]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
Merge tag 'pull-for-8.0-220323-1' of https://gitlab.com/stsquad/qemu into staging
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46
47 /* -icount align implementation. */
48
49 typedef struct SyncClocks {
50 int64_t diff_clk;
51 int64_t last_cpu_icount;
52 int64_t realtime_clock;
53 } SyncClocks;
54
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57 * The difference between the 2 clocks could therefore
58 * oscillate around 0.
59 */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64
65 int64_t max_delay;
66 int64_t max_advance;
67
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70 int64_t cpu_icount;
71
72 if (!icount_align_option) {
73 return;
74 }
75
76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78 sc->last_cpu_icount = cpu_icount;
79
80 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82 struct timespec sleep_delay, rem_delay;
83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87 } else {
88 sc->diff_clk = 0;
89 }
90 #else
91 Sleep(sc->diff_clk / SCALE_MS);
92 sc->diff_clk = 0;
93 #endif
94 }
95 }
96
97 static void print_delay(const SyncClocks *sc)
98 {
99 static float threshold_delay;
100 static int64_t last_realtime_clock;
101 static int nb_prints;
102
103 if (icount_align_option &&
104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105 nb_prints < MAX_NB_PRINTS) {
106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107 (-sc->diff_clk / (float)1000000000LL <
108 (threshold_delay - THRESHOLD_REDUCE))) {
109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111 threshold_delay - 1,
112 threshold_delay);
113 nb_prints++;
114 last_realtime_clock = sc->realtime_clock;
115 }
116 }
117 }
118
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121 if (!icount_align_option) {
122 return;
123 }
124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126 sc->last_cpu_icount
127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128 if (sc->diff_clk < max_delay) {
129 max_delay = sc->diff_clk;
130 }
131 if (sc->diff_clk > max_advance) {
132 max_advance = sc->diff_clk;
133 }
134
135 /* Print every 2s max if the guest is late. We limit the number
136 of printed messages to NB_PRINT_MAX(currently 100) */
137 print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151 uint32_t cflags = cpu->tcg_cflags;
152
153 /*
154 * Record gdb single-step. We should be exiting the TB by raising
155 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156 *
157 * For singlestep and -d nochain, suppress goto_tb so that
158 * we can log -d cpu,exec after every TB.
159 */
160 if (unlikely(cpu->singlestep_enabled)) {
161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162 } else if (singlestep) {
163 cflags |= CF_NO_GOTO_TB | 1;
164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165 cflags |= CF_NO_GOTO_TB;
166 }
167
168 return cflags;
169 }
170
171 struct tb_desc {
172 target_ulong pc;
173 target_ulong cs_base;
174 CPUArchState *env;
175 tb_page_addr_t page_addr0;
176 uint32_t flags;
177 uint32_t cflags;
178 uint32_t trace_vcpu_dstate;
179 };
180
181 static bool tb_lookup_cmp(const void *p, const void *d)
182 {
183 const TranslationBlock *tb = p;
184 const struct tb_desc *desc = d;
185
186 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
187 tb_page_addr0(tb) == desc->page_addr0 &&
188 tb->cs_base == desc->cs_base &&
189 tb->flags == desc->flags &&
190 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
191 tb_cflags(tb) == desc->cflags) {
192 /* check next page if needed */
193 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
194 if (tb_phys_page1 == -1) {
195 return true;
196 } else {
197 tb_page_addr_t phys_page1;
198 target_ulong virt_page1;
199
200 /*
201 * We know that the first page matched, and an otherwise valid TB
202 * encountered an incomplete instruction at the end of that page,
203 * therefore we know that generating a new TB from the current PC
204 * must also require reading from the next page -- even if the
205 * second pages do not match, and therefore the resulting insn
206 * is different for the new TB. Therefore any exception raised
207 * here by the faulting lookup is not premature.
208 */
209 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
210 phys_page1 = get_page_addr_code(desc->env, virt_page1);
211 if (tb_phys_page1 == phys_page1) {
212 return true;
213 }
214 }
215 }
216 return false;
217 }
218
219 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
220 target_ulong cs_base, uint32_t flags,
221 uint32_t cflags)
222 {
223 tb_page_addr_t phys_pc;
224 struct tb_desc desc;
225 uint32_t h;
226
227 desc.env = cpu->env_ptr;
228 desc.cs_base = cs_base;
229 desc.flags = flags;
230 desc.cflags = cflags;
231 desc.trace_vcpu_dstate = *cpu->trace_dstate;
232 desc.pc = pc;
233 phys_pc = get_page_addr_code(desc.env, pc);
234 if (phys_pc == -1) {
235 return NULL;
236 }
237 desc.page_addr0 = phys_pc;
238 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
239 flags, cflags, *cpu->trace_dstate);
240 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
241 }
242
243 /* Might cause an exception, so have a longjmp destination ready */
244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
245 target_ulong cs_base,
246 uint32_t flags, uint32_t cflags)
247 {
248 TranslationBlock *tb;
249 CPUJumpCache *jc;
250 uint32_t hash;
251
252 /* we should never be trying to look up an INVALID tb */
253 tcg_debug_assert(!(cflags & CF_INVALID));
254
255 hash = tb_jmp_cache_hash_func(pc);
256 jc = cpu->tb_jmp_cache;
257
258 if (cflags & CF_PCREL) {
259 /* Use acquire to ensure current load of pc from jc. */
260 tb = qatomic_load_acquire(&jc->array[hash].tb);
261
262 if (likely(tb &&
263 jc->array[hash].pc == pc &&
264 tb->cs_base == cs_base &&
265 tb->flags == flags &&
266 tb->trace_vcpu_dstate == *cpu->trace_dstate &&
267 tb_cflags(tb) == cflags)) {
268 return tb;
269 }
270 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
271 if (tb == NULL) {
272 return NULL;
273 }
274 jc->array[hash].pc = pc;
275 /* Use store_release on tb to ensure pc is written first. */
276 qatomic_store_release(&jc->array[hash].tb, tb);
277 } else {
278 /* Use rcu_read to ensure current load of pc from *tb. */
279 tb = qatomic_rcu_read(&jc->array[hash].tb);
280
281 if (likely(tb &&
282 tb->pc == pc &&
283 tb->cs_base == cs_base &&
284 tb->flags == flags &&
285 tb->trace_vcpu_dstate == *cpu->trace_dstate &&
286 tb_cflags(tb) == cflags)) {
287 return tb;
288 }
289 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
290 if (tb == NULL) {
291 return NULL;
292 }
293 /* Use the pc value already stored in tb->pc. */
294 qatomic_set(&jc->array[hash].tb, tb);
295 }
296
297 return tb;
298 }
299
300 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
301 const TranslationBlock *tb)
302 {
303 if (qemu_log_in_addr_range(pc)) {
304 qemu_log_mask(CPU_LOG_EXEC,
305 "Trace %d: %p [" TARGET_FMT_lx
306 "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
307 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
308 tb->flags, tb->cflags, lookup_symbol(pc));
309
310 #if defined(DEBUG_DISAS)
311 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
312 FILE *logfile = qemu_log_trylock();
313 if (logfile) {
314 int flags = 0;
315
316 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
317 flags |= CPU_DUMP_FPU;
318 }
319 #if defined(TARGET_I386)
320 flags |= CPU_DUMP_CCOP;
321 #endif
322 cpu_dump_state(cpu, logfile, flags);
323 qemu_log_unlock(logfile);
324 }
325 }
326 #endif /* DEBUG_DISAS */
327 }
328 }
329
330 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
331 uint32_t *cflags)
332 {
333 CPUBreakpoint *bp;
334 bool match_page = false;
335
336 /*
337 * Singlestep overrides breakpoints.
338 * This requirement is visible in the record-replay tests, where
339 * we would fail to make forward progress in reverse-continue.
340 *
341 * TODO: gdb singlestep should only override gdb breakpoints,
342 * so that one could (gdb) singlestep into the guest kernel's
343 * architectural breakpoint handler.
344 */
345 if (cpu->singlestep_enabled) {
346 return false;
347 }
348
349 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
350 /*
351 * If we have an exact pc match, trigger the breakpoint.
352 * Otherwise, note matches within the page.
353 */
354 if (pc == bp->pc) {
355 bool match_bp = false;
356
357 if (bp->flags & BP_GDB) {
358 match_bp = true;
359 } else if (bp->flags & BP_CPU) {
360 #ifdef CONFIG_USER_ONLY
361 g_assert_not_reached();
362 #else
363 CPUClass *cc = CPU_GET_CLASS(cpu);
364 assert(cc->tcg_ops->debug_check_breakpoint);
365 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
366 #endif
367 }
368
369 if (match_bp) {
370 cpu->exception_index = EXCP_DEBUG;
371 return true;
372 }
373 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
374 match_page = true;
375 }
376 }
377
378 /*
379 * Within the same page as a breakpoint, single-step,
380 * returning to helper_lookup_tb_ptr after each insn looking
381 * for the actual breakpoint.
382 *
383 * TODO: Perhaps better to record all of the TBs associated
384 * with a given virtual page that contains a breakpoint, and
385 * then invalidate them when a new overlapping breakpoint is
386 * set on the page. Non-overlapping TBs would not be
387 * invalidated, nor would any TB need to be invalidated as
388 * breakpoints are removed.
389 */
390 if (match_page) {
391 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
392 }
393 return false;
394 }
395
396 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
397 uint32_t *cflags)
398 {
399 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
400 check_for_breakpoints_slow(cpu, pc, cflags);
401 }
402
403 /**
404 * helper_lookup_tb_ptr: quick check for next tb
405 * @env: current cpu state
406 *
407 * Look for an existing TB matching the current cpu state.
408 * If found, return the code pointer. If not found, return
409 * the tcg epilogue so that we return into cpu_tb_exec.
410 */
411 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
412 {
413 CPUState *cpu = env_cpu(env);
414 TranslationBlock *tb;
415 target_ulong cs_base, pc;
416 uint32_t flags, cflags;
417
418 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
419
420 cflags = curr_cflags(cpu);
421 if (check_for_breakpoints(cpu, pc, &cflags)) {
422 cpu_loop_exit(cpu);
423 }
424
425 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
426 if (tb == NULL) {
427 return tcg_code_gen_epilogue;
428 }
429
430 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
431 log_cpu_exec(pc, cpu, tb);
432 }
433
434 return tb->tc.ptr;
435 }
436
437 /* Execute a TB, and fix up the CPU state afterwards if necessary */
438 /*
439 * Disable CFI checks.
440 * TCG creates binary blobs at runtime, with the transformed code.
441 * A TB is a blob of binary code, created at runtime and called with an
442 * indirect function call. Since such function did not exist at compile time,
443 * the CFI runtime has no way to verify its signature and would fail.
444 * TCG is not considered a security-sensitive part of QEMU so this does not
445 * affect the impact of CFI in environment with high security requirements
446 */
447 static inline TranslationBlock * QEMU_DISABLE_CFI
448 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
449 {
450 CPUArchState *env = cpu->env_ptr;
451 uintptr_t ret;
452 TranslationBlock *last_tb;
453 const void *tb_ptr = itb->tc.ptr;
454
455 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
456 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
457 }
458
459 qemu_thread_jit_execute();
460 ret = tcg_qemu_tb_exec(env, tb_ptr);
461 cpu->can_do_io = 1;
462 qemu_plugin_disable_mem_helpers(cpu);
463 /*
464 * TODO: Delay swapping back to the read-write region of the TB
465 * until we actually need to modify the TB. The read-only copy,
466 * coming from the rx region, shares the same host TLB entry as
467 * the code that executed the exit_tb opcode that arrived here.
468 * If we insist on touching both the RX and the RW pages, we
469 * double the host TLB pressure.
470 */
471 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
472 *tb_exit = ret & TB_EXIT_MASK;
473
474 trace_exec_tb_exit(last_tb, *tb_exit);
475
476 if (*tb_exit > TB_EXIT_IDX1) {
477 /* We didn't start executing this TB (eg because the instruction
478 * counter hit zero); we must restore the guest PC to the address
479 * of the start of the TB.
480 */
481 CPUClass *cc = CPU_GET_CLASS(cpu);
482
483 if (cc->tcg_ops->synchronize_from_tb) {
484 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
485 } else {
486 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
487 assert(cc->set_pc);
488 cc->set_pc(cpu, last_tb->pc);
489 }
490 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
491 target_ulong pc = log_pc(cpu, last_tb);
492 if (qemu_log_in_addr_range(pc)) {
493 qemu_log("Stopped execution of TB chain before %p ["
494 TARGET_FMT_lx "] %s\n",
495 last_tb->tc.ptr, pc, lookup_symbol(pc));
496 }
497 }
498 }
499
500 /*
501 * If gdb single-step, and we haven't raised another exception,
502 * raise a debug exception. Single-step with another exception
503 * is handled in cpu_handle_exception.
504 */
505 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
506 cpu->exception_index = EXCP_DEBUG;
507 cpu_loop_exit(cpu);
508 }
509
510 return last_tb;
511 }
512
513
514 static void cpu_exec_enter(CPUState *cpu)
515 {
516 CPUClass *cc = CPU_GET_CLASS(cpu);
517
518 if (cc->tcg_ops->cpu_exec_enter) {
519 cc->tcg_ops->cpu_exec_enter(cpu);
520 }
521 }
522
523 static void cpu_exec_exit(CPUState *cpu)
524 {
525 CPUClass *cc = CPU_GET_CLASS(cpu);
526
527 if (cc->tcg_ops->cpu_exec_exit) {
528 cc->tcg_ops->cpu_exec_exit(cpu);
529 }
530 }
531
532 void cpu_exec_step_atomic(CPUState *cpu)
533 {
534 CPUArchState *env = cpu->env_ptr;
535 TranslationBlock *tb;
536 target_ulong cs_base, pc;
537 uint32_t flags, cflags;
538 int tb_exit;
539
540 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
541 start_exclusive();
542 g_assert(cpu == current_cpu);
543 g_assert(!cpu->running);
544 cpu->running = true;
545
546 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
547
548 cflags = curr_cflags(cpu);
549 /* Execute in a serial context. */
550 cflags &= ~CF_PARALLEL;
551 /* After 1 insn, return and release the exclusive lock. */
552 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
553 /*
554 * No need to check_for_breakpoints here.
555 * We only arrive in cpu_exec_step_atomic after beginning execution
556 * of an insn that includes an atomic operation we can't handle.
557 * Any breakpoint for this insn will have been recognized earlier.
558 */
559
560 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
561 if (tb == NULL) {
562 mmap_lock();
563 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
564 mmap_unlock();
565 }
566
567 cpu_exec_enter(cpu);
568 /* execute the generated code */
569 trace_exec_tb(tb, pc);
570 cpu_tb_exec(cpu, tb, &tb_exit);
571 cpu_exec_exit(cpu);
572 } else {
573 #ifndef CONFIG_SOFTMMU
574 clear_helper_retaddr();
575 if (have_mmap_lock()) {
576 mmap_unlock();
577 }
578 #endif
579 if (qemu_mutex_iothread_locked()) {
580 qemu_mutex_unlock_iothread();
581 }
582 assert_no_pages_locked();
583 }
584
585 /*
586 * As we start the exclusive region before codegen we must still
587 * be in the region if we longjump out of either the codegen or
588 * the execution.
589 */
590 g_assert(cpu_in_exclusive_context(cpu));
591 cpu->running = false;
592 end_exclusive();
593 }
594
595 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
596 {
597 /*
598 * Get the rx view of the structure, from which we find the
599 * executable code address, and tb_target_set_jmp_target can
600 * produce a pc-relative displacement to jmp_target_addr[n].
601 */
602 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
603 uintptr_t offset = tb->jmp_insn_offset[n];
604 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
605 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
606
607 tb->jmp_target_addr[n] = addr;
608 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
609 }
610
611 static inline void tb_add_jump(TranslationBlock *tb, int n,
612 TranslationBlock *tb_next)
613 {
614 uintptr_t old;
615
616 qemu_thread_jit_write();
617 assert(n < ARRAY_SIZE(tb->jmp_list_next));
618 qemu_spin_lock(&tb_next->jmp_lock);
619
620 /* make sure the destination TB is valid */
621 if (tb_next->cflags & CF_INVALID) {
622 goto out_unlock_next;
623 }
624 /* Atomically claim the jump destination slot only if it was NULL */
625 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
626 (uintptr_t)tb_next);
627 if (old) {
628 goto out_unlock_next;
629 }
630
631 /* patch the native jump address */
632 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
633
634 /* add in TB jmp list */
635 tb->jmp_list_next[n] = tb_next->jmp_list_head;
636 tb_next->jmp_list_head = (uintptr_t)tb | n;
637
638 qemu_spin_unlock(&tb_next->jmp_lock);
639
640 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
641 tb->tc.ptr, n, tb_next->tc.ptr);
642 return;
643
644 out_unlock_next:
645 qemu_spin_unlock(&tb_next->jmp_lock);
646 return;
647 }
648
649 static inline bool cpu_handle_halt(CPUState *cpu)
650 {
651 #ifndef CONFIG_USER_ONLY
652 if (cpu->halted) {
653 #if defined(TARGET_I386)
654 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
655 X86CPU *x86_cpu = X86_CPU(cpu);
656 qemu_mutex_lock_iothread();
657 apic_poll_irq(x86_cpu->apic_state);
658 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
659 qemu_mutex_unlock_iothread();
660 }
661 #endif /* TARGET_I386 */
662 if (!cpu_has_work(cpu)) {
663 return true;
664 }
665
666 cpu->halted = 0;
667 }
668 #endif /* !CONFIG_USER_ONLY */
669
670 return false;
671 }
672
673 static inline void cpu_handle_debug_exception(CPUState *cpu)
674 {
675 CPUClass *cc = CPU_GET_CLASS(cpu);
676 CPUWatchpoint *wp;
677
678 if (!cpu->watchpoint_hit) {
679 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
680 wp->flags &= ~BP_WATCHPOINT_HIT;
681 }
682 }
683
684 if (cc->tcg_ops->debug_excp_handler) {
685 cc->tcg_ops->debug_excp_handler(cpu);
686 }
687 }
688
689 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
690 {
691 if (cpu->exception_index < 0) {
692 #ifndef CONFIG_USER_ONLY
693 if (replay_has_exception()
694 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
695 /* Execute just one insn to trigger exception pending in the log */
696 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
697 | CF_NOIRQ | 1;
698 }
699 #endif
700 return false;
701 }
702 if (cpu->exception_index >= EXCP_INTERRUPT) {
703 /* exit request from the cpu execution loop */
704 *ret = cpu->exception_index;
705 if (*ret == EXCP_DEBUG) {
706 cpu_handle_debug_exception(cpu);
707 }
708 cpu->exception_index = -1;
709 return true;
710 } else {
711 #if defined(CONFIG_USER_ONLY)
712 /* if user mode only, we simulate a fake exception
713 which will be handled outside the cpu execution
714 loop */
715 #if defined(TARGET_I386)
716 CPUClass *cc = CPU_GET_CLASS(cpu);
717 cc->tcg_ops->fake_user_interrupt(cpu);
718 #endif /* TARGET_I386 */
719 *ret = cpu->exception_index;
720 cpu->exception_index = -1;
721 return true;
722 #else
723 if (replay_exception()) {
724 CPUClass *cc = CPU_GET_CLASS(cpu);
725 qemu_mutex_lock_iothread();
726 cc->tcg_ops->do_interrupt(cpu);
727 qemu_mutex_unlock_iothread();
728 cpu->exception_index = -1;
729
730 if (unlikely(cpu->singlestep_enabled)) {
731 /*
732 * After processing the exception, ensure an EXCP_DEBUG is
733 * raised when single-stepping so that GDB doesn't miss the
734 * next instruction.
735 */
736 *ret = EXCP_DEBUG;
737 cpu_handle_debug_exception(cpu);
738 return true;
739 }
740 } else if (!replay_has_interrupt()) {
741 /* give a chance to iothread in replay mode */
742 *ret = EXCP_INTERRUPT;
743 return true;
744 }
745 #endif
746 }
747
748 return false;
749 }
750
751 #ifndef CONFIG_USER_ONLY
752 /*
753 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
754 * "real" interrupt event later. It does not need to be recorded for
755 * replay purposes.
756 */
757 static inline bool need_replay_interrupt(int interrupt_request)
758 {
759 #if defined(TARGET_I386)
760 return !(interrupt_request & CPU_INTERRUPT_POLL);
761 #else
762 return true;
763 #endif
764 }
765 #endif /* !CONFIG_USER_ONLY */
766
767 static inline bool cpu_handle_interrupt(CPUState *cpu,
768 TranslationBlock **last_tb)
769 {
770 /*
771 * If we have requested custom cflags with CF_NOIRQ we should
772 * skip checking here. Any pending interrupts will get picked up
773 * by the next TB we execute under normal cflags.
774 */
775 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
776 return false;
777 }
778
779 /* Clear the interrupt flag now since we're processing
780 * cpu->interrupt_request and cpu->exit_request.
781 * Ensure zeroing happens before reading cpu->exit_request or
782 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
783 */
784 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
785
786 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
787 int interrupt_request;
788 qemu_mutex_lock_iothread();
789 interrupt_request = cpu->interrupt_request;
790 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
791 /* Mask out external interrupts for this step. */
792 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
793 }
794 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
795 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
796 cpu->exception_index = EXCP_DEBUG;
797 qemu_mutex_unlock_iothread();
798 return true;
799 }
800 #if !defined(CONFIG_USER_ONLY)
801 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
802 /* Do nothing */
803 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
804 replay_interrupt();
805 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
806 cpu->halted = 1;
807 cpu->exception_index = EXCP_HLT;
808 qemu_mutex_unlock_iothread();
809 return true;
810 }
811 #if defined(TARGET_I386)
812 else if (interrupt_request & CPU_INTERRUPT_INIT) {
813 X86CPU *x86_cpu = X86_CPU(cpu);
814 CPUArchState *env = &x86_cpu->env;
815 replay_interrupt();
816 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
817 do_cpu_init(x86_cpu);
818 cpu->exception_index = EXCP_HALTED;
819 qemu_mutex_unlock_iothread();
820 return true;
821 }
822 #else
823 else if (interrupt_request & CPU_INTERRUPT_RESET) {
824 replay_interrupt();
825 cpu_reset(cpu);
826 qemu_mutex_unlock_iothread();
827 return true;
828 }
829 #endif /* !TARGET_I386 */
830 /* The target hook has 3 exit conditions:
831 False when the interrupt isn't processed,
832 True when it is, and we should restart on a new TB,
833 and via longjmp via cpu_loop_exit. */
834 else {
835 CPUClass *cc = CPU_GET_CLASS(cpu);
836
837 if (cc->tcg_ops->cpu_exec_interrupt &&
838 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
839 if (need_replay_interrupt(interrupt_request)) {
840 replay_interrupt();
841 }
842 /*
843 * After processing the interrupt, ensure an EXCP_DEBUG is
844 * raised when single-stepping so that GDB doesn't miss the
845 * next instruction.
846 */
847 if (unlikely(cpu->singlestep_enabled)) {
848 cpu->exception_index = EXCP_DEBUG;
849 qemu_mutex_unlock_iothread();
850 return true;
851 }
852 cpu->exception_index = -1;
853 *last_tb = NULL;
854 }
855 /* The target hook may have updated the 'cpu->interrupt_request';
856 * reload the 'interrupt_request' value */
857 interrupt_request = cpu->interrupt_request;
858 }
859 #endif /* !CONFIG_USER_ONLY */
860 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
861 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
862 /* ensure that no TB jump will be modified as
863 the program flow was changed */
864 *last_tb = NULL;
865 }
866
867 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
868 qemu_mutex_unlock_iothread();
869 }
870
871 /* Finally, check if we need to exit to the main loop. */
872 if (unlikely(qatomic_read(&cpu->exit_request))
873 || (icount_enabled()
874 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
875 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
876 qatomic_set(&cpu->exit_request, 0);
877 if (cpu->exception_index == -1) {
878 cpu->exception_index = EXCP_INTERRUPT;
879 }
880 return true;
881 }
882
883 return false;
884 }
885
886 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
887 target_ulong pc,
888 TranslationBlock **last_tb, int *tb_exit)
889 {
890 int32_t insns_left;
891
892 trace_exec_tb(tb, pc);
893 tb = cpu_tb_exec(cpu, tb, tb_exit);
894 if (*tb_exit != TB_EXIT_REQUESTED) {
895 *last_tb = tb;
896 return;
897 }
898
899 *last_tb = NULL;
900 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
901 if (insns_left < 0) {
902 /* Something asked us to stop executing chained TBs; just
903 * continue round the main loop. Whatever requested the exit
904 * will also have set something else (eg exit_request or
905 * interrupt_request) which will be handled by
906 * cpu_handle_interrupt. cpu_handle_interrupt will also
907 * clear cpu->icount_decr.u16.high.
908 */
909 return;
910 }
911
912 /* Instruction counter expired. */
913 assert(icount_enabled());
914 #ifndef CONFIG_USER_ONLY
915 /* Ensure global icount has gone forward */
916 icount_update(cpu);
917 /* Refill decrementer and continue execution. */
918 insns_left = MIN(0xffff, cpu->icount_budget);
919 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
920 cpu->icount_extra = cpu->icount_budget - insns_left;
921
922 /*
923 * If the next tb has more instructions than we have left to
924 * execute we need to ensure we find/generate a TB with exactly
925 * insns_left instructions in it.
926 */
927 if (insns_left > 0 && insns_left < tb->icount) {
928 assert(insns_left <= CF_COUNT_MASK);
929 assert(cpu->icount_extra == 0);
930 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
931 }
932 #endif
933 }
934
935 /* main execution loop */
936
937 static int __attribute__((noinline))
938 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
939 {
940 int ret;
941
942 /* if an exception is pending, we execute it here */
943 while (!cpu_handle_exception(cpu, &ret)) {
944 TranslationBlock *last_tb = NULL;
945 int tb_exit = 0;
946
947 while (!cpu_handle_interrupt(cpu, &last_tb)) {
948 TranslationBlock *tb;
949 target_ulong cs_base, pc;
950 uint32_t flags, cflags;
951
952 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
953
954 /*
955 * When requested, use an exact setting for cflags for the next
956 * execution. This is used for icount, precise smc, and stop-
957 * after-access watchpoints. Since this request should never
958 * have CF_INVALID set, -1 is a convenient invalid value that
959 * does not require tcg headers for cpu_common_reset.
960 */
961 cflags = cpu->cflags_next_tb;
962 if (cflags == -1) {
963 cflags = curr_cflags(cpu);
964 } else {
965 cpu->cflags_next_tb = -1;
966 }
967
968 if (check_for_breakpoints(cpu, pc, &cflags)) {
969 break;
970 }
971
972 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
973 if (tb == NULL) {
974 uint32_t h;
975
976 mmap_lock();
977 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
978 mmap_unlock();
979 /*
980 * We add the TB in the virtual pc hash table
981 * for the fast lookup
982 */
983 h = tb_jmp_cache_hash_func(pc);
984 /* Use the pc value already stored in tb->pc. */
985 qatomic_set(&cpu->tb_jmp_cache->array[h].tb, tb);
986 }
987
988 #ifndef CONFIG_USER_ONLY
989 /*
990 * We don't take care of direct jumps when address mapping
991 * changes in system emulation. So it's not safe to make a
992 * direct jump to a TB spanning two pages because the mapping
993 * for the second page can change.
994 */
995 if (tb_page_addr1(tb) != -1) {
996 last_tb = NULL;
997 }
998 #endif
999 /* See if we can patch the calling TB. */
1000 if (last_tb) {
1001 tb_add_jump(last_tb, tb_exit, tb);
1002 }
1003
1004 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1005
1006 /* Try to align the host and virtual clocks
1007 if the guest is in advance */
1008 align_clocks(sc, cpu);
1009 }
1010 }
1011 return ret;
1012 }
1013
1014 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1015 {
1016 /* Prepare setjmp context for exception handling. */
1017 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1018 /* Non-buggy compilers preserve this; assert the correct value. */
1019 g_assert(cpu == current_cpu);
1020
1021 #ifndef CONFIG_SOFTMMU
1022 clear_helper_retaddr();
1023 if (have_mmap_lock()) {
1024 mmap_unlock();
1025 }
1026 #endif
1027 if (qemu_mutex_iothread_locked()) {
1028 qemu_mutex_unlock_iothread();
1029 }
1030
1031 assert_no_pages_locked();
1032 }
1033
1034 return cpu_exec_loop(cpu, sc);
1035 }
1036
1037 int cpu_exec(CPUState *cpu)
1038 {
1039 int ret;
1040 SyncClocks sc = { 0 };
1041
1042 /* replay_interrupt may need current_cpu */
1043 current_cpu = cpu;
1044
1045 if (cpu_handle_halt(cpu)) {
1046 return EXCP_HALTED;
1047 }
1048
1049 rcu_read_lock();
1050 cpu_exec_enter(cpu);
1051
1052 /*
1053 * Calculate difference between guest clock and host clock.
1054 * This delay includes the delay of the last cycle, so
1055 * what we have to do is sleep until it is 0. As for the
1056 * advance/delay we gain here, we try to fix it next time.
1057 */
1058 init_delay_params(&sc, cpu);
1059
1060 ret = cpu_exec_setjmp(cpu, &sc);
1061
1062 cpu_exec_exit(cpu);
1063 rcu_read_unlock();
1064
1065 return ret;
1066 }
1067
1068 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1069 {
1070 static bool tcg_target_initialized;
1071 CPUClass *cc = CPU_GET_CLASS(cpu);
1072
1073 if (!tcg_target_initialized) {
1074 cc->tcg_ops->initialize();
1075 tcg_target_initialized = true;
1076 }
1077
1078 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1079 tlb_init(cpu);
1080 #ifndef CONFIG_USER_ONLY
1081 tcg_iommu_init_notifier_list(cpu);
1082 #endif /* !CONFIG_USER_ONLY */
1083 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1084 }
1085
1086 /* undo the initializations in reverse order */
1087 void tcg_exec_unrealizefn(CPUState *cpu)
1088 {
1089 #ifndef CONFIG_USER_ONLY
1090 tcg_iommu_free_notifier_list(cpu);
1091 #endif /* !CONFIG_USER_ONLY */
1092
1093 tlb_destroy(cpu);
1094 g_free_rcu(cpu->tb_jmp_cache, rcu);
1095 }