]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
include/exec: Replace target_ulong with abi_ptr in cpu_[st|ld]*()
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96 size_t max_entries)
97 {
98 desc->window_begin_ns = ns;
99 desc->window_max_entries = max_entries;
100 }
101
102 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
103 {
104 CPUJumpCache *jc = cpu->tb_jmp_cache;
105 int i, i0;
106
107 if (unlikely(!jc)) {
108 return;
109 }
110
111 i0 = tb_jmp_cache_hash_page(page_addr);
112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113 qatomic_set(&jc->array[i0 + i].tb, NULL);
114 }
115 }
116
117 /**
118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119 * @desc: The CPUTLBDesc portion of the TLB
120 * @fast: The CPUTLBDescFast portion of the same TLB
121 *
122 * Called with tlb_lock_held.
123 *
124 * We have two main constraints when resizing a TLB: (1) we only resize it
125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126 * the array or unnecessarily flushing it), which means we do not control how
127 * frequently the resizing can occur; (2) we don't have access to the guest's
128 * future scheduling decisions, and therefore have to decide the magnitude of
129 * the resize based on past observations.
130 *
131 * In general, a memory-hungry process can benefit greatly from an appropriately
132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133 * we just have to make the TLB as large as possible; while an oversized TLB
134 * results in minimal TLB miss rates, it also takes longer to be flushed
135 * (flushes can be _very_ frequent), and the reduced locality can also hurt
136 * performance.
137 *
138 * To achieve near-optimal performance for all kinds of workloads, we:
139 *
140 * 1. Aggressively increase the size of the TLB when the use rate of the
141 * TLB being flushed is high, since it is likely that in the near future this
142 * memory-hungry process will execute again, and its memory hungriness will
143 * probably be similar.
144 *
145 * 2. Slowly reduce the size of the TLB as the use rate declines over a
146 * reasonably large time window. The rationale is that if in such a time window
147 * we have not observed a high TLB use rate, it is likely that we won't observe
148 * it in the near future. In that case, once a time window expires we downsize
149 * the TLB to match the maximum use rate observed in the window.
150 *
151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152 * since in that range performance is likely near-optimal. Recall that the TLB
153 * is direct mapped, so we want the use rate to be low (or at least not too
154 * high), since otherwise we are likely to have a significant amount of
155 * conflict misses.
156 */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158 int64_t now)
159 {
160 size_t old_size = tlb_n_entries(fast);
161 size_t rate;
162 size_t new_size = old_size;
163 int64_t window_len_ms = 100;
164 int64_t window_len_ns = window_len_ms * 1000 * 1000;
165 bool window_expired = now > desc->window_begin_ns + window_len_ns;
166
167 if (desc->n_used_entries > desc->window_max_entries) {
168 desc->window_max_entries = desc->n_used_entries;
169 }
170 rate = desc->window_max_entries * 100 / old_size;
171
172 if (rate > 70) {
173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174 } else if (rate < 30 && window_expired) {
175 size_t ceil = pow2ceil(desc->window_max_entries);
176 size_t expected_rate = desc->window_max_entries * 100 / ceil;
177
178 /*
179 * Avoid undersizing when the max number of entries seen is just below
180 * a pow2. For instance, if max_entries == 1025, the expected use rate
181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183 * later. Thus, make sure that the expected use rate remains below 70%.
184 * (and since we double the size, that means the lowest rate we'd
185 * expect to get is 35%, which is still in the 30-70% range where
186 * we consider that the size is appropriate.)
187 */
188 if (expected_rate > 70) {
189 ceil *= 2;
190 }
191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192 }
193
194 if (new_size == old_size) {
195 if (window_expired) {
196 tlb_window_reset(desc, now, desc->n_used_entries);
197 }
198 return;
199 }
200
201 g_free(fast->table);
202 g_free(desc->fulltlb);
203
204 tlb_window_reset(desc, now, 0);
205 /* desc->n_used_entries is cleared by the caller */
206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207 fast->table = g_try_new(CPUTLBEntry, new_size);
208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209
210 /*
211 * If the allocations fail, try smaller sizes. We just freed some
212 * memory, so going back to half of new_size has a good chance of working.
213 * Increased memory pressure elsewhere in the system might cause the
214 * allocations to fail though, so we progressively reduce the allocation
215 * size, aborting if we cannot even allocate the smallest TLB we support.
216 */
217 while (fast->table == NULL || desc->fulltlb == NULL) {
218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219 error_report("%s: %s", __func__, strerror(errno));
220 abort();
221 }
222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224
225 g_free(fast->table);
226 g_free(desc->fulltlb);
227 fast->table = g_try_new(CPUTLBEntry, new_size);
228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229 }
230 }
231
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234 desc->n_used_entries = 0;
235 desc->large_page_addr = -1;
236 desc->large_page_mask = -1;
237 desc->vindex = 0;
238 memset(fast->table, -1, sizeof_tlb(fast));
239 memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243 int64_t now)
244 {
245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247
248 tlb_mmu_resize_locked(desc, fast, now);
249 tlb_mmu_flush_locked(desc, fast);
250 }
251
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255
256 tlb_window_reset(desc, now, 0);
257 desc->n_used_entries = 0;
258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259 fast->table = g_new(CPUTLBEntry, n_entries);
260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261 tlb_mmu_flush_locked(desc, fast);
262 }
263
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266 env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271 env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273
274 void tlb_init(CPUState *cpu)
275 {
276 CPUArchState *env = cpu->env_ptr;
277 int64_t now = get_clock_realtime();
278 int i;
279
280 qemu_spin_init(&env_tlb(env)->c.lock);
281
282 /* All tlbs are initialized flushed. */
283 env_tlb(env)->c.dirty = 0;
284
285 for (i = 0; i < NB_MMU_MODES; i++) {
286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287 }
288 }
289
290 void tlb_destroy(CPUState *cpu)
291 {
292 CPUArchState *env = cpu->env_ptr;
293 int i;
294
295 qemu_spin_destroy(&env_tlb(env)->c.lock);
296 for (i = 0; i < NB_MMU_MODES; i++) {
297 CPUTLBDesc *desc = &env_tlb(env)->d[i];
298 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299
300 g_free(fast->table);
301 g_free(desc->fulltlb);
302 }
303 }
304
305 /* flush_all_helper: run fn across all cpus
306 *
307 * If the wait flag is set then the src cpu's helper will be queued as
308 * "safe" work and the loop exited creating a synchronisation point
309 * where all queued work will be finished before execution starts
310 * again.
311 */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313 run_on_cpu_data d)
314 {
315 CPUState *cpu;
316
317 CPU_FOREACH(cpu) {
318 if (cpu != src) {
319 async_run_on_cpu(cpu, fn, d);
320 }
321 }
322 }
323
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326 CPUState *cpu;
327 size_t full = 0, part = 0, elide = 0;
328
329 CPU_FOREACH(cpu) {
330 CPUArchState *env = cpu->env_ptr;
331
332 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335 }
336 *pfull = full;
337 *ppart = part;
338 *pelide = elide;
339 }
340
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343 CPUArchState *env = cpu->env_ptr;
344 uint16_t asked = data.host_int;
345 uint16_t all_dirty, work, to_clean;
346 int64_t now = get_clock_realtime();
347
348 assert_cpu_is_self(cpu);
349
350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351
352 qemu_spin_lock(&env_tlb(env)->c.lock);
353
354 all_dirty = env_tlb(env)->c.dirty;
355 to_clean = asked & all_dirty;
356 all_dirty &= ~to_clean;
357 env_tlb(env)->c.dirty = all_dirty;
358
359 for (work = to_clean; work != 0; work &= work - 1) {
360 int mmu_idx = ctz32(work);
361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362 }
363
364 qemu_spin_unlock(&env_tlb(env)->c.lock);
365
366 tcg_flush_jmp_cache(cpu);
367
368 if (to_clean == ALL_MMUIDX_BITS) {
369 qatomic_set(&env_tlb(env)->c.full_flush_count,
370 env_tlb(env)->c.full_flush_count + 1);
371 } else {
372 qatomic_set(&env_tlb(env)->c.part_flush_count,
373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374 if (to_clean != asked) {
375 qatomic_set(&env_tlb(env)->c.elide_flush_count,
376 env_tlb(env)->c.elide_flush_count +
377 ctpop16(asked & ~to_clean));
378 }
379 }
380 }
381
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385
386 if (cpu->created && !qemu_cpu_is_self(cpu)) {
387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388 RUN_ON_CPU_HOST_INT(idxmap));
389 } else {
390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391 }
392 }
393
394 void tlb_flush(CPUState *cpu)
395 {
396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402
403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404
405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417
418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419
420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430 vaddr page, vaddr mask)
431 {
432 page &= mask;
433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434
435 return (page == (tlb_entry->addr_read & mask) ||
436 page == (tlb_addr_write(tlb_entry) & mask) ||
437 page == (tlb_entry->addr_code & mask));
438 }
439
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
441 {
442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
443 }
444
445 /**
446 * tlb_entry_is_empty - return true if the entry is not in use
447 * @te: pointer to CPUTLBEntry
448 */
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
450 {
451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
452 }
453
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456 vaddr page,
457 vaddr mask)
458 {
459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460 memset(tlb_entry, -1, sizeof(*tlb_entry));
461 return true;
462 }
463 return false;
464 }
465
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
467 {
468 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
469 }
470
471 /* Called with tlb_c.lock held */
472 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
473 vaddr page,
474 vaddr mask)
475 {
476 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
477 int k;
478
479 assert_cpu_is_self(env_cpu(env));
480 for (k = 0; k < CPU_VTLB_SIZE; k++) {
481 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
482 tlb_n_used_entries_dec(env, mmu_idx);
483 }
484 }
485 }
486
487 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
488 vaddr page)
489 {
490 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
491 }
492
493 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
494 {
495 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
496 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
497
498 /* Check if we need to flush due to large pages. */
499 if ((page & lp_mask) == lp_addr) {
500 tlb_debug("forcing full flush midx %d (%016"
501 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
502 midx, lp_addr, lp_mask);
503 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
504 } else {
505 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
506 tlb_n_used_entries_dec(env, midx);
507 }
508 tlb_flush_vtlb_page_locked(env, midx, page);
509 }
510 }
511
512 /**
513 * tlb_flush_page_by_mmuidx_async_0:
514 * @cpu: cpu on which to flush
515 * @addr: page of virtual address to flush
516 * @idxmap: set of mmu_idx to flush
517 *
518 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
519 * at @addr from the tlbs indicated by @idxmap from @cpu.
520 */
521 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
522 vaddr addr,
523 uint16_t idxmap)
524 {
525 CPUArchState *env = cpu->env_ptr;
526 int mmu_idx;
527
528 assert_cpu_is_self(cpu);
529
530 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
531
532 qemu_spin_lock(&env_tlb(env)->c.lock);
533 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
534 if ((idxmap >> mmu_idx) & 1) {
535 tlb_flush_page_locked(env, mmu_idx, addr);
536 }
537 }
538 qemu_spin_unlock(&env_tlb(env)->c.lock);
539
540 /*
541 * Discard jump cache entries for any tb which might potentially
542 * overlap the flushed page, which includes the previous.
543 */
544 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
545 tb_jmp_cache_clear_page(cpu, addr);
546 }
547
548 /**
549 * tlb_flush_page_by_mmuidx_async_1:
550 * @cpu: cpu on which to flush
551 * @data: encoded addr + idxmap
552 *
553 * Helper for tlb_flush_page_by_mmuidx and friends, called through
554 * async_run_on_cpu. The idxmap parameter is encoded in the page
555 * offset of the target_ptr field. This limits the set of mmu_idx
556 * that can be passed via this method.
557 */
558 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
559 run_on_cpu_data data)
560 {
561 vaddr addr_and_idxmap = data.target_ptr;
562 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
563 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
564
565 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
566 }
567
568 typedef struct {
569 vaddr addr;
570 uint16_t idxmap;
571 } TLBFlushPageByMMUIdxData;
572
573 /**
574 * tlb_flush_page_by_mmuidx_async_2:
575 * @cpu: cpu on which to flush
576 * @data: allocated addr + idxmap
577 *
578 * Helper for tlb_flush_page_by_mmuidx and friends, called through
579 * async_run_on_cpu. The addr+idxmap parameters are stored in a
580 * TLBFlushPageByMMUIdxData structure that has been allocated
581 * specifically for this helper. Free the structure when done.
582 */
583 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
584 run_on_cpu_data data)
585 {
586 TLBFlushPageByMMUIdxData *d = data.host_ptr;
587
588 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
589 g_free(d);
590 }
591
592 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
593 {
594 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
595
596 /* This should already be page aligned */
597 addr &= TARGET_PAGE_MASK;
598
599 if (qemu_cpu_is_self(cpu)) {
600 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
601 } else if (idxmap < TARGET_PAGE_SIZE) {
602 /*
603 * Most targets have only a few mmu_idx. In the case where
604 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
605 * allocating memory for this operation.
606 */
607 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
608 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
609 } else {
610 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
611
612 /* Otherwise allocate a structure, freed by the worker. */
613 d->addr = addr;
614 d->idxmap = idxmap;
615 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
616 RUN_ON_CPU_HOST_PTR(d));
617 }
618 }
619
620 void tlb_flush_page(CPUState *cpu, vaddr addr)
621 {
622 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
623 }
624
625 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
626 uint16_t idxmap)
627 {
628 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
629
630 /* This should already be page aligned */
631 addr &= TARGET_PAGE_MASK;
632
633 /*
634 * Allocate memory to hold addr+idxmap only when needed.
635 * See tlb_flush_page_by_mmuidx for details.
636 */
637 if (idxmap < TARGET_PAGE_SIZE) {
638 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
639 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
640 } else {
641 CPUState *dst_cpu;
642
643 /* Allocate a separate data block for each destination cpu. */
644 CPU_FOREACH(dst_cpu) {
645 if (dst_cpu != src_cpu) {
646 TLBFlushPageByMMUIdxData *d
647 = g_new(TLBFlushPageByMMUIdxData, 1);
648
649 d->addr = addr;
650 d->idxmap = idxmap;
651 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
652 RUN_ON_CPU_HOST_PTR(d));
653 }
654 }
655 }
656
657 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
658 }
659
660 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
661 {
662 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
663 }
664
665 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
666 vaddr addr,
667 uint16_t idxmap)
668 {
669 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
670
671 /* This should already be page aligned */
672 addr &= TARGET_PAGE_MASK;
673
674 /*
675 * Allocate memory to hold addr+idxmap only when needed.
676 * See tlb_flush_page_by_mmuidx for details.
677 */
678 if (idxmap < TARGET_PAGE_SIZE) {
679 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
680 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
681 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683 } else {
684 CPUState *dst_cpu;
685 TLBFlushPageByMMUIdxData *d;
686
687 /* Allocate a separate data block for each destination cpu. */
688 CPU_FOREACH(dst_cpu) {
689 if (dst_cpu != src_cpu) {
690 d = g_new(TLBFlushPageByMMUIdxData, 1);
691 d->addr = addr;
692 d->idxmap = idxmap;
693 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
694 RUN_ON_CPU_HOST_PTR(d));
695 }
696 }
697
698 d = g_new(TLBFlushPageByMMUIdxData, 1);
699 d->addr = addr;
700 d->idxmap = idxmap;
701 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
702 RUN_ON_CPU_HOST_PTR(d));
703 }
704 }
705
706 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
707 {
708 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
709 }
710
711 static void tlb_flush_range_locked(CPUArchState *env, int midx,
712 vaddr addr, vaddr len,
713 unsigned bits)
714 {
715 CPUTLBDesc *d = &env_tlb(env)->d[midx];
716 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
717 vaddr mask = MAKE_64BIT_MASK(0, bits);
718
719 /*
720 * If @bits is smaller than the tlb size, there may be multiple entries
721 * within the TLB; otherwise all addresses that match under @mask hit
722 * the same TLB entry.
723 * TODO: Perhaps allow bits to be a few bits less than the size.
724 * For now, just flush the entire TLB.
725 *
726 * If @len is larger than the tlb size, then it will take longer to
727 * test all of the entries in the TLB than it will to flush it all.
728 */
729 if (mask < f->mask || len > f->mask) {
730 tlb_debug("forcing full flush midx %d ("
731 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
732 midx, addr, mask, len);
733 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
734 return;
735 }
736
737 /*
738 * Check if we need to flush due to large pages.
739 * Because large_page_mask contains all 1's from the msb,
740 * we only need to test the end of the range.
741 */
742 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
743 tlb_debug("forcing full flush midx %d ("
744 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
745 midx, d->large_page_addr, d->large_page_mask);
746 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
747 return;
748 }
749
750 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
751 vaddr page = addr + i;
752 CPUTLBEntry *entry = tlb_entry(env, midx, page);
753
754 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
755 tlb_n_used_entries_dec(env, midx);
756 }
757 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
758 }
759 }
760
761 typedef struct {
762 vaddr addr;
763 vaddr len;
764 uint16_t idxmap;
765 uint16_t bits;
766 } TLBFlushRangeData;
767
768 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
769 TLBFlushRangeData d)
770 {
771 CPUArchState *env = cpu->env_ptr;
772 int mmu_idx;
773
774 assert_cpu_is_self(cpu);
775
776 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
777 d.addr, d.bits, d.len, d.idxmap);
778
779 qemu_spin_lock(&env_tlb(env)->c.lock);
780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
781 if ((d.idxmap >> mmu_idx) & 1) {
782 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
783 }
784 }
785 qemu_spin_unlock(&env_tlb(env)->c.lock);
786
787 /*
788 * If the length is larger than the jump cache size, then it will take
789 * longer to clear each entry individually than it will to clear it all.
790 */
791 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
792 tcg_flush_jmp_cache(cpu);
793 return;
794 }
795
796 /*
797 * Discard jump cache entries for any tb which might potentially
798 * overlap the flushed pages, which includes the previous.
799 */
800 d.addr -= TARGET_PAGE_SIZE;
801 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
802 tb_jmp_cache_clear_page(cpu, d.addr);
803 d.addr += TARGET_PAGE_SIZE;
804 }
805 }
806
807 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
808 run_on_cpu_data data)
809 {
810 TLBFlushRangeData *d = data.host_ptr;
811 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
812 g_free(d);
813 }
814
815 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
816 vaddr len, uint16_t idxmap,
817 unsigned bits)
818 {
819 TLBFlushRangeData d;
820
821 /*
822 * If all bits are significant, and len is small,
823 * this devolves to tlb_flush_page.
824 */
825 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
826 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
827 return;
828 }
829 /* If no page bits are significant, this devolves to tlb_flush. */
830 if (bits < TARGET_PAGE_BITS) {
831 tlb_flush_by_mmuidx(cpu, idxmap);
832 return;
833 }
834
835 /* This should already be page aligned */
836 d.addr = addr & TARGET_PAGE_MASK;
837 d.len = len;
838 d.idxmap = idxmap;
839 d.bits = bits;
840
841 if (qemu_cpu_is_self(cpu)) {
842 tlb_flush_range_by_mmuidx_async_0(cpu, d);
843 } else {
844 /* Otherwise allocate a structure, freed by the worker. */
845 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
846 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
847 RUN_ON_CPU_HOST_PTR(p));
848 }
849 }
850
851 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
852 uint16_t idxmap, unsigned bits)
853 {
854 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
855 }
856
857 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
858 vaddr addr, vaddr len,
859 uint16_t idxmap, unsigned bits)
860 {
861 TLBFlushRangeData d;
862 CPUState *dst_cpu;
863
864 /*
865 * If all bits are significant, and len is small,
866 * this devolves to tlb_flush_page.
867 */
868 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
869 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
870 return;
871 }
872 /* If no page bits are significant, this devolves to tlb_flush. */
873 if (bits < TARGET_PAGE_BITS) {
874 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
875 return;
876 }
877
878 /* This should already be page aligned */
879 d.addr = addr & TARGET_PAGE_MASK;
880 d.len = len;
881 d.idxmap = idxmap;
882 d.bits = bits;
883
884 /* Allocate a separate data block for each destination cpu. */
885 CPU_FOREACH(dst_cpu) {
886 if (dst_cpu != src_cpu) {
887 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
888 async_run_on_cpu(dst_cpu,
889 tlb_flush_range_by_mmuidx_async_1,
890 RUN_ON_CPU_HOST_PTR(p));
891 }
892 }
893
894 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
895 }
896
897 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
898 vaddr addr, uint16_t idxmap,
899 unsigned bits)
900 {
901 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
902 idxmap, bits);
903 }
904
905 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
906 vaddr addr,
907 vaddr len,
908 uint16_t idxmap,
909 unsigned bits)
910 {
911 TLBFlushRangeData d, *p;
912 CPUState *dst_cpu;
913
914 /*
915 * If all bits are significant, and len is small,
916 * this devolves to tlb_flush_page.
917 */
918 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
919 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
920 return;
921 }
922 /* If no page bits are significant, this devolves to tlb_flush. */
923 if (bits < TARGET_PAGE_BITS) {
924 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
925 return;
926 }
927
928 /* This should already be page aligned */
929 d.addr = addr & TARGET_PAGE_MASK;
930 d.len = len;
931 d.idxmap = idxmap;
932 d.bits = bits;
933
934 /* Allocate a separate data block for each destination cpu. */
935 CPU_FOREACH(dst_cpu) {
936 if (dst_cpu != src_cpu) {
937 p = g_memdup(&d, sizeof(d));
938 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
939 RUN_ON_CPU_HOST_PTR(p));
940 }
941 }
942
943 p = g_memdup(&d, sizeof(d));
944 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
945 RUN_ON_CPU_HOST_PTR(p));
946 }
947
948 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
949 vaddr addr,
950 uint16_t idxmap,
951 unsigned bits)
952 {
953 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
954 idxmap, bits);
955 }
956
957 /* update the TLBs so that writes to code in the virtual page 'addr'
958 can be detected */
959 void tlb_protect_code(ram_addr_t ram_addr)
960 {
961 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
962 TARGET_PAGE_SIZE,
963 DIRTY_MEMORY_CODE);
964 }
965
966 /* update the TLB so that writes in physical page 'phys_addr' are no longer
967 tested for self modifying code */
968 void tlb_unprotect_code(ram_addr_t ram_addr)
969 {
970 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
971 }
972
973
974 /*
975 * Dirty write flag handling
976 *
977 * When the TCG code writes to a location it looks up the address in
978 * the TLB and uses that data to compute the final address. If any of
979 * the lower bits of the address are set then the slow path is forced.
980 * There are a number of reasons to do this but for normal RAM the
981 * most usual is detecting writes to code regions which may invalidate
982 * generated code.
983 *
984 * Other vCPUs might be reading their TLBs during guest execution, so we update
985 * te->addr_write with qatomic_set. We don't need to worry about this for
986 * oversized guests as MTTCG is disabled for them.
987 *
988 * Called with tlb_c.lock held.
989 */
990 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
991 uintptr_t start, uintptr_t length)
992 {
993 uintptr_t addr = tlb_entry->addr_write;
994
995 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
996 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
997 addr &= TARGET_PAGE_MASK;
998 addr += tlb_entry->addend;
999 if ((addr - start) < length) {
1000 #if TARGET_LONG_BITS == 32
1001 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1002 ptr_write += HOST_BIG_ENDIAN;
1003 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1004 #elif TCG_OVERSIZED_GUEST
1005 tlb_entry->addr_write |= TLB_NOTDIRTY;
1006 #else
1007 qatomic_set(&tlb_entry->addr_write,
1008 tlb_entry->addr_write | TLB_NOTDIRTY);
1009 #endif
1010 }
1011 }
1012 }
1013
1014 /*
1015 * Called with tlb_c.lock held.
1016 * Called only from the vCPU context, i.e. the TLB's owner thread.
1017 */
1018 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1019 {
1020 *d = *s;
1021 }
1022
1023 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1024 * the target vCPU).
1025 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1026 * thing actually updated is the target TLB entry ->addr_write flags.
1027 */
1028 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1029 {
1030 CPUArchState *env;
1031
1032 int mmu_idx;
1033
1034 env = cpu->env_ptr;
1035 qemu_spin_lock(&env_tlb(env)->c.lock);
1036 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1037 unsigned int i;
1038 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1039
1040 for (i = 0; i < n; i++) {
1041 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1042 start1, length);
1043 }
1044
1045 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1046 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1047 start1, length);
1048 }
1049 }
1050 qemu_spin_unlock(&env_tlb(env)->c.lock);
1051 }
1052
1053 /* Called with tlb_c.lock held */
1054 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1055 vaddr addr)
1056 {
1057 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1058 tlb_entry->addr_write = addr;
1059 }
1060 }
1061
1062 /* update the TLB corresponding to virtual page vaddr
1063 so that it is no longer dirty */
1064 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1065 {
1066 CPUArchState *env = cpu->env_ptr;
1067 int mmu_idx;
1068
1069 assert_cpu_is_self(cpu);
1070
1071 addr &= TARGET_PAGE_MASK;
1072 qemu_spin_lock(&env_tlb(env)->c.lock);
1073 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1074 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1075 }
1076
1077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1078 int k;
1079 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1080 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1081 }
1082 }
1083 qemu_spin_unlock(&env_tlb(env)->c.lock);
1084 }
1085
1086 /* Our TLB does not support large pages, so remember the area covered by
1087 large pages and trigger a full TLB flush if these are invalidated. */
1088 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1089 vaddr addr, uint64_t size)
1090 {
1091 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1092 vaddr lp_mask = ~(size - 1);
1093
1094 if (lp_addr == (vaddr)-1) {
1095 /* No previous large page. */
1096 lp_addr = addr;
1097 } else {
1098 /* Extend the existing region to include the new page.
1099 This is a compromise between unnecessary flushes and
1100 the cost of maintaining a full variable size TLB. */
1101 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1102 while (((lp_addr ^ addr) & lp_mask) != 0) {
1103 lp_mask <<= 1;
1104 }
1105 }
1106 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1107 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1108 }
1109
1110 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1111 target_ulong address, int flags,
1112 MMUAccessType access_type, bool enable)
1113 {
1114 if (enable) {
1115 address |= flags & TLB_FLAGS_MASK;
1116 flags &= TLB_SLOW_FLAGS_MASK;
1117 if (flags) {
1118 address |= TLB_FORCE_SLOW;
1119 }
1120 } else {
1121 address = -1;
1122 flags = 0;
1123 }
1124 ent->addr_idx[access_type] = address;
1125 full->slow_flags[access_type] = flags;
1126 }
1127
1128 /*
1129 * Add a new TLB entry. At most one entry for a given virtual address
1130 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1131 * supplied size is only used by tlb_flush_page.
1132 *
1133 * Called from TCG-generated code, which is under an RCU read-side
1134 * critical section.
1135 */
1136 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1137 vaddr addr, CPUTLBEntryFull *full)
1138 {
1139 CPUArchState *env = cpu->env_ptr;
1140 CPUTLB *tlb = env_tlb(env);
1141 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1142 MemoryRegionSection *section;
1143 unsigned int index, read_flags, write_flags;
1144 uintptr_t addend;
1145 CPUTLBEntry *te, tn;
1146 hwaddr iotlb, xlat, sz, paddr_page;
1147 vaddr addr_page;
1148 int asidx, wp_flags, prot;
1149 bool is_ram, is_romd;
1150
1151 assert_cpu_is_self(cpu);
1152
1153 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1154 sz = TARGET_PAGE_SIZE;
1155 } else {
1156 sz = (hwaddr)1 << full->lg_page_size;
1157 tlb_add_large_page(env, mmu_idx, addr, sz);
1158 }
1159 addr_page = addr & TARGET_PAGE_MASK;
1160 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1161
1162 prot = full->prot;
1163 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1164 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1165 &xlat, &sz, full->attrs, &prot);
1166 assert(sz >= TARGET_PAGE_SIZE);
1167
1168 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1169 " prot=%x idx=%d\n",
1170 addr, full->phys_addr, prot, mmu_idx);
1171
1172 read_flags = 0;
1173 if (full->lg_page_size < TARGET_PAGE_BITS) {
1174 /* Repeat the MMU check and TLB fill on every access. */
1175 read_flags |= TLB_INVALID_MASK;
1176 }
1177 if (full->attrs.byte_swap) {
1178 read_flags |= TLB_BSWAP;
1179 }
1180
1181 is_ram = memory_region_is_ram(section->mr);
1182 is_romd = memory_region_is_romd(section->mr);
1183
1184 if (is_ram || is_romd) {
1185 /* RAM and ROMD both have associated host memory. */
1186 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1187 } else {
1188 /* I/O does not; force the host address to NULL. */
1189 addend = 0;
1190 }
1191
1192 write_flags = read_flags;
1193 if (is_ram) {
1194 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1195 /*
1196 * Computing is_clean is expensive; avoid all that unless
1197 * the page is actually writable.
1198 */
1199 if (prot & PAGE_WRITE) {
1200 if (section->readonly) {
1201 write_flags |= TLB_DISCARD_WRITE;
1202 } else if (cpu_physical_memory_is_clean(iotlb)) {
1203 write_flags |= TLB_NOTDIRTY;
1204 }
1205 }
1206 } else {
1207 /* I/O or ROMD */
1208 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1209 /*
1210 * Writes to romd devices must go through MMIO to enable write.
1211 * Reads to romd devices go through the ram_ptr found above,
1212 * but of course reads to I/O must go through MMIO.
1213 */
1214 write_flags |= TLB_MMIO;
1215 if (!is_romd) {
1216 read_flags = write_flags;
1217 }
1218 }
1219
1220 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1221 TARGET_PAGE_SIZE);
1222
1223 index = tlb_index(env, mmu_idx, addr_page);
1224 te = tlb_entry(env, mmu_idx, addr_page);
1225
1226 /*
1227 * Hold the TLB lock for the rest of the function. We could acquire/release
1228 * the lock several times in the function, but it is faster to amortize the
1229 * acquisition cost by acquiring it just once. Note that this leads to
1230 * a longer critical section, but this is not a concern since the TLB lock
1231 * is unlikely to be contended.
1232 */
1233 qemu_spin_lock(&tlb->c.lock);
1234
1235 /* Note that the tlb is no longer clean. */
1236 tlb->c.dirty |= 1 << mmu_idx;
1237
1238 /* Make sure there's no cached translation for the new page. */
1239 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1240
1241 /*
1242 * Only evict the old entry to the victim tlb if it's for a
1243 * different page; otherwise just overwrite the stale data.
1244 */
1245 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1246 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1247 CPUTLBEntry *tv = &desc->vtable[vidx];
1248
1249 /* Evict the old entry into the victim tlb. */
1250 copy_tlb_helper_locked(tv, te);
1251 desc->vfulltlb[vidx] = desc->fulltlb[index];
1252 tlb_n_used_entries_dec(env, mmu_idx);
1253 }
1254
1255 /* refill the tlb */
1256 /*
1257 * At this point iotlb contains a physical section number in the lower
1258 * TARGET_PAGE_BITS, and either
1259 * + the ram_addr_t of the page base of the target RAM (RAM)
1260 * + the offset within section->mr of the page base (I/O, ROMD)
1261 * We subtract addr_page (which is page aligned and thus won't
1262 * disturb the low bits) to give an offset which can be added to the
1263 * (non-page-aligned) vaddr of the eventual memory access to get
1264 * the MemoryRegion offset for the access. Note that the vaddr we
1265 * subtract here is that of the page base, and not the same as the
1266 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1267 */
1268 desc->fulltlb[index] = *full;
1269 full = &desc->fulltlb[index];
1270 full->xlat_section = iotlb - addr_page;
1271 full->phys_addr = paddr_page;
1272
1273 /* Now calculate the new entry */
1274 tn.addend = addend - addr_page;
1275
1276 tlb_set_compare(full, &tn, addr_page, read_flags,
1277 MMU_INST_FETCH, prot & PAGE_EXEC);
1278
1279 if (wp_flags & BP_MEM_READ) {
1280 read_flags |= TLB_WATCHPOINT;
1281 }
1282 tlb_set_compare(full, &tn, addr_page, read_flags,
1283 MMU_DATA_LOAD, prot & PAGE_READ);
1284
1285 if (prot & PAGE_WRITE_INV) {
1286 write_flags |= TLB_INVALID_MASK;
1287 }
1288 if (wp_flags & BP_MEM_WRITE) {
1289 write_flags |= TLB_WATCHPOINT;
1290 }
1291 tlb_set_compare(full, &tn, addr_page, write_flags,
1292 MMU_DATA_STORE, prot & PAGE_WRITE);
1293
1294 copy_tlb_helper_locked(te, &tn);
1295 tlb_n_used_entries_inc(env, mmu_idx);
1296 qemu_spin_unlock(&tlb->c.lock);
1297 }
1298
1299 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1300 hwaddr paddr, MemTxAttrs attrs, int prot,
1301 int mmu_idx, uint64_t size)
1302 {
1303 CPUTLBEntryFull full = {
1304 .phys_addr = paddr,
1305 .attrs = attrs,
1306 .prot = prot,
1307 .lg_page_size = ctz64(size)
1308 };
1309
1310 assert(is_power_of_2(size));
1311 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1312 }
1313
1314 void tlb_set_page(CPUState *cpu, vaddr addr,
1315 hwaddr paddr, int prot,
1316 int mmu_idx, uint64_t size)
1317 {
1318 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1319 prot, mmu_idx, size);
1320 }
1321
1322 /*
1323 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1324 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1325 * be discarded and looked up again (e.g. via tlb_entry()).
1326 */
1327 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1328 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1329 {
1330 bool ok;
1331
1332 /*
1333 * This is not a probe, so only valid return is success; failure
1334 * should result in exception + longjmp to the cpu loop.
1335 */
1336 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1337 access_type, mmu_idx, false, retaddr);
1338 assert(ok);
1339 }
1340
1341 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1342 MMUAccessType access_type,
1343 int mmu_idx, uintptr_t retaddr)
1344 {
1345 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1346 mmu_idx, retaddr);
1347 }
1348
1349 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1350 vaddr addr, unsigned size,
1351 MMUAccessType access_type,
1352 int mmu_idx, MemTxAttrs attrs,
1353 MemTxResult response,
1354 uintptr_t retaddr)
1355 {
1356 CPUClass *cc = CPU_GET_CLASS(cpu);
1357
1358 if (!cpu->ignore_memory_transaction_failures &&
1359 cc->tcg_ops->do_transaction_failed) {
1360 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1361 access_type, mmu_idx, attrs,
1362 response, retaddr);
1363 }
1364 }
1365
1366 /*
1367 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1368 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1369 * because of the side effect of io_writex changing memory layout.
1370 */
1371 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1372 hwaddr mr_offset)
1373 {
1374 #ifdef CONFIG_PLUGIN
1375 SavedIOTLB *saved = &cs->saved_iotlb;
1376 saved->section = section;
1377 saved->mr_offset = mr_offset;
1378 #endif
1379 }
1380
1381 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1382 int mmu_idx, vaddr addr, uintptr_t retaddr,
1383 MMUAccessType access_type, MemOp op)
1384 {
1385 CPUState *cpu = env_cpu(env);
1386 hwaddr mr_offset;
1387 MemoryRegionSection *section;
1388 MemoryRegion *mr;
1389 uint64_t val;
1390 MemTxResult r;
1391
1392 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1393 mr = section->mr;
1394 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1395 cpu->mem_io_pc = retaddr;
1396 if (!cpu->can_do_io) {
1397 cpu_io_recompile(cpu, retaddr);
1398 }
1399
1400 /*
1401 * The memory_region_dispatch may trigger a flush/resize
1402 * so for plugins we save the iotlb_data just in case.
1403 */
1404 save_iotlb_data(cpu, section, mr_offset);
1405
1406 {
1407 QEMU_IOTHREAD_LOCK_GUARD();
1408 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1409 }
1410
1411 if (r != MEMTX_OK) {
1412 hwaddr physaddr = mr_offset +
1413 section->offset_within_address_space -
1414 section->offset_within_region;
1415
1416 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1417 mmu_idx, full->attrs, r, retaddr);
1418 }
1419 return val;
1420 }
1421
1422 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1423 int mmu_idx, uint64_t val, vaddr addr,
1424 uintptr_t retaddr, MemOp op)
1425 {
1426 CPUState *cpu = env_cpu(env);
1427 hwaddr mr_offset;
1428 MemoryRegionSection *section;
1429 MemoryRegion *mr;
1430 MemTxResult r;
1431
1432 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1433 mr = section->mr;
1434 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1435 if (!cpu->can_do_io) {
1436 cpu_io_recompile(cpu, retaddr);
1437 }
1438 cpu->mem_io_pc = retaddr;
1439
1440 /*
1441 * The memory_region_dispatch may trigger a flush/resize
1442 * so for plugins we save the iotlb_data just in case.
1443 */
1444 save_iotlb_data(cpu, section, mr_offset);
1445
1446 {
1447 QEMU_IOTHREAD_LOCK_GUARD();
1448 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1449 }
1450
1451 if (r != MEMTX_OK) {
1452 hwaddr physaddr = mr_offset +
1453 section->offset_within_address_space -
1454 section->offset_within_region;
1455
1456 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1457 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1458 retaddr);
1459 }
1460 }
1461
1462 /* Return true if ADDR is present in the victim tlb, and has been copied
1463 back to the main tlb. */
1464 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1465 MMUAccessType access_type, vaddr page)
1466 {
1467 size_t vidx;
1468
1469 assert_cpu_is_self(env_cpu(env));
1470 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1471 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1472 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1473
1474 if (cmp == page) {
1475 /* Found entry in victim tlb, swap tlb and iotlb. */
1476 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1477
1478 qemu_spin_lock(&env_tlb(env)->c.lock);
1479 copy_tlb_helper_locked(&tmptlb, tlb);
1480 copy_tlb_helper_locked(tlb, vtlb);
1481 copy_tlb_helper_locked(vtlb, &tmptlb);
1482 qemu_spin_unlock(&env_tlb(env)->c.lock);
1483
1484 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1485 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1486 CPUTLBEntryFull tmpf;
1487 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1488 return true;
1489 }
1490 }
1491 return false;
1492 }
1493
1494 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1495 CPUTLBEntryFull *full, uintptr_t retaddr)
1496 {
1497 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1498
1499 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1500
1501 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1502 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1503 }
1504
1505 /*
1506 * Set both VGA and migration bits for simplicity and to remove
1507 * the notdirty callback faster.
1508 */
1509 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1510
1511 /* We remove the notdirty callback only if the code has been flushed. */
1512 if (!cpu_physical_memory_is_clean(ram_addr)) {
1513 trace_memory_notdirty_set_dirty(mem_vaddr);
1514 tlb_set_dirty(cpu, mem_vaddr);
1515 }
1516 }
1517
1518 static int probe_access_internal(CPUArchState *env, vaddr addr,
1519 int fault_size, MMUAccessType access_type,
1520 int mmu_idx, bool nonfault,
1521 void **phost, CPUTLBEntryFull **pfull,
1522 uintptr_t retaddr, bool check_mem_cbs)
1523 {
1524 uintptr_t index = tlb_index(env, mmu_idx, addr);
1525 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1526 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1527 vaddr page_addr = addr & TARGET_PAGE_MASK;
1528 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1529 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1530 CPUTLBEntryFull *full;
1531
1532 if (!tlb_hit_page(tlb_addr, page_addr)) {
1533 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1534 CPUState *cs = env_cpu(env);
1535
1536 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1537 mmu_idx, nonfault, retaddr)) {
1538 /* Non-faulting page table read failed. */
1539 *phost = NULL;
1540 *pfull = NULL;
1541 return TLB_INVALID_MASK;
1542 }
1543
1544 /* TLB resize via tlb_fill may have moved the entry. */
1545 index = tlb_index(env, mmu_idx, addr);
1546 entry = tlb_entry(env, mmu_idx, addr);
1547
1548 /*
1549 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1550 * to force the next access through tlb_fill. We've just
1551 * called tlb_fill, so we know that this entry *is* valid.
1552 */
1553 flags &= ~TLB_INVALID_MASK;
1554 }
1555 tlb_addr = tlb_read_idx(entry, access_type);
1556 }
1557 flags &= tlb_addr;
1558
1559 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1560 flags |= full->slow_flags[access_type];
1561
1562 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1563 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1564 ||
1565 (access_type != MMU_INST_FETCH && force_mmio)) {
1566 *phost = NULL;
1567 return TLB_MMIO;
1568 }
1569
1570 /* Everything else is RAM. */
1571 *phost = (void *)((uintptr_t)addr + entry->addend);
1572 return flags;
1573 }
1574
1575 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1576 MMUAccessType access_type, int mmu_idx,
1577 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1578 uintptr_t retaddr)
1579 {
1580 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1581 nonfault, phost, pfull, retaddr, true);
1582
1583 /* Handle clean RAM pages. */
1584 if (unlikely(flags & TLB_NOTDIRTY)) {
1585 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1586 flags &= ~TLB_NOTDIRTY;
1587 }
1588
1589 return flags;
1590 }
1591
1592 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1593 MMUAccessType access_type, int mmu_idx,
1594 void **phost, CPUTLBEntryFull **pfull)
1595 {
1596 void *discard_phost;
1597 CPUTLBEntryFull *discard_tlb;
1598
1599 /* privately handle users that don't need full results */
1600 phost = phost ? phost : &discard_phost;
1601 pfull = pfull ? pfull : &discard_tlb;
1602
1603 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1604 true, phost, pfull, 0, false);
1605
1606 /* Handle clean RAM pages. */
1607 if (unlikely(flags & TLB_NOTDIRTY)) {
1608 notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1609 flags &= ~TLB_NOTDIRTY;
1610 }
1611
1612 return flags;
1613 }
1614
1615 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1616 MMUAccessType access_type, int mmu_idx,
1617 bool nonfault, void **phost, uintptr_t retaddr)
1618 {
1619 CPUTLBEntryFull *full;
1620 int flags;
1621
1622 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1623
1624 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1625 nonfault, phost, &full, retaddr, true);
1626
1627 /* Handle clean RAM pages. */
1628 if (unlikely(flags & TLB_NOTDIRTY)) {
1629 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1630 flags &= ~TLB_NOTDIRTY;
1631 }
1632
1633 return flags;
1634 }
1635
1636 void *probe_access(CPUArchState *env, vaddr addr, int size,
1637 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1638 {
1639 CPUTLBEntryFull *full;
1640 void *host;
1641 int flags;
1642
1643 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1644
1645 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1646 false, &host, &full, retaddr, true);
1647
1648 /* Per the interface, size == 0 merely faults the access. */
1649 if (size == 0) {
1650 return NULL;
1651 }
1652
1653 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1654 /* Handle watchpoints. */
1655 if (flags & TLB_WATCHPOINT) {
1656 int wp_access = (access_type == MMU_DATA_STORE
1657 ? BP_MEM_WRITE : BP_MEM_READ);
1658 cpu_check_watchpoint(env_cpu(env), addr, size,
1659 full->attrs, wp_access, retaddr);
1660 }
1661
1662 /* Handle clean RAM pages. */
1663 if (flags & TLB_NOTDIRTY) {
1664 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1665 }
1666 }
1667
1668 return host;
1669 }
1670
1671 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1672 MMUAccessType access_type, int mmu_idx)
1673 {
1674 CPUTLBEntryFull *full;
1675 void *host;
1676 int flags;
1677
1678 flags = probe_access_internal(env, addr, 0, access_type,
1679 mmu_idx, true, &host, &full, 0, false);
1680
1681 /* No combination of flags are expected by the caller. */
1682 return flags ? NULL : host;
1683 }
1684
1685 /*
1686 * Return a ram_addr_t for the virtual address for execution.
1687 *
1688 * Return -1 if we can't translate and execute from an entire page
1689 * of RAM. This will force us to execute by loading and translating
1690 * one insn at a time, without caching.
1691 *
1692 * NOTE: This function will trigger an exception if the page is
1693 * not executable.
1694 */
1695 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1696 void **hostp)
1697 {
1698 CPUTLBEntryFull *full;
1699 void *p;
1700
1701 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1702 cpu_mmu_index(env, true), false,
1703 &p, &full, 0, false);
1704 if (p == NULL) {
1705 return -1;
1706 }
1707
1708 if (full->lg_page_size < TARGET_PAGE_BITS) {
1709 return -1;
1710 }
1711
1712 if (hostp) {
1713 *hostp = p;
1714 }
1715 return qemu_ram_addr_from_host_nofail(p);
1716 }
1717
1718 /* Load/store with atomicity primitives. */
1719 #include "ldst_atomicity.c.inc"
1720
1721 #ifdef CONFIG_PLUGIN
1722 /*
1723 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1724 * This should be a hot path as we will have just looked this path up
1725 * in the softmmu lookup code (or helper). We don't handle re-fills or
1726 * checking the victim table. This is purely informational.
1727 *
1728 * This almost never fails as the memory access being instrumented
1729 * should have just filled the TLB. The one corner case is io_writex
1730 * which can cause TLB flushes and potential resizing of the TLBs
1731 * losing the information we need. In those cases we need to recover
1732 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1733 * from the same thread (which a mem callback will be) this is safe.
1734 */
1735
1736 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1737 bool is_store, struct qemu_plugin_hwaddr *data)
1738 {
1739 CPUArchState *env = cpu->env_ptr;
1740 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1741 uintptr_t index = tlb_index(env, mmu_idx, addr);
1742 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1743
1744 if (likely(tlb_hit(tlb_addr, addr))) {
1745 /* We must have an iotlb entry for MMIO */
1746 if (tlb_addr & TLB_MMIO) {
1747 CPUTLBEntryFull *full;
1748 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1749 data->is_io = true;
1750 data->v.io.section =
1751 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1752 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1753 } else {
1754 data->is_io = false;
1755 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1756 }
1757 return true;
1758 } else {
1759 SavedIOTLB *saved = &cpu->saved_iotlb;
1760 data->is_io = true;
1761 data->v.io.section = saved->section;
1762 data->v.io.offset = saved->mr_offset;
1763 return true;
1764 }
1765 }
1766
1767 #endif
1768
1769 /*
1770 * Probe for a load/store operation.
1771 * Return the host address and into @flags.
1772 */
1773
1774 typedef struct MMULookupPageData {
1775 CPUTLBEntryFull *full;
1776 void *haddr;
1777 vaddr addr;
1778 int flags;
1779 int size;
1780 } MMULookupPageData;
1781
1782 typedef struct MMULookupLocals {
1783 MMULookupPageData page[2];
1784 MemOp memop;
1785 int mmu_idx;
1786 } MMULookupLocals;
1787
1788 /**
1789 * mmu_lookup1: translate one page
1790 * @env: cpu context
1791 * @data: lookup parameters
1792 * @mmu_idx: virtual address context
1793 * @access_type: load/store/code
1794 * @ra: return address into tcg generated code, or 0
1795 *
1796 * Resolve the translation for the one page at @data.addr, filling in
1797 * the rest of @data with the results. If the translation fails,
1798 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1799 * @mmu_idx may have resized.
1800 */
1801 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1802 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1803 {
1804 vaddr addr = data->addr;
1805 uintptr_t index = tlb_index(env, mmu_idx, addr);
1806 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1807 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1808 bool maybe_resized = false;
1809 CPUTLBEntryFull *full;
1810 int flags;
1811
1812 /* If the TLB entry is for a different page, reload and try again. */
1813 if (!tlb_hit(tlb_addr, addr)) {
1814 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1815 addr & TARGET_PAGE_MASK)) {
1816 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1817 maybe_resized = true;
1818 index = tlb_index(env, mmu_idx, addr);
1819 entry = tlb_entry(env, mmu_idx, addr);
1820 }
1821 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1822 }
1823
1824 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1825 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1826 flags |= full->slow_flags[access_type];
1827
1828 data->full = full;
1829 data->flags = flags;
1830 /* Compute haddr speculatively; depending on flags it might be invalid. */
1831 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1832
1833 return maybe_resized;
1834 }
1835
1836 /**
1837 * mmu_watch_or_dirty
1838 * @env: cpu context
1839 * @data: lookup parameters
1840 * @access_type: load/store/code
1841 * @ra: return address into tcg generated code, or 0
1842 *
1843 * Trigger watchpoints for @data.addr:@data.size;
1844 * record writes to protected clean pages.
1845 */
1846 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1847 MMUAccessType access_type, uintptr_t ra)
1848 {
1849 CPUTLBEntryFull *full = data->full;
1850 vaddr addr = data->addr;
1851 int flags = data->flags;
1852 int size = data->size;
1853
1854 /* On watchpoint hit, this will longjmp out. */
1855 if (flags & TLB_WATCHPOINT) {
1856 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1857 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1858 flags &= ~TLB_WATCHPOINT;
1859 }
1860
1861 /* Note that notdirty is only set for writes. */
1862 if (flags & TLB_NOTDIRTY) {
1863 notdirty_write(env_cpu(env), addr, size, full, ra);
1864 flags &= ~TLB_NOTDIRTY;
1865 }
1866 data->flags = flags;
1867 }
1868
1869 /**
1870 * mmu_lookup: translate page(s)
1871 * @env: cpu context
1872 * @addr: virtual address
1873 * @oi: combined mmu_idx and MemOp
1874 * @ra: return address into tcg generated code, or 0
1875 * @access_type: load/store/code
1876 * @l: output result
1877 *
1878 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1879 * bytes. Return true if the lookup crosses a page boundary.
1880 */
1881 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1882 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1883 {
1884 unsigned a_bits;
1885 bool crosspage;
1886 int flags;
1887
1888 l->memop = get_memop(oi);
1889 l->mmu_idx = get_mmuidx(oi);
1890
1891 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1892
1893 /* Handle CPU specific unaligned behaviour */
1894 a_bits = get_alignment_bits(l->memop);
1895 if (addr & ((1 << a_bits) - 1)) {
1896 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1897 }
1898
1899 l->page[0].addr = addr;
1900 l->page[0].size = memop_size(l->memop);
1901 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1902 l->page[1].size = 0;
1903 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1904
1905 if (likely(!crosspage)) {
1906 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1907
1908 flags = l->page[0].flags;
1909 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1910 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1911 }
1912 if (unlikely(flags & TLB_BSWAP)) {
1913 l->memop ^= MO_BSWAP;
1914 }
1915 } else {
1916 /* Finish compute of page crossing. */
1917 int size0 = l->page[1].addr - addr;
1918 l->page[1].size = l->page[0].size - size0;
1919 l->page[0].size = size0;
1920
1921 /*
1922 * Lookup both pages, recognizing exceptions from either. If the
1923 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1924 */
1925 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1926 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1927 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1928 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1929 }
1930
1931 flags = l->page[0].flags | l->page[1].flags;
1932 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1933 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1934 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1935 }
1936
1937 /*
1938 * Since target/sparc is the only user of TLB_BSWAP, and all
1939 * Sparc accesses are aligned, any treatment across two pages
1940 * would be arbitrary. Refuse it until there's a use.
1941 */
1942 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1943 }
1944
1945 return crosspage;
1946 }
1947
1948 /*
1949 * Probe for an atomic operation. Do not allow unaligned operations,
1950 * or io operations to proceed. Return the host address.
1951 */
1952 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1953 int size, uintptr_t retaddr)
1954 {
1955 uintptr_t mmu_idx = get_mmuidx(oi);
1956 MemOp mop = get_memop(oi);
1957 int a_bits = get_alignment_bits(mop);
1958 uintptr_t index;
1959 CPUTLBEntry *tlbe;
1960 vaddr tlb_addr;
1961 void *hostaddr;
1962 CPUTLBEntryFull *full;
1963
1964 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1965
1966 /* Adjust the given return address. */
1967 retaddr -= GETPC_ADJ;
1968
1969 /* Enforce guest required alignment. */
1970 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1971 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1972 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1973 mmu_idx, retaddr);
1974 }
1975
1976 /* Enforce qemu required alignment. */
1977 if (unlikely(addr & (size - 1))) {
1978 /* We get here if guest alignment was not requested,
1979 or was not enforced by cpu_unaligned_access above.
1980 We might widen the access and emulate, but for now
1981 mark an exception and exit the cpu loop. */
1982 goto stop_the_world;
1983 }
1984
1985 index = tlb_index(env, mmu_idx, addr);
1986 tlbe = tlb_entry(env, mmu_idx, addr);
1987
1988 /* Check TLB entry and enforce page permissions. */
1989 tlb_addr = tlb_addr_write(tlbe);
1990 if (!tlb_hit(tlb_addr, addr)) {
1991 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1992 addr & TARGET_PAGE_MASK)) {
1993 tlb_fill(env_cpu(env), addr, size,
1994 MMU_DATA_STORE, mmu_idx, retaddr);
1995 index = tlb_index(env, mmu_idx, addr);
1996 tlbe = tlb_entry(env, mmu_idx, addr);
1997 }
1998 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1999 }
2000
2001 /*
2002 * Let the guest notice RMW on a write-only page.
2003 * We have just verified that the page is writable.
2004 * Subpage lookups may have left TLB_INVALID_MASK set,
2005 * but addr_read will only be -1 if PAGE_READ was unset.
2006 */
2007 if (unlikely(tlbe->addr_read == -1)) {
2008 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
2009 /*
2010 * Since we don't support reads and writes to different
2011 * addresses, and we do have the proper page loaded for
2012 * write, this shouldn't ever return. But just in case,
2013 * handle via stop-the-world.
2014 */
2015 goto stop_the_world;
2016 }
2017 /* Collect tlb flags for read. */
2018 tlb_addr |= tlbe->addr_read;
2019
2020 /* Notice an IO access or a needs-MMU-lookup access */
2021 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
2022 /* There's really nothing that can be done to
2023 support this apart from stop-the-world. */
2024 goto stop_the_world;
2025 }
2026
2027 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
2028 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2029
2030 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
2031 notdirty_write(env_cpu(env), addr, size, full, retaddr);
2032 }
2033
2034 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
2035 int wp_flags = 0;
2036
2037 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
2038 wp_flags |= BP_MEM_WRITE;
2039 }
2040 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
2041 wp_flags |= BP_MEM_READ;
2042 }
2043 if (wp_flags) {
2044 cpu_check_watchpoint(env_cpu(env), addr, size,
2045 full->attrs, wp_flags, retaddr);
2046 }
2047 }
2048
2049 return hostaddr;
2050
2051 stop_the_world:
2052 cpu_loop_exit_atomic(env_cpu(env), retaddr);
2053 }
2054
2055 /*
2056 * Load Helpers
2057 *
2058 * We support two different access types. SOFTMMU_CODE_ACCESS is
2059 * specifically for reading instructions from system memory. It is
2060 * called by the translation loop and in some helpers where the code
2061 * is disassembled. It shouldn't be called directly by guest code.
2062 *
2063 * For the benefit of TCG generated code, we want to avoid the
2064 * complication of ABI-specific return type promotion and always
2065 * return a value extended to the register size of the host. This is
2066 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2067 * data, and for that we always have uint64_t.
2068 *
2069 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2070 */
2071
2072 /**
2073 * do_ld_mmio_beN:
2074 * @env: cpu context
2075 * @full: page parameters
2076 * @ret_be: accumulated data
2077 * @addr: virtual address
2078 * @size: number of bytes
2079 * @mmu_idx: virtual address context
2080 * @ra: return address into tcg generated code, or 0
2081 * Context: iothread lock held
2082 *
2083 * Load @size bytes from @addr, which is memory-mapped i/o.
2084 * The bytes are concatenated in big-endian order with @ret_be.
2085 */
2086 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2087 uint64_t ret_be, vaddr addr, int size,
2088 int mmu_idx, MMUAccessType type, uintptr_t ra)
2089 {
2090 uint64_t t;
2091
2092 tcg_debug_assert(size > 0 && size <= 8);
2093 do {
2094 /* Read aligned pieces up to 8 bytes. */
2095 switch ((size | (int)addr) & 7) {
2096 case 1:
2097 case 3:
2098 case 5:
2099 case 7:
2100 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB);
2101 ret_be = (ret_be << 8) | t;
2102 size -= 1;
2103 addr += 1;
2104 break;
2105 case 2:
2106 case 6:
2107 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW);
2108 ret_be = (ret_be << 16) | t;
2109 size -= 2;
2110 addr += 2;
2111 break;
2112 case 4:
2113 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL);
2114 ret_be = (ret_be << 32) | t;
2115 size -= 4;
2116 addr += 4;
2117 break;
2118 case 0:
2119 return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ);
2120 default:
2121 qemu_build_not_reached();
2122 }
2123 } while (size);
2124 return ret_be;
2125 }
2126
2127 /**
2128 * do_ld_bytes_beN
2129 * @p: translation parameters
2130 * @ret_be: accumulated data
2131 *
2132 * Load @p->size bytes from @p->haddr, which is RAM.
2133 * The bytes to concatenated in big-endian order with @ret_be.
2134 */
2135 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2136 {
2137 uint8_t *haddr = p->haddr;
2138 int i, size = p->size;
2139
2140 for (i = 0; i < size; i++) {
2141 ret_be = (ret_be << 8) | haddr[i];
2142 }
2143 return ret_be;
2144 }
2145
2146 /**
2147 * do_ld_parts_beN
2148 * @p: translation parameters
2149 * @ret_be: accumulated data
2150 *
2151 * As do_ld_bytes_beN, but atomically on each aligned part.
2152 */
2153 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2154 {
2155 void *haddr = p->haddr;
2156 int size = p->size;
2157
2158 do {
2159 uint64_t x;
2160 int n;
2161
2162 /*
2163 * Find minimum of alignment and size.
2164 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2165 * would have only checked the low bits of addr|size once at the start,
2166 * but is just as easy.
2167 */
2168 switch (((uintptr_t)haddr | size) & 7) {
2169 case 4:
2170 x = cpu_to_be32(load_atomic4(haddr));
2171 ret_be = (ret_be << 32) | x;
2172 n = 4;
2173 break;
2174 case 2:
2175 case 6:
2176 x = cpu_to_be16(load_atomic2(haddr));
2177 ret_be = (ret_be << 16) | x;
2178 n = 2;
2179 break;
2180 default:
2181 x = *(uint8_t *)haddr;
2182 ret_be = (ret_be << 8) | x;
2183 n = 1;
2184 break;
2185 case 0:
2186 g_assert_not_reached();
2187 }
2188 haddr += n;
2189 size -= n;
2190 } while (size != 0);
2191 return ret_be;
2192 }
2193
2194 /**
2195 * do_ld_parts_be4
2196 * @p: translation parameters
2197 * @ret_be: accumulated data
2198 *
2199 * As do_ld_bytes_beN, but with one atomic load.
2200 * Four aligned bytes are guaranteed to cover the load.
2201 */
2202 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2203 {
2204 int o = p->addr & 3;
2205 uint32_t x = load_atomic4(p->haddr - o);
2206
2207 x = cpu_to_be32(x);
2208 x <<= o * 8;
2209 x >>= (4 - p->size) * 8;
2210 return (ret_be << (p->size * 8)) | x;
2211 }
2212
2213 /**
2214 * do_ld_parts_be8
2215 * @p: translation parameters
2216 * @ret_be: accumulated data
2217 *
2218 * As do_ld_bytes_beN, but with one atomic load.
2219 * Eight aligned bytes are guaranteed to cover the load.
2220 */
2221 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2222 MMULookupPageData *p, uint64_t ret_be)
2223 {
2224 int o = p->addr & 7;
2225 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2226
2227 x = cpu_to_be64(x);
2228 x <<= o * 8;
2229 x >>= (8 - p->size) * 8;
2230 return (ret_be << (p->size * 8)) | x;
2231 }
2232
2233 /**
2234 * do_ld_parts_be16
2235 * @p: translation parameters
2236 * @ret_be: accumulated data
2237 *
2238 * As do_ld_bytes_beN, but with one atomic load.
2239 * 16 aligned bytes are guaranteed to cover the load.
2240 */
2241 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2242 MMULookupPageData *p, uint64_t ret_be)
2243 {
2244 int o = p->addr & 15;
2245 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2246 int size = p->size;
2247
2248 if (!HOST_BIG_ENDIAN) {
2249 y = bswap128(y);
2250 }
2251 y = int128_lshift(y, o * 8);
2252 y = int128_urshift(y, (16 - size) * 8);
2253 x = int128_make64(ret_be);
2254 x = int128_lshift(x, size * 8);
2255 return int128_or(x, y);
2256 }
2257
2258 /*
2259 * Wrapper for the above.
2260 */
2261 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2262 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2263 MemOp mop, uintptr_t ra)
2264 {
2265 MemOp atom;
2266 unsigned tmp, half_size;
2267
2268 if (unlikely(p->flags & TLB_MMIO)) {
2269 QEMU_IOTHREAD_LOCK_GUARD();
2270 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2271 mmu_idx, type, ra);
2272 }
2273
2274 /*
2275 * It is a given that we cross a page and therefore there is no
2276 * atomicity for the load as a whole, but subobjects may need attention.
2277 */
2278 atom = mop & MO_ATOM_MASK;
2279 switch (atom) {
2280 case MO_ATOM_SUBALIGN:
2281 return do_ld_parts_beN(p, ret_be);
2282
2283 case MO_ATOM_IFALIGN_PAIR:
2284 case MO_ATOM_WITHIN16_PAIR:
2285 tmp = mop & MO_SIZE;
2286 tmp = tmp ? tmp - 1 : 0;
2287 half_size = 1 << tmp;
2288 if (atom == MO_ATOM_IFALIGN_PAIR
2289 ? p->size == half_size
2290 : p->size >= half_size) {
2291 if (!HAVE_al8_fast && p->size < 4) {
2292 return do_ld_whole_be4(p, ret_be);
2293 } else {
2294 return do_ld_whole_be8(env, ra, p, ret_be);
2295 }
2296 }
2297 /* fall through */
2298
2299 case MO_ATOM_IFALIGN:
2300 case MO_ATOM_WITHIN16:
2301 case MO_ATOM_NONE:
2302 return do_ld_bytes_beN(p, ret_be);
2303
2304 default:
2305 g_assert_not_reached();
2306 }
2307 }
2308
2309 /*
2310 * Wrapper for the above, for 8 < size < 16.
2311 */
2312 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2313 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2314 {
2315 int size = p->size;
2316 uint64_t b;
2317 MemOp atom;
2318
2319 if (unlikely(p->flags & TLB_MMIO)) {
2320 QEMU_IOTHREAD_LOCK_GUARD();
2321 a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8,
2322 mmu_idx, MMU_DATA_LOAD, ra);
2323 b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8,
2324 mmu_idx, MMU_DATA_LOAD, ra);
2325 return int128_make128(b, a);
2326 }
2327
2328 /*
2329 * It is a given that we cross a page and therefore there is no
2330 * atomicity for the load as a whole, but subobjects may need attention.
2331 */
2332 atom = mop & MO_ATOM_MASK;
2333 switch (atom) {
2334 case MO_ATOM_SUBALIGN:
2335 p->size = size - 8;
2336 a = do_ld_parts_beN(p, a);
2337 p->haddr += size - 8;
2338 p->size = 8;
2339 b = do_ld_parts_beN(p, 0);
2340 break;
2341
2342 case MO_ATOM_WITHIN16_PAIR:
2343 /* Since size > 8, this is the half that must be atomic. */
2344 return do_ld_whole_be16(env, ra, p, a);
2345
2346 case MO_ATOM_IFALIGN_PAIR:
2347 /*
2348 * Since size > 8, both halves are misaligned,
2349 * and so neither is atomic.
2350 */
2351 case MO_ATOM_IFALIGN:
2352 case MO_ATOM_WITHIN16:
2353 case MO_ATOM_NONE:
2354 p->size = size - 8;
2355 a = do_ld_bytes_beN(p, a);
2356 b = ldq_be_p(p->haddr + size - 8);
2357 break;
2358
2359 default:
2360 g_assert_not_reached();
2361 }
2362
2363 return int128_make128(b, a);
2364 }
2365
2366 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2367 MMUAccessType type, uintptr_t ra)
2368 {
2369 if (unlikely(p->flags & TLB_MMIO)) {
2370 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2371 } else {
2372 return *(uint8_t *)p->haddr;
2373 }
2374 }
2375
2376 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2377 MMUAccessType type, MemOp memop, uintptr_t ra)
2378 {
2379 uint16_t ret;
2380
2381 if (unlikely(p->flags & TLB_MMIO)) {
2382 QEMU_IOTHREAD_LOCK_GUARD();
2383 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2384 if ((memop & MO_BSWAP) == MO_LE) {
2385 ret = bswap16(ret);
2386 }
2387 } else {
2388 /* Perform the load host endian, then swap if necessary. */
2389 ret = load_atom_2(env, ra, p->haddr, memop);
2390 if (memop & MO_BSWAP) {
2391 ret = bswap16(ret);
2392 }
2393 }
2394 return ret;
2395 }
2396
2397 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2398 MMUAccessType type, MemOp memop, uintptr_t ra)
2399 {
2400 uint32_t ret;
2401
2402 if (unlikely(p->flags & TLB_MMIO)) {
2403 QEMU_IOTHREAD_LOCK_GUARD();
2404 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2405 if ((memop & MO_BSWAP) == MO_LE) {
2406 ret = bswap32(ret);
2407 }
2408 } else {
2409 /* Perform the load host endian. */
2410 ret = load_atom_4(env, ra, p->haddr, memop);
2411 if (memop & MO_BSWAP) {
2412 ret = bswap32(ret);
2413 }
2414 }
2415 return ret;
2416 }
2417
2418 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2419 MMUAccessType type, MemOp memop, uintptr_t ra)
2420 {
2421 uint64_t ret;
2422
2423 if (unlikely(p->flags & TLB_MMIO)) {
2424 QEMU_IOTHREAD_LOCK_GUARD();
2425 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2426 if ((memop & MO_BSWAP) == MO_LE) {
2427 ret = bswap64(ret);
2428 }
2429 } else {
2430 /* Perform the load host endian. */
2431 ret = load_atom_8(env, ra, p->haddr, memop);
2432 if (memop & MO_BSWAP) {
2433 ret = bswap64(ret);
2434 }
2435 }
2436 return ret;
2437 }
2438
2439 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2440 uintptr_t ra, MMUAccessType access_type)
2441 {
2442 MMULookupLocals l;
2443 bool crosspage;
2444
2445 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2446 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2447 tcg_debug_assert(!crosspage);
2448
2449 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2450 }
2451
2452 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2453 MemOpIdx oi, uintptr_t retaddr)
2454 {
2455 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2456 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2457 }
2458
2459 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2460 uintptr_t ra, MMUAccessType access_type)
2461 {
2462 MMULookupLocals l;
2463 bool crosspage;
2464 uint16_t ret;
2465 uint8_t a, b;
2466
2467 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2468 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2469 if (likely(!crosspage)) {
2470 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2471 }
2472
2473 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2474 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2475
2476 if ((l.memop & MO_BSWAP) == MO_LE) {
2477 ret = a | (b << 8);
2478 } else {
2479 ret = b | (a << 8);
2480 }
2481 return ret;
2482 }
2483
2484 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2485 MemOpIdx oi, uintptr_t retaddr)
2486 {
2487 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2488 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2489 }
2490
2491 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2492 uintptr_t ra, MMUAccessType access_type)
2493 {
2494 MMULookupLocals l;
2495 bool crosspage;
2496 uint32_t ret;
2497
2498 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2499 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2500 if (likely(!crosspage)) {
2501 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2502 }
2503
2504 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2505 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2506 if ((l.memop & MO_BSWAP) == MO_LE) {
2507 ret = bswap32(ret);
2508 }
2509 return ret;
2510 }
2511
2512 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2513 MemOpIdx oi, uintptr_t retaddr)
2514 {
2515 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2516 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2517 }
2518
2519 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2520 uintptr_t ra, MMUAccessType access_type)
2521 {
2522 MMULookupLocals l;
2523 bool crosspage;
2524 uint64_t ret;
2525
2526 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2527 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2528 if (likely(!crosspage)) {
2529 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2530 }
2531
2532 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2533 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2534 if ((l.memop & MO_BSWAP) == MO_LE) {
2535 ret = bswap64(ret);
2536 }
2537 return ret;
2538 }
2539
2540 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2541 MemOpIdx oi, uintptr_t retaddr)
2542 {
2543 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2544 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2545 }
2546
2547 /*
2548 * Provide signed versions of the load routines as well. We can of course
2549 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2550 */
2551
2552 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2553 MemOpIdx oi, uintptr_t retaddr)
2554 {
2555 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2556 }
2557
2558 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2559 MemOpIdx oi, uintptr_t retaddr)
2560 {
2561 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2562 }
2563
2564 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2565 MemOpIdx oi, uintptr_t retaddr)
2566 {
2567 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2568 }
2569
2570 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2571 MemOpIdx oi, uintptr_t ra)
2572 {
2573 MMULookupLocals l;
2574 bool crosspage;
2575 uint64_t a, b;
2576 Int128 ret;
2577 int first;
2578
2579 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2580 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2581 if (likely(!crosspage)) {
2582 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2583 QEMU_IOTHREAD_LOCK_GUARD();
2584 a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8,
2585 l.mmu_idx, MMU_DATA_LOAD, ra);
2586 b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8,
2587 l.mmu_idx, MMU_DATA_LOAD, ra);
2588 ret = int128_make128(b, a);
2589 if ((l.memop & MO_BSWAP) == MO_LE) {
2590 ret = bswap128(ret);
2591 }
2592 } else {
2593 /* Perform the load host endian. */
2594 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2595 if (l.memop & MO_BSWAP) {
2596 ret = bswap128(ret);
2597 }
2598 }
2599 return ret;
2600 }
2601
2602 first = l.page[0].size;
2603 if (first == 8) {
2604 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2605
2606 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2607 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2608 if ((mop8 & MO_BSWAP) == MO_LE) {
2609 ret = int128_make128(a, b);
2610 } else {
2611 ret = int128_make128(b, a);
2612 }
2613 return ret;
2614 }
2615
2616 if (first < 8) {
2617 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2618 MMU_DATA_LOAD, l.memop, ra);
2619 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2620 } else {
2621 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2622 b = int128_getlo(ret);
2623 ret = int128_lshift(ret, l.page[1].size * 8);
2624 a = int128_gethi(ret);
2625 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2626 MMU_DATA_LOAD, l.memop, ra);
2627 ret = int128_make128(b, a);
2628 }
2629 if ((l.memop & MO_BSWAP) == MO_LE) {
2630 ret = bswap128(ret);
2631 }
2632 return ret;
2633 }
2634
2635 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2636 uint32_t oi, uintptr_t retaddr)
2637 {
2638 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2639 return do_ld16_mmu(env, addr, oi, retaddr);
2640 }
2641
2642 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2643 {
2644 return helper_ld16_mmu(env, addr, oi, GETPC());
2645 }
2646
2647 /*
2648 * Load helpers for cpu_ldst.h.
2649 */
2650
2651 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2652 {
2653 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2654 }
2655
2656 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2657 {
2658 uint8_t ret;
2659
2660 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2661 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2662 plugin_load_cb(env, addr, oi);
2663 return ret;
2664 }
2665
2666 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2667 MemOpIdx oi, uintptr_t ra)
2668 {
2669 uint16_t ret;
2670
2671 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2672 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2673 plugin_load_cb(env, addr, oi);
2674 return ret;
2675 }
2676
2677 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2678 MemOpIdx oi, uintptr_t ra)
2679 {
2680 uint32_t ret;
2681
2682 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2683 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2684 plugin_load_cb(env, addr, oi);
2685 return ret;
2686 }
2687
2688 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2689 MemOpIdx oi, uintptr_t ra)
2690 {
2691 uint64_t ret;
2692
2693 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2694 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2695 plugin_load_cb(env, addr, oi);
2696 return ret;
2697 }
2698
2699 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2700 MemOpIdx oi, uintptr_t ra)
2701 {
2702 Int128 ret;
2703
2704 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2705 ret = do_ld16_mmu(env, addr, oi, ra);
2706 plugin_load_cb(env, addr, oi);
2707 return ret;
2708 }
2709
2710 /*
2711 * Store Helpers
2712 */
2713
2714 /**
2715 * do_st_mmio_leN:
2716 * @env: cpu context
2717 * @full: page parameters
2718 * @val_le: data to store
2719 * @addr: virtual address
2720 * @size: number of bytes
2721 * @mmu_idx: virtual address context
2722 * @ra: return address into tcg generated code, or 0
2723 * Context: iothread lock held
2724 *
2725 * Store @size bytes at @addr, which is memory-mapped i/o.
2726 * The bytes to store are extracted in little-endian order from @val_le;
2727 * return the bytes of @val_le beyond @p->size that have not been stored.
2728 */
2729 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2730 uint64_t val_le, vaddr addr, int size,
2731 int mmu_idx, uintptr_t ra)
2732 {
2733 tcg_debug_assert(size > 0 && size <= 8);
2734
2735 do {
2736 /* Store aligned pieces up to 8 bytes. */
2737 switch ((size | (int)addr) & 7) {
2738 case 1:
2739 case 3:
2740 case 5:
2741 case 7:
2742 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB);
2743 val_le >>= 8;
2744 size -= 1;
2745 addr += 1;
2746 break;
2747 case 2:
2748 case 6:
2749 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW);
2750 val_le >>= 16;
2751 size -= 2;
2752 addr += 2;
2753 break;
2754 case 4:
2755 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL);
2756 val_le >>= 32;
2757 size -= 4;
2758 addr += 4;
2759 break;
2760 case 0:
2761 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ);
2762 return 0;
2763 default:
2764 qemu_build_not_reached();
2765 }
2766 } while (size);
2767
2768 return val_le;
2769 }
2770
2771 /*
2772 * Wrapper for the above.
2773 */
2774 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2775 uint64_t val_le, int mmu_idx,
2776 MemOp mop, uintptr_t ra)
2777 {
2778 MemOp atom;
2779 unsigned tmp, half_size;
2780
2781 if (unlikely(p->flags & TLB_MMIO)) {
2782 QEMU_IOTHREAD_LOCK_GUARD();
2783 return do_st_mmio_leN(env, p->full, val_le, p->addr,
2784 p->size, mmu_idx, ra);
2785 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2786 return val_le >> (p->size * 8);
2787 }
2788
2789 /*
2790 * It is a given that we cross a page and therefore there is no atomicity
2791 * for the store as a whole, but subobjects may need attention.
2792 */
2793 atom = mop & MO_ATOM_MASK;
2794 switch (atom) {
2795 case MO_ATOM_SUBALIGN:
2796 return store_parts_leN(p->haddr, p->size, val_le);
2797
2798 case MO_ATOM_IFALIGN_PAIR:
2799 case MO_ATOM_WITHIN16_PAIR:
2800 tmp = mop & MO_SIZE;
2801 tmp = tmp ? tmp - 1 : 0;
2802 half_size = 1 << tmp;
2803 if (atom == MO_ATOM_IFALIGN_PAIR
2804 ? p->size == half_size
2805 : p->size >= half_size) {
2806 if (!HAVE_al8_fast && p->size <= 4) {
2807 return store_whole_le4(p->haddr, p->size, val_le);
2808 } else if (HAVE_al8) {
2809 return store_whole_le8(p->haddr, p->size, val_le);
2810 } else {
2811 cpu_loop_exit_atomic(env_cpu(env), ra);
2812 }
2813 }
2814 /* fall through */
2815
2816 case MO_ATOM_IFALIGN:
2817 case MO_ATOM_WITHIN16:
2818 case MO_ATOM_NONE:
2819 return store_bytes_leN(p->haddr, p->size, val_le);
2820
2821 default:
2822 g_assert_not_reached();
2823 }
2824 }
2825
2826 /*
2827 * Wrapper for the above, for 8 < size < 16.
2828 */
2829 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2830 Int128 val_le, int mmu_idx,
2831 MemOp mop, uintptr_t ra)
2832 {
2833 int size = p->size;
2834 MemOp atom;
2835
2836 if (unlikely(p->flags & TLB_MMIO)) {
2837 QEMU_IOTHREAD_LOCK_GUARD();
2838 do_st_mmio_leN(env, p->full, int128_getlo(val_le),
2839 p->addr, 8, mmu_idx, ra);
2840 return do_st_mmio_leN(env, p->full, int128_gethi(val_le),
2841 p->addr + 8, size - 8, mmu_idx, ra);
2842 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2843 return int128_gethi(val_le) >> ((size - 8) * 8);
2844 }
2845
2846 /*
2847 * It is a given that we cross a page and therefore there is no atomicity
2848 * for the store as a whole, but subobjects may need attention.
2849 */
2850 atom = mop & MO_ATOM_MASK;
2851 switch (atom) {
2852 case MO_ATOM_SUBALIGN:
2853 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2854 return store_parts_leN(p->haddr + 8, p->size - 8,
2855 int128_gethi(val_le));
2856
2857 case MO_ATOM_WITHIN16_PAIR:
2858 /* Since size > 8, this is the half that must be atomic. */
2859 if (!HAVE_ATOMIC128_RW) {
2860 cpu_loop_exit_atomic(env_cpu(env), ra);
2861 }
2862 return store_whole_le16(p->haddr, p->size, val_le);
2863
2864 case MO_ATOM_IFALIGN_PAIR:
2865 /*
2866 * Since size > 8, both halves are misaligned,
2867 * and so neither is atomic.
2868 */
2869 case MO_ATOM_IFALIGN:
2870 case MO_ATOM_WITHIN16:
2871 case MO_ATOM_NONE:
2872 stq_le_p(p->haddr, int128_getlo(val_le));
2873 return store_bytes_leN(p->haddr + 8, p->size - 8,
2874 int128_gethi(val_le));
2875
2876 default:
2877 g_assert_not_reached();
2878 }
2879 }
2880
2881 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2882 int mmu_idx, uintptr_t ra)
2883 {
2884 if (unlikely(p->flags & TLB_MMIO)) {
2885 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2886 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2887 /* nothing */
2888 } else {
2889 *(uint8_t *)p->haddr = val;
2890 }
2891 }
2892
2893 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2894 int mmu_idx, MemOp memop, uintptr_t ra)
2895 {
2896 if (unlikely(p->flags & TLB_MMIO)) {
2897 if ((memop & MO_BSWAP) != MO_LE) {
2898 val = bswap16(val);
2899 }
2900 QEMU_IOTHREAD_LOCK_GUARD();
2901 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2902 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2903 /* nothing */
2904 } else {
2905 /* Swap to host endian if necessary, then store. */
2906 if (memop & MO_BSWAP) {
2907 val = bswap16(val);
2908 }
2909 store_atom_2(env, ra, p->haddr, memop, val);
2910 }
2911 }
2912
2913 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2914 int mmu_idx, MemOp memop, uintptr_t ra)
2915 {
2916 if (unlikely(p->flags & TLB_MMIO)) {
2917 if ((memop & MO_BSWAP) != MO_LE) {
2918 val = bswap32(val);
2919 }
2920 QEMU_IOTHREAD_LOCK_GUARD();
2921 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2922 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2923 /* nothing */
2924 } else {
2925 /* Swap to host endian if necessary, then store. */
2926 if (memop & MO_BSWAP) {
2927 val = bswap32(val);
2928 }
2929 store_atom_4(env, ra, p->haddr, memop, val);
2930 }
2931 }
2932
2933 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2934 int mmu_idx, MemOp memop, uintptr_t ra)
2935 {
2936 if (unlikely(p->flags & TLB_MMIO)) {
2937 if ((memop & MO_BSWAP) != MO_LE) {
2938 val = bswap64(val);
2939 }
2940 QEMU_IOTHREAD_LOCK_GUARD();
2941 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2942 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2943 /* nothing */
2944 } else {
2945 /* Swap to host endian if necessary, then store. */
2946 if (memop & MO_BSWAP) {
2947 val = bswap64(val);
2948 }
2949 store_atom_8(env, ra, p->haddr, memop, val);
2950 }
2951 }
2952
2953 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2954 MemOpIdx oi, uintptr_t ra)
2955 {
2956 MMULookupLocals l;
2957 bool crosspage;
2958
2959 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2960 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2961 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2962 tcg_debug_assert(!crosspage);
2963
2964 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2965 }
2966
2967 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2968 MemOpIdx oi, uintptr_t ra)
2969 {
2970 MMULookupLocals l;
2971 bool crosspage;
2972 uint8_t a, b;
2973
2974 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2975 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2976 if (likely(!crosspage)) {
2977 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2978 return;
2979 }
2980
2981 if ((l.memop & MO_BSWAP) == MO_LE) {
2982 a = val, b = val >> 8;
2983 } else {
2984 b = val, a = val >> 8;
2985 }
2986 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2987 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2988 }
2989
2990 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2991 MemOpIdx oi, uintptr_t retaddr)
2992 {
2993 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2994 do_st2_mmu(env, addr, val, oi, retaddr);
2995 }
2996
2997 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2998 MemOpIdx oi, uintptr_t ra)
2999 {
3000 MMULookupLocals l;
3001 bool crosspage;
3002
3003 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3004 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3005 if (likely(!crosspage)) {
3006 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3007 return;
3008 }
3009
3010 /* Swap to little endian for simplicity, then store by bytes. */
3011 if ((l.memop & MO_BSWAP) != MO_LE) {
3012 val = bswap32(val);
3013 }
3014 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3015 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3016 }
3017
3018 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
3019 MemOpIdx oi, uintptr_t retaddr)
3020 {
3021 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3022 do_st4_mmu(env, addr, val, oi, retaddr);
3023 }
3024
3025 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
3026 MemOpIdx oi, uintptr_t ra)
3027 {
3028 MMULookupLocals l;
3029 bool crosspage;
3030
3031 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3032 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3033 if (likely(!crosspage)) {
3034 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3035 return;
3036 }
3037
3038 /* Swap to little endian for simplicity, then store by bytes. */
3039 if ((l.memop & MO_BSWAP) != MO_LE) {
3040 val = bswap64(val);
3041 }
3042 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3043 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3044 }
3045
3046 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3047 MemOpIdx oi, uintptr_t retaddr)
3048 {
3049 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3050 do_st8_mmu(env, addr, val, oi, retaddr);
3051 }
3052
3053 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3054 MemOpIdx oi, uintptr_t ra)
3055 {
3056 MMULookupLocals l;
3057 bool crosspage;
3058 uint64_t a, b;
3059 int first;
3060
3061 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3062 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3063 if (likely(!crosspage)) {
3064 if (unlikely(l.page[0].flags & TLB_MMIO)) {
3065 if ((l.memop & MO_BSWAP) != MO_LE) {
3066 val = bswap128(val);
3067 }
3068 a = int128_getlo(val);
3069 b = int128_gethi(val);
3070 QEMU_IOTHREAD_LOCK_GUARD();
3071 do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra);
3072 do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra);
3073 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3074 /* nothing */
3075 } else {
3076 /* Swap to host endian if necessary, then store. */
3077 if (l.memop & MO_BSWAP) {
3078 val = bswap128(val);
3079 }
3080 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3081 }
3082 return;
3083 }
3084
3085 first = l.page[0].size;
3086 if (first == 8) {
3087 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3088
3089 if (l.memop & MO_BSWAP) {
3090 val = bswap128(val);
3091 }
3092 if (HOST_BIG_ENDIAN) {
3093 b = int128_getlo(val), a = int128_gethi(val);
3094 } else {
3095 a = int128_getlo(val), b = int128_gethi(val);
3096 }
3097 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3098 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3099 return;
3100 }
3101
3102 if ((l.memop & MO_BSWAP) != MO_LE) {
3103 val = bswap128(val);
3104 }
3105 if (first < 8) {
3106 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3107 val = int128_urshift(val, first * 8);
3108 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3109 } else {
3110 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3111 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3112 }
3113 }
3114
3115 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3116 MemOpIdx oi, uintptr_t retaddr)
3117 {
3118 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3119 do_st16_mmu(env, addr, val, oi, retaddr);
3120 }
3121
3122 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3123 {
3124 helper_st16_mmu(env, addr, val, oi, GETPC());
3125 }
3126
3127 /*
3128 * Store Helpers for cpu_ldst.h
3129 */
3130
3131 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3132 {
3133 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3134 }
3135
3136 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3137 MemOpIdx oi, uintptr_t retaddr)
3138 {
3139 helper_stb_mmu(env, addr, val, oi, retaddr);
3140 plugin_store_cb(env, addr, oi);
3141 }
3142
3143 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3144 MemOpIdx oi, uintptr_t retaddr)
3145 {
3146 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3147 do_st2_mmu(env, addr, val, oi, retaddr);
3148 plugin_store_cb(env, addr, oi);
3149 }
3150
3151 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3152 MemOpIdx oi, uintptr_t retaddr)
3153 {
3154 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3155 do_st4_mmu(env, addr, val, oi, retaddr);
3156 plugin_store_cb(env, addr, oi);
3157 }
3158
3159 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3160 MemOpIdx oi, uintptr_t retaddr)
3161 {
3162 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3163 do_st8_mmu(env, addr, val, oi, retaddr);
3164 plugin_store_cb(env, addr, oi);
3165 }
3166
3167 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3168 MemOpIdx oi, uintptr_t retaddr)
3169 {
3170 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3171 do_st16_mmu(env, addr, val, oi, retaddr);
3172 plugin_store_cb(env, addr, oi);
3173 }
3174
3175 #include "ldst_common.c.inc"
3176
3177 /*
3178 * First set of functions passes in OI and RETADDR.
3179 * This makes them callable from other helpers.
3180 */
3181
3182 #define ATOMIC_NAME(X) \
3183 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3184
3185 #define ATOMIC_MMU_CLEANUP
3186
3187 #include "atomic_common.c.inc"
3188
3189 #define DATA_SIZE 1
3190 #include "atomic_template.h"
3191
3192 #define DATA_SIZE 2
3193 #include "atomic_template.h"
3194
3195 #define DATA_SIZE 4
3196 #include "atomic_template.h"
3197
3198 #ifdef CONFIG_ATOMIC64
3199 #define DATA_SIZE 8
3200 #include "atomic_template.h"
3201 #endif
3202
3203 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3204 #define DATA_SIZE 16
3205 #include "atomic_template.h"
3206 #endif
3207
3208 /* Code access functions. */
3209
3210 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3211 {
3212 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3213 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3214 }
3215
3216 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3217 {
3218 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3219 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3220 }
3221
3222 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3223 {
3224 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3225 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3226 }
3227
3228 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3229 {
3230 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3231 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3232 }
3233
3234 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3235 MemOpIdx oi, uintptr_t retaddr)
3236 {
3237 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3238 }
3239
3240 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3241 MemOpIdx oi, uintptr_t retaddr)
3242 {
3243 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3244 }
3245
3246 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3247 MemOpIdx oi, uintptr_t retaddr)
3248 {
3249 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3250 }
3251
3252 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3253 MemOpIdx oi, uintptr_t retaddr)
3254 {
3255 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3256 }