 cpu->exception_index = -1;
663 return true;
664 } else {
665 #if defined(CONFIG_USER_ONLY)
666 /* if user mode only, we simulate a fake exception
667 which will be handled outside the cpu execution
668 loop */
669 #if defined(TARGET_I386)
670 CPUClass *cc = CPU_GET_CLASS(cpu);
671 cc->tcg_ops->fake_user_interrupt(cpu);
672 #endif /* TARGET_I386 */
673 *ret = cpu->exception_index;
674 cpu->exception_index = -1;
675 return true;
676 #else
677 if (replay_exception()) {
678 CPUClass *cc = CPU_GET_CLASS(cpu);
679 qemu_mutex_lock_iothread();
680 cc->tcg_ops->do_interrupt(cpu);
681 qemu_mutex_unlock_iothread();
682 cpu->exception_index = -1;
683
684 if (unlikely(cpu->singlestep_enabled)) {
685 /*
686 * After processing the exception, ensure an EXCP_DEBUG is
687 * raised when single-stepping so that GDB doesn't miss the
688 * next instruction.
689 */
690 *ret = EXCP_DEBUG;
691 cpu_handle_debug_exception(cpu);
692 return true;
693 }
694 } else if (!replay_has_interrupt()) {
695 /* give a chance to iothread in replay mode */
696 *ret = EXCP_INTERRUPT;
697 return true;
698 }
699 #endif
700 }
701
702 return false;
703 }
704
705 #ifndef CONFIG_USER_ONLY
706 /*
707 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
708 * "real" interrupt event later. It does not need to be recorded for
709 * replay purposes.
710 */
711 static inline bool need_replay_interrupt(int interrupt_request)
712 {
713 #if defined(TARGET_I386)
714 return !(interrupt_request & CPU_INTERRUPT_POLL);
715 #else
716 return true;
717 #endif
718 }
719 #endif /* !CONFIG_USER_ONLY */
720
721 static inline bool cpu_handle_interrupt(CPUState *cpu,
722 TranslationBlock **last_tb)
723 {
724 /*
725 * If we have requested custom cflags with CF_NOIRQ we should
726 * skip checking here. Any pending interrupts will get picked up
727 * by the next TB we execute under normal cflags.
728 */
729 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
730 return false;
731 }
732
733 /* Clear the interrupt flag now since we're processing
734 * cpu->interrupt_request and cpu->exit_request.
735 * Ensure zeroing happens before reading cpu->exit_request or
736 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
737 */
738 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
739
740 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
741 int interrupt_request;
742 qemu_mutex_lock_iothread();
743 interrupt_request = cpu->interrupt_request;
744 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
745 /* Mask out external interrupts for this step. */
746 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
747 }
748 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
749 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
750 cpu->exception_index = EXCP_DEBUG;
751 qemu_mutex_unlock_iothread();
752 return true;
753 }
754 #if !defined(CONFIG_USER_ONLY)
755 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
756 /* Do nothing */
757 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
758 replay_interrupt();
759 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
760 cpu->halted = 1;
761 cpu->exception_index = EXCP_HLT;
762 qemu_mutex_unlock_iothread();
763 return true;
764 }
765 #if defined(TARGET_I386)
766 else if (interrupt_request & CPU_INTERRUPT_INIT) {
767 X86CPU *x86_cpu = X86_CPU(cpu);
768 CPUArchState *env = &x86_cpu->env;
769 replay_interrupt();
770 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
771 do_cpu_init(x86_cpu);
772 cpu->exception_index = EXCP_HALTED;
773 qemu_mutex_unlock_iothread();
774 return true;
775 }
776 #else
777 else if (interrupt_request & CPU_INTERRUPT_RESET) {
778 replay_interrupt();
779 cpu_reset(cpu);
780 qemu_mutex_unlock_iothread();
781 return true;
782 }
783 #endif /* !TARGET_I386 */
784 /* The target hook has 3 exit conditions:
785 False when the interrupt isn't processed,
786 True when it is, and we should restart on a new TB,
787 and via longjmp via cpu_loop_exit. */
788 else {
789 CPUClass *cc = CPU_GET_CLASS(cpu);
790
791 if (cc->tcg_ops->cpu_exec_interrupt &&
792 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
793 if (need_replay_interrupt(interrupt_request)) {
794 replay_interrupt();
795 }
796 /*
797 * After processing the interrupt, ensure an EXCP_DEBUG is
798 * raised when single-stepping so that GDB doesn't miss the
799 * next instruction.
800 */
801 if (unlikely(cpu->singlestep_enabled)) {
802 cpu->exception_index = EXCP_DEBUG;
803 qemu_mutex_unlock_iothread();
804 return true;
805 }
806 cpu->exception_index = -1;
807 *last_tb = NULL;
808 }
809 /* The target hook may have updated the 'cpu->interrupt_request';
810 * reload the 'interrupt_request' value */
811 interrupt_request = cpu->interrupt_request;
812 }
813 #endif /* !CONFIG_USER_ONLY */
814 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
815 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
816 /* ensure that no TB jump will be modified as
817 the program flow was changed */
818 *last_tb = NULL;
819 }
820
821 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
822 qemu_mutex_unlock_iothread();
823 }
824
825 /* Finally, check if we need to exit to the main loop. */
826 if (unlikely(qatomic_read(&cpu->exit_request))
827 || (icount_enabled()
828 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
829 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
830 qatomic_set(&cpu->exit_request, 0);
831 if (cpu->exception_index == -1) {
832 cpu->exception_index = EXCP_INTERRUPT;
833 }
834 return true;
835 }
836
837 return false;
838 }
839
840 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
841 TranslationBlock **last_tb, int *tb_exit)
842 {
843 int32_t insns_left;
844
845 trace_exec_tb(tb, tb->pc);
846 tb = cpu_tb_exec(cpu, tb, tb_exit);
847 if (*tb_exit != TB_EXIT_REQUESTED) {
848 *last_tb = tb;
849 return;
850 }
851
852 *last_tb = NULL;
853 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
854 if (insns_left < 0) {
855 /* Something asked us to stop executing chained TBs; just
856 * continue round the main loop. Whatever requested the exit
857 * will also have set something else (eg exit_request or
858 * interrupt_request) which will be handled by
859 * cpu_handle_interrupt. cpu_handle_interrupt will also
860 * clear cpu->icount_decr.u16.high.
861 */
862 return;
863 }
864
865 /* Instruction counter expired. */
866 assert(icount_enabled());
867 #ifndef CONFIG_USER_ONLY
868 /* Ensure global icount has gone forward */
869 icount_update(cpu);
870 /* Refill decrementer and continue execution. */
871 insns_left = MIN(0xffff, cpu->icount_budget);
872 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
873 cpu->icount_extra = cpu->icount_budget - insns_left;
874
875 /*
876 * If the next tb has more instructions than we have left to
877 * execute we need to ensure we find/generate a TB with exactly
878 * insns_left instructions in it.
879 */
880 if (insns_left > 0 && insns_left < tb->icount) {
881 assert(insns_left <= CF_COUNT_MASK);
882 assert(cpu->icount_extra == 0);
883 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
884 }
885 #endif
886 }
887
888 /* main execution loop */
889
890 int cpu_exec(CPUState *cpu)
891 {
892 int ret;
893 SyncClocks sc = { 0 };
894
895 /* replay_interrupt may need current_cpu */
896 current_cpu = cpu;
897
898 if (cpu_handle_halt(cpu)) {
899 return EXCP_HALTED;
900 }
901
902 rcu_read_lock();
903
904 cpu_exec_enter(cpu);
905
906 /* Calculate difference between guest clock and host clock.
907 * This delay includes the delay of the last cycle, so
908 * what we have to do is sleep until it is 0. As for the
909 * advance/delay we gain here, we try to fix it next time.
910 */
911 init_delay_params(&sc, cpu);
912
913 /* prepare setjmp context for exception handling */
914 if (sigsetjmp(cpu->jmp_env, 0) != 0) {
915 #if defined(__clang__)
916 /*
917 * Some compilers wrongly smash all local variables after
918 * siglongjmp (the spec requires that only non-volatile locals
919 * which are changed between the sigsetjmp and siglongjmp are
920 * permitted to be trashed). There were bug reports for gcc
921 * 4.5.0 and clang. The bug is fixed in all versions of gcc
922 * that we support, but is still unfixed in clang:
923 * https://bugs.llvm.org/show_bug.cgi?id=21183
924 *
925 * Reload an essential local variable here for those compilers.
926 * Newer versions of gcc would complain about this code (-Wclobbered),
927 * so we only perform the workaround for clang.
928 */
929 cpu = current_cpu;
930 #else
931 /* Non-buggy compilers preserve this; assert the correct value. */
932 g_assert(cpu == current_cpu);
933 #endif
934
935 #ifndef CONFIG_SOFTMMU
936 clear_helper_retaddr();
937 if (have_mmap_lock()) {
938 mmap_unlock();
939 }
940 #endif
941 if (qemu_mutex_iothread_locked()) {
942 qemu_mutex_unlock_iothread();
943 }
944 qemu_plugin_disable_mem_helpers(cpu);
945
946 assert_no_pages_locked();
947 }
948
949 /* if an exception is pending, we execute it here */
950 while (!cpu_handle_exception(cpu, &ret)) {
951 TranslationBlock *last_tb = NULL;
952 int tb_exit = 0;
953
954 while (!cpu_handle_interrupt(cpu, &last_tb)) {
955 TranslationBlock *tb;
956 target_ulong cs_base, pc;
957 uint32_t flags, cflags;
958
959 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
960
961 /*
962 * When requested, use an exact setting for cflags for the next
963 * execution. This is used for icount, precise smc, and stop-
964 * after-access watchpoints. Since this request should never
965 * have CF_INVALID set, -1 is a convenient invalid value that
966 * does not require tcg headers for cpu_common_reset.
967 */
968 cflags = cpu->cflags_next_tb;
969 if (cflags == -1) {
970 cflags = curr_cflags(cpu);
971 } else {
972 cpu->cflags_next_tb = -1;
973 }
974
975 if (check_for_breakpoints(cpu, pc, &cflags)) {
976 break;
977 }
978
979 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
980 if (tb == NULL) {
981 mmap_lock();
982 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
983 mmap_unlock();
984 /*
985 * We add the TB in the virtual pc hash table
986 * for the fast lookup
987 */
988 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
989 }
990
991 #ifndef CONFIG_USER_ONLY
992 /*
993 * We don't take care of direct jumps when address mapping
994 * changes in system emulation. So it's not safe to make a
995 * direct jump to a TB spanning two pages because the mapping
996 * for the second page can change.
997 */
998 if (tb->page_addr[1] != -1) {
999 last_tb = NULL;
1000 }
1001 #endif
1002 /* See if we can patch the calling TB. */
1003 if (last_tb) {
1004 tb_add_jump(last_tb, tb_exit, tb);
1005 }
1006
1007 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
1008
1009 /* Try to align the host and virtual clocks
1010 if the guest is in advance */
1011 align_clocks(&sc, cpu);
1012 }
1013 }
1014
1015 cpu_exec_exit(cpu);
1016 rcu_read_unlock();
1017
1018 return ret;
1019 }
1020
1021 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1022 {
1023 static bool tcg_target_initialized;
1024 CPUClass *cc = CPU_GET_CLASS(cpu);
1025
1026 if (!tcg_target_initialized) {
1027 cc->tcg_ops->initialize();
1028 tcg_target_initialized = true;
1029 }
1030 tlb_init(cpu);
1031 qemu_plugin_vcpu_init_hook(cpu);
1032
1033 #ifndef CONFIG_USER_ONLY
1034 tcg_iommu_init_notifier_list(cpu);
1035 #endif /* !CONFIG_USER_ONLY */
1036 }
1037
1038 /* undo the initializations in reverse order */
1039 void tcg_exec_unrealizefn(CPUState *cpu)
1040 {
1041 #ifndef CONFIG_USER_ONLY
1042 tcg_iommu_free_notifier_list(cpu);
1043 #endif /* !CONFIG_USER_ONLY */
1044
1045 qemu_plugin_vcpu_exit_hook(cpu);
1046 tlb_destroy(cpu);
1047 }
1048
1049 #ifndef CONFIG_USER_ONLY
1050
1051 static void dump_drift_info(GString *buf)
1052 {
1053 if (!icount_enabled()) {
1054 return;
1055 }
1056
1057 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n",
1058 (cpu_get_clock() - icount_get()) / SCALE_MS);
1059 if (icount_align_option) {
1060 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n",
1061 -max_delay / SCALE_MS);
1062 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n",
1063 max_advance / SCALE_MS);
1064 } else {
1065 g_string_append_printf(buf, "Max guest delay NA\n");
1066 g_string_append_printf(buf, "Max guest advance NA\n");
1067 }
1068 }
1069
1070 HumanReadableText *qmp_x_query_jit(Error **errp)
1071 {
1072 g_autoptr(GString) buf = g_string_new("");
1073
1074 if (!tcg_enabled()) {
1075 error_setg(errp, "JIT information is only available with accel=tcg");
1076 return NULL;
1077 }
1078
1079 dump_exec_info(buf);
1080 dump_drift_info(buf);
1081
1082 return human_readable_text_from_str(buf);
1083 }
1084
1085 HumanReadableText *qmp_x_query_opcount(Error **errp)
1086 {
1087 g_autoptr(GString) buf = g_string_new("");
1088
1089 if (!tcg_enabled()) {
1090 error_setg(errp, "Opcode count information is only available with accel=tcg");
1091 return NULL;
1092 }
1093
1094 tcg_dump_op_count(buf);
1095
1096 return human_readable_text_from_str(buf);
1097 }
1098
1099 #ifdef CONFIG_PROFILER
1100
1101 int64_t dev_time;
1102
1103 HumanReadableText *qmp_x_query_profile(Error **errp)
1104 {
1105 g_autoptr(GString) buf = g_string_new("");
1106 static int64_t last_cpu_exec_time;
1107 int64_t cpu_exec_time;
1108 int64_t delta;
1109
1110 cpu_exec_time = tcg_cpu_exec_time();
1111 delta = cpu_exec_time - last_cpu_exec_time;
1112
1113 g_string_append_printf(buf, "async time %" PRId64 " (%0.3f)\n",
1114 dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1115 g_string_append_printf(buf, "qemu time %" PRId64 " (%0.3f)\n",
1116 delta, delta / (double)NANOSECONDS_PER_SECOND);
1117 last_cpu_exec_time = cpu_exec_time;
1118 dev_time = 0;
1119
1120 return human_readable_text_from_str(buf);
1121 }
1122 #else
1123 HumanReadableText *qmp_x_query_profile(Error **errp)
1124 {
1125 error_setg(errp, "Internal profiler not compiled");
1126 return NULL;
1127 }
1128 #endif
1129
1130 #endif /* !CONFIG_USER_ONLY */