]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
Merge tag 'pull-tcg-20220420' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/qapi-commands-machine.h"
24 #include "qapi/type-helpers.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "qemu/atomic.h"
31 #include "qemu/compiler.h"
32 #include "qemu/timer.h"
33 #include "qemu/rcu.h"
34 #include "exec/log.h"
35 #include "qemu/main-loop.h"
36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
37 #include "hw/i386/apic.h"
38 #endif
39 #include "sysemu/cpus.h"
40 #include "exec/cpu-all.h"
41 #include "sysemu/cpu-timers.h"
42 #include "sysemu/replay.h"
43 #include "sysemu/tcg.h"
44 #include "exec/helper-proto.h"
45 #include "tb-hash.h"
46 #include "tb-context.h"
47 #include "internal.h"
48
49 /* -icount align implementation. */
50
51 typedef struct SyncClocks {
52 int64_t diff_clk;
53 int64_t last_cpu_icount;
54 int64_t realtime_clock;
55 } SyncClocks;
56
57 #if !defined(CONFIG_USER_ONLY)
58 /* Allow the guest to have a max 3ms advance.
59 * The difference between the 2 clocks could therefore
60 * oscillate around 0.
61 */
62 #define VM_CLOCK_ADVANCE 3000000
63 #define THRESHOLD_REDUCE 1.5
64 #define MAX_DELAY_PRINT_RATE 2000000000LL
65 #define MAX_NB_PRINTS 100
66
67 static int64_t max_delay;
68 static int64_t max_advance;
69
70 static void align_clocks(SyncClocks *sc, CPUState *cpu)
71 {
72 int64_t cpu_icount;
73
74 if (!icount_align_option) {
75 return;
76 }
77
78 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
80 sc->last_cpu_icount = cpu_icount;
81
82 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
83 #ifndef _WIN32
84 struct timespec sleep_delay, rem_delay;
85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
87 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
89 } else {
90 sc->diff_clk = 0;
91 }
92 #else
93 Sleep(sc->diff_clk / SCALE_MS);
94 sc->diff_clk = 0;
95 #endif
96 }
97 }
98
99 static void print_delay(const SyncClocks *sc)
100 {
101 static float threshold_delay;
102 static int64_t last_realtime_clock;
103 static int nb_prints;
104
105 if (icount_align_option &&
106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
107 nb_prints < MAX_NB_PRINTS) {
108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
109 (-sc->diff_clk / (float)1000000000LL <
110 (threshold_delay - THRESHOLD_REDUCE))) {
111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
113 threshold_delay - 1,
114 threshold_delay);
115 nb_prints++;
116 last_realtime_clock = sc->realtime_clock;
117 }
118 }
119 }
120
121 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
122 {
123 if (!icount_align_option) {
124 return;
125 }
126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
128 sc->last_cpu_icount
129 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
130 if (sc->diff_clk < max_delay) {
131 max_delay = sc->diff_clk;
132 }
133 if (sc->diff_clk > max_advance) {
134 max_advance = sc->diff_clk;
135 }
136
137 /* Print every 2s max if the guest is late. We limit the number
138 of printed messages to NB_PRINT_MAX(currently 100) */
139 print_delay(sc);
140 }
141 #else
142 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
143 {
144 }
145
146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
147 {
148 }
149 #endif /* CONFIG USER ONLY */
150
151 uint32_t curr_cflags(CPUState *cpu)
152 {
153 uint32_t cflags = cpu->tcg_cflags;
154
155 /*
156 * Record gdb single-step. We should be exiting the TB by raising
157 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
158 *
159 * For singlestep and -d nochain, suppress goto_tb so that
160 * we can log -d cpu,exec after every TB.
161 */
162 if (unlikely(cpu->singlestep_enabled)) {
163 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
164 } else if (singlestep) {
165 cflags |= CF_NO_GOTO_TB | 1;
166 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
167 cflags |= CF_NO_GOTO_TB;
168 }
169
170 return cflags;
171 }
172
173 /* Might cause an exception, so have a longjmp destination ready */
174 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
175 target_ulong cs_base,
176 uint32_t flags, uint32_t cflags)
177 {
178 TranslationBlock *tb;
179 uint32_t hash;
180
181 /* we should never be trying to look up an INVALID tb */
182 tcg_debug_assert(!(cflags & CF_INVALID));
183
184 hash = tb_jmp_cache_hash_func(pc);
185 tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
186
187 if (likely(tb &&
188 tb->pc == pc &&
189 tb->cs_base == cs_base &&
190 tb->flags == flags &&
191 tb->trace_vcpu_dstate == *cpu->trace_dstate &&
192 tb_cflags(tb) == cflags)) {
193 return tb;
194 }
195 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
196 if (tb == NULL) {
197 return NULL;
198 }
199 qatomic_set(&cpu->tb_jmp_cache[hash], tb);
200 return tb;
201 }
202
203 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
204 const TranslationBlock *tb)
205 {
206 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
207 && qemu_log_in_addr_range(pc)) {
208
209 qemu_log_mask(CPU_LOG_EXEC,
210 "Trace %d: %p [" TARGET_FMT_lx
211 "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
212 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
213 tb->flags, tb->cflags, lookup_symbol(pc));
214
215 #if defined(DEBUG_DISAS)
216 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
217 FILE *logfile = qemu_log_trylock();
218 if (logfile) {
219 int flags = 0;
220
221 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
222 flags |= CPU_DUMP_FPU;
223 }
224 #if defined(TARGET_I386)
225 flags |= CPU_DUMP_CCOP;
226 #endif
227 cpu_dump_state(cpu, logfile, flags);
228 qemu_log_unlock(logfile);
229 }
230 }
231 #endif /* DEBUG_DISAS */
232 }
233 }
234
235 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
236 uint32_t *cflags)
237 {
238 CPUBreakpoint *bp;
239 bool match_page = false;
240
241 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
242 return false;
243 }
244
245 /*
246 * Singlestep overrides breakpoints.
247 * This requirement is visible in the record-replay tests, where
248 * we would fail to make forward progress in reverse-continue.
249 *
250 * TODO: gdb singlestep should only override gdb breakpoints,
251 * so that one could (gdb) singlestep into the guest kernel's
252 * architectural breakpoint handler.
253 */
254 if (cpu->singlestep_enabled) {
255 return false;
256 }
257
258 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
259 /*
260 * If we have an exact pc match, trigger the breakpoint.
261 * Otherwise, note matches within the page.
262 */
263 if (pc == bp->pc) {
264 bool match_bp = false;
265
266 if (bp->flags & BP_GDB) {
267 match_bp = true;
268 } else if (bp->flags & BP_CPU) {
269 #ifdef CONFIG_USER_ONLY
270 g_assert_not_reached();
271 #else
272 CPUClass *cc = CPU_GET_CLASS(cpu);
273 assert(cc->tcg_ops->debug_check_breakpoint);
274 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
275 #endif
276 }
277
278 if (match_bp) {
279 cpu->exception_index = EXCP_DEBUG;
280 return true;
281 }
282 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
283 match_page = true;
284 }
285 }
286
287 /*
288 * Within the same page as a breakpoint, single-step,
289 * returning to helper_lookup_tb_ptr after each insn looking
290 * for the actual breakpoint.
291 *
292 * TODO: Perhaps better to record all of the TBs associated
293 * with a given virtual page that contains a breakpoint, and
294 * then invalidate them when a new overlapping breakpoint is
295 * set on the page. Non-overlapping TBs would not be
296 * invalidated, nor would any TB need to be invalidated as
297 * breakpoints are removed.
298 */
299 if (match_page) {
300 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
301 }
302 return false;
303 }
304
305 /**
306 * helper_lookup_tb_ptr: quick check for next tb
307 * @env: current cpu state
308 *
309 * Look for an existing TB matching the current cpu state.
310 * If found, return the code pointer. If not found, return
311 * the tcg epilogue so that we return into cpu_tb_exec.
312 */
313 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
314 {
315 CPUState *cpu = env_cpu(env);
316 TranslationBlock *tb;
317 target_ulong cs_base, pc;
318 uint32_t flags, cflags;
319
320 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
321
322 cflags = curr_cflags(cpu);
323 if (check_for_breakpoints(cpu, pc, &cflags)) {
324 cpu_loop_exit(cpu);
325 }
326
327 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
328 if (tb == NULL) {
329 return tcg_code_gen_epilogue;
330 }
331
332 log_cpu_exec(pc, cpu, tb);
333
334 return tb->tc.ptr;
335 }
336
337 /* Execute a TB, and fix up the CPU state afterwards if necessary */
338 /*
339 * Disable CFI checks.
340 * TCG creates binary blobs at runtime, with the transformed code.
341 * A TB is a blob of binary code, created at runtime and called with an
342 * indirect function call. Since such function did not exist at compile time,
343 * the CFI runtime has no way to verify its signature and would fail.
344 * TCG is not considered a security-sensitive part of QEMU so this does not
345 * affect the impact of CFI in environment with high security requirements
346 */
347 static inline TranslationBlock * QEMU_DISABLE_CFI
348 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
349 {
350 CPUArchState *env = cpu->env_ptr;
351 uintptr_t ret;
352 TranslationBlock *last_tb;
353 const void *tb_ptr = itb->tc.ptr;
354
355 log_cpu_exec(itb->pc, cpu, itb);
356
357 qemu_thread_jit_execute();
358 ret = tcg_qemu_tb_exec(env, tb_ptr);
359 cpu->can_do_io = 1;
360 /*
361 * TODO: Delay swapping back to the read-write region of the TB
362 * until we actually need to modify the TB. The read-only copy,
363 * coming from the rx region, shares the same host TLB entry as
364 * the code that executed the exit_tb opcode that arrived here.
365 * If we insist on touching both the RX and the RW pages, we
366 * double the host TLB pressure.
367 */
368 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
369 *tb_exit = ret & TB_EXIT_MASK;
370
371 trace_exec_tb_exit(last_tb, *tb_exit);
372
373 if (*tb_exit > TB_EXIT_IDX1) {
374 /* We didn't start executing this TB (eg because the instruction
375 * counter hit zero); we must restore the guest PC to the address
376 * of the start of the TB.
377 */
378 CPUClass *cc = CPU_GET_CLASS(cpu);
379 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
380 "Stopped execution of TB chain before %p ["
381 TARGET_FMT_lx "] %s\n",
382 last_tb->tc.ptr, last_tb->pc,
383 lookup_symbol(last_tb->pc));
384 if (cc->tcg_ops->synchronize_from_tb) {
385 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
386 } else {
387 assert(cc->set_pc);
388 cc->set_pc(cpu, last_tb->pc);
389 }
390 }
391
392 /*
393 * If gdb single-step, and we haven't raised another exception,
394 * raise a debug exception. Single-step with another exception
395 * is handled in cpu_handle_exception.
396 */
397 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
398 cpu->exception_index = EXCP_DEBUG;
399 cpu_loop_exit(cpu);
400 }
401
402 return last_tb;
403 }
404
405
406 static void cpu_exec_enter(CPUState *cpu)
407 {
408 CPUClass *cc = CPU_GET_CLASS(cpu);
409
410 if (cc->tcg_ops->cpu_exec_enter) {
411 cc->tcg_ops->cpu_exec_enter(cpu);
412 }
413 }
414
415 static void cpu_exec_exit(CPUState *cpu)
416 {
417 CPUClass *cc = CPU_GET_CLASS(cpu);
418
419 if (cc->tcg_ops->cpu_exec_exit) {
420 cc->tcg_ops->cpu_exec_exit(cpu);
421 }
422 }
423
424 void cpu_exec_step_atomic(CPUState *cpu)
425 {
426 CPUArchState *env = cpu->env_ptr;
427 TranslationBlock *tb;
428 target_ulong cs_base, pc;
429 uint32_t flags, cflags;
430 int tb_exit;
431
432 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
433 start_exclusive();
434 g_assert(cpu == current_cpu);
435 g_assert(!cpu->running);
436 cpu->running = true;
437
438 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
439
440 cflags = curr_cflags(cpu);
441 /* Execute in a serial context. */
442 cflags &= ~CF_PARALLEL;
443 /* After 1 insn, return and release the exclusive lock. */
444 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
445 /*
446 * No need to check_for_breakpoints here.
447 * We only arrive in cpu_exec_step_atomic after beginning execution
448 * of an insn that includes an atomic operation we can't handle.
449 * Any breakpoint for this insn will have been recognized earlier.
450 */
451
452 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
453 if (tb == NULL) {
454 mmap_lock();
455 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
456 mmap_unlock();
457 }
458
459 cpu_exec_enter(cpu);
460 /* execute the generated code */
461 trace_exec_tb(tb, pc);
462 cpu_tb_exec(cpu, tb, &tb_exit);
463 cpu_exec_exit(cpu);
464 } else {
465 /*
466 * The mmap_lock is dropped by tb_gen_code if it runs out of
467 * memory.
468 */
469 #ifndef CONFIG_SOFTMMU
470 clear_helper_retaddr();
471 tcg_debug_assert(!have_mmap_lock());
472 #endif
473 if (qemu_mutex_iothread_locked()) {
474 qemu_mutex_unlock_iothread();
475 }
476 assert_no_pages_locked();
477 qemu_plugin_disable_mem_helpers(cpu);
478 }
479
480 /*
481 * As we start the exclusive region before codegen we must still
482 * be in the region if we longjump out of either the codegen or
483 * the execution.
484 */
485 g_assert(cpu_in_exclusive_context(cpu));
486 cpu->running = false;
487 end_exclusive();
488 }
489
490 struct tb_desc {
491 target_ulong pc;
492 target_ulong cs_base;
493 CPUArchState *env;
494 tb_page_addr_t phys_page1;
495 uint32_t flags;
496 uint32_t cflags;
497 uint32_t trace_vcpu_dstate;
498 };
499
500 static bool tb_lookup_cmp(const void *p, const void *d)
501 {
502 const TranslationBlock *tb = p;
503 const struct tb_desc *desc = d;
504
505 if (tb->pc == desc->pc &&
506 tb->page_addr[0] == desc->phys_page1 &&
507 tb->cs_base == desc->cs_base &&
508 tb->flags == desc->flags &&
509 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
510 tb_cflags(tb) == desc->cflags) {
511 /* check next page if needed */
512 if (tb->page_addr[1] == -1) {
513 return true;
514 } else {
515 tb_page_addr_t phys_page2;
516 target_ulong virt_page2;
517
518 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
519 phys_page2 = get_page_addr_code(desc->env, virt_page2);
520 if (tb->page_addr[1] == phys_page2) {
521 return true;
522 }
523 }
524 }
525 return false;
526 }
527
528 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
529 target_ulong cs_base, uint32_t flags,
530 uint32_t cflags)
531 {
532 tb_page_addr_t phys_pc;
533 struct tb_desc desc;
534 uint32_t h;
535
536 desc.env = cpu->env_ptr;
537 desc.cs_base = cs_base;
538 desc.flags = flags;
539 desc.cflags = cflags;
540 desc.trace_vcpu_dstate = *cpu->trace_dstate;
541 desc.pc = pc;
542 phys_pc = get_page_addr_code(desc.env, pc);
543 if (phys_pc == -1) {
544 return NULL;
545 }
546 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
547 h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
548 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
549 }
550
551 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
552 {
553 if (TCG_TARGET_HAS_direct_jump) {
554 uintptr_t offset = tb->jmp_target_arg[n];
555 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
556 uintptr_t jmp_rx = tc_ptr + offset;
557 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
558 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
559 } else {
560 tb->jmp_target_arg[n] = addr;
561 }
562 }
563
564 static inline void tb_add_jump(TranslationBlock *tb, int n,
565 TranslationBlock *tb_next)
566 {
567 uintptr_t old;
568
569 qemu_thread_jit_write();
570 assert(n < ARRAY_SIZE(tb->jmp_list_next));
571 qemu_spin_lock(&tb_next->jmp_lock);
572
573 /* make sure the destination TB is valid */
574 if (tb_next->cflags & CF_INVALID) {
575 goto out_unlock_next;
576 }
577 /* Atomically claim the jump destination slot only if it was NULL */
578 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
579 (uintptr_t)tb_next);
580 if (old) {
581 goto out_unlock_next;
582 }
583
584 /* patch the native jump address */
585 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
586
587 /* add in TB jmp list */
588 tb->jmp_list_next[n] = tb_next->jmp_list_head;
589 tb_next->jmp_list_head = (uintptr_t)tb | n;
590
591 qemu_spin_unlock(&tb_next->jmp_lock);
592
593 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
594 "Linking TBs %p [" TARGET_FMT_lx
595 "] index %d -> %p [" TARGET_FMT_lx "]\n",
596 tb->tc.ptr, tb->pc, n,
597 tb_next->tc.ptr, tb_next->pc);
598 return;
599
600 out_unlock_next:
601 qemu_spin_unlock(&tb_next->jmp_lock);
602 return;
603 }
604
605 static inline bool cpu_handle_halt(CPUState *cpu)
606 {
607 #ifndef CONFIG_USER_ONLY
608 if (cpu->halted) {
609 #if defined(TARGET_I386)
610 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
611 X86CPU *x86_cpu = X86_CPU(cpu);
612 qemu_mutex_lock_iothread();
613 apic_poll_irq(x86_cpu->apic_state);
614 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
615 qemu_mutex_unlock_iothread();
616 }
617 #endif /* TARGET_I386 */
618 if (!cpu_has_work(cpu)) {
619 return true;
620 }
621
622 cpu->halted = 0;
623 }
624 #endif /* !CONFIG_USER_ONLY */
625
626 return false;
627 }
628
629 static inline void cpu_handle_debug_exception(CPUState *cpu)
630 {
631 CPUClass *cc = CPU_GET_CLASS(cpu);
632 CPUWatchpoint *wp;
633
634 if (!cpu->watchpoint_hit) {
635 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
636 wp->flags &= ~BP_WATCHPOINT_HIT;
637 }
638 }
639
640 if (cc->tcg_ops->debug_excp_handler) {
641 cc->tcg_ops->debug_excp_handler(cpu);
642 }
643 }
644
645 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
646 {
647 if (cpu->exception_index < 0) {
648 #ifndef CONFIG_USER_ONLY
649 if (replay_has_exception()
650 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
651 /* Execute just one insn to trigger exception pending in the log */
652 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
653 | CF_NOIRQ | 1;
654 }
655 #endif
656 return false;
657 }
658 if (cpu->exception_index >= EXCP_INTERRUPT) {
659 /* exit request from the cpu execution loop */
660 *ret = cpu->exception_index;
661 if (*ret == EXCP_DEBUG) {
662 cpu_handle_debug_exception(cpu);
663 }
664 cpu->exception_index = -1;
665 return true;
666 } else {
667 #if defined(CONFIG_USER_ONLY)
668 /* if user mode only, we simulate a fake exception
669 which will be handled outside the cpu execution
670 loop */
671 #if defined(TARGET_I386)
672 CPUClass *cc = CPU_GET_CLASS(cpu);
673 cc->tcg_ops->fake_user_interrupt(cpu);
674 #endif /* TARGET_I386 */
675 *ret = cpu->exception_index;
676 cpu->exception_index = -1;
677 return true;
678 #else
679 if (replay_exception()) {
680 CPUClass *cc = CPU_GET_CLASS(cpu);
681 qemu_mutex_lock_iothread();
682 cc->tcg_ops->do_interrupt(cpu);
683 qemu_mutex_unlock_iothread();
684 cpu->exception_index = -1;
685
686 if (unlikely(cpu->singlestep_enabled)) {
687 /*
688 * After processing the exception, ensure an EXCP_DEBUG is
689 * raised when single-stepping so that GDB doesn't miss the
690 * next instruction.
691 */
692 *ret = EXCP_DEBUG;
693 cpu_handle_debug_exception(cpu);
694 return true;
695 }
696 } else if (!replay_has_interrupt()) {
697 /* give a chance to iothread in replay mode */
698 *ret = EXCP_INTERRUPT;
699 return true;
700 }
701 #endif
702 }
703
704 return false;
705 }
706
707 #ifndef CONFIG_USER_ONLY
708 /*
709 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
710 * "real" interrupt event later. It does not need to be recorded for
711 * replay purposes.
712 */
713 static inline bool need_replay_interrupt(int interrupt_request)
714 {
715 #if defined(TARGET_I386)
716 return !(interrupt_request & CPU_INTERRUPT_POLL);
717 #else
718 return true;
719 #endif
720 }
721 #endif /* !CONFIG_USER_ONLY */
722
723 static inline bool cpu_handle_interrupt(CPUState *cpu,
724 TranslationBlock **last_tb)
725 {
726 /*
727 * If we have requested custom cflags with CF_NOIRQ we should
728 * skip checking here. Any pending interrupts will get picked up
729 * by the next TB we execute under normal cflags.
730 */
731 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
732 return false;
733 }
734
735 /* Clear the interrupt flag now since we're processing
736 * cpu->interrupt_request and cpu->exit_request.
737 * Ensure zeroing happens before reading cpu->exit_request or
738 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
739 */
740 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
741
742 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
743 int interrupt_request;
744 qemu_mutex_lock_iothread();
745 interrupt_request = cpu->interrupt_request;
746 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
747 /* Mask out external interrupts for this step. */
748 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
749 }
750 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
751 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
752 cpu->exception_index = EXCP_DEBUG;
753 qemu_mutex_unlock_iothread();
754 return true;
755 }
756 #if !defined(CONFIG_USER_ONLY)
757 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
758 /* Do nothing */
759 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
760 replay_interrupt();
761 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
762 cpu->halted = 1;
763 cpu->exception_index = EXCP_HLT;
764 qemu_mutex_unlock_iothread();
765 return true;
766 }
767 #if defined(TARGET_I386)
768 else if (interrupt_request & CPU_INTERRUPT_INIT) {
769 X86CPU *x86_cpu = X86_CPU(cpu);
770 CPUArchState *env = &x86_cpu->env;
771 replay_interrupt();
772 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
773 do_cpu_init(x86_cpu);
774 cpu->exception_index = EXCP_HALTED;
775 qemu_mutex_unlock_iothread();
776 return true;
777 }
778 #else
779 else if (interrupt_request & CPU_INTERRUPT_RESET) {
780 replay_interrupt();
781 cpu_reset(cpu);
782 qemu_mutex_unlock_iothread();
783 return true;
784 }
785 #endif /* !TARGET_I386 */
786 /* The target hook has 3 exit conditions:
787 False when the interrupt isn't processed,
788 True when it is, and we should restart on a new TB,
789 and via longjmp via cpu_loop_exit. */
790 else {
791 CPUClass *cc = CPU_GET_CLASS(cpu);
792
793 if (cc->tcg_ops->cpu_exec_interrupt &&
794 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
795 if (need_replay_interrupt(interrupt_request)) {
796 replay_interrupt();
797 }
798 /*
799 * After processing the interrupt, ensure an EXCP_DEBUG is
800 * raised when single-stepping so that GDB doesn't miss the
801 * next instruction.
802 */
803 if (unlikely(cpu->singlestep_enabled)) {
804 cpu->exception_index = EXCP_DEBUG;
805 qemu_mutex_unlock_iothread();
806 return true;
807 }
808 cpu->exception_index = -1;
809 *last_tb = NULL;
810 }
811 /* The target hook may have updated the 'cpu->interrupt_request';
812 * reload the 'interrupt_request' value */
813 interrupt_request = cpu->interrupt_request;
814 }
815 #endif /* !CONFIG_USER_ONLY */
816 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
817 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
818 /* ensure that no TB jump will be modified as
819 the program flow was changed */
820 *last_tb = NULL;
821 }
822
823 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
824 qemu_mutex_unlock_iothread();
825 }
826
827 /* Finally, check if we need to exit to the main loop. */
828 if (unlikely(qatomic_read(&cpu->exit_request))
829 || (icount_enabled()
830 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
831 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
832 qatomic_set(&cpu->exit_request, 0);
833 if (cpu->exception_index == -1) {
834 cpu->exception_index = EXCP_INTERRUPT;
835 }
836 return true;
837 }
838
839 return false;
840 }
841
842 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
843 TranslationBlock **last_tb, int *tb_exit)
844 {
845 int32_t insns_left;
846
847 trace_exec_tb(tb, tb->pc);
848 tb = cpu_tb_exec(cpu, tb, tb_exit);
849 if (*tb_exit != TB_EXIT_REQUESTED) {
850 *last_tb = tb;
851 return;
852 }
853
854 *last_tb = NULL;
855 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
856 if (insns_left < 0) {
857 /* Something asked us to stop executing chained TBs; just
858 * continue round the main loop. Whatever requested the exit
859 * will also have set something else (eg exit_request or
860 * interrupt_request) which will be handled by
861 * cpu_handle_interrupt. cpu_handle_interrupt will also
862 * clear cpu->icount_decr.u16.high.
863 */
864 return;
865 }
866
867 /* Instruction counter expired. */
868 assert(icount_enabled());
869 #ifndef CONFIG_USER_ONLY
870 /* Ensure global icount has gone forward */
871 icount_update(cpu);
872 /* Refill decrementer and continue execution. */
873 insns_left = MIN(0xffff, cpu->icount_budget);
874 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
875 cpu->icount_extra = cpu->icount_budget - insns_left;
876
877 /*
878 * If the next tb has more instructions than we have left to
879 * execute we need to ensure we find/generate a TB with exactly
880 * insns_left instructions in it.
881 */
882 if (insns_left > 0 && insns_left < tb->icount) {
883 assert(insns_left <= CF_COUNT_MASK);
884 assert(cpu->icount_extra == 0);
885 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
886 }
887 #endif
888 }
889
890 /* main execution loop */
891
892 int cpu_exec(CPUState *cpu)
893 {
894 int ret;
895 SyncClocks sc = { 0 };
896
897 /* replay_interrupt may need current_cpu */
898 current_cpu = cpu;
899
900 if (cpu_handle_halt(cpu)) {
901 return EXCP_HALTED;
902 }
903
904 rcu_read_lock();
905
906 cpu_exec_enter(cpu);
907
908 /* Calculate difference between guest clock and host clock.
909 * This delay includes the delay of the last cycle, so
910 * what we have to do is sleep until it is 0. As for the
911 * advance/delay we gain here, we try to fix it next time.
912 */
913 init_delay_params(&sc, cpu);
914
915 /* prepare setjmp context for exception handling */
916 if (sigsetjmp(cpu->jmp_env, 0) != 0) {
917 #if defined(__clang__)
918 /*
919 * Some compilers wrongly smash all local variables after
920 * siglongjmp (the spec requires that only non-volatile locals
921 * which are changed between the sigsetjmp and siglongjmp are
922 * permitted to be trashed). There were bug reports for gcc
923 * 4.5.0 and clang. The bug is fixed in all versions of gcc
924 * that we support, but is still unfixed in clang:
925 * https://bugs.llvm.org/show_bug.cgi?id=21183
926 *
927 * Reload an essential local variable here for those compilers.
928 * Newer versions of gcc would complain about this code (-Wclobbered),
929 * so we only perform the workaround for clang.
930 */
931 cpu = current_cpu;
932 #else
933 /* Non-buggy compilers preserve this; assert the correct value. */
934 g_assert(cpu == current_cpu);
935 #endif
936
937 #ifndef CONFIG_SOFTMMU
938 clear_helper_retaddr();
939 tcg_debug_assert(!have_mmap_lock());
940 #endif
941 if (qemu_mutex_iothread_locked()) {
942 qemu_mutex_unlock_iothread();
943 }
944 qemu_plugin_disable_mem_helpers(cpu);
945
946 assert_no_pages_locked();
947 }
948
949 /* if an exception is pending, we execute it here */
950 while (!cpu_handle_exception(cpu, &ret)) {
951 TranslationBlock *last_tb = NULL;
952 int tb_exit = 0;
953
954 while (!cpu_handle_interrupt(cpu, &last_tb)) {
955 TranslationBlock *tb;
956 target_ulong cs_base, pc;
957 uint32_t flags, cflags;
958
959 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
960
961 /*
962 * When requested, use an exact setting for cflags for the next
963 * execution. This is used for icount, precise smc, and stop-
964 * after-access watchpoints. Since this request should never
965 * have CF_INVALID set, -1 is a convenient invalid value that
966 * does not require tcg headers for cpu_common_reset.
967 */
968 cflags = cpu->cflags_next_tb;
969 if (cflags == -1) {
970 cflags = curr_cflags(cpu);
971 } else {
972 cpu->cflags_next_tb = -1;
973 }
974
975 if (check_for_breakpoints(cpu, pc, &cflags)) {
976 break;
977 }
978
979 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
980 if (tb == NULL) {
981 mmap_lock();
982 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
983 mmap_unlock();
984 /*
985 * We add the TB in the virtual pc hash table
986 * for the fast lookup
987 */
988 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
989 }
990
991 #ifndef CONFIG_USER_ONLY
992 /*
993 * We don't take care of direct jumps when address mapping
994 * changes in system emulation. So it's not safe to make a
995 * direct jump to a TB spanning two pages because the mapping
996 * for the second page can change.
997 */
998 if (tb->page_addr[1] != -1) {
999 last_tb = NULL;
1000 }
1001 #endif
1002 /* See if we can patch the calling TB. */
1003 if (last_tb) {
1004 tb_add_jump(last_tb, tb_exit, tb);
1005 }
1006
1007 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
1008
1009 /* Try to align the host and virtual clocks
1010 if the guest is in advance */
1011 align_clocks(&sc, cpu);
1012 }
1013 }
1014
1015 cpu_exec_exit(cpu);
1016 rcu_read_unlock();
1017
1018 return ret;
1019 }
1020
1021 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1022 {
1023 static bool tcg_target_initialized;
1024 CPUClass *cc = CPU_GET_CLASS(cpu);
1025
1026 if (!tcg_target_initialized) {
1027 cc->tcg_ops->initialize();
1028 tcg_target_initialized = true;
1029 }
1030 tlb_init(cpu);
1031 qemu_plugin_vcpu_init_hook(cpu);
1032
1033 #ifndef CONFIG_USER_ONLY
1034 tcg_iommu_init_notifier_list(cpu);
1035 #endif /* !CONFIG_USER_ONLY */
1036 }
1037
1038 /* undo the initializations in reverse order */
1039 void tcg_exec_unrealizefn(CPUState *cpu)
1040 {
1041 #ifndef CONFIG_USER_ONLY
1042 tcg_iommu_free_notifier_list(cpu);
1043 #endif /* !CONFIG_USER_ONLY */
1044
1045 qemu_plugin_vcpu_exit_hook(cpu);
1046 tlb_destroy(cpu);
1047 }
1048
1049 #ifndef CONFIG_USER_ONLY
1050
1051 void dump_drift_info(GString *buf)
1052 {
1053 if (!icount_enabled()) {
1054 return;
1055 }
1056
1057 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n",
1058 (cpu_get_clock() - icount_get()) / SCALE_MS);
1059 if (icount_align_option) {
1060 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n",
1061 -max_delay / SCALE_MS);
1062 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n",
1063 max_advance / SCALE_MS);
1064 } else {
1065 g_string_append_printf(buf, "Max guest delay NA\n");
1066 g_string_append_printf(buf, "Max guest advance NA\n");
1067 }
1068 }
1069
1070 HumanReadableText *qmp_x_query_jit(Error **errp)
1071 {
1072 g_autoptr(GString) buf = g_string_new("");
1073
1074 if (!tcg_enabled()) {
1075 error_setg(errp, "JIT information is only available with accel=tcg");
1076 return NULL;
1077 }
1078
1079 dump_exec_info(buf);
1080 dump_drift_info(buf);
1081
1082 return human_readable_text_from_str(buf);
1083 }
1084
1085 HumanReadableText *qmp_x_query_opcount(Error **errp)
1086 {
1087 g_autoptr(GString) buf = g_string_new("");
1088
1089 if (!tcg_enabled()) {
1090 error_setg(errp, "Opcode count information is only available with accel=tcg");
1091 return NULL;
1092 }
1093
1094 dump_opcount_info(buf);
1095
1096 return human_readable_text_from_str(buf);
1097 }
1098
1099 #ifdef CONFIG_PROFILER
1100
1101 int64_t dev_time;
1102
1103 HumanReadableText *qmp_x_query_profile(Error **errp)
1104 {
1105 g_autoptr(GString) buf = g_string_new("");
1106 static int64_t last_cpu_exec_time;
1107 int64_t cpu_exec_time;
1108 int64_t delta;
1109
1110 cpu_exec_time = tcg_cpu_exec_time();
1111 delta = cpu_exec_time - last_cpu_exec_time;
1112
1113 g_string_append_printf(buf, "async time %" PRId64 " (%0.3f)\n",
1114 dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1115 g_string_append_printf(buf, "qemu time %" PRId64 " (%0.3f)\n",
1116 delta, delta / (double)NANOSECONDS_PER_SECOND);
1117 last_cpu_exec_time = cpu_exec_time;
1118 dev_time = 0;
1119
1120 return human_readable_text_from_str(buf);
1121 }
1122 #else
1123 HumanReadableText *qmp_x_query_profile(Error **errp)
1124 {
1125 error_setg(errp, "Internal profiler not compiled");
1126 return NULL;
1127 }
1128 #endif
1129
1130 #endif /* !CONFIG_USER_ONLY */