]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
icount: fix cpu_restore_state_from_tb for non-tb-exit cases
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/rcu.h"
30 #include "exec/tb-hash.h"
31 #include "exec/tb-lookup.h"
32 #include "exec/log.h"
33 #include "qemu/main-loop.h"
34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
35 #include "hw/i386/apic.h"
36 #endif
37 #include "sysemu/cpus.h"
38 #include "sysemu/replay.h"
39
40 /* -icount align implementation. */
41
42 typedef struct SyncClocks {
43 int64_t diff_clk;
44 int64_t last_cpu_icount;
45 int64_t realtime_clock;
46 } SyncClocks;
47
48 #if !defined(CONFIG_USER_ONLY)
49 /* Allow the guest to have a max 3ms advance.
50 * The difference between the 2 clocks could therefore
51 * oscillate around 0.
52 */
53 #define VM_CLOCK_ADVANCE 3000000
54 #define THRESHOLD_REDUCE 1.5
55 #define MAX_DELAY_PRINT_RATE 2000000000LL
56 #define MAX_NB_PRINTS 100
57
58 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
59 {
60 int64_t cpu_icount;
61
62 if (!icount_align_option) {
63 return;
64 }
65
66 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
67 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
68 sc->last_cpu_icount = cpu_icount;
69
70 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
71 #ifndef _WIN32
72 struct timespec sleep_delay, rem_delay;
73 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
74 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
75 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
76 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
77 } else {
78 sc->diff_clk = 0;
79 }
80 #else
81 Sleep(sc->diff_clk / SCALE_MS);
82 sc->diff_clk = 0;
83 #endif
84 }
85 }
86
87 static void print_delay(const SyncClocks *sc)
88 {
89 static float threshold_delay;
90 static int64_t last_realtime_clock;
91 static int nb_prints;
92
93 if (icount_align_option &&
94 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
95 nb_prints < MAX_NB_PRINTS) {
96 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
97 (-sc->diff_clk / (float)1000000000LL <
98 (threshold_delay - THRESHOLD_REDUCE))) {
99 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
100 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
101 threshold_delay - 1,
102 threshold_delay);
103 nb_prints++;
104 last_realtime_clock = sc->realtime_clock;
105 }
106 }
107 }
108
109 static void init_delay_params(SyncClocks *sc,
110 const CPUState *cpu)
111 {
112 if (!icount_align_option) {
113 return;
114 }
115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
117 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
118 if (sc->diff_clk < max_delay) {
119 max_delay = sc->diff_clk;
120 }
121 if (sc->diff_clk > max_advance) {
122 max_advance = sc->diff_clk;
123 }
124
125 /* Print every 2s max if the guest is late. We limit the number
126 of printed messages to NB_PRINT_MAX(currently 100) */
127 print_delay(sc);
128 }
129 #else
130 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
131 {
132 }
133
134 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
135 {
136 }
137 #endif /* CONFIG USER ONLY */
138
139 /* Execute a TB, and fix up the CPU state afterwards if necessary */
140 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
141 {
142 CPUArchState *env = cpu->env_ptr;
143 uintptr_t ret;
144 TranslationBlock *last_tb;
145 int tb_exit;
146 uint8_t *tb_ptr = itb->tc.ptr;
147
148 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
149 "Trace %d: %p ["
150 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
151 cpu->cpu_index, itb->tc.ptr,
152 itb->cs_base, itb->pc, itb->flags,
153 lookup_symbol(itb->pc));
154
155 #if defined(DEBUG_DISAS)
156 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
157 && qemu_log_in_addr_range(itb->pc)) {
158 qemu_log_lock();
159 #if defined(TARGET_I386)
160 log_cpu_state(cpu, CPU_DUMP_CCOP);
161 #else
162 log_cpu_state(cpu, 0);
163 #endif
164 qemu_log_unlock();
165 }
166 #endif /* DEBUG_DISAS */
167
168 cpu->can_do_io = !use_icount;
169 ret = tcg_qemu_tb_exec(env, tb_ptr);
170 cpu->can_do_io = 1;
171 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
172 tb_exit = ret & TB_EXIT_MASK;
173 trace_exec_tb_exit(last_tb, tb_exit);
174
175 if (tb_exit > TB_EXIT_IDX1) {
176 /* We didn't start executing this TB (eg because the instruction
177 * counter hit zero); we must restore the guest PC to the address
178 * of the start of the TB.
179 */
180 CPUClass *cc = CPU_GET_CLASS(cpu);
181 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
182 "Stopped execution of TB chain before %p ["
183 TARGET_FMT_lx "] %s\n",
184 last_tb->tc.ptr, last_tb->pc,
185 lookup_symbol(last_tb->pc));
186 if (cc->synchronize_from_tb) {
187 cc->synchronize_from_tb(cpu, last_tb);
188 } else {
189 assert(cc->set_pc);
190 cc->set_pc(cpu, last_tb->pc);
191 }
192 }
193 return ret;
194 }
195
196 #ifndef CONFIG_USER_ONLY
197 /* Execute the code without caching the generated code. An interpreter
198 could be used if available. */
199 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
200 TranslationBlock *orig_tb, bool ignore_icount)
201 {
202 TranslationBlock *tb;
203 uint32_t cflags = curr_cflags() | CF_NOCACHE;
204
205 if (ignore_icount) {
206 cflags &= ~CF_USE_ICOUNT;
207 }
208
209 /* Should never happen.
210 We only end up here when an existing TB is too long. */
211 cflags |= MIN(max_cycles, CF_COUNT_MASK);
212
213 tb_lock();
214 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
215 orig_tb->flags, cflags);
216 tb->orig_tb = orig_tb;
217 tb_unlock();
218
219 /* execute the generated code */
220 trace_exec_tb_nocache(tb, tb->pc);
221 cpu_tb_exec(cpu, tb);
222
223 tb_lock();
224 tb_phys_invalidate(tb, -1);
225 tb_remove(tb);
226 tb_unlock();
227 }
228 #endif
229
230 void cpu_exec_step_atomic(CPUState *cpu)
231 {
232 CPUClass *cc = CPU_GET_CLASS(cpu);
233 TranslationBlock *tb;
234 target_ulong cs_base, pc;
235 uint32_t flags;
236 uint32_t cflags = 1;
237 uint32_t cf_mask = cflags & CF_HASH_MASK;
238 /* volatile because we modify it between setjmp and longjmp */
239 volatile bool in_exclusive_region = false;
240
241 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
242 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
243 if (tb == NULL) {
244 mmap_lock();
245 tb_lock();
246 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
247 if (likely(tb == NULL)) {
248 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
249 }
250 tb_unlock();
251 mmap_unlock();
252 }
253
254 start_exclusive();
255
256 /* Since we got here, we know that parallel_cpus must be true. */
257 parallel_cpus = false;
258 in_exclusive_region = true;
259 cc->cpu_exec_enter(cpu);
260 /* execute the generated code */
261 trace_exec_tb(tb, pc);
262 cpu_tb_exec(cpu, tb);
263 cc->cpu_exec_exit(cpu);
264 } else {
265 /* We may have exited due to another problem here, so we need
266 * to reset any tb_locks we may have taken but didn't release.
267 * The mmap_lock is dropped by tb_gen_code if it runs out of
268 * memory.
269 */
270 #ifndef CONFIG_SOFTMMU
271 tcg_debug_assert(!have_mmap_lock());
272 #endif
273 tb_lock_reset();
274 }
275
276 if (in_exclusive_region) {
277 /* We might longjump out of either the codegen or the
278 * execution, so must make sure we only end the exclusive
279 * region if we started it.
280 */
281 parallel_cpus = true;
282 end_exclusive();
283 }
284 }
285
286 struct tb_desc {
287 target_ulong pc;
288 target_ulong cs_base;
289 CPUArchState *env;
290 tb_page_addr_t phys_page1;
291 uint32_t flags;
292 uint32_t cf_mask;
293 uint32_t trace_vcpu_dstate;
294 };
295
296 static bool tb_cmp(const void *p, const void *d)
297 {
298 const TranslationBlock *tb = p;
299 const struct tb_desc *desc = d;
300
301 if (tb->pc == desc->pc &&
302 tb->page_addr[0] == desc->phys_page1 &&
303 tb->cs_base == desc->cs_base &&
304 tb->flags == desc->flags &&
305 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
306 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
307 /* check next page if needed */
308 if (tb->page_addr[1] == -1) {
309 return true;
310 } else {
311 tb_page_addr_t phys_page2;
312 target_ulong virt_page2;
313
314 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
315 phys_page2 = get_page_addr_code(desc->env, virt_page2);
316 if (tb->page_addr[1] == phys_page2) {
317 return true;
318 }
319 }
320 }
321 return false;
322 }
323
324 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
325 target_ulong cs_base, uint32_t flags,
326 uint32_t cf_mask)
327 {
328 tb_page_addr_t phys_pc;
329 struct tb_desc desc;
330 uint32_t h;
331
332 desc.env = (CPUArchState *)cpu->env_ptr;
333 desc.cs_base = cs_base;
334 desc.flags = flags;
335 desc.cf_mask = cf_mask;
336 desc.trace_vcpu_dstate = *cpu->trace_dstate;
337 desc.pc = pc;
338 phys_pc = get_page_addr_code(desc.env, pc);
339 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
340 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
341 return qht_lookup(&tb_ctx.htable, tb_cmp, &desc, h);
342 }
343
344 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
345 {
346 if (TCG_TARGET_HAS_direct_jump) {
347 uintptr_t offset = tb->jmp_target_arg[n];
348 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
349 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
350 } else {
351 tb->jmp_target_arg[n] = addr;
352 }
353 }
354
355 /* Called with tb_lock held. */
356 static inline void tb_add_jump(TranslationBlock *tb, int n,
357 TranslationBlock *tb_next)
358 {
359 assert(n < ARRAY_SIZE(tb->jmp_list_next));
360 if (tb->jmp_list_next[n]) {
361 /* Another thread has already done this while we were
362 * outside of the lock; nothing to do in this case */
363 return;
364 }
365 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
366 "Linking TBs %p [" TARGET_FMT_lx
367 "] index %d -> %p [" TARGET_FMT_lx "]\n",
368 tb->tc.ptr, tb->pc, n,
369 tb_next->tc.ptr, tb_next->pc);
370
371 /* patch the native jump address */
372 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
373
374 /* add in TB jmp circular list */
375 tb->jmp_list_next[n] = tb_next->jmp_list_first;
376 tb_next->jmp_list_first = (uintptr_t)tb | n;
377 }
378
379 static inline TranslationBlock *tb_find(CPUState *cpu,
380 TranslationBlock *last_tb,
381 int tb_exit, uint32_t cf_mask)
382 {
383 TranslationBlock *tb;
384 target_ulong cs_base, pc;
385 uint32_t flags;
386 bool acquired_tb_lock = false;
387
388 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
389 if (tb == NULL) {
390 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
391 * taken outside tb_lock. As system emulation is currently
392 * single threaded the locks are NOPs.
393 */
394 mmap_lock();
395 tb_lock();
396 acquired_tb_lock = true;
397
398 /* There's a chance that our desired tb has been translated while
399 * taking the locks so we check again inside the lock.
400 */
401 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
402 if (likely(tb == NULL)) {
403 /* if no translated code available, then translate it now */
404 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
405 }
406
407 mmap_unlock();
408 /* We add the TB in the virtual pc hash table for the fast lookup */
409 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
410 }
411 #ifndef CONFIG_USER_ONLY
412 /* We don't take care of direct jumps when address mapping changes in
413 * system emulation. So it's not safe to make a direct jump to a TB
414 * spanning two pages because the mapping for the second page can change.
415 */
416 if (tb->page_addr[1] != -1) {
417 last_tb = NULL;
418 }
419 #endif
420 /* See if we can patch the calling TB. */
421 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
422 if (!acquired_tb_lock) {
423 tb_lock();
424 acquired_tb_lock = true;
425 }
426 if (!(tb->cflags & CF_INVALID)) {
427 tb_add_jump(last_tb, tb_exit, tb);
428 }
429 }
430 if (acquired_tb_lock) {
431 tb_unlock();
432 }
433 return tb;
434 }
435
436 static inline bool cpu_handle_halt(CPUState *cpu)
437 {
438 if (cpu->halted) {
439 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
440 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
441 && replay_interrupt()) {
442 X86CPU *x86_cpu = X86_CPU(cpu);
443 qemu_mutex_lock_iothread();
444 apic_poll_irq(x86_cpu->apic_state);
445 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
446 qemu_mutex_unlock_iothread();
447 }
448 #endif
449 if (!cpu_has_work(cpu)) {
450 return true;
451 }
452
453 cpu->halted = 0;
454 }
455
456 return false;
457 }
458
459 static inline void cpu_handle_debug_exception(CPUState *cpu)
460 {
461 CPUClass *cc = CPU_GET_CLASS(cpu);
462 CPUWatchpoint *wp;
463
464 if (!cpu->watchpoint_hit) {
465 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
466 wp->flags &= ~BP_WATCHPOINT_HIT;
467 }
468 }
469
470 cc->debug_excp_handler(cpu);
471 }
472
473 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
474 {
475 if (cpu->exception_index < 0) {
476 #ifndef CONFIG_USER_ONLY
477 if (replay_has_exception()
478 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
479 /* try to cause an exception pending in the log */
480 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
481 }
482 #endif
483 if (cpu->exception_index < 0) {
484 return false;
485 }
486 }
487
488 if (cpu->exception_index >= EXCP_INTERRUPT) {
489 /* exit request from the cpu execution loop */
490 *ret = cpu->exception_index;
491 if (*ret == EXCP_DEBUG) {
492 cpu_handle_debug_exception(cpu);
493 }
494 cpu->exception_index = -1;
495 return true;
496 } else {
497 #if defined(CONFIG_USER_ONLY)
498 /* if user mode only, we simulate a fake exception
499 which will be handled outside the cpu execution
500 loop */
501 #if defined(TARGET_I386)
502 CPUClass *cc = CPU_GET_CLASS(cpu);
503 cc->do_interrupt(cpu);
504 #endif
505 *ret = cpu->exception_index;
506 cpu->exception_index = -1;
507 return true;
508 #else
509 if (replay_exception()) {
510 CPUClass *cc = CPU_GET_CLASS(cpu);
511 qemu_mutex_lock_iothread();
512 cc->do_interrupt(cpu);
513 qemu_mutex_unlock_iothread();
514 cpu->exception_index = -1;
515 } else if (!replay_has_interrupt()) {
516 /* give a chance to iothread in replay mode */
517 *ret = EXCP_INTERRUPT;
518 return true;
519 }
520 #endif
521 }
522
523 return false;
524 }
525
526 static inline bool cpu_handle_interrupt(CPUState *cpu,
527 TranslationBlock **last_tb)
528 {
529 CPUClass *cc = CPU_GET_CLASS(cpu);
530
531 /* Clear the interrupt flag now since we're processing
532 * cpu->interrupt_request and cpu->exit_request.
533 * Ensure zeroing happens before reading cpu->exit_request or
534 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
535 */
536 atomic_mb_set(&cpu->icount_decr.u16.high, 0);
537
538 if (unlikely(atomic_read(&cpu->interrupt_request))) {
539 int interrupt_request;
540 qemu_mutex_lock_iothread();
541 interrupt_request = cpu->interrupt_request;
542 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
543 /* Mask out external interrupts for this step. */
544 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
545 }
546 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
547 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
548 cpu->exception_index = EXCP_DEBUG;
549 qemu_mutex_unlock_iothread();
550 return true;
551 }
552 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
553 /* Do nothing */
554 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
555 replay_interrupt();
556 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
557 cpu->halted = 1;
558 cpu->exception_index = EXCP_HLT;
559 qemu_mutex_unlock_iothread();
560 return true;
561 }
562 #if defined(TARGET_I386)
563 else if (interrupt_request & CPU_INTERRUPT_INIT) {
564 X86CPU *x86_cpu = X86_CPU(cpu);
565 CPUArchState *env = &x86_cpu->env;
566 replay_interrupt();
567 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
568 do_cpu_init(x86_cpu);
569 cpu->exception_index = EXCP_HALTED;
570 qemu_mutex_unlock_iothread();
571 return true;
572 }
573 #else
574 else if (interrupt_request & CPU_INTERRUPT_RESET) {
575 replay_interrupt();
576 cpu_reset(cpu);
577 qemu_mutex_unlock_iothread();
578 return true;
579 }
580 #endif
581 /* The target hook has 3 exit conditions:
582 False when the interrupt isn't processed,
583 True when it is, and we should restart on a new TB,
584 and via longjmp via cpu_loop_exit. */
585 else {
586 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
587 replay_interrupt();
588 cpu->exception_index = -1;
589 *last_tb = NULL;
590 }
591 /* The target hook may have updated the 'cpu->interrupt_request';
592 * reload the 'interrupt_request' value */
593 interrupt_request = cpu->interrupt_request;
594 }
595 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
596 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
597 /* ensure that no TB jump will be modified as
598 the program flow was changed */
599 *last_tb = NULL;
600 }
601
602 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
603 qemu_mutex_unlock_iothread();
604 }
605
606 /* Finally, check if we need to exit to the main loop. */
607 if (unlikely(atomic_read(&cpu->exit_request)
608 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
609 atomic_set(&cpu->exit_request, 0);
610 if (cpu->exception_index == -1) {
611 cpu->exception_index = EXCP_INTERRUPT;
612 }
613 return true;
614 }
615
616 return false;
617 }
618
619 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
620 TranslationBlock **last_tb, int *tb_exit)
621 {
622 uintptr_t ret;
623 int32_t insns_left;
624
625 trace_exec_tb(tb, tb->pc);
626 ret = cpu_tb_exec(cpu, tb);
627 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
628 *tb_exit = ret & TB_EXIT_MASK;
629 if (*tb_exit != TB_EXIT_REQUESTED) {
630 *last_tb = tb;
631 return;
632 }
633
634 *last_tb = NULL;
635 insns_left = atomic_read(&cpu->icount_decr.u32);
636 if (insns_left < 0) {
637 /* Something asked us to stop executing chained TBs; just
638 * continue round the main loop. Whatever requested the exit
639 * will also have set something else (eg exit_request or
640 * interrupt_request) which will be handled by
641 * cpu_handle_interrupt. cpu_handle_interrupt will also
642 * clear cpu->icount_decr.u16.high.
643 */
644 return;
645 }
646
647 /* Instruction counter expired. */
648 assert(use_icount);
649 #ifndef CONFIG_USER_ONLY
650 /* Ensure global icount has gone forward */
651 cpu_update_icount(cpu);
652 /* Refill decrementer and continue execution. */
653 insns_left = MIN(0xffff, cpu->icount_budget);
654 cpu->icount_decr.u16.low = insns_left;
655 cpu->icount_extra = cpu->icount_budget - insns_left;
656 if (!cpu->icount_extra) {
657 /* Execute any remaining instructions, then let the main loop
658 * handle the next event.
659 */
660 if (insns_left > 0) {
661 cpu_exec_nocache(cpu, insns_left, tb, false);
662 }
663 }
664 #endif
665 }
666
667 /* main execution loop */
668
669 int cpu_exec(CPUState *cpu)
670 {
671 CPUClass *cc = CPU_GET_CLASS(cpu);
672 int ret;
673 SyncClocks sc = { 0 };
674
675 /* replay_interrupt may need current_cpu */
676 current_cpu = cpu;
677
678 if (cpu_handle_halt(cpu)) {
679 return EXCP_HALTED;
680 }
681
682 rcu_read_lock();
683
684 cc->cpu_exec_enter(cpu);
685
686 /* Calculate difference between guest clock and host clock.
687 * This delay includes the delay of the last cycle, so
688 * what we have to do is sleep until it is 0. As for the
689 * advance/delay we gain here, we try to fix it next time.
690 */
691 init_delay_params(&sc, cpu);
692
693 /* prepare setjmp context for exception handling */
694 if (sigsetjmp(cpu->jmp_env, 0) != 0) {
695 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
696 /* Some compilers wrongly smash all local variables after
697 * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
698 * Reload essential local variables here for those compilers.
699 * Newer versions of gcc would complain about this code (-Wclobbered). */
700 cpu = current_cpu;
701 cc = CPU_GET_CLASS(cpu);
702 #else /* buggy compiler */
703 /* Assert that the compiler does not smash local variables. */
704 g_assert(cpu == current_cpu);
705 g_assert(cc == CPU_GET_CLASS(cpu));
706 #endif /* buggy compiler */
707 tb_lock_reset();
708 if (qemu_mutex_iothread_locked()) {
709 qemu_mutex_unlock_iothread();
710 }
711 }
712
713 /* if an exception is pending, we execute it here */
714 while (!cpu_handle_exception(cpu, &ret)) {
715 TranslationBlock *last_tb = NULL;
716 int tb_exit = 0;
717
718 while (!cpu_handle_interrupt(cpu, &last_tb)) {
719 uint32_t cflags = cpu->cflags_next_tb;
720 TranslationBlock *tb;
721
722 /* When requested, use an exact setting for cflags for the next
723 execution. This is used for icount, precise smc, and stop-
724 after-access watchpoints. Since this request should never
725 have CF_INVALID set, -1 is a convenient invalid value that
726 does not require tcg headers for cpu_common_reset. */
727 if (cflags == -1) {
728 cflags = curr_cflags();
729 } else {
730 cpu->cflags_next_tb = -1;
731 }
732
733 tb = tb_find(cpu, last_tb, tb_exit, cflags);
734 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
735 /* Try to align the host and virtual clocks
736 if the guest is in advance */
737 align_clocks(&sc, cpu);
738 }
739 }
740
741 cc->cpu_exec_exit(cpu);
742 rcu_read_unlock();
743
744 return ret;
745 }