]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
Merge remote-tracking branch 'remotes/philmd/tags/abstract-arch-cpu-20220307' into...
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-machine.h"
25 #include "qapi/type-helpers.h"
26 #include "hw/core/tcg-cpu-ops.h"
27 #include "trace.h"
28 #include "disas/disas.h"
29 #include "exec/exec-all.h"
30 #include "tcg/tcg.h"
31 #include "qemu/atomic.h"
32 #include "qemu/compiler.h"
33 #include "qemu/timer.h"
34 #include "qemu/rcu.h"
35 #include "exec/log.h"
36 #include "qemu/main-loop.h"
37 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
38 #include "hw/i386/apic.h"
39 #endif
40 #include "sysemu/cpus.h"
41 #include "exec/cpu-all.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/replay.h"
44 #include "sysemu/tcg.h"
45 #include "exec/helper-proto.h"
46 #include "tb-hash.h"
47 #include "tb-context.h"
48 #include "internal.h"
49
50 /* -icount align implementation. */
51
52 typedef struct SyncClocks {
53 int64_t diff_clk;
54 int64_t last_cpu_icount;
55 int64_t realtime_clock;
56 } SyncClocks;
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* Allow the guest to have a max 3ms advance.
60 * The difference between the 2 clocks could therefore
61 * oscillate around 0.
62 */
63 #define VM_CLOCK_ADVANCE 3000000
64 #define THRESHOLD_REDUCE 1.5
65 #define MAX_DELAY_PRINT_RATE 2000000000LL
66 #define MAX_NB_PRINTS 100
67
68 static int64_t max_delay;
69 static int64_t max_advance;
70
71 static void align_clocks(SyncClocks *sc, CPUState *cpu)
72 {
73 int64_t cpu_icount;
74
75 if (!icount_align_option) {
76 return;
77 }
78
79 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
80 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
81 sc->last_cpu_icount = cpu_icount;
82
83 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
84 #ifndef _WIN32
85 struct timespec sleep_delay, rem_delay;
86 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
87 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
88 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
89 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
90 } else {
91 sc->diff_clk = 0;
92 }
93 #else
94 Sleep(sc->diff_clk / SCALE_MS);
95 sc->diff_clk = 0;
96 #endif
97 }
98 }
99
100 static void print_delay(const SyncClocks *sc)
101 {
102 static float threshold_delay;
103 static int64_t last_realtime_clock;
104 static int nb_prints;
105
106 if (icount_align_option &&
107 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
108 nb_prints < MAX_NB_PRINTS) {
109 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
110 (-sc->diff_clk / (float)1000000000LL <
111 (threshold_delay - THRESHOLD_REDUCE))) {
112 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
113 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
114 threshold_delay - 1,
115 threshold_delay);
116 nb_prints++;
117 last_realtime_clock = sc->realtime_clock;
118 }
119 }
120 }
121
122 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
123 {
124 if (!icount_align_option) {
125 return;
126 }
127 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
128 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
129 sc->last_cpu_icount
130 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
131 if (sc->diff_clk < max_delay) {
132 max_delay = sc->diff_clk;
133 }
134 if (sc->diff_clk > max_advance) {
135 max_advance = sc->diff_clk;
136 }
137
138 /* Print every 2s max if the guest is late. We limit the number
139 of printed messages to NB_PRINT_MAX(currently 100) */
140 print_delay(sc);
141 }
142 #else
143 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146
147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
148 {
149 }
150 #endif /* CONFIG USER ONLY */
151
152 uint32_t curr_cflags(CPUState *cpu)
153 {
154 uint32_t cflags = cpu->tcg_cflags;
155
156 /*
157 * Record gdb single-step. We should be exiting the TB by raising
158 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
159 *
160 * For singlestep and -d nochain, suppress goto_tb so that
161 * we can log -d cpu,exec after every TB.
162 */
163 if (unlikely(cpu->singlestep_enabled)) {
164 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
165 } else if (singlestep) {
166 cflags |= CF_NO_GOTO_TB | 1;
167 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
168 cflags |= CF_NO_GOTO_TB;
169 }
170
171 return cflags;
172 }
173
174 /* Might cause an exception, so have a longjmp destination ready */
175 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
176 target_ulong cs_base,
177 uint32_t flags, uint32_t cflags)
178 {
179 TranslationBlock *tb;
180 uint32_t hash;
181
182 /* we should never be trying to look up an INVALID tb */
183 tcg_debug_assert(!(cflags & CF_INVALID));
184
185 hash = tb_jmp_cache_hash_func(pc);
186 tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
187
188 if (likely(tb &&
189 tb->pc == pc &&
190 tb->cs_base == cs_base &&
191 tb->flags == flags &&
192 tb->trace_vcpu_dstate == *cpu->trace_dstate &&
193 tb_cflags(tb) == cflags)) {
194 return tb;
195 }
196 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
197 if (tb == NULL) {
198 return NULL;
199 }
200 qatomic_set(&cpu->tb_jmp_cache[hash], tb);
201 return tb;
202 }
203
204 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
205 const TranslationBlock *tb)
206 {
207 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
208 && qemu_log_in_addr_range(pc)) {
209
210 qemu_log_mask(CPU_LOG_EXEC,
211 "Trace %d: %p [" TARGET_FMT_lx
212 "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
213 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
214 tb->flags, tb->cflags, lookup_symbol(pc));
215
216 #if defined(DEBUG_DISAS)
217 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
218 FILE *logfile = qemu_log_lock();
219 int flags = 0;
220
221 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
222 flags |= CPU_DUMP_FPU;
223 }
224 #if defined(TARGET_I386)
225 flags |= CPU_DUMP_CCOP;
226 #endif
227 log_cpu_state(cpu, flags);
228 qemu_log_unlock(logfile);
229 }
230 #endif /* DEBUG_DISAS */
231 }
232 }
233
234 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
235 uint32_t *cflags)
236 {
237 CPUBreakpoint *bp;
238 bool match_page = false;
239
240 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
241 return false;
242 }
243
244 /*
245 * Singlestep overrides breakpoints.
246 * This requirement is visible in the record-replay tests, where
247 * we would fail to make forward progress in reverse-continue.
248 *
249 * TODO: gdb singlestep should only override gdb breakpoints,
250 * so that one could (gdb) singlestep into the guest kernel's
251 * architectural breakpoint handler.
252 */
253 if (cpu->singlestep_enabled) {
254 return false;
255 }
256
257 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
258 /*
259 * If we have an exact pc match, trigger the breakpoint.
260 * Otherwise, note matches within the page.
261 */
262 if (pc == bp->pc) {
263 bool match_bp = false;
264
265 if (bp->flags & BP_GDB) {
266 match_bp = true;
267 } else if (bp->flags & BP_CPU) {
268 #ifdef CONFIG_USER_ONLY
269 g_assert_not_reached();
270 #else
271 CPUClass *cc = CPU_GET_CLASS(cpu);
272 assert(cc->tcg_ops->debug_check_breakpoint);
273 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
274 #endif
275 }
276
277 if (match_bp) {
278 cpu->exception_index = EXCP_DEBUG;
279 return true;
280 }
281 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
282 match_page = true;
283 }
284 }
285
286 /*
287 * Within the same page as a breakpoint, single-step,
288 * returning to helper_lookup_tb_ptr after each insn looking
289 * for the actual breakpoint.
290 *
291 * TODO: Perhaps better to record all of the TBs associated
292 * with a given virtual page that contains a breakpoint, and
293 * then invalidate them when a new overlapping breakpoint is
294 * set on the page. Non-overlapping TBs would not be
295 * invalidated, nor would any TB need to be invalidated as
296 * breakpoints are removed.
297 */
298 if (match_page) {
299 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
300 }
301 return false;
302 }
303
304 /**
305 * helper_lookup_tb_ptr: quick check for next tb
306 * @env: current cpu state
307 *
308 * Look for an existing TB matching the current cpu state.
309 * If found, return the code pointer. If not found, return
310 * the tcg epilogue so that we return into cpu_tb_exec.
311 */
312 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
313 {
314 CPUState *cpu = env_cpu(env);
315 TranslationBlock *tb;
316 target_ulong cs_base, pc;
317 uint32_t flags, cflags;
318
319 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
320
321 cflags = curr_cflags(cpu);
322 if (check_for_breakpoints(cpu, pc, &cflags)) {
323 cpu_loop_exit(cpu);
324 }
325
326 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
327 if (tb == NULL) {
328 return tcg_code_gen_epilogue;
329 }
330
331 log_cpu_exec(pc, cpu, tb);
332
333 return tb->tc.ptr;
334 }
335
336 /* Execute a TB, and fix up the CPU state afterwards if necessary */
337 /*
338 * Disable CFI checks.
339 * TCG creates binary blobs at runtime, with the transformed code.
340 * A TB is a blob of binary code, created at runtime and called with an
341 * indirect function call. Since such function did not exist at compile time,
342 * the CFI runtime has no way to verify its signature and would fail.
343 * TCG is not considered a security-sensitive part of QEMU so this does not
344 * affect the impact of CFI in environment with high security requirements
345 */
346 static inline TranslationBlock * QEMU_DISABLE_CFI
347 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
348 {
349 CPUArchState *env = cpu->env_ptr;
350 uintptr_t ret;
351 TranslationBlock *last_tb;
352 const void *tb_ptr = itb->tc.ptr;
353
354 log_cpu_exec(itb->pc, cpu, itb);
355
356 qemu_thread_jit_execute();
357 ret = tcg_qemu_tb_exec(env, tb_ptr);
358 cpu->can_do_io = 1;
359 /*
360 * TODO: Delay swapping back to the read-write region of the TB
361 * until we actually need to modify the TB. The read-only copy,
362 * coming from the rx region, shares the same host TLB entry as
363 * the code that executed the exit_tb opcode that arrived here.
364 * If we insist on touching both the RX and the RW pages, we
365 * double the host TLB pressure.
366 */
367 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
368 *tb_exit = ret & TB_EXIT_MASK;
369
370 trace_exec_tb_exit(last_tb, *tb_exit);
371
372 if (*tb_exit > TB_EXIT_IDX1) {
373 /* We didn't start executing this TB (eg because the instruction
374 * counter hit zero); we must restore the guest PC to the address
375 * of the start of the TB.
376 */
377 CPUClass *cc = CPU_GET_CLASS(cpu);
378 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
379 "Stopped execution of TB chain before %p ["
380 TARGET_FMT_lx "] %s\n",
381 last_tb->tc.ptr, last_tb->pc,
382 lookup_symbol(last_tb->pc));
383 if (cc->tcg_ops->synchronize_from_tb) {
384 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
385 } else {
386 assert(cc->set_pc);
387 cc->set_pc(cpu, last_tb->pc);
388 }
389 }
390
391 /*
392 * If gdb single-step, and we haven't raised another exception,
393 * raise a debug exception. Single-step with another exception
394 * is handled in cpu_handle_exception.
395 */
396 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
397 cpu->exception_index = EXCP_DEBUG;
398 cpu_loop_exit(cpu);
399 }
400
401 return last_tb;
402 }
403
404
405 static void cpu_exec_enter(CPUState *cpu)
406 {
407 CPUClass *cc = CPU_GET_CLASS(cpu);
408
409 if (cc->tcg_ops->cpu_exec_enter) {
410 cc->tcg_ops->cpu_exec_enter(cpu);
411 }
412 }
413
414 static void cpu_exec_exit(CPUState *cpu)
415 {
416 CPUClass *cc = CPU_GET_CLASS(cpu);
417
418 if (cc->tcg_ops->cpu_exec_exit) {
419 cc->tcg_ops->cpu_exec_exit(cpu);
420 }
421 }
422
423 void cpu_exec_step_atomic(CPUState *cpu)
424 {
425 CPUArchState *env = cpu->env_ptr;
426 TranslationBlock *tb;
427 target_ulong cs_base, pc;
428 uint32_t flags, cflags;
429 int tb_exit;
430
431 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
432 start_exclusive();
433 g_assert(cpu == current_cpu);
434 g_assert(!cpu->running);
435 cpu->running = true;
436
437 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
438
439 cflags = curr_cflags(cpu);
440 /* Execute in a serial context. */
441 cflags &= ~CF_PARALLEL;
442 /* After 1 insn, return and release the exclusive lock. */
443 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
444 /*
445 * No need to check_for_breakpoints here.
446 * We only arrive in cpu_exec_step_atomic after beginning execution
447 * of an insn that includes an atomic operation we can't handle.
448 * Any breakpoint for this insn will have been recognized earlier.
449 */
450
451 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
452 if (tb == NULL) {
453 mmap_lock();
454 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
455 mmap_unlock();
456 }
457
458 cpu_exec_enter(cpu);
459 /* execute the generated code */
460 trace_exec_tb(tb, pc);
461 cpu_tb_exec(cpu, tb, &tb_exit);
462 cpu_exec_exit(cpu);
463 } else {
464 /*
465 * The mmap_lock is dropped by tb_gen_code if it runs out of
466 * memory.
467 */
468 #ifndef CONFIG_SOFTMMU
469 clear_helper_retaddr();
470 tcg_debug_assert(!have_mmap_lock());
471 #endif
472 if (qemu_mutex_iothread_locked()) {
473 qemu_mutex_unlock_iothread();
474 }
475 assert_no_pages_locked();
476 qemu_plugin_disable_mem_helpers(cpu);
477 }
478
479 /*
480 * As we start the exclusive region before codegen we must still
481 * be in the region if we longjump out of either the codegen or
482 * the execution.
483 */
484 g_assert(cpu_in_exclusive_context(cpu));
485 cpu->running = false;
486 end_exclusive();
487 }
488
489 struct tb_desc {
490 target_ulong pc;
491 target_ulong cs_base;
492 CPUArchState *env;
493 tb_page_addr_t phys_page1;
494 uint32_t flags;
495 uint32_t cflags;
496 uint32_t trace_vcpu_dstate;
497 };
498
499 static bool tb_lookup_cmp(const void *p, const void *d)
500 {
501 const TranslationBlock *tb = p;
502 const struct tb_desc *desc = d;
503
504 if (tb->pc == desc->pc &&
505 tb->page_addr[0] == desc->phys_page1 &&
506 tb->cs_base == desc->cs_base &&
507 tb->flags == desc->flags &&
508 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
509 tb_cflags(tb) == desc->cflags) {
510 /* check next page if needed */
511 if (tb->page_addr[1] == -1) {
512 return true;
513 } else {
514 tb_page_addr_t phys_page2;
515 target_ulong virt_page2;
516
517 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
518 phys_page2 = get_page_addr_code(desc->env, virt_page2);
519 if (tb->page_addr[1] == phys_page2) {
520 return true;
521 }
522 }
523 }
524 return false;
525 }
526
527 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
528 target_ulong cs_base, uint32_t flags,
529 uint32_t cflags)
530 {
531 tb_page_addr_t phys_pc;
532 struct tb_desc desc;
533 uint32_t h;
534
535 desc.env = cpu->env_ptr;
536 desc.cs_base = cs_base;
537 desc.flags = flags;
538 desc.cflags = cflags;
539 desc.trace_vcpu_dstate = *cpu->trace_dstate;
540 desc.pc = pc;
541 phys_pc = get_page_addr_code(desc.env, pc);
542 if (phys_pc == -1) {
543 return NULL;
544 }
545 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
546 h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
547 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
548 }
549
550 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
551 {
552 if (TCG_TARGET_HAS_direct_jump) {
553 uintptr_t offset = tb->jmp_target_arg[n];
554 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
555 uintptr_t jmp_rx = tc_ptr + offset;
556 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
557 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
558 } else {
559 tb->jmp_target_arg[n] = addr;
560 }
561 }
562
563 static inline void tb_add_jump(TranslationBlock *tb, int n,
564 TranslationBlock *tb_next)
565 {
566 uintptr_t old;
567
568 qemu_thread_jit_write();
569 assert(n < ARRAY_SIZE(tb->jmp_list_next));
570 qemu_spin_lock(&tb_next->jmp_lock);
571
572 /* make sure the destination TB is valid */
573 if (tb_next->cflags & CF_INVALID) {
574 goto out_unlock_next;
575 }
576 /* Atomically claim the jump destination slot only if it was NULL */
577 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
578 (uintptr_t)tb_next);
579 if (old) {
580 goto out_unlock_next;
581 }
582
583 /* patch the native jump address */
584 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
585
586 /* add in TB jmp list */
587 tb->jmp_list_next[n] = tb_next->jmp_list_head;
588 tb_next->jmp_list_head = (uintptr_t)tb | n;
589
590 qemu_spin_unlock(&tb_next->jmp_lock);
591
592 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
593 "Linking TBs %p [" TARGET_FMT_lx
594 "] index %d -> %p [" TARGET_FMT_lx "]\n",
595 tb->tc.ptr, tb->pc, n,
596 tb_next->tc.ptr, tb_next->pc);
597 return;
598
599 out_unlock_next:
600 qemu_spin_unlock(&tb_next->jmp_lock);
601 return;
602 }
603
604 static inline bool cpu_handle_halt(CPUState *cpu)
605 {
606 #ifndef CONFIG_USER_ONLY
607 if (cpu->halted) {
608 #if defined(TARGET_I386)
609 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
610 X86CPU *x86_cpu = X86_CPU(cpu);
611 qemu_mutex_lock_iothread();
612 apic_poll_irq(x86_cpu->apic_state);
613 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
614 qemu_mutex_unlock_iothread();
615 }
616 #endif /* TARGET_I386 */
617 if (!cpu_has_work(cpu)) {
618 return true;
619 }
620
621 cpu->halted = 0;
622 }
623 #endif /* !CONFIG_USER_ONLY */
624
625 return false;
626 }
627
628 static inline void cpu_handle_debug_exception(CPUState *cpu)
629 {
630 CPUClass *cc = CPU_GET_CLASS(cpu);
631 CPUWatchpoint *wp;
632
633 if (!cpu->watchpoint_hit) {
634 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
635 wp->flags &= ~BP_WATCHPOINT_HIT;
636 }
637 }
638
639 if (cc->tcg_ops->debug_excp_handler) {
640 cc->tcg_ops->debug_excp_handler(cpu);
641 }
642 }
643
644 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
645 {
646 if (cpu->exception_index < 0) {
647 #ifndef CONFIG_USER_ONLY
648 if (replay_has_exception()
649 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
650 /* Execute just one insn to trigger exception pending in the log */
651 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
652 | CF_NOIRQ | 1;
653 }
654 #endif
655 return false;
656 }
657 if (cpu->exception_index >= EXCP_INTERRUPT) {
658 /* exit request from the cpu execution loop */
659 *ret = cpu->exception_index;
660 if (*ret == EXCP_DEBUG) {
661 cpu_handle_debug_exception(cpu);
662 }
663 cpu->exception_index = -1;
664 return true;
665 } else {
666 #if defined(CONFIG_USER_ONLY)
667 /* if user mode only, we simulate a fake exception
668 which will be handled outside the cpu execution
669 loop */
670 #if defined(TARGET_I386)
671 CPUClass *cc = CPU_GET_CLASS(cpu);
672 cc->tcg_ops->fake_user_interrupt(cpu);
673 #endif /* TARGET_I386 */
674 *ret = cpu->exception_index;
675 cpu->exception_index = -1;
676 return true;
677 #else
678 if (replay_exception()) {
679 CPUClass *cc = CPU_GET_CLASS(cpu);
680 qemu_mutex_lock_iothread();
681 cc->tcg_ops->do_interrupt(cpu);
682 qemu_mutex_unlock_iothread();
683 cpu->exception_index = -1;
684
685 if (unlikely(cpu->singlestep_enabled)) {
686 /*
687 * After processing the exception, ensure an EXCP_DEBUG is
688 * raised when single-stepping so that GDB doesn't miss the
689 * next instruction.
690 */
691 *ret = EXCP_DEBUG;
692 cpu_handle_debug_exception(cpu);
693 return true;
694 }
695 } else if (!replay_has_interrupt()) {
696 /* give a chance to iothread in replay mode */
697 *ret = EXCP_INTERRUPT;
698 return true;
699 }
700 #endif
701 }
702
703 return false;
704 }
705
706 #ifndef CONFIG_USER_ONLY
707 /*
708 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
709 * "real" interrupt event later. It does not need to be recorded for
710 * replay purposes.
711 */
712 static inline bool need_replay_interrupt(int interrupt_request)
713 {
714 #if defined(TARGET_I386)
715 return !(interrupt_request & CPU_INTERRUPT_POLL);
716 #else
717 return true;
718 #endif
719 }
720 #endif /* !CONFIG_USER_ONLY */
721
722 static inline bool cpu_handle_interrupt(CPUState *cpu,
723 TranslationBlock **last_tb)
724 {
725 /*
726 * If we have requested custom cflags with CF_NOIRQ we should
727 * skip checking here. Any pending interrupts will get picked up
728 * by the next TB we execute under normal cflags.
729 */
730 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
731 return false;
732 }
733
734 /* Clear the interrupt flag now since we're processing
735 * cpu->interrupt_request and cpu->exit_request.
736 * Ensure zeroing happens before reading cpu->exit_request or
737 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
738 */
739 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
740
741 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
742 int interrupt_request;
743 qemu_mutex_lock_iothread();
744 interrupt_request = cpu->interrupt_request;
745 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
746 /* Mask out external interrupts for this step. */
747 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
748 }
749 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
750 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
751 cpu->exception_index = EXCP_DEBUG;
752 qemu_mutex_unlock_iothread();
753 return true;
754 }
755 #if !defined(CONFIG_USER_ONLY)
756 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
757 /* Do nothing */
758 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
759 replay_interrupt();
760 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
761 cpu->halted = 1;
762 cpu->exception_index = EXCP_HLT;
763 qemu_mutex_unlock_iothread();
764 return true;
765 }
766 #if defined(TARGET_I386)
767 else if (interrupt_request & CPU_INTERRUPT_INIT) {
768 X86CPU *x86_cpu = X86_CPU(cpu);
769 CPUArchState *env = &x86_cpu->env;
770 replay_interrupt();
771 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
772 do_cpu_init(x86_cpu);
773 cpu->exception_index = EXCP_HALTED;
774 qemu_mutex_unlock_iothread();
775 return true;
776 }
777 #else
778 else if (interrupt_request & CPU_INTERRUPT_RESET) {
779 replay_interrupt();
780 cpu_reset(cpu);
781 qemu_mutex_unlock_iothread();
782 return true;
783 }
784 #endif /* !TARGET_I386 */
785 /* The target hook has 3 exit conditions:
786 False when the interrupt isn't processed,
787 True when it is, and we should restart on a new TB,
788 and via longjmp via cpu_loop_exit. */
789 else {
790 CPUClass *cc = CPU_GET_CLASS(cpu);
791
792 if (cc->tcg_ops->cpu_exec_interrupt &&
793 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
794 if (need_replay_interrupt(interrupt_request)) {
795 replay_interrupt();
796 }
797 /*
798 * After processing the interrupt, ensure an EXCP_DEBUG is
799 * raised when single-stepping so that GDB doesn't miss the
800 * next instruction.
801 */
802 if (unlikely(cpu->singlestep_enabled)) {
803 cpu->exception_index = EXCP_DEBUG;
804 qemu_mutex_unlock_iothread();
805 return true;
806 }
807 cpu->exception_index = -1;
808 *last_tb = NULL;
809 }
810 /* The target hook may have updated the 'cpu->interrupt_request';
811 * reload the 'interrupt_request' value */
812 interrupt_request = cpu->interrupt_request;
813 }
814 #endif /* !CONFIG_USER_ONLY */
815 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
816 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
817 /* ensure that no TB jump will be modified as
818 the program flow was changed */
819 *last_tb = NULL;
820 }
821
822 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
823 qemu_mutex_unlock_iothread();
824 }
825
826 /* Finally, check if we need to exit to the main loop. */
827 if (unlikely(qatomic_read(&cpu->exit_request))
828 || (icount_enabled()
829 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
830 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
831 qatomic_set(&cpu->exit_request, 0);
832 if (cpu->exception_index == -1) {
833 cpu->exception_index = EXCP_INTERRUPT;
834 }
835 return true;
836 }
837
838 return false;
839 }
840
841 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
842 TranslationBlock **last_tb, int *tb_exit)
843 {
844 int32_t insns_left;
845
846 trace_exec_tb(tb, tb->pc);
847 tb = cpu_tb_exec(cpu, tb, tb_exit);
848 if (*tb_exit != TB_EXIT_REQUESTED) {
849 *last_tb = tb;
850 return;
851 }
852
853 *last_tb = NULL;
854 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
855 if (insns_left < 0) {
856 /* Something asked us to stop executing chained TBs; just
857 * continue round the main loop. Whatever requested the exit
858 * will also have set something else (eg exit_request or
859 * interrupt_request) which will be handled by
860 * cpu_handle_interrupt. cpu_handle_interrupt will also
861 * clear cpu->icount_decr.u16.high.
862 */
863 return;
864 }
865
866 /* Instruction counter expired. */
867 assert(icount_enabled());
868 #ifndef CONFIG_USER_ONLY
869 /* Ensure global icount has gone forward */
870 icount_update(cpu);
871 /* Refill decrementer and continue execution. */
872 insns_left = MIN(0xffff, cpu->icount_budget);
873 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
874 cpu->icount_extra = cpu->icount_budget - insns_left;
875
876 /*
877 * If the next tb has more instructions than we have left to
878 * execute we need to ensure we find/generate a TB with exactly
879 * insns_left instructions in it.
880 */
881 if (insns_left > 0 && insns_left < tb->icount) {
882 assert(insns_left <= CF_COUNT_MASK);
883 assert(cpu->icount_extra == 0);
884 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
885 }
886 #endif
887 }
888
889 /* main execution loop */
890
891 int cpu_exec(CPUState *cpu)
892 {
893 int ret;
894 SyncClocks sc = { 0 };
895
896 /* replay_interrupt may need current_cpu */
897 current_cpu = cpu;
898
899 if (cpu_handle_halt(cpu)) {
900 return EXCP_HALTED;
901 }
902
903 rcu_read_lock();
904
905 cpu_exec_enter(cpu);
906
907 /* Calculate difference between guest clock and host clock.
908 * This delay includes the delay of the last cycle, so
909 * what we have to do is sleep until it is 0. As for the
910 * advance/delay we gain here, we try to fix it next time.
911 */
912 init_delay_params(&sc, cpu);
913
914 /* prepare setjmp context for exception handling */
915 if (sigsetjmp(cpu->jmp_env, 0) != 0) {
916 #if defined(__clang__)
917 /*
918 * Some compilers wrongly smash all local variables after
919 * siglongjmp (the spec requires that only non-volatile locals
920 * which are changed between the sigsetjmp and siglongjmp are
921 * permitted to be trashed). There were bug reports for gcc
922 * 4.5.0 and clang. The bug is fixed in all versions of gcc
923 * that we support, but is still unfixed in clang:
924 * https://bugs.llvm.org/show_bug.cgi?id=21183
925 *
926 * Reload an essential local variable here for those compilers.
927 * Newer versions of gcc would complain about this code (-Wclobbered),
928 * so we only perform the workaround for clang.
929 */
930 cpu = current_cpu;
931 #else
932 /* Non-buggy compilers preserve this; assert the correct value. */
933 g_assert(cpu == current_cpu);
934 #endif
935
936 #ifndef CONFIG_SOFTMMU
937 clear_helper_retaddr();
938 tcg_debug_assert(!have_mmap_lock());
939 #endif
940 if (qemu_mutex_iothread_locked()) {
941 qemu_mutex_unlock_iothread();
942 }
943 qemu_plugin_disable_mem_helpers(cpu);
944
945 assert_no_pages_locked();
946 }
947
948 /* if an exception is pending, we execute it here */
949 while (!cpu_handle_exception(cpu, &ret)) {
950 TranslationBlock *last_tb = NULL;
951 int tb_exit = 0;
952
953 while (!cpu_handle_interrupt(cpu, &last_tb)) {
954 TranslationBlock *tb;
955 target_ulong cs_base, pc;
956 uint32_t flags, cflags;
957
958 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
959
960 /*
961 * When requested, use an exact setting for cflags for the next
962 * execution. This is used for icount, precise smc, and stop-
963 * after-access watchpoints. Since this request should never
964 * have CF_INVALID set, -1 is a convenient invalid value that
965 * does not require tcg headers for cpu_common_reset.
966 */
967 cflags = cpu->cflags_next_tb;
968 if (cflags == -1) {
969 cflags = curr_cflags(cpu);
970 } else {
971 cpu->cflags_next_tb = -1;
972 }
973
974 if (check_for_breakpoints(cpu, pc, &cflags)) {
975 break;
976 }
977
978 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
979 if (tb == NULL) {
980 mmap_lock();
981 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
982 mmap_unlock();
983 /*
984 * We add the TB in the virtual pc hash table
985 * for the fast lookup
986 */
987 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
988 }
989
990 #ifndef CONFIG_USER_ONLY
991 /*
992 * We don't take care of direct jumps when address mapping
993 * changes in system emulation. So it's not safe to make a
994 * direct jump to a TB spanning two pages because the mapping
995 * for the second page can change.
996 */
997 if (tb->page_addr[1] != -1) {
998 last_tb = NULL;
999 }
1000 #endif
1001 /* See if we can patch the calling TB. */
1002 if (last_tb) {
1003 tb_add_jump(last_tb, tb_exit, tb);
1004 }
1005
1006 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
1007
1008 /* Try to align the host and virtual clocks
1009 if the guest is in advance */
1010 align_clocks(&sc, cpu);
1011 }
1012 }
1013
1014 cpu_exec_exit(cpu);
1015 rcu_read_unlock();
1016
1017 return ret;
1018 }
1019
1020 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1021 {
1022 static bool tcg_target_initialized;
1023 CPUClass *cc = CPU_GET_CLASS(cpu);
1024
1025 if (!tcg_target_initialized) {
1026 cc->tcg_ops->initialize();
1027 tcg_target_initialized = true;
1028 }
1029 tlb_init(cpu);
1030 qemu_plugin_vcpu_init_hook(cpu);
1031
1032 #ifndef CONFIG_USER_ONLY
1033 tcg_iommu_init_notifier_list(cpu);
1034 #endif /* !CONFIG_USER_ONLY */
1035 }
1036
1037 /* undo the initializations in reverse order */
1038 void tcg_exec_unrealizefn(CPUState *cpu)
1039 {
1040 #ifndef CONFIG_USER_ONLY
1041 tcg_iommu_free_notifier_list(cpu);
1042 #endif /* !CONFIG_USER_ONLY */
1043
1044 qemu_plugin_vcpu_exit_hook(cpu);
1045 tlb_destroy(cpu);
1046 }
1047
1048 #ifndef CONFIG_USER_ONLY
1049
1050 void dump_drift_info(GString *buf)
1051 {
1052 if (!icount_enabled()) {
1053 return;
1054 }
1055
1056 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n",
1057 (cpu_get_clock() - icount_get()) / SCALE_MS);
1058 if (icount_align_option) {
1059 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n",
1060 -max_delay / SCALE_MS);
1061 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n",
1062 max_advance / SCALE_MS);
1063 } else {
1064 g_string_append_printf(buf, "Max guest delay NA\n");
1065 g_string_append_printf(buf, "Max guest advance NA\n");
1066 }
1067 }
1068
1069 HumanReadableText *qmp_x_query_jit(Error **errp)
1070 {
1071 g_autoptr(GString) buf = g_string_new("");
1072
1073 if (!tcg_enabled()) {
1074 error_setg(errp, "JIT information is only available with accel=tcg");
1075 return NULL;
1076 }
1077
1078 dump_exec_info(buf);
1079 dump_drift_info(buf);
1080
1081 return human_readable_text_from_str(buf);
1082 }
1083
1084 HumanReadableText *qmp_x_query_opcount(Error **errp)
1085 {
1086 g_autoptr(GString) buf = g_string_new("");
1087
1088 if (!tcg_enabled()) {
1089 error_setg(errp, "Opcode count information is only available with accel=tcg");
1090 return NULL;
1091 }
1092
1093 dump_opcount_info(buf);
1094
1095 return human_readable_text_from_str(buf);
1096 }
1097
1098 #ifdef CONFIG_PROFILER
1099
1100 int64_t dev_time;
1101
1102 HumanReadableText *qmp_x_query_profile(Error **errp)
1103 {
1104 g_autoptr(GString) buf = g_string_new("");
1105 static int64_t last_cpu_exec_time;
1106 int64_t cpu_exec_time;
1107 int64_t delta;
1108
1109 cpu_exec_time = tcg_cpu_exec_time();
1110 delta = cpu_exec_time - last_cpu_exec_time;
1111
1112 g_string_append_printf(buf, "async time %" PRId64 " (%0.3f)\n",
1113 dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1114 g_string_append_printf(buf, "qemu time %" PRId64 " (%0.3f)\n",
1115 delta, delta / (double)NANOSECONDS_PER_SECOND);
1116 last_cpu_exec_time = cpu_exec_time;
1117 dev_time = 0;
1118
1119 return human_readable_text_from_str(buf);
1120 }
1121 #else
1122 HumanReadableText *qmp_x_query_profile(Error **errp)
1123 {
1124 error_setg(errp, "Internal profiler not compiled");
1125 return NULL;
1126 }
1127 #endif
1128
1129 #endif /* !CONFIG_USER_ONLY */