]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20180716' into...
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35
36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
37 /* #define DEBUG_TLB */
38 /* #define DEBUG_TLB_LOG */
39
40 #ifdef DEBUG_TLB
41 # define DEBUG_TLB_GATE 1
42 # ifdef DEBUG_TLB_LOG
43 # define DEBUG_TLB_LOG_GATE 1
44 # else
45 # define DEBUG_TLB_LOG_GATE 0
46 # endif
47 #else
48 # define DEBUG_TLB_GATE 0
49 # define DEBUG_TLB_LOG_GATE 0
50 #endif
51
52 #define tlb_debug(fmt, ...) do { \
53 if (DEBUG_TLB_LOG_GATE) { \
54 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
55 ## __VA_ARGS__); \
56 } else if (DEBUG_TLB_GATE) { \
57 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
58 } \
59 } while (0)
60
61 #define assert_cpu_is_self(this_cpu) do { \
62 if (DEBUG_TLB_GATE) { \
63 g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \
64 } \
65 } while (0)
66
67 /* run_on_cpu_data.target_ptr should always be big enough for a
68 * target_ulong even on 32 bit builds */
69 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
70
71 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
72 */
73 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
74 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
75
76 /* flush_all_helper: run fn across all cpus
77 *
78 * If the wait flag is set then the src cpu's helper will be queued as
79 * "safe" work and the loop exited creating a synchronisation point
80 * where all queued work will be finished before execution starts
81 * again.
82 */
83 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
84 run_on_cpu_data d)
85 {
86 CPUState *cpu;
87
88 CPU_FOREACH(cpu) {
89 if (cpu != src) {
90 async_run_on_cpu(cpu, fn, d);
91 }
92 }
93 }
94
95 size_t tlb_flush_count(void)
96 {
97 CPUState *cpu;
98 size_t count = 0;
99
100 CPU_FOREACH(cpu) {
101 CPUArchState *env = cpu->env_ptr;
102
103 count += atomic_read(&env->tlb_flush_count);
104 }
105 return count;
106 }
107
108 /* This is OK because CPU architectures generally permit an
109 * implementation to drop entries from the TLB at any time, so
110 * flushing more entries than required is only an efficiency issue,
111 * not a correctness issue.
112 */
113 static void tlb_flush_nocheck(CPUState *cpu)
114 {
115 CPUArchState *env = cpu->env_ptr;
116
117 /* The QOM tests will trigger tlb_flushes without setting up TCG
118 * so we bug out here in that case.
119 */
120 if (!tcg_enabled()) {
121 return;
122 }
123
124 assert_cpu_is_self(cpu);
125 atomic_set(&env->tlb_flush_count, env->tlb_flush_count + 1);
126 tlb_debug("(count: %zu)\n", tlb_flush_count());
127
128 memset(env->tlb_table, -1, sizeof(env->tlb_table));
129 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
130 cpu_tb_jmp_cache_clear(cpu);
131
132 env->vtlb_index = 0;
133 env->tlb_flush_addr = -1;
134 env->tlb_flush_mask = 0;
135
136 atomic_mb_set(&cpu->pending_tlb_flush, 0);
137 }
138
139 static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data)
140 {
141 tlb_flush_nocheck(cpu);
142 }
143
144 void tlb_flush(CPUState *cpu)
145 {
146 if (cpu->created && !qemu_cpu_is_self(cpu)) {
147 if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) {
148 atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS);
149 async_run_on_cpu(cpu, tlb_flush_global_async_work,
150 RUN_ON_CPU_NULL);
151 }
152 } else {
153 tlb_flush_nocheck(cpu);
154 }
155 }
156
157 void tlb_flush_all_cpus(CPUState *src_cpu)
158 {
159 const run_on_cpu_func fn = tlb_flush_global_async_work;
160 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
161 fn(src_cpu, RUN_ON_CPU_NULL);
162 }
163
164 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
165 {
166 const run_on_cpu_func fn = tlb_flush_global_async_work;
167 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
168 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL);
169 }
170
171 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
172 {
173 CPUArchState *env = cpu->env_ptr;
174 unsigned long mmu_idx_bitmask = data.host_int;
175 int mmu_idx;
176
177 assert_cpu_is_self(cpu);
178
179 tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask);
180
181 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
182
183 if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
184 tlb_debug("%d\n", mmu_idx);
185
186 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
187 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
188 }
189 }
190
191 cpu_tb_jmp_cache_clear(cpu);
192
193 tlb_debug("done\n");
194 }
195
196 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
197 {
198 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
199
200 if (!qemu_cpu_is_self(cpu)) {
201 uint16_t pending_flushes = idxmap;
202 pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush);
203
204 if (pending_flushes) {
205 tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes);
206
207 atomic_or(&cpu->pending_tlb_flush, pending_flushes);
208 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
209 RUN_ON_CPU_HOST_INT(pending_flushes));
210 }
211 } else {
212 tlb_flush_by_mmuidx_async_work(cpu,
213 RUN_ON_CPU_HOST_INT(idxmap));
214 }
215 }
216
217 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
218 {
219 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
220
221 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
222
223 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
224 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
225 }
226
227 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
228 uint16_t idxmap)
229 {
230 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
231
232 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
233
234 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
235 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
236 }
237
238 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
239 target_ulong page)
240 {
241 return tlb_hit_page(tlb_entry->addr_read, page) ||
242 tlb_hit_page(tlb_entry->addr_write, page) ||
243 tlb_hit_page(tlb_entry->addr_code, page);
244 }
245
246 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong page)
247 {
248 if (tlb_hit_page_anyprot(tlb_entry, page)) {
249 memset(tlb_entry, -1, sizeof(*tlb_entry));
250 }
251 }
252
253 static inline void tlb_flush_vtlb_page(CPUArchState *env, int mmu_idx,
254 target_ulong page)
255 {
256 int k;
257 for (k = 0; k < CPU_VTLB_SIZE; k++) {
258 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], page);
259 }
260 }
261
262 static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
263 {
264 CPUArchState *env = cpu->env_ptr;
265 target_ulong addr = (target_ulong) data.target_ptr;
266 int i;
267 int mmu_idx;
268
269 assert_cpu_is_self(cpu);
270
271 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
272
273 /* Check if we need to flush due to large pages. */
274 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
275 tlb_debug("forcing full flush ("
276 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
277 env->tlb_flush_addr, env->tlb_flush_mask);
278
279 tlb_flush(cpu);
280 return;
281 }
282
283 addr &= TARGET_PAGE_MASK;
284 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
285 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
286 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
287 tlb_flush_vtlb_page(env, mmu_idx, addr);
288 }
289
290 tb_flush_jmp_cache(cpu, addr);
291 }
292
293 void tlb_flush_page(CPUState *cpu, target_ulong addr)
294 {
295 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
296
297 if (!qemu_cpu_is_self(cpu)) {
298 async_run_on_cpu(cpu, tlb_flush_page_async_work,
299 RUN_ON_CPU_TARGET_PTR(addr));
300 } else {
301 tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
302 }
303 }
304
305 /* As we are going to hijack the bottom bits of the page address for a
306 * mmuidx bit mask we need to fail to build if we can't do that
307 */
308 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
309
310 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
311 run_on_cpu_data data)
312 {
313 CPUArchState *env = cpu->env_ptr;
314 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
315 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
316 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
317 int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
318 int mmu_idx;
319
320 assert_cpu_is_self(cpu);
321
322 tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n",
323 page, addr, mmu_idx_bitmap);
324
325 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
326 if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
327 tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
328 tlb_flush_vtlb_page(env, mmu_idx, addr);
329 }
330 }
331
332 tb_flush_jmp_cache(cpu, addr);
333 }
334
335 static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu,
336 run_on_cpu_data data)
337 {
338 CPUArchState *env = cpu->env_ptr;
339 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
340 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
341 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
342
343 tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap);
344
345 /* Check if we need to flush due to large pages. */
346 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
347 tlb_debug("forced full flush ("
348 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
349 env->tlb_flush_addr, env->tlb_flush_mask);
350
351 tlb_flush_by_mmuidx_async_work(cpu,
352 RUN_ON_CPU_HOST_INT(mmu_idx_bitmap));
353 } else {
354 tlb_flush_page_by_mmuidx_async_work(cpu, data);
355 }
356 }
357
358 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
359 {
360 target_ulong addr_and_mmu_idx;
361
362 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
363
364 /* This should already be page aligned */
365 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
366 addr_and_mmu_idx |= idxmap;
367
368 if (!qemu_cpu_is_self(cpu)) {
369 async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work,
370 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
371 } else {
372 tlb_check_page_and_flush_by_mmuidx_async_work(
373 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
374 }
375 }
376
377 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
378 uint16_t idxmap)
379 {
380 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
381 target_ulong addr_and_mmu_idx;
382
383 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
384
385 /* This should already be page aligned */
386 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
387 addr_and_mmu_idx |= idxmap;
388
389 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
390 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
391 }
392
393 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
394 target_ulong addr,
395 uint16_t idxmap)
396 {
397 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
398 target_ulong addr_and_mmu_idx;
399
400 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
401
402 /* This should already be page aligned */
403 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
404 addr_and_mmu_idx |= idxmap;
405
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
407 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
408 }
409
410 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
411 {
412 const run_on_cpu_func fn = tlb_flush_page_async_work;
413
414 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
415 fn(src, RUN_ON_CPU_TARGET_PTR(addr));
416 }
417
418 void tlb_flush_page_all_cpus_synced(CPUState *src,
419 target_ulong addr)
420 {
421 const run_on_cpu_func fn = tlb_flush_page_async_work;
422
423 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
424 async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
425 }
426
427 /* update the TLBs so that writes to code in the virtual page 'addr'
428 can be detected */
429 void tlb_protect_code(ram_addr_t ram_addr)
430 {
431 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
432 DIRTY_MEMORY_CODE);
433 }
434
435 /* update the TLB so that writes in physical page 'phys_addr' are no longer
436 tested for self modifying code */
437 void tlb_unprotect_code(ram_addr_t ram_addr)
438 {
439 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
440 }
441
442
443 /*
444 * Dirty write flag handling
445 *
446 * When the TCG code writes to a location it looks up the address in
447 * the TLB and uses that data to compute the final address. If any of
448 * the lower bits of the address are set then the slow path is forced.
449 * There are a number of reasons to do this but for normal RAM the
450 * most usual is detecting writes to code regions which may invalidate
451 * generated code.
452 *
453 * Because we want other vCPUs to respond to changes straight away we
454 * update the te->addr_write field atomically. If the TLB entry has
455 * been changed by the vCPU in the mean time we skip the update.
456 *
457 * As this function uses atomic accesses we also need to ensure
458 * updates to tlb_entries follow the same access rules. We don't need
459 * to worry about this for oversized guests as MTTCG is disabled for
460 * them.
461 */
462
463 static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
464 uintptr_t length)
465 {
466 #if TCG_OVERSIZED_GUEST
467 uintptr_t addr = tlb_entry->addr_write;
468
469 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
470 addr &= TARGET_PAGE_MASK;
471 addr += tlb_entry->addend;
472 if ((addr - start) < length) {
473 tlb_entry->addr_write |= TLB_NOTDIRTY;
474 }
475 }
476 #else
477 /* paired with atomic_mb_set in tlb_set_page_with_attrs */
478 uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write);
479 uintptr_t addr = orig_addr;
480
481 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
482 addr &= TARGET_PAGE_MASK;
483 addr += atomic_read(&tlb_entry->addend);
484 if ((addr - start) < length) {
485 uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY;
486 atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr);
487 }
488 }
489 #endif
490 }
491
492 /* For atomic correctness when running MTTCG we need to use the right
493 * primitives when copying entries */
494 static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s,
495 bool atomic_set)
496 {
497 #if TCG_OVERSIZED_GUEST
498 *d = *s;
499 #else
500 if (atomic_set) {
501 d->addr_read = s->addr_read;
502 d->addr_code = s->addr_code;
503 atomic_set(&d->addend, atomic_read(&s->addend));
504 /* Pairs with flag setting in tlb_reset_dirty_range */
505 atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write));
506 } else {
507 d->addr_read = s->addr_read;
508 d->addr_write = atomic_read(&s->addr_write);
509 d->addr_code = s->addr_code;
510 d->addend = atomic_read(&s->addend);
511 }
512 #endif
513 }
514
515 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
516 * the target vCPU). As such care needs to be taken that we don't
517 * dangerously race with another vCPU update. The only thing actually
518 * updated is the target TLB entry ->addr_write flags.
519 */
520 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
521 {
522 CPUArchState *env;
523
524 int mmu_idx;
525
526 env = cpu->env_ptr;
527 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
528 unsigned int i;
529
530 for (i = 0; i < CPU_TLB_SIZE; i++) {
531 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
532 start1, length);
533 }
534
535 for (i = 0; i < CPU_VTLB_SIZE; i++) {
536 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
537 start1, length);
538 }
539 }
540 }
541
542 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
543 {
544 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
545 tlb_entry->addr_write = vaddr;
546 }
547 }
548
549 /* update the TLB corresponding to virtual page vaddr
550 so that it is no longer dirty */
551 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
552 {
553 CPUArchState *env = cpu->env_ptr;
554 int i;
555 int mmu_idx;
556
557 assert_cpu_is_self(cpu);
558
559 vaddr &= TARGET_PAGE_MASK;
560 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
561 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
562 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
563 }
564
565 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
566 int k;
567 for (k = 0; k < CPU_VTLB_SIZE; k++) {
568 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
569 }
570 }
571 }
572
573 /* Our TLB does not support large pages, so remember the area covered by
574 large pages and trigger a full TLB flush if these are invalidated. */
575 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
576 target_ulong size)
577 {
578 target_ulong mask = ~(size - 1);
579
580 if (env->tlb_flush_addr == (target_ulong)-1) {
581 env->tlb_flush_addr = vaddr & mask;
582 env->tlb_flush_mask = mask;
583 return;
584 }
585 /* Extend the existing region to include the new page.
586 This is a compromise between unnecessary flushes and the cost
587 of maintaining a full variable size TLB. */
588 mask &= env->tlb_flush_mask;
589 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
590 mask <<= 1;
591 }
592 env->tlb_flush_addr &= mask;
593 env->tlb_flush_mask = mask;
594 }
595
596 /* Add a new TLB entry. At most one entry for a given virtual address
597 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
598 * supplied size is only used by tlb_flush_page.
599 *
600 * Called from TCG-generated code, which is under an RCU read-side
601 * critical section.
602 */
603 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
604 hwaddr paddr, MemTxAttrs attrs, int prot,
605 int mmu_idx, target_ulong size)
606 {
607 CPUArchState *env = cpu->env_ptr;
608 MemoryRegionSection *section;
609 unsigned int index;
610 target_ulong address;
611 target_ulong code_address;
612 uintptr_t addend;
613 CPUTLBEntry *te, tn;
614 hwaddr iotlb, xlat, sz, paddr_page;
615 target_ulong vaddr_page;
616 int asidx = cpu_asidx_from_attrs(cpu, attrs);
617
618 assert_cpu_is_self(cpu);
619
620 if (size < TARGET_PAGE_SIZE) {
621 sz = TARGET_PAGE_SIZE;
622 } else {
623 if (size > TARGET_PAGE_SIZE) {
624 tlb_add_large_page(env, vaddr, size);
625 }
626 sz = size;
627 }
628 vaddr_page = vaddr & TARGET_PAGE_MASK;
629 paddr_page = paddr & TARGET_PAGE_MASK;
630
631 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
632 &xlat, &sz, attrs, &prot);
633 assert(sz >= TARGET_PAGE_SIZE);
634
635 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
636 " prot=%x idx=%d\n",
637 vaddr, paddr, prot, mmu_idx);
638
639 address = vaddr_page;
640 if (size < TARGET_PAGE_SIZE) {
641 /*
642 * Slow-path the TLB entries; we will repeat the MMU check and TLB
643 * fill on every access.
644 */
645 address |= TLB_RECHECK;
646 }
647 if (!memory_region_is_ram(section->mr) &&
648 !memory_region_is_romd(section->mr)) {
649 /* IO memory case */
650 address |= TLB_MMIO;
651 addend = 0;
652 } else {
653 /* TLB_MMIO for rom/romd handled below */
654 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
655 }
656
657 /* Make sure there's no cached translation for the new page. */
658 tlb_flush_vtlb_page(env, mmu_idx, vaddr_page);
659
660 code_address = address;
661 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
662 paddr_page, xlat, prot, &address);
663
664 index = (vaddr_page >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
665 te = &env->tlb_table[mmu_idx][index];
666
667 /*
668 * Only evict the old entry to the victim tlb if it's for a
669 * different page; otherwise just overwrite the stale data.
670 */
671 if (!tlb_hit_page_anyprot(te, vaddr_page)) {
672 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
673 CPUTLBEntry *tv = &env->tlb_v_table[mmu_idx][vidx];
674
675 /* Evict the old entry into the victim tlb. */
676 copy_tlb_helper(tv, te, true);
677 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
678 }
679
680 /* refill the tlb */
681 /*
682 * At this point iotlb contains a physical section number in the lower
683 * TARGET_PAGE_BITS, and either
684 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
685 * + the offset within section->mr of the page base (otherwise)
686 * We subtract the vaddr_page (which is page aligned and thus won't
687 * disturb the low bits) to give an offset which can be added to the
688 * (non-page-aligned) vaddr of the eventual memory access to get
689 * the MemoryRegion offset for the access. Note that the vaddr we
690 * subtract here is that of the page base, and not the same as the
691 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
692 */
693 env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page;
694 env->iotlb[mmu_idx][index].attrs = attrs;
695
696 /* Now calculate the new entry */
697 tn.addend = addend - vaddr_page;
698 if (prot & PAGE_READ) {
699 tn.addr_read = address;
700 } else {
701 tn.addr_read = -1;
702 }
703
704 if (prot & PAGE_EXEC) {
705 tn.addr_code = code_address;
706 } else {
707 tn.addr_code = -1;
708 }
709
710 tn.addr_write = -1;
711 if (prot & PAGE_WRITE) {
712 if ((memory_region_is_ram(section->mr) && section->readonly)
713 || memory_region_is_romd(section->mr)) {
714 /* Write access calls the I/O callback. */
715 tn.addr_write = address | TLB_MMIO;
716 } else if (memory_region_is_ram(section->mr)
717 && cpu_physical_memory_is_clean(
718 memory_region_get_ram_addr(section->mr) + xlat)) {
719 tn.addr_write = address | TLB_NOTDIRTY;
720 } else {
721 tn.addr_write = address;
722 }
723 if (prot & PAGE_WRITE_INV) {
724 tn.addr_write |= TLB_INVALID_MASK;
725 }
726 }
727
728 /* Pairs with flag setting in tlb_reset_dirty_range */
729 copy_tlb_helper(te, &tn, true);
730 /* atomic_mb_set(&te->addr_write, write_address); */
731 }
732
733 /* Add a new TLB entry, but without specifying the memory
734 * transaction attributes to be used.
735 */
736 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
737 hwaddr paddr, int prot,
738 int mmu_idx, target_ulong size)
739 {
740 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
741 prot, mmu_idx, size);
742 }
743
744 static void report_bad_exec(CPUState *cpu, target_ulong addr)
745 {
746 /* Accidentally executing outside RAM or ROM is quite common for
747 * several user-error situations, so report it in a way that
748 * makes it clear that this isn't a QEMU bug and provide suggestions
749 * about what a user could do to fix things.
750 */
751 error_report("Trying to execute code outside RAM or ROM at 0x"
752 TARGET_FMT_lx, addr);
753 error_printf("This usually means one of the following happened:\n\n"
754 "(1) You told QEMU to execute a kernel for the wrong machine "
755 "type, and it crashed on startup (eg trying to run a "
756 "raspberry pi kernel on a versatilepb QEMU machine)\n"
757 "(2) You didn't give QEMU a kernel or BIOS filename at all, "
758 "and QEMU executed a ROM full of no-op instructions until "
759 "it fell off the end\n"
760 "(3) Your guest kernel has a bug and crashed by jumping "
761 "off into nowhere\n\n"
762 "This is almost always one of the first two, so check your "
763 "command line and that you are using the right type of kernel "
764 "for this machine.\n"
765 "If you think option (3) is likely then you can try debugging "
766 "your guest with the -d debug options; in particular "
767 "-d guest_errors will cause the log to include a dump of the "
768 "guest register state at this point.\n\n"
769 "Execution cannot continue; stopping here.\n\n");
770
771 /* Report also to the logs, with more detail including register dump */
772 qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
773 "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
774 log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
775 }
776
777 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
778 {
779 ram_addr_t ram_addr;
780
781 ram_addr = qemu_ram_addr_from_host(ptr);
782 if (ram_addr == RAM_ADDR_INVALID) {
783 error_report("Bad ram pointer %p", ptr);
784 abort();
785 }
786 return ram_addr;
787 }
788
789 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
790 int mmu_idx,
791 target_ulong addr, uintptr_t retaddr,
792 bool recheck, int size)
793 {
794 CPUState *cpu = ENV_GET_CPU(env);
795 hwaddr mr_offset;
796 MemoryRegionSection *section;
797 MemoryRegion *mr;
798 uint64_t val;
799 bool locked = false;
800 MemTxResult r;
801
802 if (recheck) {
803 /*
804 * This is a TLB_RECHECK access, where the MMU protection
805 * covers a smaller range than a target page, and we must
806 * repeat the MMU check here. This tlb_fill() call might
807 * longjump out if this access should cause a guest exception.
808 */
809 int index;
810 target_ulong tlb_addr;
811
812 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
813
814 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
815 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
816 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
817 /* RAM access */
818 uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend;
819
820 return ldn_p((void *)haddr, size);
821 }
822 /* Fall through for handling IO accesses */
823 }
824
825 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
826 mr = section->mr;
827 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
828 cpu->mem_io_pc = retaddr;
829 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
830 cpu_io_recompile(cpu, retaddr);
831 }
832
833 cpu->mem_io_vaddr = addr;
834
835 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
836 qemu_mutex_lock_iothread();
837 locked = true;
838 }
839 r = memory_region_dispatch_read(mr, mr_offset,
840 &val, size, iotlbentry->attrs);
841 if (r != MEMTX_OK) {
842 hwaddr physaddr = mr_offset +
843 section->offset_within_address_space -
844 section->offset_within_region;
845
846 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_LOAD,
847 mmu_idx, iotlbentry->attrs, r, retaddr);
848 }
849 if (locked) {
850 qemu_mutex_unlock_iothread();
851 }
852
853 return val;
854 }
855
856 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
857 int mmu_idx,
858 uint64_t val, target_ulong addr,
859 uintptr_t retaddr, bool recheck, int size)
860 {
861 CPUState *cpu = ENV_GET_CPU(env);
862 hwaddr mr_offset;
863 MemoryRegionSection *section;
864 MemoryRegion *mr;
865 bool locked = false;
866 MemTxResult r;
867
868 if (recheck) {
869 /*
870 * This is a TLB_RECHECK access, where the MMU protection
871 * covers a smaller range than a target page, and we must
872 * repeat the MMU check here. This tlb_fill() call might
873 * longjump out if this access should cause a guest exception.
874 */
875 int index;
876 target_ulong tlb_addr;
877
878 tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
879
880 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
881 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
882 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
883 /* RAM access */
884 uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend;
885
886 stn_p((void *)haddr, size, val);
887 return;
888 }
889 /* Fall through for handling IO accesses */
890 }
891
892 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
893 mr = section->mr;
894 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
895 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
896 cpu_io_recompile(cpu, retaddr);
897 }
898 cpu->mem_io_vaddr = addr;
899 cpu->mem_io_pc = retaddr;
900
901 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
902 qemu_mutex_lock_iothread();
903 locked = true;
904 }
905 r = memory_region_dispatch_write(mr, mr_offset,
906 val, size, iotlbentry->attrs);
907 if (r != MEMTX_OK) {
908 hwaddr physaddr = mr_offset +
909 section->offset_within_address_space -
910 section->offset_within_region;
911
912 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
913 mmu_idx, iotlbentry->attrs, r, retaddr);
914 }
915 if (locked) {
916 qemu_mutex_unlock_iothread();
917 }
918 }
919
920 /* Return true if ADDR is present in the victim tlb, and has been copied
921 back to the main tlb. */
922 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
923 size_t elt_ofs, target_ulong page)
924 {
925 size_t vidx;
926 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
927 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
928 target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
929
930 if (cmp == page) {
931 /* Found entry in victim tlb, swap tlb and iotlb. */
932 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
933
934 copy_tlb_helper(&tmptlb, tlb, false);
935 copy_tlb_helper(tlb, vtlb, true);
936 copy_tlb_helper(vtlb, &tmptlb, true);
937
938 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
939 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
940 tmpio = *io; *io = *vio; *vio = tmpio;
941 return true;
942 }
943 }
944 return false;
945 }
946
947 /* Macro to call the above, with local variables from the use context. */
948 #define VICTIM_TLB_HIT(TY, ADDR) \
949 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
950 (ADDR) & TARGET_PAGE_MASK)
951
952 /* NOTE: this function can trigger an exception */
953 /* NOTE2: the returned address is not exactly the physical address: it
954 * is actually a ram_addr_t (in system mode; the user mode emulation
955 * version of this function returns a guest virtual address).
956 */
957 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
958 {
959 int mmu_idx, index;
960 void *p;
961 MemoryRegion *mr;
962 MemoryRegionSection *section;
963 CPUState *cpu = ENV_GET_CPU(env);
964 CPUIOTLBEntry *iotlbentry;
965 hwaddr physaddr, mr_offset;
966
967 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
968 mmu_idx = cpu_mmu_index(env, true);
969 if (unlikely(!tlb_hit(env->tlb_table[mmu_idx][index].addr_code, addr))) {
970 if (!VICTIM_TLB_HIT(addr_code, addr)) {
971 tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
972 }
973 assert(tlb_hit(env->tlb_table[mmu_idx][index].addr_code, addr));
974 }
975
976 if (unlikely(env->tlb_table[mmu_idx][index].addr_code & TLB_RECHECK)) {
977 /*
978 * This is a TLB_RECHECK access, where the MMU protection
979 * covers a smaller range than a target page, and we must
980 * repeat the MMU check here. This tlb_fill() call might
981 * longjump out if this access should cause a guest exception.
982 */
983 int index;
984 target_ulong tlb_addr;
985
986 tlb_fill(cpu, addr, 0, MMU_INST_FETCH, mmu_idx, 0);
987
988 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
989 tlb_addr = env->tlb_table[mmu_idx][index].addr_code;
990 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
991 /* RAM access. We can't handle this, so for now just stop */
992 cpu_abort(cpu, "Unable to handle guest executing from RAM within "
993 "a small MPU region at 0x" TARGET_FMT_lx, addr);
994 }
995 /*
996 * Fall through to handle IO accesses (which will almost certainly
997 * also result in failure)
998 */
999 }
1000
1001 iotlbentry = &env->iotlb[mmu_idx][index];
1002 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1003 mr = section->mr;
1004 if (memory_region_is_unassigned(mr)) {
1005 qemu_mutex_lock_iothread();
1006 if (memory_region_request_mmio_ptr(mr, addr)) {
1007 qemu_mutex_unlock_iothread();
1008 /* A MemoryRegion is potentially added so re-run the
1009 * get_page_addr_code.
1010 */
1011 return get_page_addr_code(env, addr);
1012 }
1013 qemu_mutex_unlock_iothread();
1014
1015 /* Give the new-style cpu_transaction_failed() hook first chance
1016 * to handle this.
1017 * This is not the ideal place to detect and generate CPU
1018 * exceptions for instruction fetch failure (for instance
1019 * we don't know the length of the access that the CPU would
1020 * use, and it would be better to go ahead and try the access
1021 * and use the MemTXResult it produced). However it is the
1022 * simplest place we have currently available for the check.
1023 */
1024 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1025 physaddr = mr_offset +
1026 section->offset_within_address_space -
1027 section->offset_within_region;
1028 cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx,
1029 iotlbentry->attrs, MEMTX_DECODE_ERROR, 0);
1030
1031 cpu_unassigned_access(cpu, addr, false, true, 0, 4);
1032 /* The CPU's unassigned access hook might have longjumped out
1033 * with an exception. If it didn't (or there was no hook) then
1034 * we can't proceed further.
1035 */
1036 report_bad_exec(cpu, addr);
1037 exit(1);
1038 }
1039 p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend);
1040 return qemu_ram_addr_from_host_nofail(p);
1041 }
1042
1043 /* Probe for whether the specified guest write access is permitted.
1044 * If it is not permitted then an exception will be taken in the same
1045 * way as if this were a real write access (and we will not return).
1046 * Otherwise the function will return, and there will be a valid
1047 * entry in the TLB for this access.
1048 */
1049 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
1050 uintptr_t retaddr)
1051 {
1052 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1053 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
1054
1055 if (!tlb_hit(tlb_addr, addr)) {
1056 /* TLB entry is for a different page */
1057 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1058 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
1059 mmu_idx, retaddr);
1060 }
1061 }
1062 }
1063
1064 /* Probe for a read-modify-write atomic operation. Do not allow unaligned
1065 * operations, or io operations to proceed. Return the host address. */
1066 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1067 TCGMemOpIdx oi, uintptr_t retaddr,
1068 NotDirtyInfo *ndi)
1069 {
1070 size_t mmu_idx = get_mmuidx(oi);
1071 size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1072 CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
1073 target_ulong tlb_addr = tlbe->addr_write;
1074 TCGMemOp mop = get_memop(oi);
1075 int a_bits = get_alignment_bits(mop);
1076 int s_bits = mop & MO_SIZE;
1077 void *hostaddr;
1078
1079 /* Adjust the given return address. */
1080 retaddr -= GETPC_ADJ;
1081
1082 /* Enforce guest required alignment. */
1083 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1084 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1085 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
1086 mmu_idx, retaddr);
1087 }
1088
1089 /* Enforce qemu required alignment. */
1090 if (unlikely(addr & ((1 << s_bits) - 1))) {
1091 /* We get here if guest alignment was not requested,
1092 or was not enforced by cpu_unaligned_access above.
1093 We might widen the access and emulate, but for now
1094 mark an exception and exit the cpu loop. */
1095 goto stop_the_world;
1096 }
1097
1098 /* Check TLB entry and enforce page permissions. */
1099 if (!tlb_hit(tlb_addr, addr)) {
1100 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1101 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
1102 mmu_idx, retaddr);
1103 }
1104 tlb_addr = tlbe->addr_write & ~TLB_INVALID_MASK;
1105 }
1106
1107 /* Notice an IO access or a needs-MMU-lookup access */
1108 if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
1109 /* There's really nothing that can be done to
1110 support this apart from stop-the-world. */
1111 goto stop_the_world;
1112 }
1113
1114 /* Let the guest notice RMW on a write-only page. */
1115 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1116 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1117 mmu_idx, retaddr);
1118 /* Since we don't support reads and writes to different addresses,
1119 and we do have the proper page loaded for write, this shouldn't
1120 ever return. But just in case, handle via stop-the-world. */
1121 goto stop_the_world;
1122 }
1123
1124 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1125
1126 ndi->active = false;
1127 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1128 ndi->active = true;
1129 memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr,
1130 qemu_ram_addr_from_host_nofail(hostaddr),
1131 1 << s_bits);
1132 }
1133
1134 return hostaddr;
1135
1136 stop_the_world:
1137 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
1138 }
1139
1140 #ifdef TARGET_WORDS_BIGENDIAN
1141 # define TGT_BE(X) (X)
1142 # define TGT_LE(X) BSWAP(X)
1143 #else
1144 # define TGT_BE(X) BSWAP(X)
1145 # define TGT_LE(X) (X)
1146 #endif
1147
1148 #define MMUSUFFIX _mmu
1149
1150 #define DATA_SIZE 1
1151 #include "softmmu_template.h"
1152
1153 #define DATA_SIZE 2
1154 #include "softmmu_template.h"
1155
1156 #define DATA_SIZE 4
1157 #include "softmmu_template.h"
1158
1159 #define DATA_SIZE 8
1160 #include "softmmu_template.h"
1161
1162 /* First set of helpers allows passing in of OI and RETADDR. This makes
1163 them callable from other helpers. */
1164
1165 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1166 #define ATOMIC_NAME(X) \
1167 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1168 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1169 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1170 #define ATOMIC_MMU_CLEANUP \
1171 do { \
1172 if (unlikely(ndi.active)) { \
1173 memory_notdirty_write_complete(&ndi); \
1174 } \
1175 } while (0)
1176
1177 #define DATA_SIZE 1
1178 #include "atomic_template.h"
1179
1180 #define DATA_SIZE 2
1181 #include "atomic_template.h"
1182
1183 #define DATA_SIZE 4
1184 #include "atomic_template.h"
1185
1186 #ifdef CONFIG_ATOMIC64
1187 #define DATA_SIZE 8
1188 #include "atomic_template.h"
1189 #endif
1190
1191 #ifdef CONFIG_ATOMIC128
1192 #define DATA_SIZE 16
1193 #include "atomic_template.h"
1194 #endif
1195
1196 /* Second set of helpers are directly callable from TCG as helpers. */
1197
1198 #undef EXTRA_ARGS
1199 #undef ATOMIC_NAME
1200 #undef ATOMIC_MMU_LOOKUP
1201 #define EXTRA_ARGS , TCGMemOpIdx oi
1202 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1203 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1204
1205 #define DATA_SIZE 1
1206 #include "atomic_template.h"
1207
1208 #define DATA_SIZE 2
1209 #include "atomic_template.h"
1210
1211 #define DATA_SIZE 4
1212 #include "atomic_template.h"
1213
1214 #ifdef CONFIG_ATOMIC64
1215 #define DATA_SIZE 8
1216 #include "atomic_template.h"
1217 #endif
1218
1219 /* Code access functions. */
1220
1221 #undef MMUSUFFIX
1222 #define MMUSUFFIX _cmmu
1223 #undef GETPC
1224 #define GETPC() ((uintptr_t)0)
1225 #define SOFTMMU_CODE_ACCESS
1226
1227 #define DATA_SIZE 1
1228 #include "softmmu_template.h"
1229
1230 #define DATA_SIZE 2
1231 #include "softmmu_template.h"
1232
1233 #define DATA_SIZE 4
1234 #include "softmmu_template.h"
1235
1236 #define DATA_SIZE 8
1237 #include "softmmu_template.h"